US3845211A - Method for treating allergic disorders due to histamine - Google Patents

Method for treating allergic disorders due to histamine Download PDF

Info

Publication number
US3845211A
US3845211A US00180095A US18009571A US3845211A US 3845211 A US3845211 A US 3845211A US 00180095 A US00180095 A US 00180095A US 18009571 A US18009571 A US 18009571A US 3845211 A US3845211 A US 3845211A
Authority
US
United States
Prior art keywords
piperidine
dibenzo
cyclohepten
ylidene
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00180095A
Inventor
J Prugh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck and Co Inc
Original Assignee
Merck and Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck and Co Inc filed Critical Merck and Co Inc
Priority to US00180095A priority Critical patent/US3845211A/en
Application granted granted Critical
Publication of US3845211A publication Critical patent/US3845211A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/68Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine

Definitions

  • This invention concerns 10-oxo or -hydroxy-10,11-di hydro-SH-dibenzo [a,d] cyclohepten-S-ylidene) piperidine compounds, acid addition salts thereof, and processes for the preparation of said compounds from the corresponding IO-desoxy compounds. It also concerns pharmaceutical compositions in which said 10-oxo or -hydroxy compounds are incorporated as the active medicinal agent. The invention is also concerned with the use of such compounds in the treatment of certain allergic conditions and as appetite stimulants.
  • novel 10-oxo or -hydroxy compounds of my invention are distinguished from the prior art patented compounds by their enhanced antihistaminic activity and their diminished activity with respect to serotonin antagonism and central and peripheral anticholinergic activity as measured in standard laboratory test animals.
  • the present invention relates to derivatives of l-alkyl- 4-(10,1 l-dihydro-SH-dibenzo[a,d1cyclohepten-S ylidene) piperidine which are useful as drugs for the treatment of allergic conditions in humans and in particular it relates to derivatives of the following structure wherein R is loweralkyl or loweralkenyl preferably containing from 1 to 6 carbon atoms, X and X are similar or dissimilar and are selected from hydrogen, an alkyl group having up to 6 carbon atoms, a perfluoroalkyl group having up to 4 carbon atoms, a phenyl or a substituted phenyl radical, an acyl group having up to 4 carbon atoms, a perfluoroacyl group having up to 4 carbon atoms, amino, an alkylamino group having up to 4 carbon atoms, a dialkylamino group having up to 8 carbon atoms
  • alkylsulfonyl group having up to 4 carbon atoms a perfluoro alkoxyl group having up to 4 carbon atoms, cyano, carboxy, carbamoyl, formyl, an alkylcarbamoyl group having up to 5 carbon atoms, a dialkylcarbamoyl group having up to 9 carbon atoms, a carbalkoxy group having up to 6 carbon atoms, mercapto, an alkylmercapto group having up to 4 carbon atoms, an aralkylmercapto group especially benzylmercapto, a perfluoroalkylmercapto group having up to 4 carbon atoms, an alkylsulfonyl group having up to 4 carbon atoms, a perfluoroalkylsulfonyl group having up to 4 carbon atoms, sulfamoyl, an alkylsulfamoyl group having up to 4 carbon atoms, a dialky
  • the invention also includes salts of the above compounds such as acid addition salts which may interchangeably be used in therapeutic applications with the base and likewise includes N-oxide derivatives thereof.
  • the invention also includes the administration of 1 alkyl-4-(l0,1l-dihydro-lO-oxo or 10-hydroXy-5H-dibenzo- [a,d]cyclohepten-S-ylidene)piperidine or an acid addition salt thereof as a treatment of allergic disorders.
  • the treatment involves preferably the oral administration of an effective amount of the selected 1-alkyl-4-(10,11-dihydro- 10-oxo-dibenzo[a,d]cyclohepten-S-ylidene)piperidine at a dosage level which will afford relief from the allergic condition.
  • the invention also includes a method of stimulating appetite in human patients who may be underweight or malnourished.
  • the method employed for stimulating appetite involves the administration either orally or parenterally but preferably orally of an effective amount of a selected 1-alkyl-4-( 10,11-dihydro-10-oxoor IO-hydroxydibenzo a,d] cyclohepten-S-ylidene piperidine.
  • the compounds of my invention may be administered to persons in any of the usual pharmaceutical oral forms such as tablets, elixirs and aqueous suspensions in an amount from 0.10 up to 50 mgs. per dose given 2 to 4 times daily. Sterile solutions for injection containing from 0.001 to about 25 mgs. per dose are injected 2 to 4 times a day.
  • the compounds of my invention are ordinarily easily administered as a salt and any convenient non-toxic acid addition salt formed in a conventional manner may be employed.
  • the salts convenient for use are salts of the compounds of my invention with hydrochloric acid, sulfuric acid, phosphoric acid, acetic acid, propionic acid, citric acid, tartaric acid, succinic acid, maleic acid and the like. These salts are generally equivalent in potency to the bases from which they are formed taking into consideration the stoichiometric quantities employed.
  • the compounds of my invention are conveniently prepared from the compounds disclosed in the Engelhardt patent, US. Pat. No. 3,014,911, or from appropriately substituted H dibenzo[a,d]cycloheptenones, in the manner described in column 3 of that patent, the SH-dibozo[a,d]cyclohepten-5-one or a derivative containing an X and/or X substituent in the benzene rings is treated with a Grignard reagent prepared from a 1-alkyl-4-halopiperidine or a ring alkylated 1-alkyl-4-halo-piperidine to form an intermediate carbinol, a S-hydroxy-S-(lalkyl-4-piperidyl)-5H-dibenzo[a,d]cycloheptene which is then dehydrated to produce the desired starting material, a 1-alkyl-4-(5H-dibenzo[a,d]cyclohepten 5 ylidene) piperidine.
  • the starting material employed in the process of my invention preferably in the form of its hydrobromide salt, is then treated with bromine to produce the corresponding 10,1 l-dibromo-l0,1 1dihydro-dibenzo-cycloheptene preferably isolated as the hydrobromide and subsequently the dibromo compound is treated with a strong base to form a mono-bromo SH-dibenzo[a,d]cycloheptene compound which mono-bromo compound is then contacted with a piperidine or pyrrolidine in the presence of a strong base to produce a IO-enamine derivative.
  • the resulting enamine derivative is then hydrolyzed to produce a biologically active 10-keto compound which is readily reduced in known manner to the corresponding IO-hydroxy compound which also is a pharmacologically active compound of the present invention.
  • These 10-keto or 10- hydroxy compounds in addition to their biological activity, are also useful as intermediates in the preparation of other active dibenzocycloheptene compounds in which the 10-oxygen function is replaced by other functional substituents using readily available synthetic methods.
  • R is lower alkyl preferably containing from 1 to 6 carbon atoms
  • X and X are similar or dissimilar and are selected from hydrogen, an alkyl group having up to 6 carbon atoms, a perfluoroalkyl group having up to 4 carbon atoms, a phenyl or a substituted phenyl radical, an acyl group having up to 4 carbon atoms, a perfluoroacyl group having up to 4 carbon atoms, amino, an alkylarnino group having upto 4 carbon atoms, a dialkylarnino group having up to 8 carbon atoms, an acylamino group having up to 4 carbon atoms, a perfluoroacylamino group having up to 4 carbon atoms, an alkylsulfonylamino group having up to 4 carbon atoms, halogen (fluorine, chlorine, bromine
  • the product produced is a mixture of position isomers which differ in that the bromine substitutent is present at either the or ll-position.
  • This mixture is separated by conventional methods such as chromatography and crystallization to produce the respective 10-bromo or ll-bromo position isomers of compound C.
  • Each of these isomers, but prefera'bly the mixture without further crystallization, is converted to the corresponding compound D.
  • This reaction is conducted by treatment of the mono-bromo derivative C with a. strong base in the presence of piperidine to form the corresponding enamine compound D.
  • the reaction gives rise in the case of the unsymmetrically substituted compounds to position isomers in which the N-piperidyl substituent in the isomer is present in the 10- or ll-position.
  • position isomers are separated by conventional means such as by chromatography and/or crystallization.
  • the mixture of isomers, but alternatively either of the position isomers is then converted to the corresponding IO-keto, ll-keto, or a mixture of the two isomeric compounds.
  • This mixture of 10- and ll-keto compounds is also readily separated into the component isomers by conventional techniques such as by chromatography and/or crystallization.
  • the compounds of my invention which are unsymmetrically substituted are usually obtained as a mixture of isomers.
  • These isomers i.e., the geometrical, stereo and/or the optical isomers, can be separated at any desired stage of the process.
  • the mixtures of isomers formed are readily subjected to the various processing steps with consequent production of a mixture of isomers of the final product which in turn may be readily separated by known means.
  • the isomers of the product of my invention 'when isolated in their pure form may differ in biological activity.
  • the process outlined in the above flowsheet is a method of introducing a 10-oxygen substituent into compound A, i.e., 1 alkyl-4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)- piperidine by the process of bromination, dehydrobro mination, enamine formation and hydrolysis.
  • This process is also applicable to the derivatives indicated in which the benzene rings are substituted by one or more of the named substituents.
  • the first step of the process the conversion of compound A to B is accomplished by dissolving compound A, preferably in the form of its hydrobromide salt, in a solvent for bromination as, for example, glacial acetic acid or other solvent inert to the action of bromine and adding an equivalent amount of bromine (approximately 1 mol of bromine per mole of starting compound) to the reaction to form the corresponding 1-alkyl-4-(10,1l-dibromo- 10,11 dihydro 5H-dibenzo[a,d] cyclohepten-5-ylidene)- piperidine, compound B.
  • the bromination is preferably conducted at room temperature 25 C. However, if it is desired, the reaction can be carried out at any tempera ture between 0 and 100 C.
  • the dibromo compound is recovered by filtration and the excess solvent is removed in conventional manner.
  • the dibromo compound obtained is then dehydrobrominated by treatment with a strong base to produce the corresponding mono-bromo unsaturated derivative, i.e., the 1 alkyl-4-(10-bromo-5H-dibenzo[a,d]cyclohepten-5- ylidene)piperidine.
  • the dibromo compound is dissolved or suspended in a lower alkanol containing an excess amount of a strong base.
  • a preferable reaction mixture is one which employs potassium-t-butoxide dissolved in t-butanol.
  • Other mixtures which may be employed are alkali metal alcoholates dissolved in lower alkanol or alcoholic solutions of alkali metal hydroxides as, for example, sodium methoxide,
  • the reaction is conveniently carried out by stirring vigorously a mixture of the strong base in alcohol and the dibromo compound for a period of from /2 to 24 hours at temperatures ranging from about 0 to 40 C.
  • the unsaturated mono-brorno product obtained is isolated by pouring the reaction mixture into excess water and extracting with an aromatic hydrocarbon such as benzene.
  • the product is recovered from the extract by removal of the benzene solvent under reduced pressure and crystallizing the product from a convenient solvent such as an aliphatic hydrocarbon fraction.
  • the unsaturated mono-bromo derivative (C) is then treated with a solution of a strong base in the presence of piperidine or pyrrolidine to form the corresponding enamine compound (D), i.e., the 1-alkyl-4-(l0-[l-piperidyl] -5H dibenzo[a,d]cyclohepten-S-ylidene)piperidine.
  • This conversion is carried out by mixing the unsaturated mono-bromo compound C and a strong base and piperidine in excess of the equivalent amount under anhydrous conditions. The mixture is then preferably heated from about 25 C. to the reflux temperature for a period of from 1 hour to several days.
  • a preferable reaction mixture is one which employs potassium-t-butoxide dissolved in t-butanol or an inert solvent such as ethyl ether or dioxan.
  • the reaction may also be effected in the presence of piperidine and a strong base such as an alkali metal alkyl, e.g., butyl lithium, phenyl lithium, and the like in an inert solvent such as benzene or in excess piperidine acting as solvent as well as reactant.
  • the resulting enamine product D is present in the reaction mixture and is conveniently recovered by partitioning between an aromatic hydrocarbon, e.g., benzene, toluene, or xylene, ethers and water.
  • the resulting benzene extract of enamine is evaporated which leaves the product as a residue.
  • the enamine product is then converted by acidic hydrolysis to the desired biologically active product, l-alkyl- 4 (10,1l-dihydro-lO-oxo-dibenzo[a,d]cyclohepten-5-ylidene)piperidine which is further converted by lithium aluminum hydride or NaBH or other metal hydride reducing agents to the corresponding 1-alkyl-4-(10,1l-dihydro l0 hydroxy-dibenzoljafl]cyclohepten-5-ylidene)- piperidine.
  • the l-alkyl-4-(10,11-dihydro-l0-(oxoor hydroxy) dibenzo[a,d]cyclohepten-S-ylidene)piperidine is then converted to the corresponding l-alkenyl, e.g., allyl or methallyl piperidine, by dealkylation in conventional manner to produce the corresponding N-dealkylated compound followed by treatment of the deakylated piperidine with a stoichiometrically equivalent amount of an alkenyl halide as, for example, allyl or methallyl bromide.
  • the 10- or 11-keto compounds E of my invention containing a benzylmercapto substituent as the X and/or X substituent are converted by conventional means to the corresponding 10- or ll-ethylene ketal.
  • the resulting compound is then converted to the corresponding mercapto compound by reduction with sodium in liquid ammonia followed by acid hydrolysis to regenerate the 10- or 11- keto compound E having a mercapto substituent as the X or X substituent.
  • Example 3 The procedure of Example 2 is repeated using a stoichiometrically equivalent amount of each of the following correspondingly substituted 1-methyl-4-(5H-dibenzo[a,d]cyclohepten-S-ylidene)piperidines having the following structure:
  • each of benzene is dried over anhydrous MgSO filtered, the Mg-SO washed with benzene, and the benzene solution evaporated to dryness on a rotary evaporator. There remains 27.9 g. of crystalline product. This product is recrystallized by dissolving in 750 ml. of boiling hexane, filtered hot, the volume reduced to 200 ml. by boiling off hexane, seeding and allowing to crystallize.
  • the crystals 9 are collected and dried in a vacuum oven at 60 overnight to give 1methyl-4-(10-bromo 5H dibenzo[a,d]cyclohepten-S-ylidene)piperidine, m.p. 127129 C. Three more recrystallizations from hexane give an analytical sample with m.p. 130131 C.
  • Example 6 The procedure of Example 5 is repeated using as starting materials each of the products obtained in accordance with the procedure of Examples 3 and 4, respectively, to produce the corresponding mono-bromo dibenzocycloheptene compound.
  • EXAMPLE 7 1-Methyl-4-(10-(1-piperidyl)-5H-dibenzo[a,d]cyclohepten-S-ylidene) piperidine 1-Methy1-4-(10-bromo 5H dibenzo [a,d]cyclohepten- 5-ylidene)piperidine, 2.87 g. (0.0079 mole), 50 ml. of a 0.4M solution of potassium t-butoxide in t-butanol, and 20 ml. of dry piperidine is stirred and refluxed under anhydrous conditions for 6 hours. The reaction mixture is cooled and partitioned between 350 ml. of benzene and 50 ml. of Water.
  • the benzene layer is then extracted 5 more times with 50 ml. each of water.
  • the benzene layer is then dried over anhydrous MgSO filtered, and the benzene evaporated. This gives a single spot on t.l.c. and is used directly in the next step.
  • the product is crystallized from acetonitrile-methanol mixture.
  • a sample sublimed for analysis has a m.p. of 71.5-78 C.
  • Example 8 The procedure of Example 7 is repeated using as starting materials each of the products obtained according to Example 6 with resultant production of the corresponding 10-(l-piperidyD-SH-dibenzo[a,d]cycloheptene compound.
  • Example 10 The procedure of Example 9 is repeated using as the starting materials each of the products obtained in accordance with Example 8 with resultant production of the corresponding 10,11-dihydro-10 oxo dibenzo[a,d]cycloheptene compound.
  • EXAMPLE 11 1-Methyl-4-( 10,1l-dihydro-lO-oxo-dibenzo[a,d]cyclohepten-S-ylidene)piperidine 1-Methyl-4- 10-bromo-5 H dibenzo [a,d] cyclohepten- -ylidene)piperdine, 7.32 g. (0.02 mole) is dissolved in 100 ml. of dry piperidine. To this solution is added slow- 1y 25 ml. of a 1.6M solution of butyl lithium in hexane (0.04 mole) under anhydrous conditions and then stirred and refluxed for 8 hours under anhydrous conditions.
  • the reaction is cooled and poured into 500 ml. of benzene and extracted 6 times with ml. of Water.
  • the benzene is dried over anhydrous MgSO filtered, and the benzene re moved on a rotary evaporator leaving 1-methyl-4-(10- (l-piperidyD-SH-dibenzo[a,d]cyclohepten 5 ylidene) piperidine as an oil which still has some solvent in it.
  • This enamine product is then hydrolyzed by refluxing with stirring in ml. of 10% HCl in water and 75 ml. of methanol.
  • the methanol is then removed by evaporation of the reaction mixture on a rotary evaporator.
  • the residual material containing the desired product is made alkaline by adding solid NaHCO until no more CO is evolved.
  • the residue is then extracted with toluene and ether.
  • the combined extracts containing the product are dried over anhydrous MgSO filtered, and the solvents removed with a rotary evaporator. There remains a dark brown residual oil which when seeded crystallizes slowly.
  • EXAMPLE 13 1-Methyl-4-( 10,1 l-dihydro- 1 O-hydroxy-SH-dibenzo [a,d] cyclohepten-S-ylidene piperidine A solution of 0.95 g. (0.025 mole) of sodium borohydride and 5 drops of 10% sodium hydroxide solution is added dropwise to a stirred solution of 1.5 g. (0.005 mole) of l-methyl 4 (10,1l-dihyro-lO-oxo-SH-dibenzo[a,d] cyclohepten-S-ylidene)piperidine. After about 4 ml. of the sodium borohydride solution is added the product begins to crystallize from the reaction.
  • EXAMPLE 14 Representative Pharmaceutical Composition Preparation A typical tablet containing 1 mg. of 1-methyl-4-(10,1ldihydro 10 oxo-dibenzo[a,d]cyclohepten-5-y1idene)- piperidine per tablet is prepared by mixing together with the active ingredient calcium phosphate dibasic, lactose and starch in the amounts shown in the table below. After these ingredients are thoroughly mixed the appropriate amount of magnesium stearate is added and the dry mixture blended for an additional three minutes. This mixture is then compressed into tablets weighing approximately 124 mgs. each.
  • cyclohepten-S-ylidene) piperidine 1 Calcium phosphate dibasic 5 2 Lactose 60 Starch 10 Magnesium stearate 1 Total 124 Capsules for oral use each containing 1 mg. of 1- methyl 4 (10,11-dihydro-10-oxo-dibenzo[a,d]cyclohepten-S-ylidene)piperidine are prepared by blending 1 gram of 1 methyl-4(10,1ldihydro-lO-oxo-dibenzo[a,d] cyclohepten-S-yliden)piperidine With 287 grams of lactose, USP. 4.1 grams of magnesium stearate. This is then used to fill 1,000 capsules each containing 1 mg. of 1 methyl 4 (10,11 dihydro-lO-oxo-dibenzo[a,d]cyclohepten-S-ylidene)piperidine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Hydrogenated Pyridines (AREA)

Abstract

1. A METHOD FOR THE TREATMENT OF ALLERGIC DISORDERS DUE TO HISTAMINE WHICH COMPRISES ADMINISTERING TO HUMAN PATIENTS AN EFFECTIVE ANTIHISTAMINIC AMOUNT OF COMPOUND HAVING THE FORMULA

5-(1-(H3C-)-PIPERIDIN-4-YL=),10-(O=)-10,11-DIHYDRO-5H-

DIBENZO(A,D)CYCLOHEPTENE

Description

United States Patent 'Offlce Patented Oct. 29, 1974 ABSTRACT OF THE DISCLOSURE The new 1-alkyl-4-(10-oxo or -hydroxy-10,11-dihydro- SH-dibenzo[a,d]cyclohepten-S-ylidene) piperidine compounds are prepared from the corresponding IO-desoxy compounds having a double bond at the 10,1l-position by a process involving bromination, dehydrobromination of the resulting dibromo compound, followed by enamine formation and hydrolysis to give the desired 10-oxo compound. The compounds prepared in this manner are active as antihistamines and as appetite stimulants.
This application is a division of U.S. Ser. No. 9049 filed Feb. 5, 1970 and now abandoned which in turn is a continuation-in-part of U.S. Ser. No. 4123 filed J an. 19, 1970 and now abandoned.
SUMMARY This invention concerns 10-oxo or -hydroxy-10,11-di hydro-SH-dibenzo [a,d] cyclohepten-S-ylidene) piperidine compounds, acid addition salts thereof, and processes for the preparation of said compounds from the corresponding IO-desoxy compounds. It also concerns pharmaceutical compositions in which said 10-oxo or -hydroxy compounds are incorporated as the active medicinal agent. The invention is also concerned with the use of such compounds in the treatment of certain allergic conditions and as appetite stimulants.
BACKGROUND Allergic conditions in the past have been treated with a variety of drugs including those characterized as l-alkyl- 4- 5 H-dibenzo [a,d] cyclohepten-S-ylidene piperidines.
Prior to the present invention, it was known that the compound cyproheptadine of the structure was an active antihistaminic and antiserotonin agent and was therefore useful in the treatment or relief of certain allergic conditions. This is disclosed in U.S. Pat. 3,014,911, E. L. Engelhardt, which patent was issued Dec. 26, 1961.
The novel 10-oxo or -hydroxy compounds of my invention are distinguished from the prior art patented compounds by their enhanced antihistaminic activity and their diminished activity with respect to serotonin antagonism and central and peripheral anticholinergic activity as measured in standard laboratory test animals.
DESCRIPTION AND PREFERRED EMBODIMENTS The present invention relates to derivatives of l-alkyl- 4-(10,1 l-dihydro-SH-dibenzo[a,d1cyclohepten-S ylidene) piperidine which are useful as drugs for the treatment of allergic conditions in humans and in particular it relates to derivatives of the following structure wherein R is loweralkyl or loweralkenyl preferably containing from 1 to 6 carbon atoms, X and X are similar or dissimilar and are selected from hydrogen, an alkyl group having up to 6 carbon atoms, a perfluoroalkyl group having up to 4 carbon atoms, a phenyl or a substituted phenyl radical, an acyl group having up to 4 carbon atoms, a perfluoroacyl group having up to 4 carbon atoms, amino, an alkylamino group having up to 4 carbon atoms, a dialkylamino group having up to 8 carbon atoms, an acylamino group having up to 4 carbon atoms, a perfluoroacylamino group having up to 4 carbon atoms, an alkylsulfonylamino group having up to 4 carbon atoms, halogen (fluorine, chlorine, bromine or iodine), hydroxyl, an
'alkoxyl group having up to 4 carbon atoms, a perfluoro alkoxyl group having up to 4 carbon atoms, cyano, carboxy, carbamoyl, formyl, an alkylcarbamoyl group having up to 5 carbon atoms, a dialkylcarbamoyl group having up to 9 carbon atoms, a carbalkoxy group having up to 6 carbon atoms, mercapto, an alkylmercapto group having up to 4 carbon atoms, an aralkylmercapto group especially benzylmercapto, a perfluoroalkylmercapto group having up to 4 carbon atoms, an alkylsulfonyl group having up to 4 carbon atoms, a perfluoroalkylsulfonyl group having up to 4 carbon atoms, sulfamoyl, an alkylsulfamoyl group having up to 4 carbon atoms, a dialkylsulfamoyl group having up to 8 carbon atoms, or an alkylsulfinyl group having up to four carbon atoms; R is methyl or ethyl and may replace one or more of the hydrogens in positions 2, 3, 5 or 6 of the pyridine ring, provided that only one of positions 3 or 5 is monosubstituted at one time; n is 1 or 2; and Z is either i.e., carbonyl or hydroxymethylene.
The invention also includes salts of the above compounds such as acid addition salts which may interchangeably be used in therapeutic applications with the base and likewise includes N-oxide derivatives thereof.
The invention also includes the administration of 1 alkyl-4-(l0,1l-dihydro-lO-oxo or 10-hydroXy-5H-dibenzo- [a,d]cyclohepten-S-ylidene)piperidine or an acid addition salt thereof as a treatment of allergic disorders. The treatment involves preferably the oral administration of an effective amount of the selected 1-alkyl-4-(10,11-dihydro- 10-oxo-dibenzo[a,d]cyclohepten-S-ylidene)piperidine at a dosage level which will afford relief from the allergic condition.
The invention also includes a method of stimulating appetite in human patients who may be underweight or malnourished. The method employed for stimulating appetite involves the administration either orally or parenterally but preferably orally of an effective amount of a selected 1-alkyl-4-( 10,11-dihydro-10-oxoor IO-hydroxydibenzo a,d] cyclohepten-S-ylidene piperidine.
The compounds of my invention may be administered to persons in any of the usual pharmaceutical oral forms such as tablets, elixirs and aqueous suspensions in an amount from 0.10 up to 50 mgs. per dose given 2 to 4 times daily. Sterile solutions for injection containing from 0.001 to about 25 mgs. per dose are injected 2 to 4 times a day. Further, the compounds of my invention are ordinarily easily administered as a salt and any convenient non-toxic acid addition salt formed in a conventional manner may be employed. As examples of the salts convenient for use are salts of the compounds of my invention with hydrochloric acid, sulfuric acid, phosphoric acid, acetic acid, propionic acid, citric acid, tartaric acid, succinic acid, maleic acid and the like. These salts are generally equivalent in potency to the bases from which they are formed taking into consideration the stoichiometric quantities employed.
The compounds of my invention are conveniently prepared from the compounds disclosed in the Engelhardt patent, US. Pat. No. 3,014,911, or from appropriately substituted H dibenzo[a,d]cycloheptenones, in the manner described in column 3 of that patent, the SH-dibozo[a,d]cyclohepten-5-one or a derivative containing an X and/or X substituent in the benzene rings is treated with a Grignard reagent prepared from a 1-alkyl-4-halopiperidine or a ring alkylated 1-alkyl-4-halo-piperidine to form an intermediate carbinol, a S-hydroxy-S-(lalkyl-4-piperidyl)-5H-dibenzo[a,d]cycloheptene which is then dehydrated to produce the desired starting material, a 1-alkyl-4-(5H-dibenzo[a,d]cyclohepten 5 ylidene) piperidine.
The starting material employed in the process of my invention, preferably in the form of its hydrobromide salt, is then treated with bromine to produce the corresponding 10,1 l-dibromo-l0,1 1dihydro-dibenzo-cycloheptene preferably isolated as the hydrobromide and subsequently the dibromo compound is treated with a strong base to form a mono-bromo SH-dibenzo[a,d]cycloheptene compound which mono-bromo compound is then contacted with a piperidine or pyrrolidine in the presence of a strong base to produce a IO-enamine derivative. The resulting enamine derivative is then hydrolyzed to produce a biologically active 10-keto compound which is readily reduced in known manner to the corresponding IO-hydroxy compound which also is a pharmacologically active compound of the present invention. These 10-keto or 10- hydroxy compounds, in addition to their biological activity, are also useful as intermediates in the preparation of other active dibenzocycloheptene compounds in which the 10-oxygen function is replaced by other functional substituents using readily available synthetic methods.
The process for the preparation of the compounds of my invention is conveniently illustrated by the following process outline:
Br H Br H X X X X N N l 1 R1 Rx X X X X wherein R is lower alkyl preferably containing from 1 to 6 carbon atoms, X and X are similar or dissimilar and are selected from hydrogen, an alkyl group having up to 6 carbon atoms, a perfluoroalkyl group having up to 4 carbon atoms, a phenyl or a substituted phenyl radical, an acyl group having up to 4 carbon atoms, a perfluoroacyl group having up to 4 carbon atoms, amino, an alkylarnino group having upto 4 carbon atoms, a dialkylarnino group having up to 8 carbon atoms, an acylamino group having up to 4 carbon atoms, a perfluoroacylamino group having up to 4 carbon atoms, an alkylsulfonylamino group having up to 4 carbon atoms, halogen (fluorine, chlorine, bromine or iodine), hydroxyl, an alkoxyl group having up to 4 carbon atoms, a perfluoroalkoxyl group having up to 4 carbon atoms, cyano, carboxy, carbamoyl, an alkylcarbamoyl group having up to 5 carbon atoms, a dialkylcarbamoyl grouphaving up to 9 carbon atoms, a carbalkoxy group having up to 6 carobn atoms, an alkylmercapto group having up to 4 carbon atoms, a perfluoroalkylmercapto group having up to 4 carbon atoms, an alkylsulfonyl group having up to 4 carbon atoms, a perfluoroalkylsulfonyl group having up to 4 carbon atoms, sulfamoyl, an alkylsulfamoyl group having up to 4 carbon atoms, or a dialkylsulfamoyl group having up to 8 carbon atoms; R is methyl or ethyl and may replace one or more of the hydrogens in positions 2, 3, 5 or 6 of the pyridine ring, provided that only one of positions 3 or 5 is mono-substituted at one time; n is 1 or 2.
In the conversion of compound B to compound C wherein the starting compound is unsymmetrically substituted, e.g., X and X are different groups the product produced is a mixture of position isomers which differ in that the bromine substitutent is present at either the or ll-position. This mixture is separated by conventional methods such as chromatography and crystallization to produce the respective 10-bromo or ll-bromo position isomers of compound C. Each of these isomers, but prefera'bly the mixture without further crystallization, is converted to the corresponding compound D. This reaction is conducted by treatment of the mono-bromo derivative C with a. strong base in the presence of piperidine to form the corresponding enamine compound D. In this instance, as in the formation of the mono-bromo compound, the reaction gives rise in the case of the unsymmetrically substituted compounds to position isomers in which the N-piperidyl substituent in the isomer is present in the 10- or ll-position. These position isomers are separated by conventional means such as by chromatography and/or crystallization. Preferably, the mixture of isomers, but alternatively either of the position isomers, is then converted to the corresponding IO-keto, ll-keto, or a mixture of the two isomeric compounds. This mixture of 10- and ll-keto compounds is also readily separated into the component isomers by conventional techniques such as by chromatography and/or crystallization.
It will be apparent to one skilled in the art that the compounds of my invention which are unsymmetrically substituted are usually obtained as a mixture of isomers. These isomers, i.e., the geometrical, stereo and/or the optical isomers, can be separated at any desired stage of the process. In addition, the mixtures of isomers formed are readily subjected to the various processing steps with consequent production of a mixture of isomers of the final product which in turn may be readily separated by known means. The isomers of the product of my invention 'when isolated in their pure form may differ in biological activity.
The process outlined in the above flowsheet is a method of introducing a 10-oxygen substituent into compound A, i.e., 1 alkyl-4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)- piperidine by the process of bromination, dehydrobro mination, enamine formation and hydrolysis. This process is also applicable to the derivatives indicated in which the benzene rings are substituted by one or more of the named substituents.
The first step of the process, the conversion of compound A to B is accomplished by dissolving compound A, preferably in the form of its hydrobromide salt, in a solvent for bromination as, for example, glacial acetic acid or other solvent inert to the action of bromine and adding an equivalent amount of bromine (approximately 1 mol of bromine per mole of starting compound) to the reaction to form the corresponding 1-alkyl-4-(10,1l-dibromo- 10,11 dihydro 5H-dibenzo[a,d] cyclohepten-5-ylidene)- piperidine, compound B. The bromination is preferably conducted at room temperature 25 C. However, if it is desired, the reaction can be carried out at any tempera ture between 0 and 100 C. The dibromo compound is recovered by filtration and the excess solvent is removed in conventional manner.
The dibromo compound obtained is then dehydrobrominated by treatment with a strong base to produce the corresponding mono-bromo unsaturated derivative, i.e., the 1 alkyl-4-(10-bromo-5H-dibenzo[a,d]cyclohepten-5- ylidene)piperidine. In effecting this dehydrobromination, the dibromo compound is dissolved or suspended in a lower alkanol containing an excess amount of a strong base. A preferable reaction mixture is one which employs potassium-t-butoxide dissolved in t-butanol. Other mixtures which may be employed are alkali metal alcoholates dissolved in lower alkanol or alcoholic solutions of alkali metal hydroxides as, for example, sodium methoxide,
sodium ethoxide, sodium propoxide, sodium-i-propoxide, potassium-i-butoxide, potassium methoxide, potassium ethoxide, potassium propoxide, and the like dissolved in methanol, ethanol, propanol, i-propanol, butanol, and/or t-butanol. The reaction is conveniently carried out by stirring vigorously a mixture of the strong base in alcohol and the dibromo compound for a period of from /2 to 24 hours at temperatures ranging from about 0 to 40 C. The unsaturated mono-brorno product obtained is isolated by pouring the reaction mixture into excess water and extracting with an aromatic hydrocarbon such as benzene. The product is recovered from the extract by removal of the benzene solvent under reduced pressure and crystallizing the product from a convenient solvent such as an aliphatic hydrocarbon fraction.
The unsaturated mono-bromo derivative (C) is then treated with a solution of a strong base in the presence of piperidine or pyrrolidine to form the corresponding enamine compound (D), i.e., the 1-alkyl-4-(l0-[l-piperidyl] -5H dibenzo[a,d]cyclohepten-S-ylidene)piperidine. This conversion is carried out by mixing the unsaturated mono-bromo compound C and a strong base and piperidine in excess of the equivalent amount under anhydrous conditions. The mixture is then preferably heated from about 25 C. to the reflux temperature for a period of from 1 hour to several days. A preferable reaction mixture is one which employs potassium-t-butoxide dissolved in t-butanol or an inert solvent such as ethyl ether or dioxan. The reaction may also be effected in the presence of piperidine and a strong base such as an alkali metal alkyl, e.g., butyl lithium, phenyl lithium, and the like in an inert solvent such as benzene or in excess piperidine acting as solvent as well as reactant. The resulting enamine product D is present in the reaction mixture and is conveniently recovered by partitioning between an aromatic hydrocarbon, e.g., benzene, toluene, or xylene, ethers and water. The resulting benzene extract of enamine is evaporated which leaves the product as a residue.
The enamine product is then converted by acidic hydrolysis to the desired biologically active product, l-alkyl- 4 (10,1l-dihydro-lO-oxo-dibenzo[a,d]cyclohepten-5-ylidene)piperidine which is further converted by lithium aluminum hydride or NaBH or other metal hydride reducing agents to the corresponding 1-alkyl-4-(10,1l-dihydro l0 hydroxy-dibenzoljafl]cyclohepten-5-ylidene)- piperidine. The l-alkyl-4-(10,11-dihydro-l0-(oxoor hydroxy) dibenzo[a,d]cyclohepten-S-ylidene)piperidine is then converted to the corresponding l-alkenyl, e.g., allyl or methallyl piperidine, by dealkylation in conventional manner to produce the corresponding N-dealkylated compound followed by treatment of the deakylated piperidine with a stoichiometrically equivalent amount of an alkenyl halide as, for example, allyl or methallyl bromide.
The 10- or 11-keto compounds E of my invention containing a benzylmercapto substituent as the X and/or X substituent, are converted by conventional means to the corresponding 10- or ll-ethylene ketal. The resulting compound is then converted to the corresponding mercapto compound by reduction with sodium in liquid ammonia followed by acid hydrolysis to regenerate the 10- or 11- keto compound E having a mercapto substituent as the X or X substituent.
In the following illustrative examples, the isolation procedures are modified depending on product properties in accordance with principles well known to any skilled chemist.
EXAMPLE 1 1-Methyl-4- (SH-dibenzo [a,d] cyclohepten-S-ylidene) piperidine hydrobromide l Methyl-4-(SH-dibenzo[a,d]cyclohepten-5-ylidene)- piperidine hydrochloride, 50 g. (0.146 mole) is stirred while warming with ml. of 20% NaOH solution and 200 ml. of benzene until all of the salt is converted to the base and base dissolved in the benzene layer. The benzene layer containing the product is separated, washed,
dried and evaporated under reduced pressure leaving the free base as a residue, which is dissolved in 500 ml. of ether. Dry hydrogen bromide gas is bubbled into the ether solution slowly with rapid stirring until no more precipitate is formed. This salt is collected and dried in a vacuum oven at 60 for 24 hours to give 1-methyl-4-(5H- dibenzo [a,d] cyclohepten ylidene piperidine hydrobromide, m.p. 257258 C.
EXAMPLE 2 1-Methyl-4- 10,1 l-dibromo-10,l l-dihydro-SH-dibenzo [a,d] cyclohepten-5-ylidene) piperidine hydrobromide l-Methyl-4-(5H dibenzo[a,d]cyclohepten-S-ylidene) piperidine hydrobromide, 18.40 g. (0.05 mole) is dissolved with Warming in 750 ml. of glacial acetic acid. This solution is cooled to room temperature and 8.0 g., 2.6 ml., (0.05 mole) of bromine dissolved in 75 ml. of glacial acetic acid is added dropwise with stirring. After completion of the addition the mixture is stirred overnight. The crystals are collected, washed with a small amount of cold glacial acetic acid, then with dry ether, and then dried for 2 hours in a vacuum oven at 70 to give 1 methyl-1,4-(10,1l-dibromo-10,1l-dihydro-SH-dibenzo[a,d] cyclohepten 5 ylidene)piperidine hydrobromide. Recrystallization from acetonitrile gives an analytical sample, m.p. 185186 C.
Analysis.Calcd. for C H NBr -HBr: C, 47.75; H, 4.20; N, 2.65. Found: C, 47.80; H, 4.21; N, 2.61.
EXAMPLE 3 The procedure of Example 2 is repeated using a stoichiometrically equivalent amount of each of the following correspondingly substituted 1-methyl-4-(5H-dibenzo[a,d]cyclohepten-S-ylidene)piperidines having the following structure:
WW I
(III-I3 in which one or more of the hydrogens of the benzene rings is substituted by an X or an X substituent as defined in the following table with resultant production of the corresponding 10,11-dibromo compound.
Compound:
(1) S-trifluoromethyl H. (2) 3-phenyl H. (3) l-pheny H. (4) 2-phenyl. H. (5) 3phenyl. 7-phenyl. (6) l-aeetyl H. (7) 2-acetyl H. (8) 3-pr0pionyl... H. (9) 2-butyr H. (10) 3-trifiuoroacctyL- H (11) 2-am1no..-
(14) l-(n-ethylamino) (15) 2-(i-pr0pylan'lin0) H. (16) 3-diethylamino H. (17) 1-dirnethy1a1nino H.
(18) 3-diisopr0py1amino (19) 2(nclibutyryla.mino) (20) 3-acetamido (21) 2-propionamido. (22) S-butyramido (23) 8-tn'tluoroacetami no (24) 3methylsulfonylamido (25) 3-ethylsulfonylamino (26) 3-eh1oro.
(27) 2-chloro.
(28) 3-chloro. 7-chlo1'o. (29) l-chloro- H.
(30) 2-bromo H.
(32) l-bromo H:
(58) 3-n,n-d.ipropylearbamoyl) (59) 2-oarboeth0xy (62) l-benzylmercapto (64) 3-methylmercapto H.
(65) B-methylmereapto-fi-rnethylmercapto. H.
(66) S-trifiuoromethylrnercapto H.
(67) 3-metl1y1sulfonyl. H.
(68) 2-ethy1sulfonyl H.
(69) 1nbutylsulfonyl H.
(71) 3-sulfamoyl H.
(72) 3-(n-rnethylsulfamoyl). H.
(73) 3-(n-ethylsulfamoyl) H.
(74) 3-(n,n-dimethylsulfan1oyl) H.
(75) 3(n,n-diethylsuliamoyl) H.
(76) 3-phenyl 7-(p-tolyl). (77) 2-phcnyl.. S-(p-methoxyphenyl). (78) lacetyl... 7-methyl. (79) l-methyL- 7-methy1. (80) l-ethyl 8-ethy1. (81) 3-ethyl Q-ethyl. (82) 3-propy1 7-ethy1.
EXAMPLE 4 The procedure of Example 3 is repeated using a compound in which the N-methyl-piperidine substituent is replaced in eachand every instance by each of the follow ing substituents:
1,2-dimethyl-piperidine 1,2-diethyl-piperidine 1,3-dimethyl-piperidine 1,2,2-trimethylpiperidine 1,2,S-trimethyl-piperidine 1,2, 6-trimethyl-piperidine 1ethyl-2-methyl-piperidine (8) 1,2-diethyl-piperidine (9) l-ethyl-3-rnethyl-piperidine 1'0) 1-ethyl-2,2-dimethyl-piperidine 1 1 l-ethyl-2,S-dimethyl-piperidine (l2) 1-ethyl-2,6-dimethyl-piperidine.
EXAMPLE 5 1-Methyl-4-( 10-bromo-5H-dib enzo [a,d] cyclohepten-S- ylidene piperidine To 600 m1. of a 0.40 M (0.24 mole) solution of potassium t-butoxide in t-butanol is added 42.1 g. (0.079 mole) of 1-methyl-4-(10,1l-dibromo-10,1l-dihydro-SH- dibenzo [a,d] cyclohepten-S-ylidene piperidine hydrobromide and the mixture stirred vigorously under anhydrous conditions for 6 hours at room temperature. The reaction mixture is poured into 2 L. of water and extracted 3 times with ml. each of benzene. The combined benzene extracts are dried over anhydrous MgSO filtered, the Mg-SO washed with benzene, and the benzene solution evaporated to dryness on a rotary evaporator. There remains 27.9 g. of crystalline product. This product is recrystallized by dissolving in 750 ml. of boiling hexane, filtered hot, the volume reduced to 200 ml. by boiling off hexane, seeding and allowing to crystallize. The crystals 9 are collected and dried in a vacuum oven at 60 overnight to give 1methyl-4-(10-bromo 5H dibenzo[a,d]cyclohepten-S-ylidene)piperidine, m.p. 127129 C. Three more recrystallizations from hexane give an analytical sample with m.p. 130131 C.
AnalysisCalcd. for C H BIN: C, 68.85; H, 5.69; N, 3.82; Br, 21.82. Found: C, 68.78; H, 5.45; N, 3.79; Br, 21.94.
EXAMPLE 6 The procedure of Example 5 is repeated using as starting materials each of the products obtained in accordance with the procedure of Examples 3 and 4, respectively, to produce the corresponding mono-bromo dibenzocycloheptene compound.
EXAMPLE 7 1-Methyl-4-(10-(1-piperidyl)-5H-dibenzo[a,d]cyclohepten-S-ylidene) piperidine 1-Methy1-4-(10-bromo 5H dibenzo [a,d]cyclohepten- 5-ylidene)piperidine, 2.87 g. (0.0079 mole), 50 ml. of a 0.4M solution of potassium t-butoxide in t-butanol, and 20 ml. of dry piperidine is stirred and refluxed under anhydrous conditions for 6 hours. The reaction mixture is cooled and partitioned between 350 ml. of benzene and 50 ml. of Water. The benzene layer is then extracted 5 more times with 50 ml. each of water. The benzene layer is then dried over anhydrous MgSO filtered, and the benzene evaporated. This gives a single spot on t.l.c. and is used directly in the next step.
The product is crystallized from acetonitrile-methanol mixture. A sample sublimed for analysis has a m.p. of 71.5-78 C.
Analysis.-Calcd. for C H N C, 84.28; H, 8.16; N, 7.56. Found: C, 83.85; H, 8.14; N, 7.50.
EXAMPLE 8 The procedure of Example 7 is repeated using as starting materials each of the products obtained according to Example 6 with resultant production of the corresponding 10-(l-piperidyD-SH-dibenzo[a,d]cycloheptene compound.
EXAMPLE 9 1-Methyl-4-(10,1l-dihydro-lO-oxo-dibenzo[a,d]cyclo hep ten-5 -ylidene) pip eridine 1-Methyl-4-(10-(1-piperidyl)-5H dibenzo [a,d] cyclohepten-S-ylidene)piperidine, 2.4 g., is refluxed for 4 hours with 100 ml. of 10% HCl in water and 50 ml. of methanol. The methanol is evaporated and the remaining oil and water is made basic with solid NaHCOg, until no more CO is evolved. It is then extracted three times With 50 ml. each of toluene, combined extracts dried over MgSO filtered, and the toluene evaporated on a rotary evaporator leaving a residual product which crystallizes on standing. Three recrystallizations of this product from hexane gives 1-methyl-4-(10,11-dihydro-10 x0 dibenzo[a,d]cyclohepten-S-ylidene)piperidine, m.p. 142143 C.
Analysis.--Calcd. for C H NO: C, 83.13; H, 6.98; N, 4.62. Found: C, 82.96; H, 6.80; N, 4.72.
EXAMPLE 10 The procedure of Example 9 is repeated using as the starting materials each of the products obtained in accordance with Example 8 with resultant production of the corresponding 10,11-dihydro-10 oxo dibenzo[a,d]cycloheptene compound.
EXAMPLE 11 1-Methyl-4-( 10,1l-dihydro-lO-oxo-dibenzo[a,d]cyclohepten-S-ylidene)piperidine 1-Methyl-4- 10-bromo-5 H dibenzo [a,d] cyclohepten- -ylidene)piperdine, 7.32 g. (0.02 mole) is dissolved in 100 ml. of dry piperidine. To this solution is added slow- 1y 25 ml. of a 1.6M solution of butyl lithium in hexane (0.04 mole) under anhydrous conditions and then stirred and refluxed for 8 hours under anhydrous conditions. The reaction is cooled and poured into 500 ml. of benzene and extracted 6 times with ml. of Water. The benzene is dried over anhydrous MgSO filtered, and the benzene re moved on a rotary evaporator leaving 1-methyl-4-(10- (l-piperidyD-SH-dibenzo[a,d]cyclohepten 5 ylidene) piperidine as an oil which still has some solvent in it.
This enamine product is then hydrolyzed by refluxing with stirring in ml. of 10% HCl in water and 75 ml. of methanol. The methanol is then removed by evaporation of the reaction mixture on a rotary evaporator. The residual material containing the desired product is made alkaline by adding solid NaHCO until no more CO is evolved. The residue is then extracted with toluene and ether. The combined extracts containing the product are dried over anhydrous MgSO filtered, and the solvents removed with a rotary evaporator. There remains a dark brown residual oil which when seeded crystallizes slowly. This product is collected and recrystallized from hexane two times to give 1-methyl-4-(10,11-dihydro-10- oxo-dibenzo[a,d]cyclohepten-5 ylidene)piperidine, m.p. 13 8-140" C. Three more recrystallizations from hexane give product, m.p. 141142 C.
Analysis.Calcd. for C H NO: N, 4.62. Found: N, 4.78.
EXAMPLE 12 1-Methyl-4( 10,1l-dihydro-10-hydroxy-5H-dibenzo[a,d] cyclohepten-S-ylidene) piperidine A solution of 3.0 g. (0.01 mole) of 1-methyl-4-(10,l1- dihydro 10 oxo-5H-dibenzo [a,d]cyclohepten-S-ylidene) piperidine (0.01 mole) in 200 ml. of dry ether is added dropwise in a dry inert atmosphere to a stirred suspension of 3.8 g. (0.1 mole) of lithium aluminum hydride. The reaction is then stirred overnight (20 hours) at room temperature under a dry inert atmosphere. Then there is added dropwise carefully with stirring 3 ml. of water followed by 3 ml. of 20% NaOH solution in water followed by 15 ml. of Water. The ether solution of the product is decanted and the remaining salts washed with ether and decanted. The combined ether solutions of the product are dried over anhydrous MgSO filtered, and the ether evaporated on a rotary evaporator. This gives after one recrystallization from ethanol 1-methyl-4-(10,1l-dihydro-lO-hydroxy- 5H dibenzo[a,d]cyclohepten-S-ylidene)piperidine, m.p. 205-206 C.
Analysis.-Calcd. for C H NO: C, 82.58; H, 7.59; N, 4.59. Found: C, 82.18; H, 7.77; N, 4.62.
EXAMPLE 13 1-Methyl-4-( 10,1 l-dihydro- 1 O-hydroxy-SH-dibenzo [a,d] cyclohepten-S-ylidene piperidine A solution of 0.95 g. (0.025 mole) of sodium borohydride and 5 drops of 10% sodium hydroxide solution is added dropwise to a stirred solution of 1.5 g. (0.005 mole) of l-methyl 4 (10,1l-dihyro-lO-oxo-SH-dibenzo[a,d] cyclohepten-S-ylidene)piperidine. After about 4 ml. of the sodium borohydride solution is added the product begins to crystallize from the reaction. Upon completion of the addition, the mixture is cooled and stirred in an ice bath and the product is filtered, washed with 50% methanol in water and dried overnight in a vacuum oven at 80 C. to give 0.94 g. of 1-methyl-4-(10,1l-dihydro-lO-hydroxy-S- dibenzo[a,d]cyclohepten-S-ylidene)piperidine, m.p. 206- 207 C.
EXAMPLE 14 Representative Pharmaceutical Composition Preparation A typical tablet containing 1 mg. of 1-methyl-4-(10,1ldihydro 10 oxo-dibenzo[a,d]cyclohepten-5-y1idene)- piperidine per tablet is prepared by mixing together with the active ingredient calcium phosphate dibasic, lactose and starch in the amounts shown in the table below. After these ingredients are thoroughly mixed the appropriate amount of magnesium stearate is added and the dry mixture blended for an additional three minutes. This mixture is then compressed into tablets weighing approximately 124 mgs. each.
TABLET FORMULA Mgs. per tablet 1-Methyl-4-(10,1 l-dihydrolo-oxo-dibenzo [a,d]
cyclohepten-S-ylidene) piperidine 1 Calcium phosphate dibasic 5 2 Lactose 60 Starch 10 Magnesium stearate 1 Total 124 Capsules for oral use each containing 1 mg. of 1- methyl 4 (10,11-dihydro-10-oxo-dibenzo[a,d]cyclohepten-S-ylidene)piperidine are prepared by blending 1 gram of 1 methyl-4(10,1ldihydro-lO-oxo-dibenzo[a,d] cyclohepten-S-yliden)piperidine With 287 grams of lactose, USP. 4.1 grams of magnesium stearate. This is then used to fill 1,000 capsules each containing 1 mg. of 1 methyl 4 (10,11 dihydro-lO-oxo-dibenzo[a,d]cyclohepten-S-ylidene)piperidine.
Similar compositions are prepared utilizing as the active ingredient the products prepared according to Examples 9, 10, 11 and 12.
References Cited Netherlands Pat. 6810177, Feb. 5, 1969, Derwent Basic 36, 115, pp. 557-565.
Cecil, A Text Book of Medicine, W. B. Saunders Co., Philadelphia, Pa., 1958, p. 464.
JEROME D. GOLDBERG, Primary Examiner

Claims (1)

1. A METHOD FOR THE TREATMENT OF ALLERGIC DISORDERS DUE TO HISTAMINE WHICH COMPRISES ADMINISTERING TO HUMAN PATIENTS AN EFFECTIVE ANTIHISTAMINIC AMOUNT OF COMPOUND HAVING THE FORMULA
US00180095A 1970-02-05 1971-09-13 Method for treating allergic disorders due to histamine Expired - Lifetime US3845211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00180095A US3845211A (en) 1970-02-05 1971-09-13 Method for treating allergic disorders due to histamine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US904970A 1970-02-05 1970-02-05
US00180095A US3845211A (en) 1970-02-05 1971-09-13 Method for treating allergic disorders due to histamine

Publications (1)

Publication Number Publication Date
US3845211A true US3845211A (en) 1974-10-29

Family

ID=26678967

Family Applications (1)

Application Number Title Priority Date Filing Date
US00180095A Expired - Lifetime US3845211A (en) 1970-02-05 1971-09-13 Method for treating allergic disorders due to histamine

Country Status (1)

Country Link
US (1) US3845211A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080296531A1 (en) * 2007-06-01 2008-12-04 Invista North America S.A R.L. Ionic liquids

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080296531A1 (en) * 2007-06-01 2008-12-04 Invista North America S.A R.L. Ionic liquids
US8088917B2 (en) * 2007-06-01 2012-01-03 Invista North America S.A R.L. Ionic liquids
US8686134B2 (en) 2007-06-01 2014-04-01 Invista North America S.A R.L. Ionic liquids

Similar Documents

Publication Publication Date Title
US3878217A (en) Alpha-aryl-4-substituted piperidinoalkanol derivatives
IL32853A (en) 5,11-dihydro-6h-pyrido(2,3-b)-(1,4)benzodiazepine-6-ones substituted in 11-position and processes for the production thereof
JPH05501540A (en) PCP receptor ligand and its uses
EP1491531B1 (en) (1-indanone)-(1,2,3,6-tetrahydropyridine) derivative
US4210648A (en) II-Aminoacyl-5,11-dihydro-6H-pyrido(2,3-B) (1,4)benzodiazepin-6-ones and salts thereof
NZ205269A (en) 4-(3-trifludromethylphenyl)-1,2,3,6-tetrahydro-pyridine derivatives and pharmaceutical compositions
US4031222A (en) Trifluoromethylthio (and sulfonyl) derivatives of cyproheptadine analogs
US3851059A (en) Method for the stimulation of appetite in patients
US4213984A (en) 11-(Piperazino-acetyl)-5,11-dihydro-6H-pyrido[2,3-b][1,4]benzodiazepin-6-ones and salts thereof
DE3788195T2 (en) DIBENZ [b, e] OXEPIN DERIVATIVES AND MEDICINAL PRODUCTS CONTAINING THEM AS ACTIVE AGENTS.
CH695216A5 (en) A method for manufacturing a non-hydrated salt of a piperidine derivative and a novel crystalline form thus obtainable of such a salt.
US3981877A (en) Piperidylidene derivatives of carboxy-5H-dibenzo[a,d]cycloheptene
US4308207A (en) Morphanthridine derivatives
US3845211A (en) Method for treating allergic disorders due to histamine
US3960872A (en) 1 Alkyl-4-(10:oxo or hydroxy-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-ylidene)-piperidine compounds
US3795677A (en) Aryl 4-piperidyl ketone derivatives
US3974285A (en) 10,11-Furo-derivatives of cyproheptadine
US3968115A (en) 1-Alkyl-4-(10 and/or 11)-bromo-10,11-dihydro-5H-dibenzo[a,d]-cyclohepten-5-ylidene piperidine compounds
US3903286A (en) Method for stimulating appetite
US3981876A (en) 1-Alkyl-4-(10[1-piperidyl]-5H-dibenzo-[a,d]cyclohepten-5-ylidene)piperidine compounds
US3894032A (en) 10,11-Furo derivatives of cyproheptadine
US4016280A (en) 4,4-Diarylpiperidine compositions and use
US4031223A (en) Trifluoromethylthio derivatives of cyproheptadine
US4044143A (en) 10,11-Bis-(hydroxyalkyl) derivatives of cyproheptadine
US3632653A (en) Ethano-anthracenes