US3839890A - Method of manufacturing flexible conical tubes and punch used for same - Google Patents

Method of manufacturing flexible conical tubes and punch used for same Download PDF

Info

Publication number
US3839890A
US3839890A US00309773A US30977372A US3839890A US 3839890 A US3839890 A US 3839890A US 00309773 A US00309773 A US 00309773A US 30977372 A US30977372 A US 30977372A US 3839890 A US3839890 A US 3839890A
Authority
US
United States
Prior art keywords
punch
ridge
extrusion
tube
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00309773A
Inventor
M Phlippoteau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Societe de Conditionnement en Aluminium SCAL GP SA
Original Assignee
Societe de Conditionnement en Aluminium SCAL GP SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe de Conditionnement en Aluminium SCAL GP SA filed Critical Societe de Conditionnement en Aluminium SCAL GP SA
Priority to US476868A priority Critical patent/US3890822A/en
Application granted granted Critical
Publication of US3839890A publication Critical patent/US3839890A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D51/00Making hollow objects
    • B21D51/16Making hollow objects characterised by the use of the objects
    • B21D51/36Making hollow objects characterised by the use of the objects collapsible or like thin-walled tubes, e.g. for toothpaste
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/02Making uncoated products
    • B21C23/20Making uncoated products by backward extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C25/00Profiling tools for metal extruding

Definitions

  • ABSTRACT The invention relates to a method flexible metal tubes of frustoconic finished tube is initially produced extrusion with a conical Appl. No: 309,773
  • a semiby inverse-impact se outer surface is ore helical projecting ridges; the semi-finished tube is then fini walled conical mandrel.
  • the tubes were placed in a conically shaped die and ex panded by means of an inflatable membrane or even by the direct introduction of air, the orifice of the tube being plugged by means of a frustoconical member advancing at a rate commensurate with the expansion of the filling opening.
  • the tapering of an annealed cylindrical tube involves some amount of cold working of the metal, which makes it all the more difficult to form the fold by which the tube is closed, because this operation is carried out in the most heavily cold-worked zone, i.e., in the zone surrounding the tilling opening, and because the metal has to remain elastic in use.
  • the punch is provided over part of its height with circular ridges having envelopes which widen from the head of the punch to form a frustum, the axis of which coincides with the axis of the punch.
  • FIG. 1 is a sectional elevational view which diagrammatically illustrates an arrangement for carrying out the method of this invention
  • FIG. 2 is an enlarged sectional view taken through a ridge of the punch
  • FIG. 3 is an elevational view of an apparatus for smoothing the blank to complete the operation.
  • FIG. 4 is an elevational view, partially in section, which shows a modification of the punch enabling the tube to be smoothed during extrusion.
  • the invention relates to a method of manufacturing flexible, frustoconical tubes from a metal blank by inverse-impact extrusion, carried out with a punch pro vided over at least a part of its height, with at least one helical projecting ridge, the cross section of which widens from the head of the punch to form a frustum whose axis coincides with the axis of the punch.
  • the opening angle of this frustum is generally between l and 2 although, for tubes of very large diameter and considerable length, it can be greater than 2.
  • the gradient which the helical ridge forms with a plane perpendicular to the longitudinal axis of the punch is of the order of 20.
  • the distance between two successive passages on a generatrix of one or more parallel helical ridges is be tween 12 and 20 mm.
  • the blank obtained by extrusion with the punch described is smoothened on a smooth-walled frustoconical mandrel.
  • Smoothing can be carried out by means of a tool over which the blank has to pass to a subsequent operation normally intended for finishing purposes such as, for example, trimming, external lacquering, etc.
  • Smoothing can also be carried out during the extrusion operation itself. In this event, use is made of a punch at least the outer portion of which can be rotated.
  • the invention also relates to the tubes formed by the method described above.
  • the arrangement diagrammatically illustrated in FIG. 1 comprises a die 11 of the kind normally used for forming flexible metal tubes by inverseimpact extrusion.
  • the punch 2 is slightly frustoconical in its general shape, corresponding to the taper with which it is required to provide the tube.
  • the opening angle of these tubes is normally between 1 and 2, i.e., the angle formed by a generatrix with the longitudinal axis is between 30 and 1. In the case of tubes of very large diameter and considerable length, this angle can be greater than 2.
  • the punch 2 At its base, the punch 2 comprises an annular extrusion ridge 3 whose function is well known. After extrusion, the metal cools and, as a result, shrinks. Accordingly, allowance has to be made for this shrinkage by increasing the diameter of the punch, depending upon the coefficient of expansion of the metal at the temperatures in question. In the case of conventionally produced components, this increase varies between 0.05 and 0.1 mm.
  • This clearance between the extruded metal and the punch should be maintained over the entire length of the conical punch.
  • this result is obtained by means of one or more helical ridges 4.
  • the angle a, which this helix forms with a plane perpendicular to the longitudinal axis of the punch, is preferably of the order of about 20.
  • helical ridges may optionally have to be distributed uniformly over the periphery of the punch in such a way that the distance between two helices is between 12 and mm, as measured perpendicularly to the helices inclined at about 20 to the horizontal.
  • FIG. 2 is a section through one ridge severing as an example. It is similar in shape to a trapezium, although it should be pointed out that the base of this trapezium forms a certain angle with the axis of the punch while the minor base is substantially parallel to the axis of the punch.
  • the height x of this pseudo-trapezium i.e., the height of the ridge, can vary within the range of 0.2 and 0.5 mm. In the example selected, it is 0.3
  • the metal advances in the direction of arrow 5 (from the bottom of FIG. 2) and encounters a ridge.
  • the inclination of this side should be such that the metal can slide over it quickly, i.e., without prolonged contact. An angle of about has given good results in practice.
  • the width of the minor base should be as reduced as possible while the slope of the second oblique side has no real bearing upon the operation of the machine.
  • a blank, placed in the die l, is flattened by the punch 2 under a calculated impact.
  • the metal for example aluminum
  • the tube issues through the gap left between the extru' sion edge 3 and the die 1, and is directed parallel to the axis of the punch 2 until it comes into contact with a ridge 4 which it does gradually, generatrix by generatrix, by virtue of the helical shape of this ridge.
  • the included surface 6 of the ridge 4 diverts the flow of metal to the top of the ridge where it returns to its original direction parallel to the axis of the punch 2. until it comes into contact with the following ridge.
  • the semi-finished tube 7 is removed from the punch 2, having one or more helical bands joined together by shoulders.
  • the tube has to be subjected to a smoothing operation. There is no need to bring another machine into the production line to carry out this operation because this work can be carried out simultaneously with one of the finishing operations normally provided in existing production lines, for example during trimming of the skirt, deburring of the rod or screwthreading of .the orifice.
  • the semi-finished tube 7 is placed on a mandrel 8 with the same conical form as the interior of the finished tube.
  • This mandrel 8 is rotated by means of the pulley wheel 9.
  • One or more rollers, mounted for free rotational movement on a spindle 11 parallel to the generatrix of the mandrel 8, are moved axially by any type of suitable mechanism (not shown in the drawing). Under the effect of the rollers 10, the shoulders between the helical bands are removed as by ironing out.
  • the tube Upon completion of the operation (see FIG. 3), the tube has the smooth frustoconical form required.
  • the punch 12 comprises a cylindrical core 13 which must be strong enough to be able to carry out impact extrusion. It is widened at its free end to form the complete impact surface 114, including the extrusion edge 3. This widening results in the formation of a ledge 15 which acts as a support for a sleeve 16.
  • this sleeve 16 is shaped in the same way as the punch 2; in other words, its outer surface is slightly frustoconical, and it comprises one or more helical ridges 4.
  • the inner surface of this sleeve 16 is cylindrical.
  • the sleeve as a whole is mounted for rotational movement about the core 13.
  • the sleeve 16 carries a pulley wheel which is driven, for example, by a motor 18 or by any other type of suitable drive means.
  • the sleeve is rotated at high speed and the helical irregularities are immediately removed so effectively that the tube does not have to be smoothed off.
  • a method of manufacturing flexible metal tubes of frustoconical shape from a metal blank by inverseimpact extrusion wherein extrusion is carried out by impacting the metal blank with a punch having axially spaced helical projecting ridges over at least a portion of its length and in which the cross section of each ridge is generally in the shape of a trapezium having a base which tapers outwardly gradually from the direction of the head end of the punch to a frustum the axis of which coincides with the axis of the punch.
  • roller comprises a portion of the punch and wherein the smoothing is carried out by rotating the punch during extrusion.
  • a method of manufacturing flexible tubes of frustoconical shape from a metal blank by inverse-impact extrusion wherein extrusion is carried out by impacting the metal blank with a punch having at least one helical projecting ridge over at least a portion of its length and in which the envelope of the ridge widens from the direction of the head of the punch to form a frustom the axis of which coincides with the axis of the punch in which the extruded tube is smoothed during extru sion by the punch having sleeves at least one of which is rotated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Of Metal (AREA)
  • Forging (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

The invention relates to a method of manufacturing flexible metal tubes of frustoconical shape. A semi-finished tube is initially produced by inverse-impact extrusion with a conical punch whose outer surface is provided with one or more helical projecting ridges; the semi-finished tube is then finished on a smooth-walled conical mandrel.

Description

[ 1 Get, 8, 1974 United States Patent [191 Phlippotean [5 METHOD OF MANUFACT NG FLEXIBLE [56] References Cited UNITED STATES PATENTS CONICAL TUBES AND PUNCH USED FOR SAME [75] Inventor:
en Aluminum), Paris, France Nov. '27, 1972 Primary Examiner-Charles W. Lanham Assistant Examiner-Robert M. Rogers [22] Filed:
[57] ABSTRACT The invention relates to a method flexible metal tubes of frustoconic finished tube is initially produced extrusion with a conical Appl. No: 309,773
of manufacturing al shape. A semiby inverse-impact se outer surface is ore helical projecting ridges; the semi-finished tube is then fini walled conical mandrel.
punch who U-S. Cl...................1...... provided one or m 2/26 2/ 6 2/ 1 shed on a smooth- [51] lint. B2lb 15/00, 1321c 23/00 [58] Field 01' Search....... 72/68, 256, 267, 262, 367,
72/37O 7 Claims, 4 Drawing Figures METHOD OF MANUFACTURING lFLlEXlDlLlE CONllCAL TUBES AND PUNCH USED EDD SAME This invention relates to a method of manufacturing flexible metal tubes of frustoconical shape.
Flexible metal tubes of the type described, used for packaging pasty materials, have'been known for some time.
They are generally manufactured by cold extrusion (also known as inverse impact extrusion) of metal pellets, with an increasing preference for the use of aluminum and its alloys.
Unfortunately, such tubes, which are extremely convenient to use, are confronted by a number of major disadvantages before they are filled. Due to the fact that they are fabricated by cold extrusion, they are cylindrical in shape and transportation from the facility where they are made to the facility where they are filled calls for bulky packages, generally made of cardboard, since each of the unfilled tubes, which are sensitive to even the most gentle impact, have to be placed in a separate compartment. As a result, transportation and storage costs add considerably to the price of the tubes.
them to be nested one within the other. The result expected was two-fold, namely, a reduction in the volume of the package and a reduction in therisk of damage to the tubes.
In one known process for obtaining conical shape, the tubes were placed in a conically shaped die and ex panded by means of an inflatable membrane or even by the direct introduction of air, the orifice of the tube being plugged by means of a frustoconical member advancing at a rate commensurate with the expansion of the filling opening. However, the tapering of an annealed cylindrical tube involves some amount of cold working of the metal, which makes it all the more difficult to form the fold by which the tube is closed, because this operation is carried out in the most heavily cold-worked zone, i.e., in the zone surrounding the tilling opening, and because the metal has to remain elastic in use.
In addition, to carry out this operation, an additional machine has to be introduced into the already long chain leading from the metal blank to the final tube ready for packaging.
Any thought towards tapering the tube directly during its formation is hampered by the fact that it is not possible to make use of a conical punch because, during impact extrusion, the metal flows through an annular orifice between the punch and the matrix, ascending parallel to the axis of the punch with a clearance of about one-tenth of a millimeter from its wall. This clearance is necessary in order to insure that, during cooling of the metal as it leaves the extrusion die, there will be no shrinkage onto the punch itself.
The resulting friction would stop free flow and extrusion would be uncontrollable. Accordingly, it is obvious that a conical punch would not permit such flow of the metal parallel to the wall of the punch.
Attempts have also been made to lubricate the extruded product on the punch during extrusion, as by means of a stream of compressed air introduced under high pressure from inside the punch through openings situated at the level of the extrusion edge. The number of malformations obtained by this method and the particularly large number of longitudinally split tubes prcvents practical use of this process.
Attempts have been made to obtain a taper during extrusion. To this end, the punch is provided over part of its height with circular ridges having envelopes which widen from the head of the punch to form a frustum, the axis of which coincides with the axis of the punch.
Unfortunately, this process allows only a limited number of ridges to be used because each causes a sudden increase in diameter and, hence, a degree of resistance which increases with the increase in the projection of the ridge. Ultimately, the individual resistances combine to exceed the strength of collapse of the flexible tube during extrusion so that the tube Concertihas.
It is thus practically impossible to provide the taper of the tubes with an angle sufficiently wide to enable them to be nested one in the other with a clearance (Le, a gap between two successive edges) of about 20 mm, substantially corresponding to the height of the tip and of the plug.
It is an object of this invention to enable at least a semi-finished frustoconical metal blank to be produced by inverse-impact extrusion.
These and other objects and advantages of this invention will hereinafter appear and for purposes of illustration, but not of limitation, embodiments of the invention are shown in the accompanying drawings in which:
FIG. 1 is a sectional elevational view which diagrammatically illustrates an arrangement for carrying out the method of this invention;
FIG. 2 is an enlarged sectional view taken through a ridge of the punch;
FIG. 3 is an elevational view of an apparatus for smoothing the blank to complete the operation; and
FIG. 4 is an elevational view, partially in section, which shows a modification of the punch enabling the tube to be smoothed during extrusion.
The invention relates to a method of manufacturing flexible, frustoconical tubes from a metal blank by inverse-impact extrusion, carried out with a punch pro vided over at least a part of its height, with at least one helical projecting ridge, the cross section of which widens from the head of the punch to form a frustum whose axis coincides with the axis of the punch.
The opening angle of this frustum is generally between l and 2 although, for tubes of very large diameter and considerable length, it can be greater than 2.
The gradient which the helical ridge forms with a plane perpendicular to the longitudinal axis of the punch is of the order of 20.
The distance between two successive passages on a generatrix of one or more parallel helical ridges is be tween 12 and 20 mm.
The blank obtained by extrusion with the punch described is smoothened on a smooth-walled frustoconical mandrel.
Smoothing can be carried out by means of a tool over which the blank has to pass to a subsequent operation normally intended for finishing purposes such as, for example, trimming, external lacquering, etc.
Smoothing can also be carried out during the extrusion operation itself. In this event, use is made of a punch at least the outer portion of which can be rotated.
The invention also relates to the tubes formed by the method described above.
The arrangement diagrammatically illustrated in FIG. 1 comprises a die 11 of the kind normally used for forming flexible metal tubes by inverseimpact extrusion. The punch 2 is slightly frustoconical in its general shape, corresponding to the taper with which it is required to provide the tube. The opening angle of these tubes is normally between 1 and 2, i.e., the angle formed by a generatrix with the longitudinal axis is between 30 and 1. In the case of tubes of very large diameter and considerable length, this angle can be greater than 2.
At its base, the punch 2 comprises an annular extrusion ridge 3 whose function is well known. After extrusion, the metal cools and, as a result, shrinks. Accordingly, allowance has to be made for this shrinkage by increasing the diameter of the punch, depending upon the coefficient of expansion of the metal at the temperatures in question. In the case of conventionally produced components, this increase varies between 0.05 and 0.1 mm.
This clearance between the extruded metal and the punch should be maintained over the entire length of the conical punch..According to this invention, this result is obtained by means of one or more helical ridges 4. The angle a,,which this helix forms with a plane perpendicular to the longitudinal axis of the punch, is preferably of the order of about 20.
On the other hand, it is essential that the extrude metal should not at. any time come into contact with the wall of the punch between two helical ridges. Thus, the vertical projection of the base of one ridge always comes within the ridge immediately beneath it along a given generatrix of the punch.
Accordingly, several helical ridges may optionally have to be distributed uniformly over the periphery of the punch in such a way that the distance between two helices is between 12 and mm, as measured perpendicularly to the helices inclined at about 20 to the horizontal.
A second parameter for determining the number of parallel ridges-is the height of these ridges which, incidentally, is constant over the entire length of the punch. FIG. 2 is a section through one ridge severing as an example. It is similar in shape to a trapezium, although it should be pointed out that the base of this trapezium forms a certain angle with the axis of the punch while the minor base is substantially parallel to the axis of the punch. The height x of this pseudo-trapezium, i.e., the height of the ridge, can vary within the range of 0.2 and 0.5 mm. In the example selected, it is 0.3
During extrusion, the metal advances in the direction of arrow 5 (from the bottom of FIG. 2) and encounters a ridge. The selection of the angle b, determining the gradient of the oblique side 6 which diverts the flow, is very important. The inclination of this side should be such that the metal can slide over it quickly, i.e., without prolonged contact. An angle of about has given good results in practice. The width of the minor base should be as reduced as possible while the slope of the second oblique side has no real bearing upon the operation of the machine. These parameters are determined essentially by the type of material of which the punch is made and the methods by which it is machined.
It is now simple to understand the method of the invention.
A blank, placed in the die l, is flattened by the punch 2 under a calculated impact. The metal (for example aluminum) flows along the punch 2 to form the tube '7. The tube issues through the gap left between the extru' sion edge 3 and the die 1, and is directed parallel to the axis of the punch 2 until it comes into contact with a ridge 4 which it does gradually, generatrix by generatrix, by virtue of the helical shape of this ridge.
The included surface 6 of the ridge 4 diverts the flow of metal to the top of the ridge where it returns to its original direction parallel to the axis of the punch 2. until it comes into contact with the following ridge. These contacts and diversions take place step by step so that the metal is not subjected to any appreciable peripheral stressing and the diameter of the tube gradually increases.
Upon completion of the operation, the semi-finished tube 7 is removed from the punch 2, having one or more helical bands joined together by shoulders.
This appearance is not acceptable, either from the aesthetic point of view or from the technical point of view, because the shoulders would preventthetubes from being stacked in telescoping relation.
Accordingly, the tube has to be subjected to a smoothing operation. There is no need to bring another machine into the production line to carry out this operation because this work can be carried out simultaneously with one of the finishing operations normally provided in existing production lines, for example during trimming of the skirt, deburring of the rod or screwthreading of .the orifice.
To carry out this operation, the semi-finished tube 7 is placed on a mandrel 8 with the same conical form as the interior of the finished tube. This mandrel 8 is rotated by means of the pulley wheel 9. One or more rollers, mounted for free rotational movement on a spindle 11 parallel to the generatrix of the mandrel 8, are moved axially by any type of suitable mechanism (not shown in the drawing). Under the effect of the rollers 10, the shoulders between the helical bands are removed as by ironing out. Upon completion of the operation (see FIG. 3), the tube has the smooth frustoconical form required.
A modification of the embodiment described above enables smoothing to be carried out during the actual tapering operationtsee FIG. 4). To this end, the punch 12 comprises a cylindrical core 13 which must be strong enough to be able to carry out impact extrusion. It is widened at its free end to form the complete impact surface 114, including the extrusion edge 3. This widening results in the formation of a ledge 15 which acts as a support for a sleeve 16.
The outside of this sleeve 16 is shaped in the same way as the punch 2; in other words, its outer surface is slightly frustoconical, and it comprises one or more helical ridges 4. The inner surface of this sleeve 16 is cylindrical. The sleeve as a whole is mounted for rotational movement about the core 13.
At its end opposite to the ledge 15, the sleeve 16 carries a pulley wheel which is driven, for example, by a motor 18 or by any other type of suitable drive means.
During extrusion, the sleeve is rotated at high speed and the helical irregularities are immediately removed so effectively that the tube does not have to be smoothed off.
This embodiment is only one example. Other meth ods utilizing the rotation of all or part of the punch could also be used.
It will be understood that changes may be made in the details of construction and operation without departing from the spirit of the invention, especially as defined in the following claims.
I claim:
1. A method of manufacturing flexible metal tubes of frustoconical shape from a metal blank by inverseimpact extrusion, wherein extrusion is carried out by impacting the metal blank with a punch having axially spaced helical projecting ridges over at least a portion of its length and in which the cross section of each ridge is generally in the shape of a trapezium having a base which tapers outwardly gradually from the direction of the head end of the punch to a frustum the axis of which coincides with the axis of the punch.
2. A method as claimed in claim 1 in which the extruded tube is smoothed by engagement between a roller mounted for rotational movement in engagement with one side of the tube and a mandrel against the op poside side of the tube.
3. A method as claimed in claim 2 in which the roller comprises a portion of the punch and wherein the smoothing is carried out by rotating the punch during extrusion.
d. A method of manufacturing flexible tubes of frustoconical shape from a metal blank by inverse-impact extrusion, wherein extrusion is carried out by impacting the metal blank with a punch having at least one helical projecting ridge over at least a portion of its length and in which the envelope of the ridge widens from the direction of the head of the punch to form a frustom the axis of which coincides with the axis of the punch in which the extruded tube is smoothed during extru sion by the punch having sleeves at least one of which is rotated.
5. A method as claimed in claim 1 in which the ridges are spaced one from the other axially along the punch by an amount whereby the vertical projection of the base of one ridge comes within the ridge immediately beneath it along a given generatrix of the punch.
6. A method as claimed in claim 1 in which the ridge has a height within the range of 0.2 to 0.5 mm and in which the outward taper from the head of the pynch is at an angle of about 25.
'7. A method as claimed in claim 2 in which the mandrel is of frustoconical shape and is, positioned on the

Claims (7)

1. A method of manufacturing flexible metal tubes of frustoconical shape from a metal blank by inverse-impact extrusion, wherein extrusion is carried out by impacting the metal blank with a punch having axially spaced helical projecting ridges over at least a portion of its length and in which the cross section of each ridge is generally in the shape of a trapezium having a base which tapers outwardly gradually from the direction of the head end of the punch to a frustum the axis of which coincides with the axis of the punch.
2. A method as claimed in claim 1 in which the extruded tube is smoothed by engagement between a roller mounted for rotational movement in engagement with one side of the tube and a mandrel against the opposide side of the tube.
3. A method as claimed in claim 2 in which the roller comprises a portion of the punch and wherein the smoothing is carried out by rotating the punch during extrusion.
4. A method of manufacturing flexible tubes of frustoconical shape from a metal blank by inverse-impact extrusion, wherein extrusion is carried out by impacting the metal blank with a punch having at least one helical projecting ridge over at least a portion of its length and in which the envelope of the ridge widens from the direction of the head of the punch to form a frustom the axis of which coincides with the axis of the punch in which the extruded tube is smoothed during extrusion by the punch having sleeves at least one of which is rotated.
5. A method as claimed in claim 1 in which the ridges are spaced one from the other axially along the punch by an amount whereby the vertical projection of the base of one ridge comes within the ridge immediately beneath it along a given generatrix of the punch.
6. A method as claimed in claim 1 in which the ridge has a height within the range of 0.2 to 0.5 mm and in which the outward taper from the head of the pynch is at an angle of about 25*.
7. A method as claimed in claim 2 in which the mandrel is of frustoconical shape and is positioned on the inside of the tube.
US00309773A 1971-11-25 1972-11-27 Method of manufacturing flexible conical tubes and punch used for same Expired - Lifetime US3839890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US476868A US3890822A (en) 1971-11-25 1974-06-06 Punch for manufacturing flexible conical tubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR7142251A FR2161446A5 (en) 1971-11-25 1971-11-25

Publications (1)

Publication Number Publication Date
US3839890A true US3839890A (en) 1974-10-08

Family

ID=9086384

Family Applications (1)

Application Number Title Priority Date Filing Date
US00309773A Expired - Lifetime US3839890A (en) 1971-11-25 1972-11-27 Method of manufacturing flexible conical tubes and punch used for same

Country Status (21)

Country Link
US (1) US3839890A (en)
AR (1) AR195891A1 (en)
AT (1) AT324089B (en)
AU (1) AU462349B2 (en)
BE (1) BE791879A (en)
BR (1) BR7208292D0 (en)
CA (1) CA979297A (en)
CH (1) CH566177A5 (en)
DD (1) DD105401A5 (en)
DE (1) DE2256816C3 (en)
DK (1) DK146584C (en)
ES (1) ES408954A1 (en)
FI (1) FI57707C (en)
FR (1) FR2161446A5 (en)
GB (1) GB1372909A (en)
IT (1) IT971089B (en)
NL (1) NL165958C (en)
NO (1) NO134245C (en)
SE (1) SE403442B (en)
TR (1) TR17072A (en)
ZA (1) ZA728274B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3890822A (en) * 1971-11-25 1975-06-24 Scal Gp Condit Aluminium Punch for manufacturing flexible conical tubes
US4321816A (en) * 1978-08-08 1982-03-30 Kyodo Insatsu Kabushiki Kaisha Metal tube and apparatus and method for manufacturing the same
US5737959A (en) * 1994-05-30 1998-04-14 Korbel; Andrzej Method of plastic forming of materials
US20050247097A1 (en) * 2002-07-26 2005-11-10 Yuji Maeda Oval cross section metal tube producing device and producing method
US20060204693A1 (en) * 2003-01-24 2006-09-14 Gery Bernard Marie Dambricourt Fully emptiable flexible tube with an amplified return effect
US20140331733A1 (en) * 2011-12-16 2014-11-13 Postech Academy-Industry Foundation Torsional extreme-plastic processing method of conic metal pipe

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1216282A (en) * 1916-09-21 1917-02-20 Fred S Carver Method of working copper.
US2096018A (en) * 1934-06-25 1937-10-19 Rocoro Inc Apparatus for method for forming bottle caps
US3029507A (en) * 1957-11-20 1962-04-17 Coors Porcelain Co One piece thin walled metal container and method of manufacturing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1216282A (en) * 1916-09-21 1917-02-20 Fred S Carver Method of working copper.
US2096018A (en) * 1934-06-25 1937-10-19 Rocoro Inc Apparatus for method for forming bottle caps
US3029507A (en) * 1957-11-20 1962-04-17 Coors Porcelain Co One piece thin walled metal container and method of manufacturing same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3890822A (en) * 1971-11-25 1975-06-24 Scal Gp Condit Aluminium Punch for manufacturing flexible conical tubes
US4321816A (en) * 1978-08-08 1982-03-30 Kyodo Insatsu Kabushiki Kaisha Metal tube and apparatus and method for manufacturing the same
US5737959A (en) * 1994-05-30 1998-04-14 Korbel; Andrzej Method of plastic forming of materials
US20050247097A1 (en) * 2002-07-26 2005-11-10 Yuji Maeda Oval cross section metal tube producing device and producing method
US7219522B2 (en) * 2002-07-26 2007-05-22 Taisai Kako Co., Ltd. Oval cross section metal tube producing device and producing method
US20060204693A1 (en) * 2003-01-24 2006-09-14 Gery Bernard Marie Dambricourt Fully emptiable flexible tube with an amplified return effect
US7695789B2 (en) * 2003-01-24 2010-04-13 Cep Industrie Fully emptiable flexible tube with an amplified return effect
US20140331733A1 (en) * 2011-12-16 2014-11-13 Postech Academy-Industry Foundation Torsional extreme-plastic processing method of conic metal pipe
US9447487B2 (en) * 2011-12-16 2016-09-20 Postech Academy-Industry Foundation Torsional extreme-plastic processing method of conic metal pipe

Also Published As

Publication number Publication date
DK146584B (en) 1983-11-14
DE2256816B2 (en) 1974-08-08
FI57707C (en) 1980-10-10
ZA728274B (en) 1974-01-30
DK146584C (en) 1984-04-30
AU462349B2 (en) 1975-06-19
CA979297A (en) 1975-12-09
GB1372909A (en) 1974-11-06
DE2256816C3 (en) 1975-03-20
TR17072A (en) 1974-04-25
NL165958C (en) 1981-06-15
ES408954A1 (en) 1975-10-16
NO134245C (en) 1976-09-08
BE791879A (en) 1973-05-24
AU4903572A (en) 1974-06-06
DE2256816A1 (en) 1973-06-07
AR195891A1 (en) 1973-11-15
DD105401A5 (en) 1974-04-20
FR2161446A5 (en) 1973-07-06
SE403442B (en) 1978-08-21
IT971089B (en) 1974-04-30
FI57707B (en) 1980-06-30
CH566177A5 (en) 1975-09-15
BR7208292D0 (en) 1973-10-09
NL165958B (en) 1981-01-15
NO134245B (en) 1976-05-31
AT324089B (en) 1975-08-11
NL7215951A (en) 1973-05-29

Similar Documents

Publication Publication Date Title
US3029507A (en) One piece thin walled metal container and method of manufacturing same
US3608138A (en) Apparatus for rolling and forming articles
SE434026B (en) PROCEDURE AND DEVICE FOR PREPARING PLASTIC BODY AND USE OF THE PROCEDURE
DE1479542B2 (en) METHOD AND DEVICE FOR MANUFACTURING HOLLOW OBJECTS FROM THERMOPLASTIC PLASTIC BY BLOWING A PLASTIC PRE-FORM
US3969060A (en) Apparatus for deforming a tubular slug of thermoplastic material
US3839890A (en) Method of manufacturing flexible conical tubes and punch used for same
US3164646A (en) Method and apparatus for the production of bottles and similar hollow bodies from thermoplastic synthetic substances
EP0315012B1 (en) Method for manufacturing a tube with a smooth inside and a ribbed outside from an extrudable material and apparatus for carrying out this method
US3847056A (en) Apparatus for manufacturing internal gears
US3176494A (en) Extrusion press
US3067084A (en) Die head for extruding plastic netting and method of extruding such netting
US3593552A (en) Can body fabrication
US2764042A (en) Device for making tools with shank and spiral undercut grooves
US3943587A (en) Method of manufacturing threaded nuts and threaded nut articles produced by such method
US1916645A (en) Method of and means for making curved pipe fittings
US3890822A (en) Punch for manufacturing flexible conical tubes
US1911653A (en) Method of making pipe t s
US2483376A (en) Tube extruding die and method
US4131407A (en) Device for forming tube with thickened socket end
US3769825A (en) Swaging die
DE19724857C1 (en) Rapid production of large-diameter, cut lengths of corrugated plastic tubing
PL79953B1 (en)
DE2451511C3 (en) Method and device for deep-drawing containers made of metal or composite foil
US4271240A (en) Lobed preparatory blank for cold extruding a cup-shaped article with hollow polygonal interior
DE3020912C2 (en)