US3844859A - Titanium chemical milling etchant - Google Patents

Titanium chemical milling etchant Download PDF

Info

Publication number
US3844859A
US3844859A US00264594A US26459472A US3844859A US 3844859 A US3844859 A US 3844859A US 00264594 A US00264594 A US 00264594A US 26459472 A US26459472 A US 26459472A US 3844859 A US3844859 A US 3844859A
Authority
US
United States
Prior art keywords
titanium
etchant
chemical milling
weight percent
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00264594A
Inventor
J Roni
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boeing Co
Original Assignee
Boeing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boeing Co filed Critical Boeing Co
Priority to US00264594A priority Critical patent/US3844859A/en
Application granted granted Critical
Publication of US3844859A publication Critical patent/US3844859A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/26Acidic compositions for etching refractory metals

Definitions

  • titanium chemical milling solutions are generally of a nitric-hydrofluoric acid solution or of a chromic-hydrofluoric acid solution.
  • the nitrichydrofluoric acid solution is most often used as it has a longer work life, lower material cost, is easier to control, has less smut block problems, and gives about the same milling characteristics.
  • the nitric-hydrofluoric acid etchant has a non-uniform rate of metal removal. Formed parts having both horizontal and vertical surfaces undergo a faster rate of metal removal on the vertical surfaces. This etch rate differential may vary by as much as 40 percent. In addition, considerable taper is produced on vertical surfaces, with surface areas higher in the etching tank having the metal removed faster than surface areas lower in the tank. A transition zone, which is defined as the distance from the edge of a milled cut to the point where nominal thickness is reached, is about ten times the depth of the cut.
  • Channels and ridges are formed in this transition zone at the base of the uppermost fillets of vertically milled areas, and a fillet overhang is created at the edge of the cut.
  • the ridges and the overhang must be mechanically removed after completion of the chemical milling.
  • the transition zone can be reduced to about three times the depth of cut, and mechanical removal after chemical milling becomes unnecessary by using a nitric-hydrofluoric acid solution or etchant bath wherein the nitric acid content is reduced to a concentration of about 0.2 1.2 weight percent.
  • Ammonium bifluoride may be added to further reduce or to completely remove channeling and ridging. It was further discovered nitric acid in concentrations as low as 0.2 percent by weight will still limit hydrogen absorption by titanium. Below that concentration excessive hydrogen absorption does take place.
  • An object of this invention is to obtain uniform chemical milling characteristics for titanium.
  • Another object of this invention is to obtain uniform chemical milling characteristics on all surfaces of titanium parts having both horizontal and vertical surfaces.
  • Another object of this invention is to chemical mill titanium without imparting a taper on vertical surfaces.
  • Still another object is to reduce the length of the transition zone when chemical milling titanium.
  • Yet another object is to chemical mill titanium without leaving extraneous metal or creating a smut block which must be removed by mechanical means.
  • FIGURE is of a graph depicting optimum nitric acid concentration versus concentration of dissolved titanium in the disclosed chemical etchant.
  • nitric acid content of an aqueous nitrichydrofluoric acid solution or etchant was discovered as controlling the uniformity of removal of titanium during chemical milling. Tests were performed using a solution containing nitric acid and sufficient hydrofluoric acid to effect an etch rate of 0.0008 to 0.0010 inches per minute per side, and dodecylbenzene sulfonic acid as a surface active agent in quantities sufficient to control surface tension of the solution at 30 35 dynes per cm. Formed titanium parts having horizontal and vertical surfaces were immersed in the etchant for 40 minutes with the etchant bath at a temperature of 1 15F 3F. A series of tests were performed in which the nitric acid concentration was varied. Table I below shows the effect of varying the nitric acid concentration.
  • Nitric Acid Concentration Percent difference refers to rate of metal removal on a horizontal surface with respect to rate of removal from a vertical surface.
  • a negative figure is obtained when metal is removed from a horizontal surface faster than from a vertical surface.
  • dissolved titanium concentration to effect uniform rate of metal removal, reduce the transition zone, and to obtain etching which does not require mechanical removal of metal after chemical milling.
  • area 2 metal is removed from a vertical surface faster than from a horizontal surface and a taper is produced on a vertical surface with the metal being removed more rapidly on the surfaces which are located higher in the chemical milling bath.
  • area 3 the metal removal characteristics are slightly reversed. The horizontal surface is milled faster than the vertical surface and a taper is produced on a vertical surface with the metal being re moved more rapidly at the lower part of the surface in the chemical mill bath. Difficulties may also be experienced below about 0.20 weight percent nitric acid due to excessive hydrogen ion absorption. Above about 8.7 weight percent of dissolved titanium the titanium precipitates out as a fluoride.
  • a preferred chemical milling solution or etchant may be 0.2 1.2 weight percent nitric acid, 4 18 weight percent total fluoride and a surface active agent in amounts sufficient to control surface tension at from 28 60 dynes per cm. with about 33 dynes per cm. preferred.
  • the hydrofluoric acid concentration may be sufficient to effect an etch rate of from 0.0004 to 0.0015 inches per side per minute, but with a preferred etch rate of 0.0007 to 0.001 1 inches per side per minute
  • etch rate of from 0.0004 to 0.0015 inches per side per minute
  • preferred etch rate of 0.0007 to 0.001 1 inches per side per minute
  • ammonium bifluoride from about 0.07 to 2.9 weight percent will further reduce or completely eliminate channeling and ridging in the fillet area.
  • the surface active agent may be selected from the group consisting of dodecylbenzene sulfonic acid or linear alkyl sulfonic acid.
  • a preferred process may use any of the nitrichydrofluoric acid etchants with a low concentration of nitric acid as herein disclosed and immerse titanium parts in the etchant at from about 90F to 130F but with about F 3F preferred, and holding in the etchant bath until the desired depth of cut is obtained.
  • the nitric acid concentration may be controlled at a percentage range such as to effect a uniform rate of metal removal on both horizontal and vertical surfaces.
  • aqueous etching fluid containing a concentration of hydrofluoric acid sufficient to effect an etch rate on titanium of from about 0.0004 to 0.0015 inches per side per minute, a surface active agent selected of materials consisting essentially of dodecylbenzene sulfonic acid and linear alkyl sulfonic acid in amounts sufficient to control surface tension of the etching solution at from about 28 to 60 dynes per cm., and about 0.2 weight percent of nitric acid, said aqueous etching fluid uniformly removes titanium metal which when removed goes into solution in the etching fluidf varying the nitric acid concentration in the etchant as the dissolved titanium concentration increases such that the nitric acid concentration increases from 0.2 to about 1.2 weight percent as the dissolved titanium weight percent in the solution increases up to about 8.7; and

Abstract

A composition and a process for chemical milling titanium utilizing an aqueous nitric-hydrofluoric acid base etchant having a nitric acid content ranging from about 0.2 - 1.2 weight percent.

Description

United States Patent 1 Roni [ TITANIUM CHEMICAL MILLING ETCHANT [75] Inventor: Jack C. Roni, Seattle, Wash.
[73] Assignee: The Boeing Company, Seattle,
Wash.
[22] Filed: June 20, 1972 [21] Appl. No.: 264,594
Related US. Application Data [63] Continuation of Ser. No. 885,598, Dec. 16, 1969,
abandoned.
[52] US. Cl 156/18, 252/79.3, 252/79.4 [51] Int. Cl. C231 1/00 [58] Field of Search 252/79.3, 79.4; 156/18,
[ Get. 29, 1974 [56] References Cited UNlTED STATES PATENTS 2,981,609 4/1961 Acker et al. 252/79.3 2,981,610 4/1961 Snyder et a1 252/79.3 3,048,503 8/1962 Foote et a1 156/18 X 3,598,741 8/1971 Shozo Kanno 252/79.3
Primary ExaminerWilliam A. Powell Attorney, Agent, or Firm-Morris A. Case; Glenn Orlob 5 7 ABSTRACT A composition and a process for chemical milling titanium utilizing an aqueous nitric-hydrofluoric acid base etchant having a nitric acid content ranging from about 0.2 1.2 weight percent.
2 Claims, 1 Drawing Figure Amie/2' A00 [aware/Mam, n f
TITANIUM CHEMICAL MILLING ETCIIANT This is a streamlined continuation of prior copending application, Ser. No. 885,598. filed Dec. 16, 1969, and since abandoned.
BACKGROUND OF THE INVENTION Commercially used titanium chemical milling solutions are generally of a nitric-hydrofluoric acid solution or of a chromic-hydrofluoric acid solution. The nitrichydrofluoric acid solution is most often used as it has a longer work life, lower material cost, is easier to control, has less smut block problems, and gives about the same milling characteristics.
Milling characteristics of these etchants leave much to be desired. The nitric-hydrofluoric acid etchant has a non-uniform rate of metal removal. Formed parts having both horizontal and vertical surfaces undergo a faster rate of metal removal on the vertical surfaces. This etch rate differential may vary by as much as 40 percent. In addition, considerable taper is produced on vertical surfaces, with surface areas higher in the etching tank having the metal removed faster than surface areas lower in the tank. A transition zone, which is defined as the distance from the edge of a milled cut to the point where nominal thickness is reached, is about ten times the depth of the cut. Channels and ridges are formed in this transition zone at the base of the uppermost fillets of vertically milled areas, and a fillet overhang is created at the edge of the cut. The ridges and the overhang must be mechanically removed after completion of the chemical milling.
It has become common practice to partially compensate for non-uniform milling characteristics by periodically removing the part from the etchant and turning the part down side up before re-immersing.
It was discovered that uniform milling characteristics can be obtained, the transition zone can be reduced to about three times the depth of cut, and mechanical removal after chemical milling becomes unnecessary by using a nitric-hydrofluoric acid solution or etchant bath wherein the nitric acid content is reduced to a concentration of about 0.2 1.2 weight percent. Ammonium bifluoride may be added to further reduce or to completely remove channeling and ridging. It was further discovered nitric acid in concentrations as low as 0.2 percent by weight will still limit hydrogen absorption by titanium. Below that concentration excessive hydrogen absorption does take place.
An object of this invention is to obtain uniform chemical milling characteristics for titanium.
Another object of this invention is to obtain uniform chemical milling characteristics on all surfaces of titanium parts having both horizontal and vertical surfaces.
Another object of this invention is to chemical mill titanium without imparting a taper on vertical surfaces.
Still another object is to reduce the length of the transition zone when chemical milling titanium.
Yet another object is to chemical mill titanium without leaving extraneous metal or creating a smut block which must be removed by mechanical means.
DESCRIPTION OF DRAWING The FIGURE is of a graph depicting optimum nitric acid concentration versus concentration of dissolved titanium in the disclosed chemical etchant.
DETAILED DESCRIPTION The nitric acid content of an aqueous nitrichydrofluoric acid solution or etchant was discovered as controlling the uniformity of removal of titanium during chemical milling. Tests were performed using a solution containing nitric acid and sufficient hydrofluoric acid to effect an etch rate of 0.0008 to 0.0010 inches per minute per side, and dodecylbenzene sulfonic acid as a surface active agent in quantities sufficient to control surface tension of the solution at 30 35 dynes per cm. Formed titanium parts having horizontal and vertical surfaces were immersed in the etchant for 40 minutes with the etchant bath at a temperature of 1 15F 3F. A series of tests were performed in which the nitric acid concentration was varied. Table I below shows the effect of varying the nitric acid concentration.
Table I Nitric Acid Concentration Percent difference refers to rate of metal removal on a horizontal surface with respect to rate of removal from a vertical surface.
A negative figure is obtained when metal is removed from a horizontal surface faster than from a vertical surface.
Conversely a positive figure is obtained when metal is removed from a vertical surface faster than from a horizontal surface.
The percent difference is represented by the equation:
Percent Difference (vertical surface-horizonal surface)/(vertical surface) When titanium is removed it goes into solution in the etchant bath, and will remain in solution until the titanium concentration reaches about 8.7 weight percent at which point it starts to precipitate out. As the dissolved titanium concentration builds up the hydrofluoric acid and the nitric acid concentration must be increased to maintain rate of metal removal and uniformity of removal. In Table I, above, the dissolved titanium concentration ranged from about 1.8 to 2.2 weight percent. Table II shows the effect of varying nitric acid concentration as the dissolved titanium concentration varies.
Table II Dissolved Titanium Nitric Acid Weight Percent Dissolved Titanium Weight Percent Percent Difference 4.9 0.64 +l.9 6.4 0.82 --3.0 6.9 L08 -l.0
dissolved titanium concentration to effect uniform rate of metal removal, reduce the transition zone, and to obtain etching which does not require mechanical removal of metal after chemical milling. Above the optimum range, area 2, metal is removed from a vertical surface faster than from a horizontal surface and a taper is produced on a vertical surface with the metal being removed more rapidly on the surfaces which are located higher in the chemical milling bath. Below the optimum range, area 3, the metal removal characteristics are slightly reversed. The horizontal surface is milled faster than the vertical surface and a taper is produced on a vertical surface with the metal being re moved more rapidly at the lower part of the surface in the chemical mill bath. Difficulties may also be experienced below about 0.20 weight percent nitric acid due to excessive hydrogen ion absorption. Above about 8.7 weight percent of dissolved titanium the titanium precipitates out as a fluoride.
A preferred chemical milling solution or etchant may be 0.2 1.2 weight percent nitric acid, 4 18 weight percent total fluoride and a surface active agent in amounts sufficient to control surface tension at from 28 60 dynes per cm. with about 33 dynes per cm. preferred.
ln another embodiment the hydrofluoric acid concentration may be sufficient to effect an etch rate of from 0.0004 to 0.0015 inches per side per minute, but with a preferred etch rate of 0.0007 to 0.001 1 inches per side per minute The addition of small quantities of ammonium bifluoride from about 0.07 to 2.9 weight percent will further reduce or completely eliminate channeling and ridging in the fillet area.
The surface active agent may be selected from the group consisting of dodecylbenzene sulfonic acid or linear alkyl sulfonic acid.
A preferred process may use any of the nitrichydrofluoric acid etchants with a low concentration of nitric acid as herein disclosed and immerse titanium parts in the etchant at from about 90F to 130F but with about F 3F preferred, and holding in the etchant bath until the desired depth of cut is obtained.
In another preferred embodiment for chemical milling titanium utilizing a nitric-hydrofluoric acid etchant the nitric acid concentration may be controlled at a percentage range such as to effect a uniform rate of metal removal on both horizontal and vertical surfaces.
1 claim:
I. A method of chemical milling titanium to remove metal from the horizontal and vertical surfaces of the titanium at essentially the same uniform rate, the steps comprising:
a. immersing the titanium in an aqueous etching fluid containing a concentration of hydrofluoric acid sufficient to effect an etch rate on titanium of from about 0.0004 to 0.0015 inches per side per minute, a surface active agent selected of materials consisting essentially of dodecylbenzene sulfonic acid and linear alkyl sulfonic acid in amounts sufficient to control surface tension of the etching solution at from about 28 to 60 dynes per cm., and about 0.2 weight percent of nitric acid, said aqueous etching fluid uniformly removes titanium metal which when removed goes into solution in the etching fluidf varying the nitric acid concentration in the etchant as the dissolved titanium concentration increases such that the nitric acid concentration increases from 0.2 to about 1.2 weight percent as the dissolved titanium weight percent in the solution increases up to about 8.7; and
c. holding the titanium in the etchant until the desired depth of cut is obtained.
2. A method of chemical milling titanium as recited in claim 1, further comprising: adding from about 0.07 to 2.9 weight percent of ammonium bifluoride to the

Claims (2)

1. A METHOD OF CHEMICAL MILLING TITANIUM TO REMOVE METAL FROM THE HORIZONTAL AND VERTICAL SURFACES OF THE TITANIUM AT ESSENTIALLY THE SAME UNIFORM RATE, THE STEPS COMPRISING: A. IMMERSING THE TITANIUM IN AN AQUEOUS ETCHING FLUID CONTAINING A CONCENTRATION OF HYDROFLUORIC ACID SUFFICIENT TO EFFECT AN ETCH RATE ON TITANIUM OF FROM ABOUT 0.0004 TO 0.0015 INCHES PER SIDE PER MINUTES, A SURFACE ACTIVE AGENT SELECTED OF MATERIALS CONSISTING ESSENTIALLY OF DODECYLBENZENE SULFONIC ACID AND LINEAR ALKYL SULFONIC ACID IN AMOUNTS SUFFICIENT TO CONTROL SURFACE TENSION OF THE ETCHING SOLUTION AT FROM ABOUT 28 TO 60 DYNES PER CM., AND ABOUT 0.2 WEIGHT PERCENT OF NITRIC ACID, SAID AQUEOUS
2. A method of chemical milling titanium as recited in claim 1, further comprising: adding from about 0.07 to 2.9 weight percent of ammonium bifluoride to the etchant.
US00264594A 1969-12-16 1972-06-20 Titanium chemical milling etchant Expired - Lifetime US3844859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00264594A US3844859A (en) 1969-12-16 1972-06-20 Titanium chemical milling etchant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US88559869A 1969-12-16 1969-12-16
US00264594A US3844859A (en) 1969-12-16 1972-06-20 Titanium chemical milling etchant

Publications (1)

Publication Number Publication Date
US3844859A true US3844859A (en) 1974-10-29

Family

ID=26950645

Family Applications (1)

Application Number Title Priority Date Filing Date
US00264594A Expired - Lifetime US3844859A (en) 1969-12-16 1972-06-20 Titanium chemical milling etchant

Country Status (1)

Country Link
US (1) US3844859A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3966517A (en) * 1973-10-03 1976-06-29 U.S. Philips Corporation Manufacturing semiconductor devices in which silicon slices or germanium slices are etched and semiconductor devices thus manufactured
US4220706A (en) * 1978-05-10 1980-09-02 Rca Corporation Etchant solution containing HF-HnO3 -H2 SO4 -H2 O2
US4314876A (en) * 1980-03-17 1982-02-09 The Diversey Corporation Titanium etching solution
US4548903A (en) * 1984-03-30 1985-10-22 The United States Of America As Represented By The Secretary Of The Air Force Method to reveal microstructures in single phase alloys
EP0168706A1 (en) * 1984-07-02 1986-01-22 Siemens Aktiengesellschaft Process for forming titane structures with precise dimensions
US4900398A (en) * 1989-06-19 1990-02-13 General Motors Corporation Chemical milling of titanium
US5092968A (en) * 1991-06-03 1992-03-03 United Technologies Corporation Method for photochemical machining of titanium and zirconium
US5100500A (en) * 1991-02-08 1992-03-31 Aluminum Company Of America Milling solution and method
US5201997A (en) * 1991-12-31 1993-04-13 United Technologies Corporation Chemical milling of niobium
US5248386A (en) * 1991-02-08 1993-09-28 Aluminum Company Of America Milling solution and method
US5376236A (en) * 1993-10-29 1994-12-27 At&T Corp. Process for etching titanium at a controllable rate
WO1996022842A1 (en) * 1995-01-26 1996-08-01 Chromalloy Gas Turbine Corporation Roughening of metal surfaces
US6309556B1 (en) * 1998-09-03 2001-10-30 Praxair S.T. Technology, Inc. Method of manufacturing enhanced finish sputtering targets
US20030066818A1 (en) * 2001-09-28 2003-04-10 Hansen James O. Chemical milling process and solution for cast titanium alloys
WO2003035933A1 (en) * 2001-10-24 2003-05-01 Fundación Inasmet Product and method for cleaning titanium surfaces
US20040167633A1 (en) * 2003-02-24 2004-08-26 Depuy Products, Inc. Metallic implants having roughened surfaces and methods for producing the same
EP1548095A1 (en) * 2002-09-30 2005-06-29 Nippon Steel Corporation Cleaning agent and cleaning method for ridding titanium and titanium alloy building materials of discoloration
US20060293758A1 (en) * 2005-06-23 2006-12-28 Depuy Products, Inc. Implants with textured surface and methods for producing the same
US20100268330A1 (en) * 2009-04-15 2010-10-21 Depuy Products, Inc. Methods and Devices for Implants with Calcium Phosphate
US20110253169A1 (en) * 2010-04-19 2011-10-20 Fih (Hong Kong) Limited Solution for removing titanium-containing coatings and method for same
CN112680737A (en) * 2020-11-11 2021-04-20 甘肃酒钢集团宏兴钢铁股份有限公司 Acid adding amount control method for acid pickling production of hot-rolled titanium plate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2981609A (en) * 1956-11-20 1961-04-25 United Aircraft Corp Etching bath for titanium and its alloys and process of etching
US2981610A (en) * 1957-05-14 1961-04-25 Boeing Co Chemical milling process and composition
US3048503A (en) * 1958-06-19 1962-08-07 Crucible Steel Co America Pickling apparatus and method
US3598741A (en) * 1968-10-07 1971-08-10 Chugai Kasei Co Ltd Acid compound for metal surface

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2981609A (en) * 1956-11-20 1961-04-25 United Aircraft Corp Etching bath for titanium and its alloys and process of etching
US2981610A (en) * 1957-05-14 1961-04-25 Boeing Co Chemical milling process and composition
US3048503A (en) * 1958-06-19 1962-08-07 Crucible Steel Co America Pickling apparatus and method
US3598741A (en) * 1968-10-07 1971-08-10 Chugai Kasei Co Ltd Acid compound for metal surface

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3966517A (en) * 1973-10-03 1976-06-29 U.S. Philips Corporation Manufacturing semiconductor devices in which silicon slices or germanium slices are etched and semiconductor devices thus manufactured
US4220706A (en) * 1978-05-10 1980-09-02 Rca Corporation Etchant solution containing HF-HnO3 -H2 SO4 -H2 O2
US4314876A (en) * 1980-03-17 1982-02-09 The Diversey Corporation Titanium etching solution
US4548903A (en) * 1984-03-30 1985-10-22 The United States Of America As Represented By The Secretary Of The Air Force Method to reveal microstructures in single phase alloys
EP0168706A1 (en) * 1984-07-02 1986-01-22 Siemens Aktiengesellschaft Process for forming titane structures with precise dimensions
US4900398A (en) * 1989-06-19 1990-02-13 General Motors Corporation Chemical milling of titanium
US5248386A (en) * 1991-02-08 1993-09-28 Aluminum Company Of America Milling solution and method
US5100500A (en) * 1991-02-08 1992-03-31 Aluminum Company Of America Milling solution and method
US5092968A (en) * 1991-06-03 1992-03-03 United Technologies Corporation Method for photochemical machining of titanium and zirconium
US5201997A (en) * 1991-12-31 1993-04-13 United Technologies Corporation Chemical milling of niobium
US5376236A (en) * 1993-10-29 1994-12-27 At&T Corp. Process for etching titanium at a controllable rate
WO1996022842A1 (en) * 1995-01-26 1996-08-01 Chromalloy Gas Turbine Corporation Roughening of metal surfaces
US5705082A (en) * 1995-01-26 1998-01-06 Chromalloy Gas Turbine Corporation Roughening of metal surfaces
US6309556B1 (en) * 1998-09-03 2001-10-30 Praxair S.T. Technology, Inc. Method of manufacturing enhanced finish sputtering targets
US20030066818A1 (en) * 2001-09-28 2003-04-10 Hansen James O. Chemical milling process and solution for cast titanium alloys
US6793838B2 (en) * 2001-09-28 2004-09-21 United Technologies Corporation Chemical milling process and solution for cast titanium alloys
WO2003035933A1 (en) * 2001-10-24 2003-05-01 Fundación Inasmet Product and method for cleaning titanium surfaces
US20040221870A1 (en) * 2001-10-24 2004-11-11 Francisco Canoiranzo Product and method to clean titanium surfaces
US7547671B2 (en) 2002-09-30 2009-06-16 Nippon Steel Corporation Discoloration removal cleaning agent for titanium and titanium alloy building materials, and discoloration removal cleaning method
EP2275523A3 (en) * 2002-09-30 2011-10-26 Nippon Steel Corporation Cleaning agent and cleaning method for ridding titanium and titanium alloy building materials of discoloration
EP1548095A1 (en) * 2002-09-30 2005-06-29 Nippon Steel Corporation Cleaning agent and cleaning method for ridding titanium and titanium alloy building materials of discoloration
EP1548095A4 (en) * 2002-09-30 2005-12-28 Nippon Steel Corp Cleaning agent and cleaning method for ridding titanium and titanium alloy building materials of discoloration
US20040167632A1 (en) * 2003-02-24 2004-08-26 Depuy Products, Inc. Metallic implants having roughened surfaces and methods for producing the same
US7501073B2 (en) 2003-02-24 2009-03-10 Depuy Products, Inc. Methods for producing metallic implants having roughened surfaces
US20040167633A1 (en) * 2003-02-24 2004-08-26 Depuy Products, Inc. Metallic implants having roughened surfaces and methods for producing the same
US20060293758A1 (en) * 2005-06-23 2006-12-28 Depuy Products, Inc. Implants with textured surface and methods for producing the same
US7901462B2 (en) * 2005-06-23 2011-03-08 Depuy Products, Inc. Implants with textured surface and methods for producing the same
US20100268330A1 (en) * 2009-04-15 2010-10-21 Depuy Products, Inc. Methods and Devices for Implants with Calcium Phosphate
US8696759B2 (en) 2009-04-15 2014-04-15 DePuy Synthes Products, LLC Methods and devices for implants with calcium phosphate
US20110253169A1 (en) * 2010-04-19 2011-10-20 Fih (Hong Kong) Limited Solution for removing titanium-containing coatings and method for same
CN112680737A (en) * 2020-11-11 2021-04-20 甘肃酒钢集团宏兴钢铁股份有限公司 Acid adding amount control method for acid pickling production of hot-rolled titanium plate
CN112680737B (en) * 2020-11-11 2022-07-19 甘肃酒钢集团宏兴钢铁股份有限公司 Acid addition amount control method for acid pickling production of hot-rolled titanium plate

Similar Documents

Publication Publication Date Title
US3844859A (en) Titanium chemical milling etchant
DE19746706B4 (en) Process for the production of a solar cell
DE112015000568B4 (en) Process for producing textures or polishes on the surface of monocrystalline silicon wafers and corresponding etching solution
US2981610A (en) Chemical milling process and composition
EP2335275B1 (en) Method for chemically treating a substrate
US2711364A (en) Polishing metals and composition therefor
US3619390A (en) Aqueous electrolytic stripping bath to remove metal coatings from bases of steel
US2856275A (en) Chemical treatment of refractory metal surfaces
CN101399196B (en) Coarsening processing method for backing side of wafer
TWI662107B (en) Composition and method for healing glass,and glass treated with the composition
US3813311A (en) Process for etching silicon wafers
CN113355675A (en) Surface chemical roughening method for titanium alloy
CN109536961B (en) Etching solution and preparation method thereof
US2965521A (en) Metal pickling solutions and methods
US2861015A (en) Method of descaling titanium
US3944496A (en) Composition for chemical milling refractory metals
JPH08316191A (en) Damage crystallene region removing method for silicon wafer
US3266961A (en) Method of etching si and ge semiconductor bodies
JPH11162953A (en) Etching of silicon wafer
US2314818A (en) Surface treatment of tinned material
US2849299A (en) Method of chem-milling honeycomb structures
US3024148A (en) Methods of chemically polishing germanium
US3480474A (en) Method for preparing semiconductor crystals
CN115011963A (en) Copper metal etching liquid composition and use method thereof
US3654001A (en) Process for etching beryllium