US3845296A - Photosensitive junction controlled electron emitter - Google Patents

Photosensitive junction controlled electron emitter Download PDF

Info

Publication number
US3845296A
US3845296A US00405229A US40522973A US3845296A US 3845296 A US3845296 A US 3845296A US 00405229 A US00405229 A US 00405229A US 40522973 A US40522973 A US 40522973A US 3845296 A US3845296 A US 3845296A
Authority
US
United States
Prior art keywords
imaging device
set forth
photoemitters
electronic imaging
junctions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00405229A
Inventor
A Schnitzler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Army
Original Assignee
US Department of Army
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Army filed Critical US Department of Army
Priority to US00405229A priority Critical patent/US3845296A/en
Application granted granted Critical
Publication of US3845296A publication Critical patent/US3845296A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/34Photo-emissive cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/10Screens on or from which an image or pattern is formed, picked up, converted or stored
    • H01J29/36Photoelectric screens; Charge-storage screens
    • H01J29/38Photoelectric screens; Charge-storage screens not using charge storage, e.g. photo-emissive screen, extended cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/50Image-conversion or image-amplification tubes, i.e. having optical, X-ray, or analogous input, and optical output
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1446Devices controlled by radiation in a repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/34Photoemissive electrodes
    • H01J2201/342Cathodes
    • H01J2201/3421Composition of the emitting surface
    • H01J2201/3423Semiconductors, e.g. GaAs, NEA emitters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2231/00Cathode ray tubes or electron beam tubes
    • H01J2231/50Imaging and conversion tubes
    • H01J2231/50005Imaging and conversion tubes characterised by form of illumination
    • H01J2231/5001Photons
    • H01J2231/50015Light
    • H01J2231/50026Infrared

Definitions

  • An external grid is positioned adjacent the mosaic of photoemitters and has the high voltage side of a step up voltage divider thereto with the low voltage side connected to the input side of the sandwich structure.
  • the sandwich structure and external grid are enclosed in a vacuum envelope for converting an input optical radiant image into an electron image for display on an electroluminescent screen.
  • a bias light is uniformly flooded over the mosaic of photoemitters to provide saturation electron current therefrom.
  • the flow of electrons emitted from the photoemitters are in proportion to the intensity of infrared light incident on the input side of the sandwich structure.
  • the input side of the structure has an antireflection coating thereof for aiding the incident infrared light in producing electron-hole pairs across the photosensitive junctions.
  • FIG. 1 A first figure.
  • This invention is in the field of electronic imaging devices which rely on the internal photoelectric effect in a mosaic of photodiode-photocathode junctions wherein the useful spectral response extends into the intermediate infrared spectrum.
  • These photodiodephotocathode junctions comprise a P-type substrate having an antireflection coating on an input side and a plurality of N-type material islands on the output side. Each of the plurality of N-type material islands has a discrete electrically isolated photoemitter associated therewith on the output side.
  • a voltage divider is connected in step up fashion from the antiretlection coating, to a focusing grid laid on the output side of the sandwich structure, and to an external grid that is adjacent the plurality of discrete electrically isolated photoemitters. Also, a bias light floods the output side of the plurality of photoemitters to provide electron current saturation therefrom into the vacuum envelope and toward an electroluminescent screen.
  • the electron current from each of the mosaic of discrete electrically isolated photoemitters is in direct relation to the intensity of the infrared image incident on the P-type substrate at a position directly opposite each photoemitter because the infrared light creates electronhole pairs in the photodiodes in accordance with the intensity of the infrared light.
  • the higher the concentration of electron-hole pairs the larger the reverse bias on the P-N photosensitive junctions. As the reverse bias increases, a higher relative voltage difference exists between the external grid and the discrete electrically isolated photoemitter islands, thus causing acceleration of the electrons toward the electroluminescent screen.
  • a visible image is formed on the screen according to the incident infrared image present on the antireflection coating.
  • FIG. I is a schematic diagram of a circuit depicting a single image detector element of the present inventron
  • FIG. 2 shows curves of the photocathode current versus the grid voltage
  • FIG. 3 shows the photodiode current versus photodiode voltage curves
  • FIG. 4 shows a curve of the Log of the photocathode current versus the log of the photodiode irradiance
  • FIG. 5 illustrates a sectional view of the sandwich structure of the present invention
  • FIG. 6 shows a frontal view of sandwich structure
  • FIG. 7 is a schematic diagram of a second embodiment comprising a circuit depicting a single image detector element where the P-N photosensitive junction is the reverse biased collector-base junction of a phototransistor;
  • FIG. 8 is a schematic diagram of a third embodiment comprising a pulsing voltage source.
  • FIG. 9 illustrates a schematic diagram of a fourth embodiment of the present invention comprising a pulsed bias light source.
  • This invention is a photosensitive junction controlled electron emitter consisting of a mosaic made up of a plurality of electrically isolated photosensitive junctions with each single junction being in electrical contact with a single electron emitter of a mosaic of discrete electrically isolated photoemitters.
  • the photosensitive junctions and emitters form a composite sandwich structure.
  • the photosensitive junction is either of the semiconductor P-N junction type or of the metalsemiconductor Schottky barrier type.
  • the photosensitive junction is simply a photodiode, or one of the opposite junctions of a transistor. The junction can be operated in either the reverse biased or the photovoltaic mode.
  • the electron emitter is made of a photoelectron material, such as cesium antimonide or cesiated silicon, which is irradiated with radiation from.a uniform biasing light to provide current saturation therefrom.
  • a cold cathode emitter such as a tunnel emitter, may also be used as the photoemitter with the use of the biasing light.
  • FIG. 1 illustrates a schematic diagram of the equivalent circuit for a single image detector element in the simplest arrangement of the photosensitive junction controlled electron emitter of the mosaic of image detector elements of the present invention.
  • the circuit consists of a semiconductor photodiode 10 in series with the photocathode 12 of an electronic imaging tube enclosed in a vacuum envelope (not shown). Electron current emitted from photocathode 12 and through external grid 16 may enter an electron multiplying structure (not shown) before being collected by a charge storage film or a cathodoluminescent phosphor at the other end of the vacuum envelope.
  • a steady bias light whose radiation is represented by (#8) floods the photocathode produces a current density of 1 to 10 microamperes per square centimeter from the photocathode making the total current flow out the photocathode wholly determined by current flow through the photodiode.
  • the photodiode I0 is reverse biased by battery 36 and while in this saturated condition acts as a current limiter to the flow of current from photocathode 12. Variations in voltage of battery 36 when the photodiode is operating in the saturation region have little effect on the flow of current from photocathode 12. In the dark, the photodiode 10 current is the leakage current and is therefore, the current flowing through the photocathode 12. Looking now at FIGS.
  • the photocathode current is determined by the high quantum efficiency of the photodiode.
  • a photocathode of very high quantum efficiency in the infrared is realized.
  • the dynamic range of operation will depend on whether the photocathode is used in a direct view image intensifier or is used in a camera tube. In both cases saturation current is determined by the intensity of the bias light that is projected on the photocathodes.
  • the threshold current in the direct view image intensifier is determined by the dark current of the photodiode, while in the camera tube only the fluctuations, or shot noise, in the dark current de termine the threshold.
  • the dark current density of a silicon photodiode array as low as 10 amp/cm has been obtained at room temperature.
  • the shot noise current for an average of IO amp/cm is equal to l amp/cm assuming one thirtieth of a second integration time. Cooling the photodiode array will further decrease both the average and shot current densities.
  • the feasibility of the photodiode controlled photoemitter and the quantum efficiency which is obtained therefrom have been demonstrated using a silicon photodiode and an S-20 photocathode.
  • the dynamic range of this combination is shown in FIG. 4 where the Log of the photocathode current Ic VS the Log of the photodiode irradiance (b is plotted.
  • the quantum efficiency was measured and found to be 44 percent at the signal radiation wavelength of 8,000 A.
  • the room temperature dark current of the photodiode, with voltage of battery 36 at volts, is 2 X 10 amperes, and determines the threshold signal for a direct view image intensifier at room temperature.
  • the curve representing the straight line extension below the dark current limit was obtained by balancing the dark current in a bridge circuit to determine the threshold signal for a camera tube.
  • FIG. 5 A partial section of the composite photodiodephotocathode mosaic sandwich is indicated in FIG. 5.
  • the image signal radiation represented as IR in the case of infrared radiation, passes through the antireflection coating 8 an into the P-type substrate 10 where the photons from the image are absorbed, thus generating electron-hole pairs therein.
  • the electrons diffuse to the vicinity of the P-N junctions formed by P-type substrate l0 and the N-type islands 11. These electrons are carried across the various discrete P-N junctions, through the gold islands 15, and into the photoemitter film 17 to replace the electrons that are constantly being emitted from 17 into the vacuum envelope by the bias light irradiating the photoemitter islands 17.
  • the emitted electrons will pass through the external grid 16 to enter some secondary electron multiplication structure (not shown).
  • a mesh of focussing grids 14, made of a good conductor such as gold, are laid alongside the photoemitter islands 17 and are electrically isolated therefrom by a layer of insulation 13. Focussing grids 14 are connected to the negative side of battery 36 to accelerate electrons emitted from photoemitter islands 17 through external grid 16 since, except near photocurrent saturation, a retarding electric field exists in the space between the photoemitters l7 and grid 16.
  • FIG. 6 illustrates an output side of the sandwich structure.
  • An ohmic contact 20 surrounds the entire output side of the sandwich structure and is used to replenish electrons in the P-type substrate 10. Only one photoemitter island 17 is shown, but there is actually one island 17 located inside each square formed by the mesh of focussing grids 14.
  • FIG. 7 is schematic diagram of a single image detector element for controlling photocathode emission wherein the P-N junction in this embodiment is the reverse biased collector-base junction of a phototransistor 30.
  • the operation of transistor 30 is the same as the photodiode of FIG. 1 with the exception that the dark currents and the photocurrents are amplified by phototransistor 30. Electrically, either the N-P-N or P-N-P transistor will operate equally well. However, the P-N-P transistor would be most favorable for high quantum efficiency since the reverse biased collectorbase junction is nearest the incident surface of the signal radiation IR and therefore, transistor 30 efficiently collects the photogenerated electrons in its collector P-type substrate, represented by 30c.
  • the base of transistor 30 is represented by 30b, and the emitter is represented by 30a.
  • FIG. 8 illustrates another embodiment showing a schematic diagram of a single image element photodiode 40 and photocathode 44 in a circuit designed to improve on the operation and simplify construction of the basic device as described with reference to FIG. 1.
  • the embodiment shown in FIG. 8 differs from the embodiment shown in FIG. 1 in that the focusing wire grids 14 are omitted and the direct current battery 36, which normally biases grid 16, is replaced by a pulse generator 48 that applies a chain of positive pulses to grid 16.
  • the positive pulses help avoid the focusing problem caused by the inherent retarding electric field between grid 16 and the photocathode 44 by operating the phototube in pulse saturation with the duration of the pulse saturation current being determined by charge integration of the photodiode current between pulses and the amount of saturation current of the phototube being commensurate with a given bias light o intensity.
  • the charge integration depends on the capacitance of the photodiode junction.
  • the capacitance per unit area of the photodiode array C J is from to 1,000 times the capacitance per unit area of the grid-to-cathode capacitance C While the junction capacitance C J charges, the grid-to-cathode voltage will decrease from the full pulse voltage until the phototube current drops to a value equal to the reverse biased photodiode current. During most of the charging time of the junction capacitance C, an accelerating field exists between grid and cathode and focussing, rather than defocussing, of the photocurrent occurs.
  • the junction capacitance C begins to discharge through the junction at a rate determined by the intensity of the signal irradiance d lR on the junction. The discharge of C continues until the next voltage pulse from 48 is applied. An amount of charge equal to that lost by the junction capacitance then flows through the tube in the form of a short saturation current pulse.
  • the photodiode junction 40 as shown in FIG. 8 may be replaced with a phototransistor with its collector-base receiving the infrared signal radiation. The photodiode current is amplified by the phototransistor.
  • 57 is a direct current voltage source and the bias light is pulsed by a pulse generator 56 intermittently forward biasing a photodiode 58 thus causing intermittent radiation (#8 to be emitted from 58.
  • the grid-to-cathode capacitance C charges to the voltage of source 57 with the junction voltage of photodiode 50 being zero.
  • the bias light B is off and the bias light leakage into the photodiode 50 junction is thus avoided.
  • Leakage of bias light during the pulse time has no effect on operation as long as the phototube current is much larger than the photodiode current due to bias light leakage. a condition which is easily fulfilled.
  • the photosensitive junction controlled electron emitter of the present invention has the advantage that the resistance of a reverse biased diode junction can be very much larger than the intrinsic resistance of a bulk photoconductor such that the photocathode current is entirely determined by the electro-optical properties of the photosensitive junction, except when the photocathode is operating in the current saturation mode.
  • infrared sensitive junctions to obtain controlled emission of electrons into the vacuum is a very great advantage over the use of infrared sensitive junctions in a camera tube target because electron multiplication can be readily accomplished before storage and electron beam readout and neither beam, load resistor, nor video preamplifier noise will limit sensitivity.
  • the construction of the photosensitive junction controlled electron emitter is greatly simplified since no interconnecting wires or scan generators are required for the solid state vidicon and no complex amplifiers at each detector element are required as for the direct view solid state image intensifiers.
  • An electronic imaging device enclosed in a vacuum envelope comprising:
  • bias light source for uniform illumination of the front surface of said plurality of discrete electrically isolated photoemitters for producing electron current saturation therefrom;
  • an electronic focusing means for proximity focusing the photocathode current in the field between said fine mesh grid and said plurality of discrete electrically isolated photoemitters.
  • An electronic imaging device as set forth in claim 10 wherein said electronic focussing means comprises operating said photosensitive rectifying junctions in a charge storage pulse readout mode wherein a photogenerated charge is periodically stored in the capacitance between said rectifying junctions during an integration time and is discharged by application of said pulsed voltage means to cause a pulse of photocathode saturation current to flow to said cathodoluminescent phosphor screen until a charge equal to the stored charge has passed through said electronic imaging device.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

A sandwich structure of photosensitive junctions in series with a mosaic of photoemitters. An external grid is positioned adjacent the mosaic of photoemitters and has the high voltage side of a step up voltage divider thereto with the low voltage side connected to the input side of the sandwich structure. The sandwich structure and external grid are enclosed in a vacuum envelope for converting an input optical radiant image into an electron image for display on an electroluminescent screen. A bias light is uniformly flooded over the mosaic of photoemitters to provide saturation electron current therefrom. The flow of electrons emitted from the photoemitters are in proportion to the intensity of infrared light incident on the input side of the sandwich structure. The input side of the structure has an antireflection coating thereof for aiding the incident infrared light in producing electron-hole pairs across the photosensitive junctions.

Description

United States Schnitzler atent [191 [451 Oct. 29, 1974 [75] Inventor: Alvin D. Schnitzler, Camp Springs,
[73] Assignee: The United States of America as represented by the Secretary of the Army, Washington, DC.
[22] Filed: Oct. 10, 1973 [21] Appl. No.: 405,229
[52] US. Cl 250/213 VT, 250/211 J, 250/370, 317/235 N, 313/65 R, 315/10 [51] Int. Cl. H01j 31/50 [58] Field of Search 250/213 VT, 370, 211 J; 313/66, 65 A, 67, 65 R; 317/235 N, 15; 315/10, 11,21
[56] References Cited UNITED STATES PATENTS 3,345,534 10/1967 Charles 313/67 X 3,716,740 2/1973 Crowell et a1. 315/11 3,775,636 11/1973 McNally 313/65 X FOREIGN PATENTS OR APPLICATIONS 788,569 6/1968 Canada 250/213 VT Primary ExaminerWalter Stolwein Attorney, Agent, or Firm-Mr. Edward J. Kelley; S. J. Rotondi; Mr. Herbert Berl [57] ABSTRACT A sandwich structure of photosensitive junctions in series with a mosaic of photoemitters. An external grid is positioned adjacent the mosaic of photoemitters and has the high voltage side of a step up voltage divider thereto with the low voltage side connected to the input side of the sandwich structure. The sandwich structure and external grid are enclosed in a vacuum envelope for converting an input optical radiant image into an electron image for display on an electroluminescent screen. A bias light is uniformly flooded over the mosaic of photoemitters to provide saturation electron current therefrom. The flow of electrons emitted from the photoemitters are in proportion to the intensity of infrared light incident on the input side of the sandwich structure. The input side of the structure has an antireflection coating thereof for aiding the incident infrared light in producing electron-hole pairs across the photosensitive junctions.
13 Claims, 9 Drawing Figures IIIIIIIIII tii Pmmmm 29 mm 3.845296 SHEH 1 0f .3
FIG. 1
FIG. 2
The invention described herein may be manufactured, used, and licensed by or for the Government for governmental purposes without the payment to me of any royalty thereon.
BACKGROUND AND SUMMARY OF THE INVENTION This invention is in the field of electronic imaging devices which rely on the internal photoelectric effect in a mosaic of photodiode-photocathode junctions wherein the useful spectral response extends into the intermediate infrared spectrum. These photodiodephotocathode junctions comprise a P-type substrate having an antireflection coating on an input side and a plurality of N-type material islands on the output side. Each of the plurality of N-type material islands has a discrete electrically isolated photoemitter associated therewith on the output side. A voltage divider is connected in step up fashion from the antiretlection coating, to a focusing grid laid on the output side of the sandwich structure, and to an external grid that is adjacent the plurality of discrete electrically isolated photoemitters. Also, a bias light floods the output side of the plurality of photoemitters to provide electron current saturation therefrom into the vacuum envelope and toward an electroluminescent screen.
The electron current from each of the mosaic of discrete electrically isolated photoemitters is in direct relation to the intensity of the infrared image incident on the P-type substrate at a position directly opposite each photoemitter because the infrared light creates electronhole pairs in the photodiodes in accordance with the intensity of the infrared light. The higher the concentration of electron-hole pairs the larger the reverse bias on the P-N photosensitive junctions. As the reverse bias increases, a higher relative voltage difference exists between the external grid and the discrete electrically isolated photoemitter islands, thus causing acceleration of the electrons toward the electroluminescent screen. A visible image is formed on the screen according to the incident infrared image present on the antireflection coating.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. I is a schematic diagram of a circuit depicting a single image detector element of the present inventron;
FIG. 2 shows curves of the photocathode current versus the grid voltage;
FIG. 3 shows the photodiode current versus photodiode voltage curves;
FIG. 4 shows a curve of the Log of the photocathode current versus the log of the photodiode irradiance;
FIG. 5 illustrates a sectional view of the sandwich structure of the present invention;
FIG. 6 shows a frontal view of sandwich structure;
FIG. 7 is a schematic diagram of a second embodiment comprising a circuit depicting a single image detector element where the P-N photosensitive junction is the reverse biased collector-base junction of a phototransistor;
FIG. 8 is a schematic diagram of a third embodiment comprising a pulsing voltage source; and
FIG. 9 illustrates a schematic diagram of a fourth embodiment of the present invention comprising a pulsed bias light source.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT This invention is a photosensitive junction controlled electron emitter consisting of a mosaic made up of a plurality of electrically isolated photosensitive junctions with each single junction being in electrical contact with a single electron emitter of a mosaic of discrete electrically isolated photoemitters. The photosensitive junctions and emitters form a composite sandwich structure. The photosensitive junction is either of the semiconductor P-N junction type or of the metalsemiconductor Schottky barrier type. The photosensitive junction is simply a photodiode, or one of the opposite junctions of a transistor. The junction can be operated in either the reverse biased or the photovoltaic mode. The electron emitter is made of a photoelectron material, such as cesium antimonide or cesiated silicon, which is irradiated with radiation from.a uniform biasing light to provide current saturation therefrom. A cold cathode emitter, such as a tunnel emitter, may also be used as the photoemitter with the use of the biasing light.
Earlier efforts to increase the infrared spectrum response of electronic imaging devices centered on the use of photoconductors to control electron emission from light biased photocathodes. However, these efforts failed to yield a useful infrared sensitive electron imaging device because the bulk resistivity of infrared sensitive photoconductors is insufficient relative to the reciprocal of the low transconductance of phototubes. The present invention resulted from a concentrated effort to discover a better means than bulk photoconductivity for controlling the electron emission from a light biased photocathode.
FIG. 1 illustrates a schematic diagram of the equivalent circuit for a single image detector element in the simplest arrangement of the photosensitive junction controlled electron emitter of the mosaic of image detector elements of the present invention. The circuit consists of a semiconductor photodiode 10 in series with the photocathode 12 of an electronic imaging tube enclosed in a vacuum envelope (not shown). Electron current emitted from photocathode 12 and through external grid 16 may enter an electron multiplying structure (not shown) before being collected by a charge storage film or a cathodoluminescent phosphor at the other end of the vacuum envelope. A steady bias light, whose radiation is represented by (#8, floods the photocathode produces a current density of 1 to 10 microamperes per square centimeter from the photocathode making the total current flow out the photocathode wholly determined by current flow through the photodiode. The photodiode I0 is reverse biased by battery 36 and while in this saturated condition acts as a current limiter to the flow of current from photocathode 12. Variations in voltage of battery 36 when the photodiode is operating in the saturation region have little effect on the flow of current from photocathode 12. In the dark, the photodiode 10 current is the leakage current and is therefore, the current flowing through the photocathode 12. Looking now at FIGS. 2 and 3, when the image tube is operated in the dark the photocathode will be operating at some point such as A on the photodiode current Ic VS grid voltage V curve as shown in FIG. 2. When infrared signal radiation falls on photodiode I0, the photodiode saturation current increases from the dark value I to a new value I in proportion to the intensity of the infrared radiation on the photodiode. The photocathode will then be operating at a new point B that correspond to the photodiode current I as illustrated in the curve of FIG. 3. The change in V or diode voltage, due to the change in V when the operating point has moved from A to B in FIG. 2 has negligable feedback effect on the photodiode current, thus the photocathode current is determined by the high quantum efficiency of the photodiode. A photocathode of very high quantum efficiency in the infrared is realized. The dynamic range of operation will depend on whether the photocathode is used in a direct view image intensifier or is used in a camera tube. In both cases saturation current is determined by the intensity of the bias light that is projected on the photocathodes. However, the threshold current in the direct view image intensifier is determined by the dark current of the photodiode, while in the camera tube only the fluctuations, or shot noise, in the dark current de termine the threshold. The dark current density of a silicon photodiode array as low as 10 amp/cm has been obtained at room temperature. The shot noise current for an average of IO amp/cm is equal to l amp/cm assuming one thirtieth of a second integration time. Cooling the photodiode array will further decrease both the average and shot current densities.
The feasibility of the photodiode controlled photoemitter and the quantum efficiency which is obtained therefrom have been demonstrated using a silicon photodiode and an S-20 photocathode. The dynamic range of this combination is shown in FIG. 4 where the Log of the photocathode current Ic VS the Log of the photodiode irradiance (b is plotted. The quantum efficiency was measured and found to be 44 percent at the signal radiation wavelength of 8,000 A. The room temperature dark current of the photodiode, with voltage of battery 36 at volts, is 2 X 10 amperes, and determines the threshold signal for a direct view image intensifier at room temperature. In FIG. 4, the curve representing the straight line extension below the dark current limit was obtained by balancing the dark current in a bridge circuit to determine the threshold signal for a camera tube.
A partial section of the composite photodiodephotocathode mosaic sandwich is indicated in FIG. 5. The image signal radiation, represented as IR in the case of infrared radiation, passes through the antireflection coating 8 an into the P-type substrate 10 where the photons from the image are absorbed, thus generating electron-hole pairs therein. The electrons diffuse to the vicinity of the P-N junctions formed by P-type substrate l0 and the N-type islands 11. These electrons are carried across the various discrete P-N junctions, through the gold islands 15, and into the photoemitter film 17 to replace the electrons that are constantly being emitted from 17 into the vacuum envelope by the bias light irradiating the photoemitter islands 17. The emitted electrons will pass through the external grid 16 to enter some secondary electron multiplication structure (not shown). A mesh of focussing grids 14, made of a good conductor such as gold, are laid alongside the photoemitter islands 17 and are electrically isolated therefrom by a layer of insulation 13. Focussing grids 14 are connected to the negative side of battery 36 to accelerate electrons emitted from photoemitter islands 17 through external grid 16 since, except near photocurrent saturation, a retarding electric field exists in the space between the photoemitters l7 and grid 16.
FIG. 6 illustrates an output side of the sandwich structure. An ohmic contact 20 surrounds the entire output side of the sandwich structure and is used to replenish electrons in the P-type substrate 10. Only one photoemitter island 17 is shown, but there is actually one island 17 located inside each square formed by the mesh of focussing grids 14.
FIG. 7 is schematic diagram of a single image detector element for controlling photocathode emission wherein the P-N junction in this embodiment is the reverse biased collector-base junction of a phototransistor 30. The operation of transistor 30 is the same as the photodiode of FIG. 1 with the exception that the dark currents and the photocurrents are amplified by phototransistor 30. Electrically, either the N-P-N or P-N-P transistor will operate equally well. However, the P-N-P transistor would be most favorable for high quantum efficiency since the reverse biased collectorbase junction is nearest the incident surface of the signal radiation IR and therefore, transistor 30 efficiently collects the photogenerated electrons in its collector P-type substrate, represented by 30c. The base of transistor 30 is represented by 30b, and the emitter is represented by 30a.
FIG. 8 illustrates another embodiment showing a schematic diagram of a single image element photodiode 40 and photocathode 44 in a circuit designed to improve on the operation and simplify construction of the basic device as described with reference to FIG. 1. The embodiment shown in FIG. 8 differs from the embodiment shown in FIG. 1 in that the focusing wire grids 14 are omitted and the direct current battery 36, which normally biases grid 16, is replaced by a pulse generator 48 that applies a chain of positive pulses to grid 16. The positive pulses help avoid the focusing problem caused by the inherent retarding electric field between grid 16 and the photocathode 44 by operating the phototube in pulse saturation with the duration of the pulse saturation current being determined by charge integration of the photodiode current between pulses and the amount of saturation current of the phototube being commensurate with a given bias light o intensity. The charge integration depends on the capacitance of the photodiode junction. Thus, initially when the voltage pulse of polarity indicated in FIG. 8 is applied to grid 16, the grid-to-cathode capacitance of the phototube, represented by C charges quickly to the amplitude of the pulse voltage from pulse generator 48. After capacitance C charges to the amplitude of the voltage pulse from 48, the much larger capacitances of the photodiode array, represented by C is charged. The capacitance per unit area of the photodiode array C J is from to 1,000 times the capacitance per unit area of the grid-to-cathode capacitance C While the junction capacitance C J charges, the grid-to-cathode voltage will decrease from the full pulse voltage until the phototube current drops to a value equal to the reverse biased photodiode current. During most of the charging time of the junction capacitance C, an accelerating field exists between grid and cathode and focussing, rather than defocussing, of the photocurrent occurs. When the voltage pulse terminates, the junction capacitance C begins to discharge through the junction at a rate determined by the intensity of the signal irradiance d lR on the junction. The discharge of C continues until the next voltage pulse from 48 is applied. An amount of charge equal to that lost by the junction capacitance then flows through the tube in the form of a short saturation current pulse. The photodiode junction 40 as shown in FIG. 8 may be replaced with a phototransistor with its collector-base receiving the infrared signal radiation. The photodiode current is amplified by the phototransistor.
In the circuits of both FIGS. 2 and 8, there is still the possibility of the undesirable effect in the finished mosaic of leakage of the more intense bias light qbB into the region of the photosensitive junction. This leakage effect is avoided in the embodiment illustrated with the improved circuit shown in FlG. 9. in this embodiment, 57 is a direct current voltage source and the bias light is pulsed by a pulse generator 56 intermittently forward biasing a photodiode 58 thus causing intermittent radiation (#8 to be emitted from 58. Before the bias light is turned on, the grid-to-cathode capacitance C charges to the voltage of source 57 with the junction voltage of photodiode 50 being zero. When the pulsed bias light is turned on, saturation current flows through the phototube and the junction capacitance C, charges until the grid-to-cathode voltage across capacitance C decreases to a value such that the photocathode 52 current equals the reverse biased junction capacitance C J discharges by an amount determined by the photodiode current and the interval of time between the bias light pulses. When the bias light is turned on again, an amount of charge equal to that discharged from the junction capacitance flows through the tube as saturation current when an accelerating field is present between the grid and the cathode to focus the photoelectrons. During the integration of the infrared signal current in the photodiode 50 junction, the bias light B is off and the bias light leakage into the photodiode 50 junction is thus avoided. Leakage of bias light during the pulse time has no effect on operation as long as the phototube current is much larger than the photodiode current due to bias light leakage. a condition which is easily fulfilled.
The photosensitive junction controlled electron emitter of the present invention has the advantage that the resistance of a reverse biased diode junction can be very much larger than the intrinsic resistance of a bulk photoconductor such that the photocathode current is entirely determined by the electro-optical properties of the photosensitive junction, except when the photocathode is operating in the current saturation mode.
1. The defocussing difficulty in any photoconductor controlled photoemitter that arises from the retarding electric field between grid and cathode over most of the dynamic range of operation is readily overcome by making use of the junction capacitance along with low leakage current to operate the junction in the charge storage-pulse readout mode.
2. The speed of response of photosensitive junctions at all signal radiation levels is fast whereas photoconductors are notoriously sluggish at low radiation levels.
3. The use of infrared sensitive junctions to obtain controlled emission of electrons into the vacuum is a very great advantage over the use of infrared sensitive junctions in a camera tube target because electron multiplication can be readily accomplished before storage and electron beam readout and neither beam, load resistor, nor video preamplifier noise will limit sensitivity.
4. In the charge storage pulse readout mode of operation it may be feasible to operate a channel plate multiplier in the high gain-low noise pulse saturation mode since the channel plate voltage may be pulsed in synchronization with the photocathode current pulses to avoid overheating of the channel plate when the channel plate is operating condition.
5. When compared to other solid state image intensifier devices, the construction of the photosensitive junction controlled electron emitter is greatly simplified since no interconnecting wires or scan generators are required for the solid state vidicon and no complex amplifiers at each detector element are required as for the direct view solid state image intensifiers.
It should be understood, of course, that the foregoing disclosure relates to only a preferred embodiment of the invention and that numerous modifications or alternations may be made therein without departing from the spirit and the scope of the invention as set forth in the appended claims.
I claim:
1. An electronic imaging device enclosed in a vacuum envelope comprising:
a plurality of reverse biased rectifying photosensitive junctions;
a plurality of discrete electrically isolated photoemitters serially connected with said plurality of reverse biased rectifying photosensitive junctions to form a mosaic of discrete electrically isolated photocathodes to form a composite sandwich structure;
a cathode luminescent phosphor screen;
a bias light source for uniform illumination of the front surface of said plurality of discrete electrically isolated photoemitters for producing electron current saturation therefrom;
an external grid positioned adjacent to and separated from said plurality of discrete electrically isolated photoemitters;
voltage means connected to said fine mesh grid for accelerating electrons emitted from said plurality of discrete electrically isolated photoemitters to said cathode luminescent phosphor screen; and
an electronic focusing means for proximity focusing the photocathode current in the field between said fine mesh grid and said plurality of discrete electrically isolated photoemitters.
2. An electronic imaging device as set forth in claim 1 wherein said plurality of reverse biased rectifying photosensitive junctions are semiconductor P-N junctions.
3. An electronic imaging device as set forth in claim 1 wherein said plurality of reverse biased rectifying photosensitive junctions are photodiodes.
4. An electronic imaging device as set forth in claim 1 wherein said plurality of reverse biased rectifying photosensitive junctions are photosensitive transistor 5 junctions.
in a high direct current voltage 6. An electronic imaging device as set forth in claim 2 wherein said bias light source has a pulsed light output.
7. An electronic imaging device as set forth in claim 5 wherein said voltage means connected to said fine mesh grid is a constant voltage.
8. An electronic image device as set forth in claim 5 wherein said voltage means connected to said fine mesh grid is a pulsed voltage.
9. An electronic imaging device as set forth in claim 6 wherein said voltage means connected to said fine mesh grid is a constant voltage.
10. An electronic imaging device as set forth in claim 6 wherein said voltage means connected to said fine mesh grid is a pulsed voltage.
11. An electronic imaging device as set forth in claim 10 wherein said electronic focussing means is a wire grid electrically isolated photoemitters wherein said wire grid is biased negative relative to said photoemitters.
12. An electronic imaging device as set forth in claim 10 wherein said electronic focussing means comprises operating said photosensitive rectifying junctions in a charge storage pulse readout mode wherein a photogenerated charge is periodically stored in the capacitance between said rectifying junctions during an integration time and is discharged by application of said pulsed voltage means to cause a pulse of photocathode saturation current to flow to said cathodoluminescent phosphor screen until a charge equal to the stored charge has passed through said electronic imaging device.
13. An electronic imaging device as set forth in claim 12 wherein said pulsed light output from said bias light source is on during the discharge period of said photogenerated charge and is off during the photogenerated charge period.

Claims (13)

1. An electronic imaging device enclosed in a vacuum envelope comprising: a plurality of reverse biased rectifying photosensitive junctions; a plurality of discrete electrically isolated photoemitters serially connected with said plurality of reverse biased rectifying photosensitive junctions to form a mosaic of discrete electrically isolated photocathodes to form a composite sandwich structure; a cathode luminescent phosphor screen; a bias light source for uniform illumination of the front surface of said plurality of discrete electrically isolated photoemitters for producing electron current saturation therefrom; an external grid positioned adjacent to and separated from said plurality of discrete electrically isolated photoemitters; voltage means connected to said fine mesh grid for accelerating electrons emitted from said plurality of discrete electrically isolated photoemitters to said cathode luminescent phosphor screen; and an electronic focusing means for proximity focusing the photocathode current in the field between said fine mesh grid and said plurality of discrete electrically isolated photoemitters.
2. An electronic imaging device as set forth in claim 1 wherein said plurality of reverse biased rectifying photosensitive junctions are semiconductor P-N junctions.
3. An electronic imaging device as set forth in claim 1 wherein said plurality of reverse biased rectifying photosensitive junctions are photodiodes.
4. An electronic imaging device as set forth in claim 1 wherein said plurality of reverse biased rectifying photosensitive junctions are photosensitive transistor junctions.
5. An electronic imaging device as set forth in claim 2 wherein said bias light source has a constant light output.
6. An electronic imaging device as set forth in claim 2 wherein said bias light source has a pulsed light output.
7. An electronic imaging device as set forth in claim 5 wherein said voltage means connected to said fine mesh grid is a constant voltage.
8. An electronic image device as set forth in claim 5 wherein said voltage means connected to said fine mesh grid is a pulsed voltage.
9. An electronic imaging device as set forth in claim 6 wherein said voltage means connected to said fine mesh grid is a constant voltage.
10. An electronic imaging device as set forth in claim 6 wherein said voltage means connected to said fine mesh grid is a pulsed voltage.
11. An electronic imaging device as set forth in claim 10 wherein said electronic focussing means is a wire grid electrically isolated photoemitters wherein said wire grid is biased negative relative to said photoemitters.
12. An electronic imaging device as set forth in claim 10 wherein said electronic focussing means comprises operating said photosensitive rectifying junctions in a charge storage pulse readout mode wherein a photogenerated charge is periodically stored in the capacitance between said rectifying junctions during an integration time and is discharged by application of said pulsed voltage means to cause a pulse of photocathode saturation current to flow to said cathodoluminescent phosphor screen until a charge equal to the stored charge has passed through said electronic imaging device.
13. An electronic imaging device as set forth in claim 12 wherein said pulsed light output from said bias light source is on during the discharge period of said photogenerated charge and is off during the photogenerated charge period.
US00405229A 1973-10-10 1973-10-10 Photosensitive junction controlled electron emitter Expired - Lifetime US3845296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00405229A US3845296A (en) 1973-10-10 1973-10-10 Photosensitive junction controlled electron emitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00405229A US3845296A (en) 1973-10-10 1973-10-10 Photosensitive junction controlled electron emitter

Publications (1)

Publication Number Publication Date
US3845296A true US3845296A (en) 1974-10-29

Family

ID=23602829

Family Applications (1)

Application Number Title Priority Date Filing Date
US00405229A Expired - Lifetime US3845296A (en) 1973-10-10 1973-10-10 Photosensitive junction controlled electron emitter

Country Status (1)

Country Link
US (1) US3845296A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3914600A (en) * 1974-07-25 1975-10-21 Us Army Electron image integration intensifier tube
US4513308A (en) * 1982-09-23 1985-04-23 The United States Of America As Represented By The Secretary Of The Navy p-n Junction controlled field emitter array cathode
FR2602611A1 (en) * 1986-06-18 1988-02-12 Galileo Electro Optics Corp IMAGE GENERATION TUBE
US4754139A (en) * 1986-04-10 1988-06-28 Aerojet-General Corporation Uncooled high resolution infrared imaging plane
US4906894A (en) * 1986-06-19 1990-03-06 Canon Kabushiki Kaisha Photoelectron beam converting device and method of driving the same
US4939369A (en) * 1988-10-04 1990-07-03 Loral Fairchild Corporation Imaging and tracking sensor designed with a sandwich structure
EP0428159A1 (en) * 1989-11-14 1991-05-22 Sumitomo Electric Industries, Ltd. Light-receiving device
US6441542B1 (en) * 1999-07-21 2002-08-27 Micron Technology, Inc. Cathode emitter devices, field emission display devices, and methods of detecting infrared light
US20030010996A1 (en) * 2001-07-16 2003-01-16 Nec Corporation Cold cathode device
US20030071256A1 (en) * 2001-10-12 2003-04-17 Ossipov Viatcheslav V. High-current avalanche-tunneling and injection-tunneling semiconductor-dielectric-metal stable cold emitter, which emulates the negative electron affinity mechanism of emission
US20090032894A1 (en) * 2007-07-11 2009-02-05 Cubic Corporation Flip-Chip Photodiode

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3345534A (en) * 1963-02-15 1967-10-03 Csf Light amplifier with non-linear response to provide improved contrast characteristics
CA788569A (en) * 1968-06-25 Laboratoires D'electronique Et De Physique Appliquees L.E.P. Radiation transforming device
US3716740A (en) * 1970-09-18 1973-02-13 Bell Telephone Labor Inc Photocathode with photoemitter activation controlled by diode array
US3775636A (en) * 1971-06-21 1973-11-27 Westinghouse Electric Corp Direct view imaging tube incorporating velocity selection and a reverse biased diode sensing layer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA788569A (en) * 1968-06-25 Laboratoires D'electronique Et De Physique Appliquees L.E.P. Radiation transforming device
US3345534A (en) * 1963-02-15 1967-10-03 Csf Light amplifier with non-linear response to provide improved contrast characteristics
US3716740A (en) * 1970-09-18 1973-02-13 Bell Telephone Labor Inc Photocathode with photoemitter activation controlled by diode array
US3775636A (en) * 1971-06-21 1973-11-27 Westinghouse Electric Corp Direct view imaging tube incorporating velocity selection and a reverse biased diode sensing layer

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3914600A (en) * 1974-07-25 1975-10-21 Us Army Electron image integration intensifier tube
US4513308A (en) * 1982-09-23 1985-04-23 The United States Of America As Represented By The Secretary Of The Navy p-n Junction controlled field emitter array cathode
US4754139A (en) * 1986-04-10 1988-06-28 Aerojet-General Corporation Uncooled high resolution infrared imaging plane
FR2602611A1 (en) * 1986-06-18 1988-02-12 Galileo Electro Optics Corp IMAGE GENERATION TUBE
US4752688A (en) * 1986-06-18 1988-06-21 Galileo Electro-Optics Corp. Imaging tube
BE1000861A5 (en) * 1986-06-18 1989-04-25 Galileo Electro Optics Corp Imaging tube.
US4906894A (en) * 1986-06-19 1990-03-06 Canon Kabushiki Kaisha Photoelectron beam converting device and method of driving the same
US4939369A (en) * 1988-10-04 1990-07-03 Loral Fairchild Corporation Imaging and tracking sensor designed with a sandwich structure
EP0428159A1 (en) * 1989-11-14 1991-05-22 Sumitomo Electric Industries, Ltd. Light-receiving device
US6114737A (en) * 1989-11-14 2000-09-05 Sumitomo Electric Industries, Ltd. Light-receiving device
US6441542B1 (en) * 1999-07-21 2002-08-27 Micron Technology, Inc. Cathode emitter devices, field emission display devices, and methods of detecting infrared light
US20030010996A1 (en) * 2001-07-16 2003-01-16 Nec Corporation Cold cathode device
US20030071256A1 (en) * 2001-10-12 2003-04-17 Ossipov Viatcheslav V. High-current avalanche-tunneling and injection-tunneling semiconductor-dielectric-metal stable cold emitter, which emulates the negative electron affinity mechanism of emission
US6847045B2 (en) * 2001-10-12 2005-01-25 Hewlett-Packard Development Company, L.P. High-current avalanche-tunneling and injection-tunneling semiconductor-dielectric-metal stable cold emitter, which emulates the negative electron affinity mechanism of emission
US20090032894A1 (en) * 2007-07-11 2009-02-05 Cubic Corporation Flip-Chip Photodiode
US8455972B2 (en) * 2007-07-11 2013-06-04 Cubic Corporation Flip-chip photodiode

Similar Documents

Publication Publication Date Title
US3845296A (en) Photosensitive junction controlled electron emitter
US3322955A (en) Camera tube of the kind comprising a semi-conductive target plate to be scanned by an electron beam
Wiley et al. Electron multipliers utilizing continuous strip surfaces
US4000503A (en) Cold cathode for infrared image tube
US3649838A (en) Semiconductor device for producing radiation in response to incident radiation
JP3413241B2 (en) Electron tube
Melchior Sensitive high speed photodetectors for the demodulation of visible and near infrared light
US3775636A (en) Direct view imaging tube incorporating velocity selection and a reverse biased diode sensing layer
US2928969A (en) Image device
US3668473A (en) Photosensitive semi-conductor device
US2896088A (en) Regenerating scintillation counter
US3792197A (en) Solid-state diode array camera tube having electronic control of light sensitivity
Gordon et al. A charge storage target for electron image sensing
US2777970A (en) Television camera storage tube
US4025814A (en) Television camera tube having channeled photosensitive target spaced from signal electrode
US3885187A (en) Photodiode controlled electron velocity selector image tube
US5311044A (en) Avalanche photomultiplier tube
US3716740A (en) Photocathode with photoemitter activation controlled by diode array
GB2152282A (en) Optical amplifier
US3688143A (en) Multi-diode camera tube with fiber-optics faceplate and channel multiplier
US3748523A (en) Broad spectral response pickup tube
US2250721A (en) Image storage tube
US3321659A (en) Radiation sensitive electron emissive device
US2237679A (en) Electron discharge device
US3663820A (en) Diode array radiation responsive device