US3842440A - Implantable linear motor prosthetic heart and control system therefor - Google Patents

Implantable linear motor prosthetic heart and control system therefor Download PDF

Info

Publication number
US3842440A
US3842440A US00285749A US28574972A US3842440A US 3842440 A US3842440 A US 3842440A US 00285749 A US00285749 A US 00285749A US 28574972 A US28574972 A US 28574972A US 3842440 A US3842440 A US 3842440A
Authority
US
United States
Prior art keywords
source
piston
leads
power
members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00285749A
Inventor
E Karlson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US00285749A priority Critical patent/US3842440A/en
Application granted granted Critical
Publication of US3842440A publication Critical patent/US3842440A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/50Details relating to control
    • A61M60/508Electronic control means, e.g. for feedback regulation
    • A61M60/515Regulation using real-time patient data
    • A61M60/531Regulation using real-time patient data using blood pressure data, e.g. from blood pressure sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/424Details relating to driving for positive displacement blood pumps
    • A61M60/457Details relating to driving for positive displacement blood pumps the force acting on the blood contacting member being magnetic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/855Constructional details other than related to driving of implantable pumps or pumping devices
    • A61M60/871Energy supply devices; Converters therefor
    • A61M60/876Implantable batteries
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/855Constructional details other than related to driving of implantable pumps or pumping devices
    • A61M60/871Energy supply devices; Converters therefor
    • A61M60/878Electrical connections within the patient's body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/148Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel in line with a blood vessel using resection or like techniques, e.g. permanent endovascular heart assist devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/247Positive displacement blood pumps
    • A61M60/253Positive displacement blood pumps including a displacement member directly acting on the blood
    • A61M60/268Positive displacement blood pumps including a displacement member directly acting on the blood the displacement member being flexible, e.g. membranes, diaphragms or bladders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/855Constructional details other than related to driving of implantable pumps or pumping devices
    • A61M60/89Valves
    • A61M60/894Passive valves, i.e. valves actuated by the blood
    • A61M60/896Passive valves, i.e. valves actuated by the blood having flexible or resilient parts, e.g. flap valves

Definitions

  • Linear drive pump and control means provide pulses of fluid of desired wave form into one or two conduits.
  • the wave forms in two conduits may be the same or different, and controlled if desired by preprogrammed means. If employed as a half or whole heart sensing means disposed within the circulatory system or the artificial heart may be used to provide data for modifying preprogrammed data and scanning and monitoring means and means for recharging a power source implanted in a body may be provided.
  • the invention relates to a compact and efficient pump adapted to provide pulses of fluid into a conduit or a plurality of conduits. Pulse flow into two ,conduits may be provided alternately or in any timed relation, and the wave shape of either series of pulses may be modified as desired. The flow in the two conduits may be the same or different fluids and the flow in either conduit may be started or stopped without effecting the flow in the other conduit.
  • the operation of the pump may be programmed for optimum operating, and changes in the wave form or the shutting off or starting of flow in either'or both conduits may be accomplished automatically.
  • the operation of the pump may be scanned and the pressure and/or duration of the pulses in either conduit may be read and any variance from optimum operating conditions may be remedied.
  • the pump when made of suitable materials, is adapted for use as a prosthetic heart, or half heart, which can be implanted in an animal or human body, and for such use compact power and control means, which can also be implanted in an animal or human body, are disclosed together with means whereby leads may be inserted into the body without leaving openings into the body subject to infection.
  • Contact means are provided whereby the leads may be connected to means outside the body for recharging the power source within the body and for monitoring the operations of the heart.
  • the invention may be embodied in a single or a double piston pump.
  • the pump In its single piston form the pump may have one or two fluid chambers.
  • a coil carried by a piston-like member is energized causing the coil and member to reciprocate to alternately open and close the chamber or chambers.
  • fluid is expelled from one chamber or a pair of chambers in pulses of controlled wave form.
  • the fluid chambers may be spaces at the ends of a pair of opposed cylinders, the spaces being opened to receive fluid and closed to discharge fluid, by reciprocating piston heads.
  • a coil carrying piston-like member is reciprocable within a magnetic field. Both the field and the coil are constructed in a way to increase their strength and efficiency.
  • Preferably two magnetic fields of opposite polarity act simultaneously on a coil mounted on a reciprocating piston-like member.
  • a source of electrical power fed to a pulse generator connected to the coil continually changes the polarity of the coil causing reciprocation of the coil carrying piston-like member.
  • One or both ends of the piston-like member are extended laterally and attached in any suitable manner to the opposed face or faces of the collapsible chamber or chambers.
  • Each of the chambers has an inlet port and a discharge port each controlled by a check valve.
  • the reciprocation of the piston-like member may be controlled so that its stroke in one direction is not the same as its stroke in the other direction, thus providing flow of different wave form in the conduits.
  • both piston-like members are reciprocable within the same magnetic field and their heads are respectively attached to opposed surfaces of apair of collapsible chambers but the coils which are mounted on the piston-like members respectively are separately powered and controlled so that the time and frequency as well as the speed and duration of the stroke of one piston-like member may be different from that of the other and modified as may be required.
  • the one way valves of a collapsible chamber or chambers will respectively communicate through suitable connectors to veins and arteries of the animal or human body which have been severed when removing the original, damaged heart.
  • the inlet valve of one chamber will communicate with the vein bringing the blood back from all parts of the body to the heart, and the outlet valve of the chamber will communicate with the artery leading from the heart to the lungs.
  • the inlet valve of the other chamber will communicate with the vein bringing the blood from the lungs to the heart, and the outlet valve of the chamber will communicate with the artery (aorta) which carries and distributes the blood from the heart to all parts of the body.
  • the source of power illustrated herein for each coil employed is a storage battery preferably implanted 'in the body adjacent the implanted pump which is the ar tificial heart, and connected to the coil power and control circuitry, preferably housed in the same casing as the pump, by leads also within the body.
  • Each battery may be recharged from time to time from means outside the body through leads disposed within the body.
  • Such leads may also be employed for reading and recording the operation of the heart pump and conditions within the body such as blood pressure at selected points, and for the input to a programmed memory bank of further instructions to correct or improve the recorded operations.
  • the leads extend through tooth root canals of the animal or human being, to contacts provided as fillings or inlays. Three such contacts are provided in this way with a pair of said leads extending from the contacts to the power source, and a pair of said leads extending to scanning means, preferably disposed within the power source housing.
  • An inter-connector means is provided which can be readily inserted into and removed from a subjects mouth and is adapted to fit over the teeth having the contact forming fillings or inlays, the inter-connector means in turn having contacts adapted to register with the teeth supported contacts and to be connected to monitoring means as well as to a power supply for recharging the battery means within the body.
  • this connector means When this connector means is placed over the contact forming in lays or fillings the battery means within the body may--v be recharged and the operation of the artificial heart may be monitored as well as certain conditions within the body for which detector means connected with the power control system have been provided, and commands may be transmitted to the control means within the body to change or modify the control means and thereby overcome malfunctions or deficiencies disclosed by the monitor.
  • FIG. 1 is an elevational view partly in cross section of a single piston two chamber pump in which the piston-like member carries a specially constructed coil which is reciprocated through a specially devised magnetic field,
  • FIG. 1a is a detail of one of the irom shims used singly or in groups, between successive portions of the coil winding to improve the strength of the field and so that a more efficient magnetic coupling is made.
  • FIG. 2 shows schematically drive and control means for the single piston pump
  • FIG. 3 shows a two chamber and double piston pump which when made of suitable material may be used as a heart pump, comprising two coils carried by the piston-like members respectively and reciprocated independently within the same magnetic field,
  • FIG. 4 is similar to FIG. 3 but shows a single chamber and single piston pump which may be used as one-half a heart,
  • FIG. 5 is a schematic view of a control system for the pumps shown in FIGS. 3 or 4 including means for modifying and adjusting coil driving power in response to data from detector means disposed at selected points,
  • FIG. 6 is a schematic view of a power supply and distribution system for energizing the power transmitting, modifying and adjusting means as shown in FIG. 5 including connectionsthrough which the power source may be recharged and data may be transmitted from data scanning to recording means, and input data may be supplied to a memory bank.
  • FIG. 7 is a detail schematic view showing teeth inlay contacts and leads extending from them within the body,.
  • FIG. 8 is a side elevation showing relative location of artificial heart, battery and tooth supported contact means within a human body
  • FIG. 9 is a schematic view of a mouth piece interconnector, adapted when inserted in a subjects mouth to fit over the teeth contacts, and of connections from the interconnector to battery recharging means, and to means for recording and sequentially reading data from data scanner means and for handling input data for the memory bank.
  • FIG. 1 a reciprocating single piston pump is shown and in FIG. 3 a double piston pump is shown and in FIG. 4 is shown a single chamber and single piston pump which is adapted to serve as one-half a heart.
  • a casing 10 encloses a pair of spaced stationary magnetic field assemblies, 12 and 13, comprising respectively, an annular magnet 14 and two field portions 16 and 18 which are spaced apart and in contact respectively with the two poles of magnet 14 so that portions 16 and 18 are of different polarity, and an annular magnet 15 and two field portions 17 and 19 which are spaced apart-and in contact respectively with the two poles of magnet 15 so that portions 17 and 19 are of different polarity.
  • portion 16 is in contact with the north pole of magnet 14, and portion 18, through its laterally extended base portion 18a, is in contact with the south pole of magnet 14, and portion 17 is in contact with the south pole of magnet 15, and portion 19 is in contact with the north pole of magnet 15 through its laterally extended base portion 19a.
  • Portions 18 and 19 are axially and concentrically disposed within the open centers of magnet 14 and field portion 16, and magnet 15 and field portion 17 respectively, and radially spaced from their inner surfaces sufficiently to leave space between them and it within which a piston-like member 22, which may comprise four parallel spaced rods, and a coil 20, which is wound around it and carried by it, may be axially reciprocated.
  • Base members 18a and 1% are apertured at a to provide spaces through which the rods comprising member 22 may reciprocate.
  • Portions 18 and 19 of the two magnetic fields are spaced apart by a non-magnetic spacing member 21.
  • Portions 16, 18 and 18a, and 17, 19 and 19a, are made of iron to provide a strong magnetic field.
  • the piston-like coil support means 22 spaces apart and interconnects collapsible chambers 30 and 32, which are made of material selected on the basis of being suitable for, and compatible with, the fluid passing through them.
  • the ends of the member 22 may be attached, as by screws 24, to piston cross members or heads 26 and 28 which in turn are attached in any suitable way as by adhesive to the opposed surfaces of members 30 and 32.
  • the coil 20 is made up of a series of coils separated by magnetic laminations.
  • Discontinuous shim-like members 34 preferably in bundles of three to 10 members depending upon the shim thickness, are inserted between at evenly spaced intervals between turns of the coil to increase magnetic coupling when the coil is energized.
  • the shim-like members 34 are made of soft 34 are made with radially extending gaps 36 to avoid short circuiting the coil or creating an induced voltage as it moves through the magnetic field.
  • collapsible chamber 30 communicates with a conduit 40 through intake check valve 42, normally held in closed position by spring 43, and communicates with a conduit 44 through discharge check valve 46, normally held in closed position by spring 47.
  • collapsible chamber 32 communicates with intake conduit 48 through check valve 50, normally held in closed position by spring 51, and communicates with discharge conduit 52 through discharge check valve 54 normally held in closed position by spring 55.
  • valve 54 opens, and fluid within chamber 32 is discharged in pulse form into conduit 52, valve 50 being held in closed position during the collapsing of chamber 32 but opening again to admit fluid from conduit 48 into chamber 32 when the stroke of the coil assembly is again reversed.
  • the opposite strokes of the coil assembly may be made with the same force and timing thus delivering alternately into conduits 44 and 52 pulses of fluid having the same wave fonn, or the coil assembly may be made to move in one direction with greater force and speed than in the other direction by having a higher voltage pulse for one direction of travel. This result may be desired for example in installations where it is important to conserve space and weight and to deliver fluid through separate conduits in different wave form.
  • Flap valves 56 are provided in the wall of casing 10 to dissipate heat generated within the pump, and the liquid passing through chambers 30 and 32 may also serve to cool the interior of the pump.
  • the pump shown in FIG. 1 may be driven and controlled by the operation of the well known full wave SCR cycloconverter control system shown in HO. 2 which is desirable because of its low cost to build and operate.
  • Power from a 60 Hz voltage power source is fed into the system at A, having the necessary voltage and current to match the impedence of the pump drive coil20.
  • the required frequency signal input is fed into the system at B, and the size and frequency of this signal may be varied and programmed toproducethe required pumping changes to give the required pressure pulse curve and rate.
  • the power source is modulated to produce the necessary frequency and wave form by the action of the cycloconverter.
  • the cycloconverter comprises, a full wave bridge 58 comprising four triac bilateral solid state switches, Q1, Q2, Q3and 04; connected respectively to control bridges BR-ll, BR-2, BR-3 and BR-4; photon couplers PC-l, PC-2, PC-3 and PC-4 each comprising a light emitting diode D; a trigger control amplifier E; a trigger capacitor F; and a phase splitter transformer G.
  • the triac switches Q-1Q-4 will be triggered in the proper sequence to convert a 60 Hz input wave into a low frequency wave form which will, with proper filtering, replicate the low frequency input signal. Triggering is accomplished through the photon couplers which receive their signals from the trigger control amplifier which receives its signal from the input of the phase splitter transformer G.
  • Thelight transmitting diode D of each photon coupler is normally on and causes a short circuit across its related trigger capacitor F which prevents the triac fi'om triggering.
  • the capacitor When the light transmitting diode is turned off the capacitor will charge to 32 volts at which point the bilateral switch will change state and trigger the triac switch.
  • the trigger control amplifier'E operates with a 0-6 volt signal.
  • the signal will cause trigger on either the positive or negative half of the 60 hertz input voltage, depending upon the polarity of the input signal.
  • Q1 and Q4 will trigger when the control signal and the 60 hertz signal are in phase, and Q2 and Q3 will trigger when the signals are 180 out of phase.
  • the phase splitter transformer G provides the proper polarity relationship between the input and output signals.
  • Pulsing the wave with asquare wave form may be obtained using a dc. on-off electronic switch, such for example as the cycloconverter, for low power consumption.
  • the double piston pump shown in FIG. 3 comprises a casing 60 enclosing a stationary annular magnet 62 and a magnetic field comprising the annular portion 63 which is in contact with the north pole of magnet 62, and a field portion 66 which is in contact with the south pole of magnet 62. From the base 66 portions 64 and 65 extend upwardly on opposite sides of field portion 63. Portion 64 is tubular and extends up from the center of base 66. Portion 65 is formed by an upwardly extending cup-shaped extension of base 66. Portions 64 and 65 are shaped and disposed so as to provide annular spaces between themselves and portion 63 within which a pair of coils 68 and 70, and the two piston-like members 72 and 82 by which they are respectively carried, may reciprocate.
  • the member 72 comprises a tubular portion 74 and the curved head portion 76 which is attached in any suitable manner to the opposedtface of fluid chamber 30a. Projecting radially from tubular portion 74 in axially spaced relation are the flanges 78 and 80, and coil 68 is wound around the said tubular portion 74 between flanges 78 and 80. It willbe noted that magnetic field portion 64 is tubular and is disposed within the tubular portion 74 of member 72. Coil 68 is thus disposed between magnetic field portions63 and 64.
  • Member 82 comprises the rod portion 84 which is disposed for reciprocation within the concentrically disposed tubular field portion 64 and the surrounding piston-like member 74, and the central head portion 86 is attached in any suitable way to the opposed face of fluid chamber 32a.
  • the heat portion 86 is extended outwardly forming the cup-shaped flange 88 which extends close to chamber 300 and coil 70 is disposed around the rim of the flange, between portions 63 and 65 of the magnetic field.
  • the rod portion 84 is guided for linear movement with magnetic field portion 64 by the bearing 90 disposed therein.
  • Circuitry for controlling the pump may be disposed within the pump, as in the annular housing 100 secured in place by means of screws 102 shown extending from magnetic field member 66 through the magnet 62 and field member 63.
  • the pump disclosed herein is adapted for many uses as for example to supply two liquids in unequal and variable amounts, or to administer two drugs at a changing rate controlled by a patients temperature and heart rate.
  • chambers 30a and 32a may be connected to inlet and outlet conduits in the manner shown for the collapsible chambers of the single piston pump shown in FIG. 1.
  • FIG. 3 the inlet and outlet of each chamber 30a and 32a is shown provided with connector means suitable for connecting the chamber to veins and arteries of a living body which were previously connected to the heart which has been removed.
  • Chamber 30a is connected through inlet valve 92 and the connector 106 to the blood vessel which returns blood from the lungs to the heart; and is connected through outlet valve 94 and the connector 108 to the main artery, the aorta, which delivers blood from the heart to the rest of the body.
  • chamber 32a is connected through inlet valve 96 and the connector 110 to the blood vessel which returns blood from the body to the heart, and is connected through outlet valve 98 and the connector 112 to the main artery, which leads from the heart to the lungs.
  • FIG. 4 a single chamber pump is shown which is adapted for use as one-half of a human or animal heart. It will be seen that FIG. 4 is similar to the upper portion of FIG. 3 and for convenience like parts are identified by like numerals, but it will be understood that the single chamber may be connected in this manner as shown for either chamber of the pump shown in FIG. 3.
  • the casing of the pump shown in FIG. 4 is identified by the numeral 60.
  • each coil is connected to its source of power through a power amplifier or switching circuit, the output of which may be modified to provide great flexibility to the stroke of the piston it drives and thereby provide the desired output pulses of blood from the chamber controlled by that piston.
  • FIGS. 5 and 6 means are indicated for driving a coil from a single storage battery source of power in accordance with prerecorded programmed data modified collapsible chambers 30a and 32a respectively, is
  • Sensing means in the form of a detector 122 is disposed in the discharge conduit, which when the pump is used as a mechanical heart is the aorta, to supply a pressure data signal.
  • a second detector 124 is shown in contact with the carotid nerve to provide command data to the memory 120.
  • sensing means may be disposed at other points, such as 126, 127 and 128, along the circulation system of a body in which the mechanical heart is implanted and at points within the pump itself to provide information as to the pressure, temperature or other conditions at such places, and that such data may be employed to modify the basic wave form and rate of the pulses delivered from the pump in response to the programmed controlled data.
  • power for driving a coil is supplied from a storage battery power source 130 to a power amplifier 132 and also to the data handling preamplifiers 134 and 136, and to programmer amplifier 138 and the data scanner 140.
  • Each coil is driven by a power amplifier 132 which is driven by the driver amplifier I34 and a feedback loop 144.
  • the driver amplifier 134 controls the feedback loop 144 and is driven by the differential amplifier 136 with the data signal from the preprogrammed data signal modified by the pressure wave form supplied from the detector means 122 in the aorta through the pressure control pre-amplifier 142.
  • the signal produced by the carotid nerve through detector 124 feeds into memory 120 through pre-amplifier M6 to adjust the memory signal in such a manner as to produce sufficient blood pressure for the brain of the patient.
  • the data scanner is connected by leads 148 and 150 to contacts I54 and 156 through which connection may be made to means 16% for reading and recording data from the scanner 140 and through which new input data may be supplied to the memory 121).
  • a third contact 158 is provided, and the power source 130 is connected through leads 150 and R52 to contacts 156 and 158 through which, as by the means illustrated in FIG. 9 the power source 130 may be recharged.
  • contacts I54, I56 and 1158 are shown as inlays or fillings in three teeth of the user of the heart pump and the leads M8, 150 and H52 extend from the inlay contacts respectively through the root canals of the teeth and preferably within a teflon conduit 164 within the body, to the power source 130 and to the data scanner 140.
  • an interconnecting means 170 may be employed, adapted to fit over the inlay contact carrying teeth and having contacts 172, 174 and 176 disposed to register with the inlay contacts, the contacts of the interconnecting means being in turn connected with the battery recharger means 166 and the recorder and input data handling means 160.
  • a prosthetic heart adapted to be implanted within the body of a human being or other animal, and a system for operating it, comprising, a single collapsible chamber, having inlet and outlet ports, adapted to be connected respectively to a vein and an artery, means for opening the chamber to receive fluid from a vein to which it is adapted to be connected, means for closing the chamber and expelling pulses of fluid from it into an artery to which it is adapted to be connected, means for controlling the expelling means so as to provide in the artery predetermined changes in pulse pressure, amplitude and frequency, a source of electric power adapted to be disposed within the body, and circuitry for connecting it to the prosthetic heart for operating it, a source of electric power to be located outside the body, and circuitry including, leads adapted to be im-' planted within the body, and connected to said source of power to be located within the body, leads connected to the source of power outside the body, and separable contact members connected to said leads re spectively and adapted when
  • the device claimed in claim 1 including a mouth piece adapted to fit over contact means adapted for mounting on teeth of the body and having conductive means adapted to engage the contact means with means disposed outside the body.
  • a prosthetic heart adapted to be implanted within the body of a human being or other animal and the system for operating it which comprises, a single housing having therein two fluid chambers, separate movable piston-like members having heads connected to the walls of the chambers respectively, and separate coils mounted on said piston-like members respectively, a magnetic field in which each of said coils is disposed, and power and control means for energizing said coils and alternating their polarity separately, whereby the piston-like members are separately reciprocated and the force, amplitude and frequency of the strokes of said piston-like members may be the same or different, and the strokes of each of said piston-like member may be varied individually.
  • the apparatus claimed in claim 4 including a source of electric power adapted to be implanted within the body, circuitry for connecting the said source of power to said coils respectively, for implanting within the body, a source of electric power to be located outside the body, and circuitry including, leads adapted to be implanted within the body, and connected to the source of power to be located within the body, leads connected to the source of power outside the body and separable contact members connected to said leads respectively and adapted when physically brought together to connect the source of electric power outside the body directly to the source of electric power to be implanted within the body, to recharge the latter from the former.
  • control means includes, program control means, pressure detector means and power amplifier means, all disposed within said prosthetic heart.
  • each piston-like member comprises a rod portion and a head portion, the rod portions extend in opposite directions and are concentrically disposed, one of said coils is supported around the rod portion of one of said piston-like members, and the head portion of the other of said piston-like members is cup-shaped and the other of said coils is mounted around the rim. of said cup-shaped head portion.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Cardiology (AREA)
  • Mechanical Engineering (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Vascular Medicine (AREA)
  • External Artificial Organs (AREA)

Abstract

Linear drive pump and control means provide pulses of fluid of desired wave form into one or two conduits. The wave forms in two conduits may be the same or different, and controlled if desired by preprogrammed means. If employed as a half or whole heart sensing means disposed within the circulatory system or the artificial heart may be used to provide data for modifying preprogrammed data and scanning and monitoring means and means for recharging a power source implanted in a body may be provided.

Description

Uite States Pate Karlson Oct. 22, 1974 1 1 IMPLANTABLE LINEAR MOTOR PROSTI-IETIC HEART AND CONTROL SYSTEM THEREFOR [76] Inventor: Eskil L. Karlson, 43 Westover Ln.,
Stamford, Conn. 06902 [22] Filed: Sept. 1, 1972 [21] Appl. No.: 285,749
US. Cl 3/1, 3/D1G. 2, 417/412 [51] Int. Cl. ..A6If11/24 [58] Field of Search 3/1, DIG. 2; 128/1 D, 1 R, 128/D1G. 3, 419 R, 419 D, 419 B; 417/412 [56] References Cited UNITED STATES PATENTS 3,434,162 3/1969 Wolfe 3/1 3,733,616 5/1973 Willis 3/1 FOREIGN PATENTS OR APPLICATIONS 1,469,132 1/1967 France 128/419 P OTHER PUBLICATIONS Final Report: Summary and Conclusions Artificial Heart Program, The Childrens Hospital Medical Center, by Thermo Electron Engineering Corp., Waltham, Mass, 1966, pages 25-26.
Primary ExaminerRichard A. Gaudet Assistant Examiner-Rona1d L, Frinks Attorney, Agent, or Firm--John W. Hoag [5 7 1 AESTRACT Linear drive pump and control means provide pulses of fluid of desired wave form into one or two conduits. The wave forms in two conduits may be the same or different, and controlled if desired by preprogrammed means. If employed as a half or whole heart sensing means disposed within the circulatory system or the artificial heart may be used to provide data for modifying preprogrammed data and scanning and monitoring means and means for recharging a power source implanted in a body may be provided.
7 Claims, 10 Drawing Figures PMENTEU 2 21974 7 30 8428440 ATENTED 2 1974 3.842.440 sum 2 OF 6 IMPLANTABLE LINEAR MOTOR PROSTI-IETIC HEART AND CONTROL SYSTEM THEREFOR FIELD OF THE INVENTION The invention relates to a compact and efficient pump adapted to provide pulses of fluid into a conduit or a plurality of conduits. Pulse flow into two ,conduits may be provided alternately or in any timed relation, and the wave shape of either series of pulses may be modified as desired. The flow in the two conduits may be the same or different fluids and the flow in either conduit may be started or stopped without effecting the flow in the other conduit.
The operation of the pump may be programmed for optimum operating, and changes in the wave form or the shutting off or starting of flow in either'or both conduits may be accomplished automatically.
The operation of the pump may be scanned and the pressure and/or duration of the pulses in either conduit may be read and any variance from optimum operating conditions may be remedied.
In addition to its commercial uses the pump, when made of suitable materials, is adapted for use as a prosthetic heart, or half heart, which can be implanted in an animal or human body, and for such use compact power and control means, which can also be implanted in an animal or human body, are disclosed together with means whereby leads may be inserted into the body without leaving openings into the body subject to infection. Contact means are provided whereby the leads may be connected to means outside the body for recharging the power source within the body and for monitoring the operations of the heart.
SUMMARY OF THE DISCLOSURE The invention may be embodied in a single or a double piston pump. In its single piston form the pump may have one or two fluid chambers. In each case a coil carried by a piston-like member is energized causing the coil and member to reciprocate to alternately open and close the chamber or chambers. In each form fluid is expelled from one chamber or a pair of chambers in pulses of controlled wave form.
The fluid chambers may be spaces at the ends of a pair of opposed cylinders, the spaces being opened to receive fluid and closed to discharge fluid, by reciprocating piston heads. As shown herein in its form using a single piston-like member to open and close one or two chambers a coil carrying piston-like member is reciprocable within a magnetic field. Both the field and the coil are constructed in a way to increase their strength and efficiency. Preferably two magnetic fields of opposite polarity act simultaneously on a coil mounted on a reciprocating piston-like member. A source of electrical power fed to a pulse generator connected to the coil continually changes the polarity of the coil causing reciprocation of the coil carrying piston-like member. One or both ends of the piston-like member are extended laterally and attached in any suitable manner to the opposed face or faces of the collapsible chamber or chambers. Each of the chambers has an inlet port and a discharge port each controlled by a check valve. As a chamber is collapsed by the movement of the piston-like member fluid is expelled from it through its discharge port into a communicating conduit, and in its two chamber form, the other chamber through its inlet valve. If desired the reciprocation of the piston-like member may be controlled so that its stroke in one direction is not the same as its stroke in the other direction, thus providing flow of different wave form in the conduits.
In the double piston embodiment of the invention two separate coil carrying piston-like members are provided extending in opposite directions and with their rod portions preferably disposed concentrically to conserve space. In this embodiment both piston-like members are reciprocable within the same magnetic field and their heads are respectively attached to opposed surfaces of apair of collapsible chambers but the coils which are mounted on the piston-like members respectively are separately powered and controlled so that the time and frequency as well as the speed and duration of the stroke of one piston-like member may be different from that of the other and modified as may be required.
If a device embodying the invention is to be used as a substitute for all or one-half of a living heart the materials used, particularly for the interior of the collapsible chambers, must be compatible with blood. The development or identification of such materials forms no part of this invention. A vast amount of work has been done to provide such materials and the results of this work may be found in many reference sources including for example:
U.S. Pat. No. 3,449,767, June 17, 1969 and long list of artificial hearts and chambers set forth therein; U.S. Pat. 3,409,913, Nov. 12, 1968 and references therein to arterial graft sections for attachment to the open ends of auxiliary ventrical means, and to connector means described therein, including connector means made of Medical Silastic 372 supplied by Dow Corning Corporation, Midland, Mich; also Transactions Of The Americal Society Of Artificial Internal Organs; also references cited during prosecution of U.S. Pat. No. 3,327,322, June 27, I967; also pamphlet of Avco Everett Research Laboratory, Development of Blood Compatible Elastomers, Theory, and Practice And Inv Viro Performance, by Emery Nyilas.
For use as an artificial heart the one way valves of a collapsible chamber or chambers will respectively communicate through suitable connectors to veins and arteries of the animal or human body which have been severed when removing the original, damaged heart. In' a full prosthetic heart the inlet valve of one chamber will communicate with the vein bringing the blood back from all parts of the body to the heart, and the outlet valve of the chamber will communicate with the artery leading from the heart to the lungs. The inlet valve of the other chamber will communicate with the vein bringing the blood from the lungs to the heart, and the outlet valve of the chamber will communicate with the artery (aorta) which carries and distributes the blood from the heart to all parts of the body.
The source of power illustrated herein for each coil employed is a storage battery preferably implanted 'in the body adjacent the implanted pump which is the ar tificial heart, and connected to the coil power and control circuitry, preferably housed in the same casing as the pump, by leads also within the body. Each battery may be recharged from time to time from means outside the body through leads disposed within the body. Such leads may also be employed for reading and recording the operation of the heart pump and conditions within the body such as blood pressure at selected points, and for the input to a programmed memory bank of further instructions to correct or improve the recorded operations. Preferably the leads extend through tooth root canals of the animal or human being, to contacts provided as fillings or inlays. Three such contacts are provided in this way with a pair of said leads extending from the contacts to the power source, and a pair of said leads extending to scanning means, preferably disposed within the power source housing.
An inter-connector means is provided which can be readily inserted into and removed from a subjects mouth and is adapted to fit over the teeth having the contact forming fillings or inlays, the inter-connector means in turn having contacts adapted to register with the teeth supported contacts and to be connected to monitoring means as well as to a power supply for recharging the battery means within the body. When this connector means is placed over the contact forming in lays or fillings the battery means within the body may--v be recharged and the operation of the artificial heart may be monitored as well as certain conditions within the body for which detector means connected with the power control system have been provided, and commands may be transmitted to the control means within the body to change or modify the control means and thereby overcome malfunctions or deficiencies disclosed by the monitor.
The invention will be best understood if the following description is read in connection with the drawings in which;
FIG. 1 is an elevational view partly in cross section of a single piston two chamber pump in which the piston-like member carries a specially constructed coil which is reciprocated through a specially devised magnetic field,
FIG. 1a is a detail of one of the irom shims used singly or in groups, between successive portions of the coil winding to improve the strength of the field and so that a more efficient magnetic coupling is made.
FIG. 2 shows schematically drive and control means for the single piston pump,
FIG. 3 shows a two chamber and double piston pump which when made of suitable material may be used as a heart pump, comprising two coils carried by the piston-like members respectively and reciprocated independently within the same magnetic field,
FIG. 4 is similar to FIG. 3 but shows a single chamber and single piston pump which may be used as one-half a heart,
FIG. 5 is a schematic view of a control system for the pumps shown in FIGS. 3 or 4 including means for modifying and adjusting coil driving power in response to data from detector means disposed at selected points,
and/or in response to data from a recording or preprogrammed memory bank,
FIG. 6 is a schematic view of a power supply and distribution system for energizing the power transmitting, modifying and adjusting means as shown in FIG. 5 including connectionsthrough which the power source may be recharged and data may be transmitted from data scanning to recording means, and input data may be supplied to a memory bank.
FIG. 7 is a detail schematic view showing teeth inlay contacts and leads extending from them within the body,.
FIG. 8 is a side elevation showing relative location of artificial heart, battery and tooth supported contact means within a human body, and
FIG. 9 is a schematic view of a mouth piece interconnector, adapted when inserted in a subjects mouth to fit over the teeth contacts, and of connections from the interconnector to battery recharging means, and to means for recording and sequentially reading data from data scanner means and for handling input data for the memory bank.
DESCRIPTION In FIG. 1 a reciprocating single piston pump is shown and in FIG. 3 a double piston pump is shown and in FIG. 4 is shown a single chamber and single piston pump which is adapted to serve as one-half a heart.
In the embodiment of the invention shown in FIG. 1 a casing 10 encloses a pair of spaced stationary magnetic field assemblies, 12 and 13, comprising respectively, an annular magnet 14 and two field portions 16 and 18 which are spaced apart and in contact respectively with the two poles of magnet 14 so that portions 16 and 18 are of different polarity, and an annular magnet 15 and two field portions 17 and 19 which are spaced apart-and in contact respectively with the two poles of magnet 15 so that portions 17 and 19 are of different polarity. As shown, portion 16 is in contact with the north pole of magnet 14, and portion 18, through its laterally extended base portion 18a, is in contact with the south pole of magnet 14, and portion 17 is in contact with the south pole of magnet 15, and portion 19 is in contact with the north pole of magnet 15 through its laterally extended base portion 19a.
Portions 18 and 19 are axially and concentrically disposed within the open centers of magnet 14 and field portion 16, and magnet 15 and field portion 17 respectively, and radially spaced from their inner surfaces sufficiently to leave space between them and it within which a piston-like member 22, which may comprise four parallel spaced rods, and a coil 20, which is wound around it and carried by it, may be axially reciprocated. Base members 18a and 1% are apertured at a to provide spaces through which the rods comprising member 22 may reciprocate. Portions 18 and 19 of the two magnetic fields are spaced apart by a non-magnetic spacing member 21.
Portions 16, 18 and 18a, and 17, 19 and 19a, are made of iron to provide a strong magnetic field.
The piston-like coil support means 22, spaces apart and interconnects collapsible chambers 30 and 32, which are made of material selected on the basis of being suitable for, and compatible with, the fluid passing through them. The ends of the member 22 may be attached, as by screws 24, to piston cross members or heads 26 and 28 which in turn are attached in any suitable way as by adhesive to the opposed surfaces of members 30 and 32.
The coil 20 is made up of a series of coils separated by magnetic laminations. Discontinuous shim-like members 34, preferably in bundles of three to 10 members depending upon the shim thickness, are inserted between at evenly spaced intervals between turns of the coil to increase magnetic coupling when the coil is energized. The shim-like members 34 are made of soft 34 are made with radially extending gaps 36 to avoid short circuiting the coil or creating an induced voltage as it moves through the magnetic field.
As shown in FIG. 1 collapsible chamber 30 communicates with a conduit 40 through intake check valve 42, normally held in closed position by spring 43, and communicates with a conduit 44 through discharge check valve 46, normally held in closed position by spring 47.
Similarly collapsible chamber 32 communicates with intake conduit 48 through check valve 50, normally held in closed position by spring 51, and communicates with discharge conduit 52 through discharge check valve 54 normally held in closed position by spring 55.
When the movable coil is energized it will move in one direction or the other depending upon the voltage polarity fed to the coil and because of the disposition of the magnetic polarity of the two magnetic fields it will be simultaneously pulled and pushed by said fields and thus can be moved with considerable force. When coil 20 moves toward chamber between the annularly spaced north and south poles of the magnetic field 12, it causes the piston-like coil carrying means 22 to move with it thus opening valve 46 and collapsing chamber 30 and thereby forcing its contents, as a pulse of fluid, into conduit 44. During the collapsing of chamber 30 valve 42 remains closed. However upon the return stroke of the coil assembly, due to change in the polarity of the fed voltage the coil controlled by the driving power source, chamber 30 is opened, valve 46 closes, and valve 42 opens, and fluid from conduit 40 flows into chamber 30.
While chamber 30 is being expanded and filled with fluid, chamber 32 is being collapsed, valve 54 opens, and fluid within chamber 32 is discharged in pulse form into conduit 52, valve 50 being held in closed position during the collapsing of chamber 32 but opening again to admit fluid from conduit 48 into chamber 32 when the stroke of the coil assembly is again reversed.
It should be noted that by control of the power source the opposite strokes of the coil assembly may be made with the same force and timing thus delivering alternately into conduits 44 and 52 pulses of fluid having the same wave fonn, or the coil assembly may be made to move in one direction with greater force and speed than in the other direction by having a higher voltage pulse for one direction of travel. This result may be desired for example in installations where it is important to conserve space and weight and to deliver fluid through separate conduits in different wave form.
Flap valves 56 are provided in the wall of casing 10 to dissipate heat generated within the pump, and the liquid passing through chambers 30 and 32 may also serve to cool the interior of the pump.
The pump shown in FIG. 1 may be driven and controlled by the operation of the well known full wave SCR cycloconverter control system shown in HO. 2 which is desirable because of its low cost to build and operate.
Power from a 60 Hz voltage power source is fed into the system at A, having the necessary voltage and current to match the impedence of the pump drive coil20. The required frequency signal input is fed into the system at B, and the size and frequency of this signal may be varied and programmed toproducethe required pumping changes to give the required pressure pulse curve and rate. The power source is modulated to produce the necessary frequency and wave form by the action of the cycloconverter.
The cycloconverter comprises, a full wave bridge 58 comprising four triac bilateral solid state switches, Q1, Q2, Q3and 04; connected respectively to control bridges BR-ll, BR-2, BR-3 and BR-4; photon couplers PC-l, PC-2, PC-3 and PC-4 each comprising a light emitting diode D; a trigger control amplifier E; a trigger capacitor F; and a phase splitter transformer G.
The triac switches Q-1Q-4 will be triggered in the proper sequence to convert a 60 Hz input wave into a low frequency wave form which will, with proper filtering, replicate the low frequency input signal. Triggering is accomplished through the photon couplers which receive their signals from the trigger control amplifier which receives its signal from the input of the phase splitter transformer G.
Thelight transmitting diode D of each photon coupler is normally on and causes a short circuit across its related trigger capacitor F which prevents the triac fi'om triggering. When the light transmitting diode is turned off the capacitor will charge to 32 volts at which point the bilateral switch will change state and trigger the triac switch.
The trigger control amplifier'E operates with a 0-6 volt signal. The signal will cause trigger on either the positive or negative half of the 60 hertz input voltage, depending upon the polarity of the input signal. Q1 and Q4 will trigger when the control signal and the 60 hertz signal are in phase, and Q2 and Q3 will trigger when the signals are 180 out of phase.
The phase splitter transformer G provides the proper polarity relationship between the input and output signals.
Pulsing the wave with asquare wave form may be obtained using a dc. on-off electronic switch, such for example as the cycloconverter, for low power consumption.
The double piston pump shown in FIG. 3 comprises a casing 60 enclosing a stationary annular magnet 62 and a magnetic field comprising the annular portion 63 which is in contact with the north pole of magnet 62, and a field portion 66 which is in contact with the south pole of magnet 62. From the base 66 portions 64 and 65 extend upwardly on opposite sides of field portion 63. Portion 64 is tubular and extends up from the center of base 66. Portion 65 is formed by an upwardly extending cup-shaped extension of base 66. Portions 64 and 65 are shaped and disposed so as to provide annular spaces between themselves and portion 63 within which a pair of coils 68 and 70, and the two piston- like members 72 and 82 by which they are respectively carried, may reciprocate.
The member 72 comprises a tubular portion 74 and the curved head portion 76 which is attached in any suitable manner to the opposedtface of fluid chamber 30a. Projecting radially from tubular portion 74 in axially spaced relation are the flanges 78 and 80, and coil 68 is wound around the said tubular portion 74 between flanges 78 and 80. It willbe noted that magnetic field portion 64 is tubular and is disposed within the tubular portion 74 of member 72. Coil 68 is thus disposed between magnetic field portions63 and 64.
Member 82 comprises the rod portion 84 which is disposed for reciprocation within the concentrically disposed tubular field portion 64 and the surrounding piston-like member 74, and the central head portion 86 is attached in any suitable way to the opposed face of fluid chamber 32a. The heat portion 86 is extended outwardly forming the cup-shaped flange 88 which extends close to chamber 300 and coil 70 is disposed around the rim of the flange, between portions 63 and 65 of the magnetic field. The rod portion 84 is guided for linear movement with magnetic field portion 64 by the bearing 90 disposed therein.
Circuitry for controlling the pump, such for example as is shown in FIG. 5, may be disposed within the pump, as in the annular housing 100 secured in place by means of screws 102 shown extending from magnetic field member 66 through the magnet 62 and field member 63.
Because of its flexibility and compactness the pump disclosed herein is adapted for many uses as for example to supply two liquids in unequal and variable amounts, or to administer two drugs at a changing rate controlled by a patients temperature and heart rate. For such uses chambers 30a and 32a may be connected to inlet and outlet conduits in the manner shown for the collapsible chambers of the single piston pump shown in FIG. 1.
One of the uses particularly contemplated for the double piston pump is as a heart pump, a prosthetic substitute for a whole human or animal heart and in FIG. 3 the inlet and outlet of each chamber 30a and 32a is shown provided with connector means suitable for connecting the chamber to veins and arteries of a living body which were previously connected to the heart which has been removed. Chamber 30a is connected through inlet valve 92 and the connector 106 to the blood vessel which returns blood from the lungs to the heart; and is connected through outlet valve 94 and the connector 108 to the main artery, the aorta, which delivers blood from the heart to the rest of the body.
Similarly chamber 32a is connected through inlet valve 96 and the connector 110 to the blood vessel which returns blood from the body to the heart, and is connected through outlet valve 98 and the connector 112 to the main artery, which leads from the heart to the lungs.
In FIG. 4 a single chamber pump is shown which is adapted for use as one-half of a human or animal heart. It will be seen that FIG. 4 is similar to the upper portion of FIG. 3 and for convenience like parts are identified by like numerals, but it will be understood that the single chamber may be connected in this manner as shown for either chamber of the pump shown in FIG. 3. The casing of the pump shown in FIG. 4 is identified by the numeral 60.
Since the optimum fluid pulse output of each chamber varies in accordance with the condition and needs of the body or other system in which the pump is used, each coil is connected to its source of power through a power amplifier or switching circuit, the output of which may be modified to provide great flexibility to the stroke of the piston it drives and thereby provide the desired output pulses of blood from the chamber controlled by that piston.
In FIGS. 5 and 6 means are indicated for driving a coil from a single storage battery source of power in accordance with prerecorded programmed data modified collapsible chambers 30a and 32a respectively, is
shown supplied by a memory bank 12d which is part of a bidirectional multiple and monitoring system incorporated into the mechanical hearts electronic control system. Sensing means in the form of a detector 122 is disposed in the discharge conduit, which when the pump is used as a mechanical heart is the aorta, to supply a pressure data signal. A second detector 124 is shown in contact with the carotid nerve to provide command data to the memory 120. It will be understood that other sensing means may be disposed at other points, such as 126, 127 and 128, along the circulation system of a body in which the mechanical heart is implanted and at points within the pump itself to provide information as to the pressure, temperature or other conditions at such places, and that such data may be employed to modify the basic wave form and rate of the pulses delivered from the pump in response to the programmed controlled data.
As shown, power for driving a coil is supplied from a storage battery power source 130 to a power amplifier 132 and also to the data handling preamplifiers 134 and 136, and to programmer amplifier 138 and the data scanner 140.
Each coil is driven by a power amplifier 132 which is driven by the driver amplifier I34 and a feedback loop 144. The driver amplifier 134 controls the feedback loop 144 and is driven by the differential amplifier 136 with the data signal from the preprogrammed data signal modified by the pressure wave form supplied from the detector means 122 in the aorta through the pressure control pre-amplifier 142. In addition, the signal produced by the carotid nerve through detector 124 feeds into memory 120 through pre-amplifier M6 to adjust the memory signal in such a manner as to produce sufficient blood pressure for the brain of the patient.
The data scanner is connected by leads 148 and 150 to contacts I54 and 156 through which connection may be made to means 16% for reading and recording data from the scanner 140 and through which new input data may be supplied to the memory 121).
As shown in FIG. 6 and 7 a third contact 158 is provided, and the power source 130 is connected through leads 150 and R52 to contacts 156 and 158 through which, as by the means illustrated in FIG. 9 the power source 130 may be recharged.
In FIG. 7 contacts I54, I56 and 1158 are shown as inlays or fillings in three teeth of the user of the heart pump and the leads M8, 150 and H52 extend from the inlay contacts respectively through the root canals of the teeth and preferably within a teflon conduit 164 within the body, to the power source 130 and to the data scanner 140.
For convenience in connecting the inlay contacts 154, 156 and 158 to a battery charger 166 and to a means for recording data from the scanner system and handling memory input data, an interconnecting means 170 may be employed, adapted to fit over the inlay contact carrying teeth and having contacts 172, 174 and 176 disposed to register with the inlay contacts, the contacts of the interconnecting means being in turn connected with the battery recharger means 166 and the recorder and input data handling means 160.
What I claim is:
l. A prosthetic heart adapted to be implanted within the body of a human being or other animal, and a system for operating it, comprising, a single collapsible chamber, having inlet and outlet ports, adapted to be connected respectively to a vein and an artery, means for opening the chamber to receive fluid from a vein to which it is adapted to be connected, means for closing the chamber and expelling pulses of fluid from it into an artery to which it is adapted to be connected, means for controlling the expelling means so as to provide in the artery predetermined changes in pulse pressure, amplitude and frequency, a source of electric power adapted to be disposed within the body, and circuitry for connecting it to the prosthetic heart for operating it, a source of electric power to be located outside the body, and circuitry including, leads adapted to be im-' planted within the body, and connected to said source of power to be located within the body, leads connected to the source of power outside the body, and separable contact members connected to said leads re spectively and adapted when physically brought together to connect the source of electric power outside the body directly to the source of electric power to be implanted within the body, to recharge the latter from the former, said separable contact members including at least a first set of contact members adapted to be disposed on teeth of the body, and another set of contact members are sized and shaped for mounting on teeth of the body adapted to carry said first set of contacts, and the said leads adapted to be implanted within the body are adapted to extend from said first set of contacts through the root canals of the teeth intended to carry said contacts, and the other set of contacts are connected to the said leads which are disposed outside the body and extend to the said source of power outside the body.
2. The device claimed in claim l in which one set of said contact members are adapted for mounting on teeth of the body and are connected by leads which extend to scanning means disposed outside the body.
3. The device claimed in claim 1 including a mouth piece adapted to fit over contact means adapted for mounting on teeth of the body and having conductive means adapted to engage the contact means with means disposed outside the body.
4. A prosthetic heart adapted to be implanted within the body of a human being or other animal and the system for operating it which comprises, a single housing having therein two fluid chambers, separate movable piston-like members having heads connected to the walls of the chambers respectively, and separate coils mounted on said piston-like members respectively, a magnetic field in which each of said coils is disposed, and power and control means for energizing said coils and alternating their polarity separately, whereby the piston-like members are separately reciprocated and the force, amplitude and frequency of the strokes of said piston-like members may be the same or different, and the strokes of each of said piston-like member may be varied individually.
5. The apparatus claimed in claim 4 including a source of electric power adapted to be implanted within the body, circuitry for connecting the said source of power to said coils respectively, for implanting within the body, a source of electric power to be located outside the body, and circuitry including, leads adapted to be implanted within the body, and connected to the source of power to be located within the body, leads connected to the source of power outside the body and separable contact members connected to said leads respectively and adapted when physically brought together to connect the source of electric power outside the body directly to the source of electric power to be implanted within the body, to recharge the latter from the former.
6. The apparatus claimed in claim 4 in which the control means includes, program control means, pressure detector means and power amplifier means, all disposed within said prosthetic heart.
7. The apparatus claimed in claim 4 in which each piston-like member comprises a rod portion and a head portion, the rod portions extend in opposite directions and are concentrically disposed, one of said coils is supported around the rod portion of one of said piston-like members, and the head portion of the other of said piston-like members is cup-shaped and the other of said coils is mounted around the rim. of said cup-shaped head portion.

Claims (7)

1. A prosthetic heart adapted to be implanted within the body of a human being or other animal, and a system for operating it, comprising, a single collapsible chamber, having inlet and outlet ports, adapted to be connected respectively to a vein and an artery, means for opening the chamber to receive fluid from a vein to which it is adapted to be connected, means for closing the chamber and expelling pulses of fluid from it into an artery to which it is adapted to be connected, means for controlling the expelling means so as to provide in the artery predetermined changes in pulse pressure, amplitude and frequency, a source of electric power adapted to be disposed within the body, and circuitry for connecting it to the prosthetic heart for operating it, a source of electric power to be located outside the body, and circuitry including, leads adapted to be implanted within the body, and connected to said source of power to be located within the body, leads connected to the source of power outside the body, and separable contact members connected to said leads respectively and adapted when physically brought together to connect the source of electric power outside the body directly to the source of electric power to be implanted within the body, to recharge the latter from the former, said separable contact members including at least a first set of contact members adapted to be disposed on teeth of the body, and another set of contact members are sized and shaped for mounting on teeth of the body adapted to carry said first set of contacts, and the said leads adapted to be implanted within the body are adapted to extend from said first set of contacts through the root canals of the teeth intended to carry said contacts, and the other set of contacts are connected to the said leads which are disposed outside the body and extend to the said source of power outside the body.
2. The device claimed in claim 1 in which one set of said contact members are adapted for mounting on teeth of the body and are connected by leads which extend to scanning means disposed outside the body.
3. The device claimed in claim 1 including a mouth piece adapted to fit over contact means adapted for mounting on teeth of the body and having conductive means adapted to engage the contact means with means disposed outside the body.
4. A prosthetic heart adapted to be implanted within the body of a human being or other animal and the system for operating it which comprises, a single housing having therein two fluid chambers, separate movable piston-like members having heads connected to the walls of the chambers respectively, and separate coils mounted on said piston-like members respectively, a magnetic field in which each of said coils is disposed, and power and control means for energizing said coils and alternating their polarity separately, whereby the piston-like members are separately reciprocated and the force, amplitude and frequency of the strokes of said piston-like members may be the same or different, and the strokes of each of said piston-Like member may be varied individually.
5. The apparatus claimed in claim 4 including a source of electric power adapted to be implanted within the body, circuitry for connecting the said source of power to said coils respectively, for implanting within the body, a source of electric power to be located outside the body, and circuitry including, leads adapted to be implanted within the body, and connected to the source of power to be located within the body, leads connected to the source of power outside the body and separable contact members connected to said leads respectively and adapted when physically brought together to connect the source of electric power outside the body directly to the source of electric power to be implanted within the body, to recharge the latter from the former.
6. The apparatus claimed in claim 4 in which the control means includes, program control means, pressure detector means and power amplifier means, all disposed within said prosthetic heart.
7. The apparatus claimed in claim 4 in which each piston-like member comprises a rod portion and a head portion, the rod portions extend in opposite directions and are concentrically disposed, one of said coils is supported around the rod portion of one of said piston-like members, and the head portion of the other of said piston-like members is cup-shaped and the other of said coils is mounted around the rim of said cup-shaped head portion.
US00285749A 1972-09-01 1972-09-01 Implantable linear motor prosthetic heart and control system therefor Expired - Lifetime US3842440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00285749A US3842440A (en) 1972-09-01 1972-09-01 Implantable linear motor prosthetic heart and control system therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00285749A US3842440A (en) 1972-09-01 1972-09-01 Implantable linear motor prosthetic heart and control system therefor

Publications (1)

Publication Number Publication Date
US3842440A true US3842440A (en) 1974-10-22

Family

ID=23095537

Family Applications (1)

Application Number Title Priority Date Filing Date
US00285749A Expired - Lifetime US3842440A (en) 1972-09-01 1972-09-01 Implantable linear motor prosthetic heart and control system therefor

Country Status (1)

Country Link
US (1) US3842440A (en)

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3966358A (en) * 1973-11-09 1976-06-29 Medac Gesellschaft Fur Klinische Spezialpraparate Mbh Pump assembly
US4105016A (en) * 1976-11-18 1978-08-08 Donovan Jr Francis M Heart pump
US4213207A (en) * 1978-04-07 1980-07-22 Wilson Frederick M Artificial heart and method of pumping blood
US4222127A (en) * 1978-06-02 1980-09-16 Donachy And Pierce Blood pump and method of pumping blood
US4406591A (en) * 1981-01-19 1983-09-27 Anthony Louis Electromagnetic fluid pump
US4427470A (en) 1981-09-01 1984-01-24 University Of Utah Vacuum molding technique for manufacturing a ventricular assist device
US4473423A (en) * 1982-05-03 1984-09-25 University Of Utah Artificial heart valve made by vacuum forming technique
DE3342534A1 (en) * 1982-11-22 1984-10-31 Helmut Ludwig 1000 Berlin Steiner Electromechanical blood pump drive
US4512726A (en) * 1982-02-09 1985-04-23 Strimling Walter E Pump adaptable for use as an artificial heart
WO1985002339A1 (en) * 1983-12-02 1985-06-06 Strimling Walter W Implantable heart pump
US4588404A (en) * 1979-01-22 1986-05-13 Didier Lapeyre Total cardiac prosthesis
US4718903A (en) * 1985-09-18 1988-01-12 Seoul National University Hospital Artificial heart
WO1988005867A1 (en) * 1987-02-06 1988-08-11 Applied Biotechnologies, Inc. Pumping apparatus with an electromagnetic assembly affixed to a flexible septum
US4838889A (en) * 1981-09-01 1989-06-13 University Of Utah Research Foundation Ventricular assist device and method of manufacture
WO1990008260A1 (en) * 1989-01-23 1990-07-26 University Of South Florida Magnetically actuated positive displacement pump
US4988333A (en) * 1988-09-09 1991-01-29 Storz Instrument Company Implantable middle ear hearing aid system and acoustic coupler therefor
US5024224A (en) * 1988-09-01 1991-06-18 Storz Instrument Company Method of readout of implanted hearing aid device and apparatus therefor
JPH0364606B2 (en) * 1984-12-06 1991-10-07 Haipirion Katarishisu Intern Inc
US5085628A (en) * 1988-09-09 1992-02-04 Storz Instrument Company Implantable hearing aid coupler device
WO1993017730A1 (en) * 1992-03-11 1993-09-16 Milwaukee Heart Research Foundation Artificial heart
US5290227A (en) * 1992-08-06 1994-03-01 Pasque Michael K Method of implanting blood pump in ascending aorta or main pulmonary artery
US5300908A (en) * 1990-10-10 1994-04-05 Brady Usa, Inc. High speed solenoid
US5300111A (en) * 1992-02-03 1994-04-05 Pyxis, Inc. Total artificial heart
US5306295A (en) * 1992-04-30 1994-04-26 University Of Utah Research Foundation Electrohydraulic heart with septum mounted pump
WO1995023000A2 (en) * 1994-02-25 1995-08-31 General Dynamics Corporation Reciprocating pump arrangement
US5665070A (en) * 1995-01-19 1997-09-09 I-Flow Corporation Infusion pump with magnetic bag compression
WO1999026675A1 (en) * 1997-11-19 1999-06-03 Peter Neubacher Blood pump drive mechanism
US6264601B1 (en) * 1999-04-02 2001-07-24 World Heart Corporation Implantable ventricular assist device
US6527698B1 (en) 2000-05-30 2003-03-04 Abiomed, Inc. Active left-right flow control in a two chamber cardiac prosthesis
US6540658B1 (en) 2000-05-30 2003-04-01 Abiomed, Inc. Left-right flow control algorithm in a two chamber cardiac prosthesis
WO2003026723A1 (en) * 2001-09-25 2003-04-03 Newheart Bio Co., Ltd. Cardiopulmonary life support system
US6632169B2 (en) 2001-03-13 2003-10-14 Ltk Enterprises, L.L.C. Optimized pulsatile-flow ventricular-assist device and total artificial heart
US20040015042A1 (en) * 2002-02-21 2004-01-22 Douglas Vincent Fluid pump
US20050207907A1 (en) * 2004-03-18 2005-09-22 John Fox Piston waveform shaping
US20060014999A1 (en) * 2004-07-19 2006-01-19 Heilman Marlin S Devices, systems and methods for assisting blood flow
US20060034943A1 (en) * 2003-10-31 2006-02-16 Technology Innovations Llc Process for treating a biological organism
US7140343B2 (en) 2002-05-28 2006-11-28 R. Sanderson Management, Inc. Overload protection mechanism
US7325476B2 (en) 2004-05-26 2008-02-05 R. Sanderson Management, Inc. Variable stroke and clearance mechanism
US7331271B2 (en) 2001-02-08 2008-02-19 R. Sanderson Management, Inc. Variable stroke/clearance mechanism
EP1888166A2 (en) * 2005-06-09 2008-02-20 Heart Corporation World Single sac ventricular assist device
US20080045777A1 (en) * 2005-06-09 2008-02-21 Jal Jassawalla Electromagnetic drive for a ventricular assist device
US7334548B2 (en) 2001-02-07 2008-02-26 R. Sanderson Management, Inc. Piston joint
US20090287305A1 (en) * 2008-05-19 2009-11-19 Amalaha Leonard D Wholly implantable non-natural heart for humans
CN101862480A (en) * 2010-07-19 2010-10-20 刘晓程 Cardiac auxiliary volume amplifier
US8147544B2 (en) 2001-10-30 2012-04-03 Otokinetics Inc. Therapeutic appliance for cochlea
US8197235B2 (en) 2009-02-18 2012-06-12 Davis David L Infusion pump with integrated permanent magnet
US8353864B2 (en) 2009-02-18 2013-01-15 Davis David L Low cost disposable infusion pump
US20130041203A1 (en) * 2011-02-18 2013-02-14 Marlin Stephen Heilman Blood flow assist devices, systems and methods
US20140134019A1 (en) * 2012-11-15 2014-05-15 Mindray Medical Sweden Ab Magnetic circuit
US8876686B2 (en) 2011-02-18 2014-11-04 Vascor, Inc Control of blood flow assist systems
CN106730080A (en) * 2017-02-04 2017-05-31 上海理工大学 A kind of electromagnetic drive pump
CN109996572A (en) * 2017-01-31 2019-07-09 海蒙温特股份有限公司 The method of the outer blood pump of external blood pump, heart-lung machine, operating body, and the method for operation heart-lung machine
CN110251754A (en) * 2019-07-05 2019-09-20 上海理工大学 Double permanent magnetic moving winding blood pumps
WO2020058538A3 (en) * 2018-09-21 2020-07-09 Munoz Saiz Manuel Electromechanical artificial heart
US11565104B1 (en) 2021-08-09 2023-01-31 Yossi Gross Magnetically-driven reciprocating intravascular blood pump

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1469132A (en) * 1965-12-28 1967-02-10 Electronique Appliquee Device for transferring an electric current to or from inside the human body
US3434162A (en) * 1966-12-13 1969-03-25 Us Health Education & Welfare Totally implanted artificial heart power system utilizing a rechargeable thermal energy source
US3733616A (en) * 1971-05-03 1973-05-22 Birch R Electromagnetically actuated artificial heart

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1469132A (en) * 1965-12-28 1967-02-10 Electronique Appliquee Device for transferring an electric current to or from inside the human body
US3434162A (en) * 1966-12-13 1969-03-25 Us Health Education & Welfare Totally implanted artificial heart power system utilizing a rechargeable thermal energy source
US3733616A (en) * 1971-05-03 1973-05-22 Birch R Electromagnetically actuated artificial heart

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A Linear Oscillating Electromotor for Possible Application in an Intrathoracic Artificial Heart by W. H. Burns et al., Transactions A.S.A.I.O., Vol. X, 1964, pages 151 153. *
Development of an Artificial Intrathoracic Heart by C. K. Kirby et al., Surgery, Vol. 56, No. 4, Oct. 1964, pages 7 19 725. *
Final Report: Summary and Conclusions Artificial Heart Program, The Children s Hospital Medical Center, by Thermo Electron Engineering Corp., Waltham, Mass., 1966, pages 25 26. *
The Cardiac Programmer to Trigger an Arterial Pump by W. P. Murphy, Transactions Amer. Soc. Art. Internal Organs, Vol. VII, 1961, pages 361 373. *

Cited By (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3966358A (en) * 1973-11-09 1976-06-29 Medac Gesellschaft Fur Klinische Spezialpraparate Mbh Pump assembly
US4105016A (en) * 1976-11-18 1978-08-08 Donovan Jr Francis M Heart pump
US4213207A (en) * 1978-04-07 1980-07-22 Wilson Frederick M Artificial heart and method of pumping blood
US4222127A (en) * 1978-06-02 1980-09-16 Donachy And Pierce Blood pump and method of pumping blood
US4588404A (en) * 1979-01-22 1986-05-13 Didier Lapeyre Total cardiac prosthesis
US4406591A (en) * 1981-01-19 1983-09-27 Anthony Louis Electromagnetic fluid pump
US4427470A (en) 1981-09-01 1984-01-24 University Of Utah Vacuum molding technique for manufacturing a ventricular assist device
US4838889A (en) * 1981-09-01 1989-06-13 University Of Utah Research Foundation Ventricular assist device and method of manufacture
US4512726A (en) * 1982-02-09 1985-04-23 Strimling Walter E Pump adaptable for use as an artificial heart
US4473423A (en) * 1982-05-03 1984-09-25 University Of Utah Artificial heart valve made by vacuum forming technique
DE3342534A1 (en) * 1982-11-22 1984-10-31 Helmut Ludwig 1000 Berlin Steiner Electromechanical blood pump drive
WO1985002339A1 (en) * 1983-12-02 1985-06-06 Strimling Walter W Implantable heart pump
US4547911A (en) * 1983-12-02 1985-10-22 Strimling Walter E Implantable heart pump
JPH0364606B2 (en) * 1984-12-06 1991-10-07 Haipirion Katarishisu Intern Inc
US4718903A (en) * 1985-09-18 1988-01-12 Seoul National University Hospital Artificial heart
WO1988005867A1 (en) * 1987-02-06 1988-08-11 Applied Biotechnologies, Inc. Pumping apparatus with an electromagnetic assembly affixed to a flexible septum
US4786240A (en) * 1987-02-06 1988-11-22 Applied Biotechnologies, Inc. Pumping apparatus with an electromagnet affixed to the septum
US5024224A (en) * 1988-09-01 1991-06-18 Storz Instrument Company Method of readout of implanted hearing aid device and apparatus therefor
US5085628A (en) * 1988-09-09 1992-02-04 Storz Instrument Company Implantable hearing aid coupler device
US4988333A (en) * 1988-09-09 1991-01-29 Storz Instrument Company Implantable middle ear hearing aid system and acoustic coupler therefor
US5011380A (en) * 1989-01-23 1991-04-30 University Of South Florida Magnetically actuated positive displacement pump
WO1990008260A1 (en) * 1989-01-23 1990-07-26 University Of South Florida Magnetically actuated positive displacement pump
US5300908A (en) * 1990-10-10 1994-04-05 Brady Usa, Inc. High speed solenoid
US5300111A (en) * 1992-02-03 1994-04-05 Pyxis, Inc. Total artificial heart
US5314469A (en) * 1992-03-11 1994-05-24 Milwaukee Heart Research Foundation Artificial heart
WO1993017730A1 (en) * 1992-03-11 1993-09-16 Milwaukee Heart Research Foundation Artificial heart
US5306295A (en) * 1992-04-30 1994-04-26 University Of Utah Research Foundation Electrohydraulic heart with septum mounted pump
US5702430A (en) * 1992-08-06 1997-12-30 Electric Boat Corporation Surgically implantable power supply
US5290227A (en) * 1992-08-06 1994-03-01 Pasque Michael K Method of implanting blood pump in ascending aorta or main pulmonary artery
US5879375A (en) * 1992-08-06 1999-03-09 Electric Boat Corporation Implantable device monitoring arrangement and method
US5843129A (en) * 1992-08-06 1998-12-01 Electric Boat Corporation Electrical circuit for equipment requiring redundant flow paths and method of use
US5676651A (en) * 1992-08-06 1997-10-14 Electric Boat Corporation Surgically implantable pump arrangement and method for pumping body fluids
US5676162A (en) * 1992-08-06 1997-10-14 Electric Boat Corporation Reciprocating pump and linear motor arrangement
US5693091A (en) * 1992-08-06 1997-12-02 Electric Boat Corporation Artificial heart and method of maintaining blood flow
US5758666A (en) * 1992-08-06 1998-06-02 Electric Boat Corporation Reciprocating pump with imperforate piston
US5722429A (en) * 1992-08-06 1998-03-03 Electric Boat Corporation Connecting arrangement for medical device
WO1995023000A2 (en) * 1994-02-25 1995-08-31 General Dynamics Corporation Reciprocating pump arrangement
WO1995023000A3 (en) * 1994-02-25 1996-01-11 Gen Dynamics Corp Reciprocating pump arrangement
US5665070A (en) * 1995-01-19 1997-09-09 I-Flow Corporation Infusion pump with magnetic bag compression
WO1999026675A1 (en) * 1997-11-19 1999-06-03 Peter Neubacher Blood pump drive mechanism
US6264601B1 (en) * 1999-04-02 2001-07-24 World Heart Corporation Implantable ventricular assist device
US6540658B1 (en) 2000-05-30 2003-04-01 Abiomed, Inc. Left-right flow control algorithm in a two chamber cardiac prosthesis
US6527698B1 (en) 2000-05-30 2003-03-04 Abiomed, Inc. Active left-right flow control in a two chamber cardiac prosthesis
US7334548B2 (en) 2001-02-07 2008-02-26 R. Sanderson Management, Inc. Piston joint
US7331271B2 (en) 2001-02-08 2008-02-19 R. Sanderson Management, Inc. Variable stroke/clearance mechanism
US6632169B2 (en) 2001-03-13 2003-10-14 Ltk Enterprises, L.L.C. Optimized pulsatile-flow ventricular-assist device and total artificial heart
WO2003026723A1 (en) * 2001-09-25 2003-04-03 Newheart Bio Co., Ltd. Cardiopulmonary life support system
US8147544B2 (en) 2001-10-30 2012-04-03 Otokinetics Inc. Therapeutic appliance for cochlea
US8876689B2 (en) 2001-10-30 2014-11-04 Otokinetics Inc. Hearing aid microactuator
EP1503821A2 (en) * 2002-02-21 2005-02-09 Design Mentor, Inc. Fluid pump
EP2298370A1 (en) * 2002-02-21 2011-03-23 Design Mentor, Inc. Fluid pump
EP1503821A4 (en) * 2002-02-21 2007-05-30 Design Mentor Inc Fluid pump
US7238165B2 (en) * 2002-02-21 2007-07-03 Design Mentor, Inc. Fluid pump
US20070255089A1 (en) * 2002-02-21 2007-11-01 Design Mentor, Inc. Fluid pump
US7850593B2 (en) 2002-02-21 2010-12-14 Design Mentor, Inc. Fluid pump
US20040015042A1 (en) * 2002-02-21 2004-01-22 Douglas Vincent Fluid pump
US7140343B2 (en) 2002-05-28 2006-11-28 R. Sanderson Management, Inc. Overload protection mechanism
US20060034943A1 (en) * 2003-10-31 2006-02-16 Technology Innovations Llc Process for treating a biological organism
US20050207907A1 (en) * 2004-03-18 2005-09-22 John Fox Piston waveform shaping
US7438029B2 (en) 2004-03-18 2008-10-21 R. Sanderson Management, Inc. Piston waveform shaping
US7325476B2 (en) 2004-05-26 2008-02-05 R. Sanderson Management, Inc. Variable stroke and clearance mechanism
US7588530B2 (en) 2004-07-19 2009-09-15 Marlin Stephen Heilman Devices, systems and methods for assisting blood flow
US20060014999A1 (en) * 2004-07-19 2006-01-19 Heilman Marlin S Devices, systems and methods for assisting blood flow
WO2006020273A3 (en) * 2004-07-19 2006-06-22 Vascor Inc Devices, systems and methods for assisting blood flow
WO2006020273A2 (en) * 2004-07-19 2006-02-23 Vascor, Inc. Devices, systems and methods for assisting blood flow
US20080045777A1 (en) * 2005-06-09 2008-02-21 Jal Jassawalla Electromagnetic drive for a ventricular assist device
EP1888166A2 (en) * 2005-06-09 2008-02-20 Heart Corporation World Single sac ventricular assist device
EP1888166A4 (en) * 2005-06-09 2014-06-04 World Heart Corporation Single sac ventricular assist device
US20090287305A1 (en) * 2008-05-19 2009-11-19 Amalaha Leonard D Wholly implantable non-natural heart for humans
US8197235B2 (en) 2009-02-18 2012-06-12 Davis David L Infusion pump with integrated permanent magnet
US8353864B2 (en) 2009-02-18 2013-01-15 Davis David L Low cost disposable infusion pump
CN101862480B (en) * 2010-07-19 2012-06-13 刘晓程 Cardiac auxiliary volume amplifier
CN101862480A (en) * 2010-07-19 2010-10-20 刘晓程 Cardiac auxiliary volume amplifier
US20130041203A1 (en) * 2011-02-18 2013-02-14 Marlin Stephen Heilman Blood flow assist devices, systems and methods
US9387284B2 (en) 2011-02-18 2016-07-12 Vascor, Inc Control of blood flow assist systems
US8876686B2 (en) 2011-02-18 2014-11-04 Vascor, Inc Control of blood flow assist systems
US20140134019A1 (en) * 2012-11-15 2014-05-15 Mindray Medical Sweden Ab Magnetic circuit
CN109996572A (en) * 2017-01-31 2019-07-09 海蒙温特股份有限公司 The method of the outer blood pump of external blood pump, heart-lung machine, operating body, and the method for operation heart-lung machine
CN109996572B (en) * 2017-01-31 2023-08-22 海蒙温特股份有限公司 Extracorporeal blood pump, heart-lung machine, method of operating an extracorporeal blood pump, and method of operating a heart-lung machine
CN106730080A (en) * 2017-02-04 2017-05-31 上海理工大学 A kind of electromagnetic drive pump
WO2020058538A3 (en) * 2018-09-21 2020-07-09 Munoz Saiz Manuel Electromechanical artificial heart
CN110251754A (en) * 2019-07-05 2019-09-20 上海理工大学 Double permanent magnetic moving winding blood pumps
CN110251754B (en) * 2019-07-05 2022-01-25 上海理工大学 Double permanent magnet moving coil type blood pump
US11565104B1 (en) 2021-08-09 2023-01-31 Yossi Gross Magnetically-driven reciprocating intravascular blood pump

Similar Documents

Publication Publication Date Title
US3842440A (en) Implantable linear motor prosthetic heart and control system therefor
US12005245B2 (en) Implantable pump system having an undulating membrane
US20230241371A1 (en) Implantable pump system having a rectangular membrane
US5089017A (en) Drive system for artificial hearts and left-ventricular assist devices
US20230001179A1 (en) Implantable pump system having an undulating membrane with improved hydraulic performance
US5722429A (en) Connecting arrangement for medical device
WO2020188453A1 (en) Systems and methods for controlling an implantable blood pump
GB1444614A (en) Permanently implantable artificial heart
US3513486A (en) Heart assistance pump
JPWO2018178939A5 (en)
US20240075278A1 (en) Positive displacement shuttle pump heart and vad
EP0272445B1 (en) A ferromagnetic-fluid pump for pumping biological liquid
CA3128989A1 (en) Positive displacement shuttle pump heart and vad
US20230338728A1 (en) Blood pumps having an encapsulated actuator
Weiss et al. Permanent circulatory support systems at the Pennsylvania State University
Altieri Status of implantable energy systems to actuate and control ventricular assist devices
Cathey et al. A tubular self-synchronous motor for artificial heart pump drive
Pierce et al. An electric artificial heart for clinical use
Nosé Totally implantable artificial organ: cardiac prosthesis
Yamada et al. Acute animal experiment using a linear motor-driven total artificial heart
RU2033189C1 (en) Man-made heart ventricle
JPS6231948B2 (en)
Fischetti Biomedical engineering: The quest for the ultimate artificial heart: The Salt Lake City achievement is only the beginning; in the offing are smaller, lighter systems, and eventually a fully implantable electrohydraulic heart
Fukui et al. Development of the assisted artificial heart with linear motor actuator
Akutsu Components of artificial hearts.