US3845810A - Strip casting apparatus - Google Patents

Strip casting apparatus Download PDF

Info

Publication number
US3845810A
US3845810A US00295621A US29562172A US3845810A US 3845810 A US3845810 A US 3845810A US 00295621 A US00295621 A US 00295621A US 29562172 A US29562172 A US 29562172A US 3845810 A US3845810 A US 3845810A
Authority
US
United States
Prior art keywords
drum
cooling liquid
spider
rotating
contacting elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00295621A
Inventor
C Gerding
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ltv Steel Co Inc
Jones and Laughlin Steel Inc
Original Assignee
Jones and Laughlin Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jones and Laughlin Steel Corp filed Critical Jones and Laughlin Steel Corp
Priority to US00295621A priority Critical patent/US3845810A/en
Application granted granted Critical
Publication of US3845810A publication Critical patent/US3845810A/en
Assigned to JONES & LAUGHLIN STEEL, INCORPORATED reassignment JONES & LAUGHLIN STEEL, INCORPORATED MERGER (SEE DOCUMENT FOR DETAILS). , DELAWARE, EFFECTIVE JUNE 22, 1981. Assignors: JONES & LAUGHLIN STEEL CORPORATION, A CORP. OF PA., NEW J&L STEEL CORPRATION, A CORP. OF DE., (CHANGED TO), YOUNGTOWN SHEET & TUBE COMPANY, A CORP. OF OH. (MERGED INTO)
Assigned to LTV STEEL COMPANY, INC., reassignment LTV STEEL COMPANY, INC., MERGER AND CHANGE OF NAME EFFECTIVE DECEMBER 19, 1984, (NEW JERSEY) Assignors: JONES & LAUGHLIN STEEL, INCORPORATED, A DE. CORP. (INTO), REPUBLIC STEEL CORPORATION, A NJ CORP. (CHANGEDTO)
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • B22D11/068Accessories therefor for cooling the cast product during its passage through the mould surfaces
    • B22D11/0682Accessories therefor for cooling the cast product during its passage through the mould surfaces by cooling the casting wheel

Definitions

  • the spider is rotated at a speed sufficient to 164/283 M; l65l89-91 throw a rotating layer of cooling liquid against the inv 1 side surface of the drum by centrifugal force, and the [56] References Cited action of the rollers on the surface being cooled UNITED STATES PATENTS breaks up incipient film boiling.
  • This invention is concerned with the continuous solidification of strip from molten metal. It is more particularly concerned with method and apparatus for solidiinvolves rotating the drum about its axis mounted horijzontally so that a portion of the drum surface dips into a crucible holding molten metal. If the drum is chilled or cooled internally, the metal solidifies on the circumferential drum surface and is removed continuously as cast strip. Cyclic'heatingand cooling, however, tend to warp the drum, which leads to cracking'and eventual destruction. More uniform cooling is desirable, but it is difficult to distribute cooling liquid around the inside of the drum by nozzles, baffles and the like. These can operate only by increasing thepressure dropthrough the cooling system so that the pressure in the drum is above that of the atmosphere.
  • FIG. 1 is a plan view in cross-section of apparatus of my invention.
  • FIG. 2 is a cross section taken on the plane 2-2 of FIG. 1.
  • FIG. 3 is an end elevation of my apparatus taken on the plane 3'3 of FIG. 1.
  • FIG. 4 is-a cross sectional detail of a portion of my apparatus.
  • My apparatus comprises a strip casting drum which is mounted upright for rotation about its horizontal axis.
  • Drum 10 has two opposite circular end faces 11 and 12 and a circumferential rim or surface 13 upon which the molten metal is cast. End faces 11 and 12 are joined to rim 13 by a junction 46. to be described.
  • Drum 10 is mounted on a hollow cylindrical shaft 14 which extends therefrom in both directions, from end plates 11 and 12 respectively. The ends of shaft 14 are journaled in bearings, not shown, so that the rim 13 of drum [0 is immersed in molten metal contained within a crucible.
  • Fitting 16 comprises a ring 17 carrying four inwardly extending ribs -25 which support a centrally located bearing 24 through which pipe 19 passes. The spaces between ribs 25--25 are open. Cooling liquid is supplied to internal hollow shaft 14 by pipe 22 which is positioned parallel to pipe 19 and which extends up to fitting 16.
  • shaft 14 The opposite end 23 of shaft 14 is fitted with a centrally located bearing 28 supported by four ribs 36-36.
  • a second bearing 26 is aligned with bearing 28 by ribs 2727 at the intersection of the plane of drum end 11 with shaft 14.
  • bearings 26 and 28 is journaled a rotatable shaft 29.
  • the inside end 30 of shaft 29 carries a circular plate 31 to which are attached six radial arms 32-32, forming a spider 37.
  • Each arm terminates at its outer end in a bifurcated cradle 33 which has spaced outwardly extending ends 34-34.
  • These ends 3434 are U-shaped with the open portion extending outwardly to form a slot, and in the slots of each cradle 33 is a roller 35.
  • the length of roller 35 is greater than the spacing between ends 34-34 of cradle 33 but less than the spacing between end faces 11 and 12 of the drum.
  • the length of arms 32-32 is proportioned so that a roller 35 at the bottom position rolls freely on the inner face 38 of drum rim 13, but within ends 34-34 of its cradle 33.
  • At its uppermost position with the apparatus stationary or turning slowly roller 35 is supported by the U-shaped ends 3434 of its cradle 33 so that there is clearance between it and the inner face 38 of drum rim [3.
  • Pipe 19 previously mentioned stops short of the spider 37.
  • a scoop 40 which extends at right angles to pipe 19 in a horizontal position within drum 10. Its extreme outer end 41 opens upwardly, so as to face into the oncoming rotating ring of liquid, and the scoop 40 communicates with the inside of pipe 19.
  • Outer end 41 is proportioned to be somewhat shorter than radial arms 3232. The ends of rollers 35 overhang scoop 41.
  • shaft 29 extends through plate 31 and is provided with centrally located hole 43.
  • the inside end of pipe 19 is closed by plug 44 terminating in a stub shaft 45 which is journaled in hole 43 of shaft 29.
  • junction 46 between end faces 11 and 12 and rim 13 of drum 10 is rendered flexible to some degree by providing each of end faces 11 and 12 with a spaced pair of circular grooves 47 and 48 in its inner face adjacent rim 13 and a circular groove 49 in its outer face positioned between grooves 47 and 48.
  • the web 50 between the grooves above mentioned is thinner than either end face 11 or rim l3 and is folded in the manner of a circular bellows.
  • My apparatus is provided with means for rotating shaft 14 at a low speed, which are not shown because they are conventional. It is also provided with means for rotating shaft 29 at a higher speed, which likewise are not shown because they are conventional.
  • the means for rotating shaft 14 are adjusted to rotate it at a speed of a few revolutions per minute. Cooling water is supplied to inlet pipe 22 at a sufficient pressure to project a stream from the mouth of the pipe. This stream passes through the open spaces between ribs 25 as shaft 14 is rotated, into the shaft and through it into drum 10.
  • the speed of rotation of drum 10 is necessarily slow because it is limited by the rate at which molten metal, such as steel, solidifies on the rim 13.
  • the cooling water therefore, tends to run down into the lowermost portion of drum 10 as the latter does not turn fast enough to throw the water outward by centrifugal force.
  • the means for rotating shaft 29 are adjusted to rotate it at a considerably higher rate than that of drum 10.
  • Shaft 29 rotates spider 37 which pulls rollers 35 with it, as well as water in drum 10.
  • the speed of rotation of spider 37 is maintained above that at which centrifugal force throws the cooling water outwardly against the inside surface 38 of rim 13.
  • the water inside drum 10 thus takes the form of a rotating ring of liquid around its inside surface.
  • the open end 41 of scoop 40 is positioned to strip water off the inside of this ring and discharge it through pipe 19, and the spacing between scoop end 41 and surface 38 controls the volume of cooling water in-drum l0.
  • Rollers 35 roll on the inside surface 38 of rim 13 around the bottom portion of drum l and are held there by the combined forces of gravity and centrifugal action. When they are in the uppermost arc of their path of travel the rollers 35 are thrown outward centrifugally just as the fluid is, but here they are held to the inside surface by a difference force-that of centrifugal action less that of gravity. The rolling of rollers 35 on surface 38 squeezes out or shears the liquid and breaks up any steam or vapor film formed between liquid and drum rim.
  • the rotational speed of spider 37 need be only that which causes the cooling liquid to spread out in a ring around drum 10.
  • the critical speed is about 55 rpm, and it is less for larger drums.
  • Flexible joint 46 permits rim 13 to deform somewhat as a result of any unbalanced thermal stresses set up therein. Rollers 35 roll on inside surface 38 even if the latter is deformed because they are free to move radially in their cradles 33.
  • the spider for example, need not comprise six arms but may have more or less.
  • the rolls themselves need not rotate in U-shaped slots but may be provided with axles of smaller diameter which rotate in appropriately dimensioned slots.
  • the rollers may be of steel, or of other material, and may be coated with rubber or other resilient material. Other modifications of this nature will occur to those skilled in the art.
  • Apparatus for continuously solidifying molten metal in the form of strip comprising a hollow cylindrical drum open to the atmosphere and positioned with its axis horizontal, means for introducing cooling liquid into the drum through an end thereof, means for rotating the drum at a speed below that to which cooling liquid is thrown against the inside surface of the drum by centrifugal force, means extending radially into the drum for withdrawing cooling liquid therefrom through an end thereof, and means for improving heat transfer from drum surface to cooling liquid comprising spider means rotatable inside the drum coaxially therewith, a plurality of drum surface contacting elements for breaking up incipient vapor and carried by the spider means and rotatable therewith, radial slot means for mounting the surface contacting elements in the spider means adapted and adjusted to permit radial displacement of the drum surface contacting elements from contact with the drum surface to a position spaced from the drum surface and means for rotating the spider means at a speed above that at which cooling liquid is thrown against the inside surface of the drum by centrifugal force.
  • Apparatus of claim 1 including a hollow shaft of 7 smaller diameter than the drum coaxial therewith through which the cooling liquid is introduced and withdrawn, the hollow shaft being open to the atmosphere at at least one end.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

An internally liquid cooled rotatable drum open to the atmosphere for continuously solidifying molten metal on its outer surface is provided with a coaxially rotating spider carrying rollers in radial slots which under the action of centrifugal force roll on the drum inner surface. The spider is rotated at a speed sufficient to throw a rotating layer of cooling liquid against the inside surface of the drum by centrifugal force, and the action of the rollers on the surface being cooled breaks up incipient film boiling.

Description

United States Patent 1 1 1111 3,845,810 Gerding Nov. 5, 1974 1 STRIP CASTING APPARATUS 2,450,428 10/1948 Hazelett 164/277 3,338,295 8/1967 Scribner [75] Inventorl Gerdmg, 3,537,506 11 1970 0111111115 164/276 P1ttsbu1'gh, Pa. [7 A J L hr St I C r FOREIGN PATENTS OR APPLICATIONS sslgnee: Pi s fi ml 5 PP/"3 1 tsburgh, Pa. 1,141,772 12/1962 ermuny .1 1115/8) Filed: Oct. 6, 1972 Primary Examiner-R. Spencer Anncar 1 pp No.1 295,621 Ito/my Agmr or Fnm (J R Hams Related US. Application Data [57] ABSTRACT [62] Division of Ser, No, 188,049, on, 12, 1971 No, An internally liquid cooled rotatable drum open to the 3,712,366. atmosphere for continuously solidifying molten metal on its outer surface is provided-with a coaxially rotat- [52] US. Cl 16f1 g 76 l64 /2 83 M, ing spider carrying rollers in radial slots which under [51] Int. Cl B22d 11/06 the action of centrifugal force roll on the drum inner [58] Field of Search 164/87, 89, 276-278, surface. The spider is rotated at a speed sufficient to 164/283 M; l65l89-91 throw a rotating layer of cooling liquid against the inv 1 side surface of the drum by centrifugal force, and the [56] References Cited action of the rollers on the surface being cooled UNITED STATES PATENTS breaks up incipient film boiling.
1,868,436 7/1932 Stancliffe 165/91 10 Claims, 4 Drawing Figures This is division, of application Ser. No. 188,049 filed Oct. 12, 197l, and now U.S. Pat. No. 3,712,366.
This invention is concerned with the continuous solidification of strip from molten metal. It is more particularly concerned with method and apparatus for solidiinvolves rotating the drum about its axis mounted horijzontally so that a portion of the drum surface dips into a crucible holding molten metal. If the drum is chilled or cooled internally, the metal solidifies on the circumferential drum surface and is removed continuously as cast strip. Cyclic'heatingand cooling, however, tend to warp the drum, which leads to cracking'and eventual destruction. More uniform cooling is desirable, but it is difficult to distribute cooling liquid around the inside of the drum by nozzles, baffles and the like. These can operate only by increasing thepressure dropthrough the cooling system so that the pressure in the drum is above that of the atmosphere. This condition is not desirable in" apparatus processing molten metal, such as steel at a temperature of 2,800F or thereabouts, as a plugged cooling channel can result in an explosive build-up'of pressure. Moreover, the effectiveness of the cooling liquid, usually water, is greatly reduced by the formation of a layer of steam or vapor on the inside surfaceof the drum. The film-boiling action of this layer tends to insulatethe drum surface from the cooling liquid.
It is an object of my invention, therefore, to provide apparatus for continuously solidfying molten-metal on the outside surface of a rotating drum with internal cooling means whichmore effectively distribute the cooling liquid employed. It is another object to provide such'apparatus whichis open to the atmosphere. It is yet another object to provide apparatus which breaks up the layer of vapor which otherwise tends to form between the surface to be cooled and the cooling liquid. It is still another object to provide a more effective process of cooling a strip casting drum. Other objects will appear in the course of the description of my invention which follows.
When cooling liquid is introduced into a casting drum and withdrawn therefrom, its tendency, of course, is to collect in the bottom portion of the drum. Since the drum is rotating, constantly bringing regions of its surface which were above the level of the molten metal beneath that level and other regions which were below that level above it, one might expect temperature nonuniformities to even out. The fact is, however, that the rate of solidification of molten metal on the drum surface is low. A two-foot diameter drum caster for the direct casting of steel with which I am familiar that if thedrum is provided with an internal structure rotating at a faster rate sufficient to throw the cooling liquid against the drum wall by centrifugal force and maintain a rotating layer of cooling-liquidtherein, more uniform cooling ofv the entire circumference of the drum results. It is, not necessary to maintain any pressure drop through the cooling system, and the drum can be open to the atmosphere. My rotating element is an improvement .over rotary heat transfer apparatus such as is described in U.S. Pat. No. 1,868,436 issued July 19, 1932 to C. W. Stancliffe. I have also discovered that if the rotating structure is provided with elements which contact the drum surface so as to shear the liquid film thrown against it and thereby break up any incipient vapor the rate of cooling is considerably increased. An embodiment of my invention presently preferred by me is illustrated in the attached figures, to which reference is now made.
FIG. 1 is a plan view in cross-section of apparatus of my invention.
FIG. 2 is a cross section taken on the plane 2-2 of FIG. 1.
FIG. 3 is an end elevation of my apparatus taken on the plane 3'3 of FIG. 1.
FIG. 4 is-a cross sectional detail of a portion of my apparatus.
I describe hereinafter only the rotating drum portion of strip casting apparatus embodying my invention as the crucible which holds the molten metal is wholly conventional and forms no part of it. My apparatus comprises a strip casting drum which is mounted upright for rotation about its horizontal axis. Drum 10 has two opposite circular end faces 11 and 12 and a circumferential rim or surface 13 upon which the molten metal is cast. End faces 11 and 12 are joined to rim 13 by a junction 46. to be described. Drum 10 is mounted on a hollow cylindrical shaft 14 which extends therefrom in both directions, from end plates 11 and 12 respectively. The ends of shaft 14 are journaled in bearings, not shown, so that the rim 13 of drum [0 is immersed in molten metal contained within a crucible.
To end 15 of shaft 141s attached a fitting 16 which extends therein. Through bearing 24 in the center of fitting 16 a stationary pipe 19 projects into shaft 14 and terminateswithin drum 10 at a position which will be defined hereinafter. This pipe 19 is the drain pipe through which cooling liquid supplied to drum 10 is withdrawn. Its outer end is connected to a conduit 20 which leads to a sewer or sink, not shown. Fitting 16 comprises a ring 17 carrying four inwardly extending ribs -25 which support a centrally located bearing 24 through which pipe 19 passes. The spaces between ribs 25--25 are open. Cooling liquid is supplied to internal hollow shaft 14 by pipe 22 which is positioned parallel to pipe 19 and which extends up to fitting 16.
The opposite end 23 of shaft 14 is fitted with a centrally located bearing 28 supported by four ribs 36-36. A second bearing 26 is aligned with bearing 28 by ribs 2727 at the intersection of the plane of drum end 11 with shaft 14. In bearings 26 and 28 is journaled a rotatable shaft 29. The inside end 30 of shaft 29 carries a circular plate 31 to which are attached six radial arms 32-32, forming a spider 37. Each arm terminates at its outer end in a bifurcated cradle 33 which has spaced outwardly extending ends 34-34. These ends 3434 are U-shaped with the open portion extending outwardly to form a slot, and in the slots of each cradle 33 is a roller 35. The length of roller 35 is greater than the spacing between ends 34-34 of cradle 33 but less than the spacing between end faces 11 and 12 of the drum. The length of arms 32-32 is proportioned so that a roller 35 at the bottom position rolls freely on the inner face 38 of drum rim 13, but within ends 34-34 of its cradle 33. At its uppermost position with the apparatus stationary or turning slowly roller 35 is supported by the U-shaped ends 3434 of its cradle 33 so that there is clearance between it and the inner face 38 of drum rim [3.
Pipe 19 previously mentioned stops short of the spider 37. At this inner end of pipe 19 is attached a scoop 40 which extends at right angles to pipe 19 in a horizontal position within drum 10. Its extreme outer end 41 opens upwardly, so as to face into the oncoming rotating ring of liquid, and the scoop 40 communicates with the inside of pipe 19. Outer end 41 is proportioned to be somewhat shorter than radial arms 3232. The ends of rollers 35 overhang scoop 41.
The inside end of shaft 29 extends through plate 31 and is provided with centrally located hole 43. The inside end of pipe 19 is closed by plug 44 terminating in a stub shaft 45 which is journaled in hole 43 of shaft 29.
The junction 46 between end faces 11 and 12 and rim 13 of drum 10 is rendered flexible to some degree by providing each of end faces 11 and 12 with a spaced pair of circular grooves 47 and 48 in its inner face adjacent rim 13 and a circular groove 49 in its outer face positioned between grooves 47 and 48. The web 50 between the grooves above mentioned is thinner than either end face 11 or rim l3 and is folded in the manner of a circular bellows.
My apparatus is provided with means for rotating shaft 14 at a low speed, which are not shown because they are conventional. It is also provided with means for rotating shaft 29 at a higher speed, which likewise are not shown because they are conventional.
1n the operation of my apparatus, the means for rotating shaft 14 are adjusted to rotate it at a speed of a few revolutions per minute. Cooling water is supplied to inlet pipe 22 at a sufficient pressure to project a stream from the mouth of the pipe. This stream passes through the open spaces between ribs 25 as shaft 14 is rotated, into the shaft and through it into drum 10. The speed of rotation of drum 10 is necessarily slow because it is limited by the rate at which molten metal, such as steel, solidifies on the rim 13. The cooling water, therefore, tends to run down into the lowermost portion of drum 10 as the latter does not turn fast enough to throw the water outward by centrifugal force.
The means for rotating shaft 29 are adjusted to rotate it at a considerably higher rate than that of drum 10. Shaft 29 rotates spider 37 which pulls rollers 35 with it, as well as water in drum 10. The speed of rotation of spider 37 is maintained above that at which centrifugal force throws the cooling water outwardly against the inside surface 38 of rim 13. The water inside drum 10 thus takes the form of a rotating ring of liquid around its inside surface. The open end 41 of scoop 40 is positioned to strip water off the inside of this ring and discharge it through pipe 19, and the spacing between scoop end 41 and surface 38 controls the volume of cooling water in-drum l0.
Rollers 35 roll on the inside surface 38 of rim 13 around the bottom portion of drum l and are held there by the combined forces of gravity and centrifugal action. When they are in the uppermost arc of their path of travel the rollers 35 are thrown outward centrifugally just as the fluid is, but here they are held to the inside surface by a difference force-that of centrifugal action less that of gravity. The rolling of rollers 35 on surface 38 squeezes out or shears the liquid and breaks up any steam or vapor film formed between liquid and drum rim.
The rotational speed of spider 37 need be only that which causes the cooling liquid to spread out in a ring around drum 10. For a drum two feet in diameter. the critical speed is about 55 rpm, and it is less for larger drums.
Flexible joint 46 permits rim 13 to deform somewhat as a result of any unbalanced thermal stresses set up therein. Rollers 35 roll on inside surface 38 even if the latter is deformed because they are free to move radially in their cradles 33.
It will be understood that the preferred embodiment of my apparatus here described is susceptible to modifications. The spider, for example, need not comprise six arms but may have more or less. The rolls themselves need not rotate in U-shaped slots but may be provided with axles of smaller diameter which rotate in appropriately dimensioned slots. The rollers may be of steel, or of other material, and may be coated with rubber or other resilient material. Other modifications of this nature will occur to those skilled in the art.
I claim:
1. Apparatus for continuously solidifying molten metal in the form of strip comprising a hollow cylindrical drum open to the atmosphere and positioned with its axis horizontal, means for introducing cooling liquid into the drum through an end thereof, means for rotating the drum at a speed below that to which cooling liquid is thrown against the inside surface of the drum by centrifugal force, means extending radially into the drum for withdrawing cooling liquid therefrom through an end thereof, and means for improving heat transfer from drum surface to cooling liquid comprising spider means rotatable inside the drum coaxially therewith, a plurality of drum surface contacting elements for breaking up incipient vapor and carried by the spider means and rotatable therewith, radial slot means for mounting the surface contacting elements in the spider means adapted and adjusted to permit radial displacement of the drum surface contacting elements from contact with the drum surface to a position spaced from the drum surface and means for rotating the spider means at a speed above that at which cooling liquid is thrown against the inside surface of the drum by centrifugal force.
2. Apparatus of claim 1 in which the drum surface contacting elements are contoured to create shear in the cooling liquid.
3. Apparatus of claim 1 in which the radial slot means have parallel sides open at their outer ends.
4. Apparatus of claim 1 in which the drum surface contacting elements are rollers.
5. Apparatus of claim 4 in which the radial slot means are semicircular at their inner ends and journal the rollers therein.
6. Apparatus of claim 1 in which the means for withdrawing cooling liquid from the drum extend through an end of the drum and the means for rotating the spider extend through the opposite end of the drum.
7. Apparatus of claim 6 in which the means for withdrawing cooling liquid from the drum are stationary i and the inside end thereof is pivotally supported by the means for rotating the spider.
8. Apparatus of claim 1 including a hollow shaft of 7 smaller diameter than the drum coaxial therewith through which the cooling liquid is introduced and withdrawn, the hollow shaft being open to the atmosphere at at least one end.
9. Apparatus of claim 8 in which the cooling liquid is introduced through one end of the hollow shaft, and
tive movement therebetween.

Claims (10)

1. Apparatus for continuously solidifying molten metal in the form of strip comprising a hollow cylindrical drum open to the atmosphere and positioned with its axis horizontal, means for introducing cooling liquid into the drum through an end thereof, means for rotating the drum at a speed below that to which cooling liquid is thrown against the inside surface of the drum by centrifugal force, means extending radially into the drum for withdrawing cooling liquid therefrom through an end thereof, and means for improving heat transfer from drum surface to cooling liquid comprising spider means rotatable inside the drum coaxially therewith, a plurality of drum surface contacting elements for breaking up incipient vapor and carried by the spider means and rotatable therewith, radial slot means for mounting the surface contacting elements in the spider means adapted and adjusted to permit radial displacement of the drum surface contacting elements from contact with the drum surface to a position spaced from the drum surface and means for rotating the spider means at a speed above that at which cooling liquid is thrown against the inside surface of the drum by centrifugal force.
2. Apparatus of claim 1 in which the drum surface contacting elements are contoured to create shear in the cooling liquid.
3. Apparatus of claim 1 in which the radial slot means have parallel sides open at their outer ends.
4. Apparatus of claim 1 in which the drum surface contacting elements are rollers.
5. Apparatus of claim 4 in which the radial slot means are semicircular at their inner ends and journal the rollers therein.
6. Apparatus of claim 1 in which the means for withdrawing cooling liquid from the drum extend through an end of the drum and the means for rotating the spider extend through the opposite end of the drum.
7. Apparatus of claim 6 in which the means for withdrawing cooling liquid from the drum are stationary and the inside end thereof is pivotally supported by the means for rotating the spider.
8. Apparatus of claim 1 including a hollow shaft of smaller diameter than the drum coaxial therewith through which the cooling liquid is introduced and withdrawn, the hollow shaft being open to the atmosphere at at least one end.
9. Apparatus of claim 8 in which the cooling liquid is introduced through one end of the hollow shaft, and including a pipe coaxial with the hollow shaft and exiting therefrom through the same end thereof through which the cooling liquid is introduced, the cooling liquid being withdrawn through the pipe.
10. Apparatus of claim 1 including means flexibly joining the drum end faces and rim so as to permit relative movement therebetween.
US00295621A 1971-10-12 1972-10-06 Strip casting apparatus Expired - Lifetime US3845810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00295621A US3845810A (en) 1971-10-12 1972-10-06 Strip casting apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US18804971A 1971-10-12 1971-10-12
US00295621A US3845810A (en) 1971-10-12 1972-10-06 Strip casting apparatus

Publications (1)

Publication Number Publication Date
US3845810A true US3845810A (en) 1974-11-05

Family

ID=26883671

Family Applications (1)

Application Number Title Priority Date Filing Date
US00295621A Expired - Lifetime US3845810A (en) 1971-10-12 1972-10-06 Strip casting apparatus

Country Status (1)

Country Link
US (1) US3845810A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4307771A (en) * 1980-01-25 1981-12-29 Allied Corporation Forced-convection-cooled casting wheel
US4489773A (en) * 1981-12-21 1984-12-25 General Electric Company Method of casting with pool boiling cooling of substrate casting surface
US4537239A (en) * 1982-07-13 1985-08-27 Allied Corporation Two piece casting wheel
WO1987000460A1 (en) * 1985-07-21 1987-01-29 Concast Standard Ag Process and device for casting metal strip directly from the molten mass
EP0244257A2 (en) * 1986-04-30 1987-11-04 Westinghouse Electric Corporation Cooling system for continuous metal casting machines
US4794977A (en) * 1985-03-27 1989-01-03 Iversen Arthur H Melt spin chill casting apparatus
US5137075A (en) * 1987-10-13 1992-08-11 Ltv Steel Company, Inc. Continuous casting apparatus and method
US5261484A (en) * 1991-09-07 1993-11-16 Santrade Ltd. Drum for cooling or heating a product

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1868436A (en) * 1929-09-20 1932-07-19 Stancliffe Cecil Wheatley Heat transfer apparatus
US2450428A (en) * 1944-03-23 1948-10-05 Clarence W Hazelett Strip forming apparatus
DE1141772B (en) * 1956-10-22 1962-12-27 Continental Gummi Werke Ag Roller used for processing rubber or the like
US3338295A (en) * 1963-10-30 1967-08-29 Albert W Scribner Method for continuously casting between stationary and moving surfaces
US3537506A (en) * 1968-08-08 1970-11-03 United States Steel Corp Fixed internal guides for cooling water in rotary strip-casting drum

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1868436A (en) * 1929-09-20 1932-07-19 Stancliffe Cecil Wheatley Heat transfer apparatus
US2450428A (en) * 1944-03-23 1948-10-05 Clarence W Hazelett Strip forming apparatus
DE1141772B (en) * 1956-10-22 1962-12-27 Continental Gummi Werke Ag Roller used for processing rubber or the like
US3338295A (en) * 1963-10-30 1967-08-29 Albert W Scribner Method for continuously casting between stationary and moving surfaces
US3537506A (en) * 1968-08-08 1970-11-03 United States Steel Corp Fixed internal guides for cooling water in rotary strip-casting drum

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4307771A (en) * 1980-01-25 1981-12-29 Allied Corporation Forced-convection-cooled casting wheel
US4489773A (en) * 1981-12-21 1984-12-25 General Electric Company Method of casting with pool boiling cooling of substrate casting surface
US4537239A (en) * 1982-07-13 1985-08-27 Allied Corporation Two piece casting wheel
US4794977A (en) * 1985-03-27 1989-01-03 Iversen Arthur H Melt spin chill casting apparatus
WO1987000460A1 (en) * 1985-07-21 1987-01-29 Concast Standard Ag Process and device for casting metal strip directly from the molten mass
EP0244257A2 (en) * 1986-04-30 1987-11-04 Westinghouse Electric Corporation Cooling system for continuous metal casting machines
EP0244257A3 (en) * 1986-04-30 1988-02-24 Westinghouse Electric Corporation Cooling system for continuous metal casting machines
US5137075A (en) * 1987-10-13 1992-08-11 Ltv Steel Company, Inc. Continuous casting apparatus and method
US5261484A (en) * 1991-09-07 1993-11-16 Santrade Ltd. Drum for cooling or heating a product

Similar Documents

Publication Publication Date Title
US2546381A (en) Apparatus for concentrating liquids
US3845810A (en) Strip casting apparatus
US359348A (en) Mechanism for forming ingots
US3712366A (en) Method of cooling drum type strip casting apparatus
US2285740A (en) Apparatus for producing solid and tubular products from undercooled molten material
JPS5913551A (en) Continuous casting device of steel plate
US1223676A (en) Machine for the manufacture of pipes, cylinders, &c.
EP0000177B1 (en) Continuous casting method and apparatus
US2008196A (en) Centrifugal casting machine
US2593595A (en) Apparatus for chilling webs
US3605867A (en) Apparatus for casting metal strip
US2305209A (en) Method and apparatus for solidifying molten sulphur
JPS6347541B2 (en)
US4373907A (en) Apparatus for manufacturing rapidly cooled solidified slag
US1022617A (en) Apparatus for the manufacture of photographic films.
US1892440A (en) Centrifugal casting machine
JPS636308B2 (en)
JPH08281317A (en) System for cooling power reel for wire
US3820584A (en) Method for the cooling of a continuously cast product
US1235994A (en) Centrifugal casting-machine.
JP2731496B2 (en) Centrifugal casting method and apparatus
US1351766A (en) Centrifugal pipe-casting
US2167504A (en) Cooling of cylindrical bodies
JPS5921458A (en) Cooler for centrifugal casting die
SU419308A1 (en) INSTALLATION FOR PRODUCTION OF METAL GRANULT.tp

Legal Events

Date Code Title Description
AS Assignment

Owner name: JONES & LAUGHLIN STEEL, INCORPORATED

Free format text: MERGER;ASSIGNORS:JONES & LAUGHLIN STEEL CORPORATION, A CORP. OF PA.;YOUNGTOWN SHEET & TUBE COMPANY,A CORP. OF OH. (MERGED INTO);NEW J&L STEEL CORPRATION, A CORP. OF DE., (CHANGED TO);REEL/FRAME:004510/0801

Effective date: 19851018

AS Assignment

Owner name: LTV STEEL COMPANY, INC.,

Free format text: MERGER AND CHANGE OF NAME EFFECTIVE DECEMBER 19, 1984, (NEW JERSEY);ASSIGNORS:JONES & LAUGHLIN STEEL, INCORPORATED, A DE. CORP. (INTO);REPUBLIC STEEL CORPORATION, A NJ CORP. (CHANGEDTO);REEL/FRAME:004736/0443

Effective date: 19850612