US3839361A - Dibenzylamino fluoran compounds - Google Patents

Dibenzylamino fluoran compounds Download PDF

Info

Publication number
US3839361A
US3839361A US00123069A US12306971A US3839361A US 3839361 A US3839361 A US 3839361A US 00123069 A US00123069 A US 00123069A US 12306971 A US12306971 A US 12306971A US 3839361 A US3839361 A US 3839361A
Authority
US
United States
Prior art keywords
diethylamino
methyl
compound
reaction
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00123069A
Inventor
M Terayama
K Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamamoto Chemicals Inc
Original Assignee
Yamamoto Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27296979&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US3839361(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from JP5971170A external-priority patent/JPS4939163B1/ja
Priority to SE7016736A priority Critical patent/SE385010B/en
Priority to SE7313464A priority patent/SE394868B/en
Priority to US00123069A priority patent/US3839361A/en
Application filed by Yamamoto Chemicals Inc filed Critical Yamamoto Chemicals Inc
Priority to BE765179A priority patent/BE765179A/en
Priority to GB2623271*A priority patent/GB1335762A/en
Priority to CH682871A priority patent/CH558351A/en
Priority to AT414671A priority patent/AT308105B/en
Priority to AT06986/72A priority patent/AT318660B/en
Priority to DE2166374A priority patent/DE2166374C2/en
Priority to DE2130845A priority patent/DE2130845B2/en
Priority to CA117,043A priority patent/CA992085A/en
Priority to FR7124972A priority patent/FR2100398A5/fr
Priority to US00288993A priority patent/US3824119A/en
Priority to US05/450,167 priority patent/US3998846A/en
Publication of US3839361A publication Critical patent/US3839361A/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/124Duplicating or marking methods; Sheet materials for use therein using pressure to make a masked colour visible, e.g. to make a coloured support visible, to create an opaque or transparent pattern, or to form colour by uniting colour-forming components
    • B41M5/132Chemical colour-forming components; Additives or binders therefor
    • B41M5/136Organic colour formers, e.g. leuco dyes
    • B41M5/145Organic colour formers, e.g. leuco dyes with a lactone or lactam ring
    • B41M5/1455Organic colour formers, e.g. leuco dyes with a lactone or lactam ring characterised by fluoran compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B11/00Diaryl- or thriarylmethane dyes
    • C09B11/04Diaryl- or thriarylmethane dyes derived from triarylmethanes, i.e. central C-atom is substituted by amino, cyano, alkyl
    • C09B11/10Amino derivatives of triarylmethanes
    • C09B11/24Phthaleins containing amino groups ; Phthalanes; Fluoranes; Phthalides; Rhodamine dyes; Phthaleins having heterocyclic aryl rings; Lactone or lactame forms of triarylmethane dyes

Definitions

  • New fluoran compounds containing a dibenzylamino group or a nuclear substituted derivative thereof are provided by a novel method involving the reaction of an aminofiuoran and a benzyl chloride in the presence of alkali in an inert non-polar organic solvent.
  • the dibenzylamino fluorans are incorporated as a remarkably effective color former in pressure sensitive copying paper.
  • pressure sensitive copying paper consists of two sheets of paper, the lower surface of the upper leaf having applied thereto minute capsules containing a color reactive achromatic substance (hereinafter called a color former) dissolved in a low volatile solvent and the upper surface of the lower leaf being coated with a solid acid, such as acid clay, phenolic compounds, etc.
  • a color former a color reactive achromatic substance
  • a solid acid such as acid clay, phenolic compounds, etc.
  • the color former various kinds of chemical compounds have been used, and, among others, the fluoran compounds have recently been occupying an important position in the pressure sensitive copying paper industry because of the rich variety of colors that such compounds develop and the high color-developing speeds.
  • R and R are individually hydrogen, or methyl; R is hydrogen, halogen or lower alkyl; R, and R are individually methyl or ethyl; and n is a integer from 1 to 5.
  • R R R R and R can be concurrently in any combination. In the case where R R or R are halogen, chlorine and bromine are preferred.
  • the new fluoran compounds are outstanding in the significant requirements of color developing speed, developed color density, light resistance after color development and solubility thereof.
  • the novel pressure sensitive copying paper the compounds are dissolved in a low volatile solvent and packed in minute capsules which are used in conjunction with a solid acid.
  • non-polar solvent aromatic solvents such as benzene, toluene and Xylene are desirable.
  • highly polar solvents such as alcohols and phenols, will hinder the separation and purification of the reaction products.
  • solvents having a very weak polarity such as o-xylene and o-dichlorobenzene, are regarded as belonging to the class of non-polar solvents useful in the present invention.
  • reaction temperatures and pressures are not criti cal, a wide range of temperatures can be used, but the reaction is preferably conducted at the reflux temperature of the aromatic solvent.
  • the reaction can be conducted at atmospheric pressure or at superatmospheric pressures. Reduced pressures could be used, but such pressures result in unnecessary loss of solvent.
  • the alkali compound potassium carbonate, sodium carbonate, caustic potash and caustic soda give the most favorable results.
  • the alkali compound is used at least in an amount corresponding to the stoichiometric amount of aminofiuoran compound or benzyl halide.
  • the product is recovered from the reaction mixture by conventional means, for example by precipitation with a lower alcohol or by crystallization.
  • the dispersion was cooled down to below 10 C. with iced water under stirring, and 10% caustic soda was added to adjust its pH to 9. It was then gradually brought back to room temperature. It was applied to the lower surface of the upper leaf and dried.
  • EXAMPLE 12 A pressure sensitive copying paper which uses the color former obtained in Example 6 was prepared as follows:
  • the solvent of low volatility is diphenyl chloride.
  • the solvent of low volatility is a lower alkyl diphenyl such as methyl-, ethyl-, and propyl diphenyl or a higher alkyl benzene, such as dodecyldecyland octylbenzene, having a boiling point of above 15 C. If the boiling point of the solvent is at least 150 C. it has suflicient low volatility according to the invention.
  • the solid acid functions as an electron acceptive absorbent.
  • zeolite zeolite, bentonite, attapulgite and silton can be used with excellent results.
  • R and R are individually members selected from the group consisting of hydrogen, chlorine, bromine and methyl;
  • R is a member selected from the group consisting of hydrogen, chlorine, bromine, and C lower alkyl;
  • R; and R are individually members selected from the group consisting of methyl and ethyl; and
  • n is an integer of from 1 to 2.
  • a compound of Claim 1 which is 3-diethylamino-7- di (p-chlorob enzyl aminofluoran. methyl-7-dibenzylaminofluoran.
  • a compound of claim 1 which is 3-diethylamino-7- bis (2',4'-dimethylb enzyl) aminofluoran.
  • a compound of claim 1 which is S-dimethylamino- 7-dibenzylaminofluoran.
  • a compound of claim 1 which is 3-diethylamino-7- bis(dimethylbenzyl)aminofluoran.
  • a compound of claim 1 which is 3-diethylamino-6 chloro-7-dibenzylaminofiuoran.
  • R and R are individually members selected from the group consisting of hydrogen, chlorine, bromine, and methyl;
  • R is a member selected from the group consisting of hydrogen, chlorine, bromine, and C lower alkyl;
  • R; and R are individually members selected from the group consisting of methyl and ethyl; and
  • n is an integer of from 1 to 2, further wherein at least one of R R and R is other than hydrogen.
  • R is chlorine, bromine or C lower alkyl.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Color Printing (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Heat Sensitive Colour Forming Recording (AREA)

Abstract

1. A DIBENZYLAMINOFLUORAN COMPOUND OF THE FORMULA: 3-(O=),3''-(R4-N(-R5)-),5''-R1,6''-R2,7''-((((R3)N-PHENYL)CH2-)2-N -)SPIRO(PHTHALAN-1,9''-XANTHENE) WHEREIN R1 AND R2 ARE INDIVIDUALLY MEMBERS SELECTED FROM THE GROUP CONSISTING OF HYDROGEN, CHLORINE, BROMINE AND METHYL; R3 IS A MEMBER SELECTED FROM THE GROUP CONSISTING OF HYDROGEN, CHLORINE, BROMINE, AND C1-4 LOWER ALKYL; R4 AND R5 ARE INDIVIDUALLY MEMBERS SELECTED FROM THE GROUP CONSISTING OF METHYL AND ETHYL; AND N IS AN INTEGER OF FROM 1 TO 2.

Description

nited States Pat oiipfic 3,839,361 Patented Oct. 1, 1974 US. Cl. 260-335 13 Claims ABSTRACT OF THE DISCLOSURE New fluoran compounds containing a dibenzylamino group or a nuclear substituted derivative thereof are provided by a novel method involving the reaction of an aminofiuoran and a benzyl chloride in the presence of alkali in an inert non-polar organic solvent. The dibenzylamino fluorans are incorporated as a remarkably effective color former in pressure sensitive copying paper.
BACKGROUND OF THE INVENTION Fundamentally, pressure sensitive copying paper consists of two sheets of paper, the lower surface of the upper leaf having applied thereto minute capsules containing a color reactive achromatic substance (hereinafter called a color former) dissolved in a low volatile solvent and the upper surface of the lower leaf being coated with a solid acid, such as acid clay, phenolic compounds, etc. When the lower surface of the upper leaf and the upper surface of the lower leaf are put together and pressure is applied to the upper surface of the upper leaf by handwriting or typing, the capsules under pressure are broken and the color former contained therein is absorbed by the solid acid on the upper surface of the lower leaf to develop a color, thus providing a copy. There is also a type of pressure sensitive copying paper having a mechanism to develop color when a regional pressure is exerted upon a sheet of paper holding capsules, which contain a color former, and a solid acid on or within it. However, such type is quite similar to the first mentioned pressure sensitive copying paper consisting of two sheets of paper, an upper and lower leaf with respect to the mechanism of color formation, and thus the same color former can be used for both types.
As the color former, various kinds of chemical compounds have been used, and, among others, the fluoran compounds have recently been occupying an important position in the pressure sensitive copying paper industry because of the rich variety of colors that such compounds develop and the high color-developing speeds.
For example, 3,6-dimethoxy fluoran (Beilstein Hauptwerk Vol. XIX, p. 225) readily develops into yellow; 7- chloro-6-methy1-3-diethylamino fluoran (Japanese Pat. Publn. No. 21,199/ 1968) into yellowish red; rhodamine lactone (Beilstein Hauptwerk, Vol. XIX, p. 344) into bluish red; and 3-diethylamino-7-methylamino fluoran (Canadian Pat. No. 814,948) into green-blackish green. Among the above-mentioned derivatives and homologues, many of them have become commercially available as dyes for pressure sensitive copying paper.
SUMMARY OF THE INVENTION We have discovered new fluoran compounds containing a dibenzylamino group or its nuclear substituted derivatives represented by the following general formula I (this compound will, hereinafter, be referred to as dibenzylamino fluoran compound) I R N R3).
In the about formula R and R are individually hydrogen, or methyl; R is hydrogen, halogen or lower alkyl; R, and R are individually methyl or ethyl; and n is a integer from 1 to 5. R R R R and R can be concurrently in any combination. In the case where R R or R are halogen, chlorine and bromine are preferred. As a color former for pressure sensitive copying paper, the new fluoran compounds are outstanding in the significant requirements of color developing speed, developed color density, light resistance after color development and solubility thereof. In making the novel pressure sensitive copying paper, the compounds are dissolved in a low volatile solvent and packed in minute capsules which are used in conjunction with a solid acid.
DETAILED DESCRIPTION Unfortunately, known manufacturing methods, when applied to the dialkylamino-dibenzylamino fluorans, are high in cost due to the low yield of end product and the intricacy of the process involved. For purposes of the invention, we have considered it important to eliminate this deficiency. For example, 3-diethylamino-7-dibenzylamino fluoran, among the compounds represented by the In the equation R represents hydrogen, methyl or ethyl, R R R and n are the same as defined in the general formula I. In this case the compound (A) must first be synthesized, i.e., by dibenzylation of the corresponding amino compound.
For the dibenzylation the following methods are known: (1) a reaction with benzyl chloride in alcohol (Beilstein Hauptwerk Vol. XIII, p. 450; (2) a reaction using sodium amide and benzyl chloride without solvent (D.R.P. 301832); and (3) a reaction with benzyl chloride in aqueous alkali solution (Beilstein 2nd Supplernent Vol. XII, p. 554). However, these methods (1) to (3) are accompanied respectively by the following defects i.e. (1) a lowering of yield due to reaction by-products, (2) the intricacy of handling sodium amide and corresponding rise in cost, and (3) the intricacy of separation and purification of the reaction products. Thus, under the circumstances it is difiicult to prepare dibenzylamino fluoran at low cost by these processes.
As a result of our continued study on the manufacturing process expressed by the following equation, we finally succeeded in developing a manufacturing process which is excellent from a practical industrial point of view, with none of the above-mentioned defects.
CzHb C2115 O R N OH Cli RI H SO 1 C no.
R2 C O OH I I We found that the dibenzylamino fluoran compounds can be obtained in good yields by the reaction of aminofiuoran compounds with a substantially stoichiometric quantity of benzyl chloride in a non-polar aromatic solvent, and in addition, in the presence of solid alkali compounds. In this case, the use of solid alkali compounds makes the purification and separation of the reaction product exceedingly simple, so that a high purity product suitable for practical use will be obtained without any purification step, such as recrystallization.
As a non-polar solvent, aromatic solvents such as benzene, toluene and Xylene are desirable. In contrast, highly polar solvents, such as alcohols and phenols, will hinder the separation and purification of the reaction products. However, solvents having a very weak polarity such as o-xylene and o-dichlorobenzene, are regarded as belonging to the class of non-polar solvents useful in the present invention.
The reaction temperatures and pressures are not criti cal, a wide range of temperatures can be used, but the reaction is preferably conducted at the reflux temperature of the aromatic solvent. The reaction can be conducted at atmospheric pressure or at superatmospheric pressures. Reduced pressures could be used, but such pressures result in unnecessary loss of solvent.
As the solid alkali compound potassium carbonate, sodium carbonate, caustic potash and caustic soda give the most favorable results. The alkali compound is used at least in an amount corresponding to the stoichiometric amount of aminofiuoran compound or benzyl halide. The product is recovered from the reaction mixture by conventional means, for example by precipitation with a lower alcohol or by crystallization.
In the above explanation, although fluoran compounds having a diethylamino group as a substituent in 3-position has been described in the preparation of the benzyl substituted derivatives, those compounds having a dimethylamino group instead of the diethylamino group can be used in the same manner. And moreover, the introduction of substituent radicals into the fluoran nucleus of the aminofiuoran will not adversely afiect the process of the present invention provided that the substituent does not drastically lower the solubility of aminofiuoran in the non-polar solvent.
Our invention is further illustrated by the following examples.
EXAMPLE 1 Preparation of 3-diethylamino-7-dibenzylamino fluoran (in I, R1=R2=R3'=H) White crystals Yield: 47 g. (83% of theoretical value) Melting point: 171173 C.
Results of analysis: C H N O Calculated: C, 80.56%; H, 6.01%; N, 4.95% Found: C, 79.91%; H, 6.06%;N, 4.81%
EXAMPLE 2 Preparation of 3-diethylamino-6-methyl-7-dibenzylamino (fluoroan (in I, R1=R3=H, R2=CH3) 4 g. of 3-diethylamino-6-methyl-7-aminofiuoran (in II, R =H, R =CH 6.3 g. of benzyl chloride, 4.14 g. of anhydrous potassium carbonate and 40 ml. of xylene are subjected to reaction in a manner described to that of Example 1.
Light ochre crystals Yield: 4.35 g. (75% of theoretical value) Melting point: 153154.5 C.
Results of analysis: C H N O Calculated: C, 80.69%; H, 6.21%; N, 4.83% Found: C, 80.51%; H, 6.30%; N, 4.66%
EXAMPLE 3 Preparation of 3-diethylamino-7-di(pchlorobenzyl) amino-fluoran (in I, R =R =H, R =C1) 7.7 g. of 3-diethylamino-7-aminofluoran, 12.9 g. of pchlorobenzyl chloride, 8.3 g. of anhydrous sodium carbonate, and ml. of toluene are subjected to reaction in a manner similar to that of Example 1.
White crystals Yield: 11.0 g. (82% of theoretical value) Melting point: 109110 C. Results of analysis: C H N O Cl Calculated: C, 71.81%; H, 5.04%; N, 4.41% Found: C, 74.08%; H, 5.08%; N, 4.53%
EXAMPLE 4 Preparation of 3-diethylamino-5-methyl-7-dibenzylamino fluoran (in I, R =CH R =R =H) 13 g. of 3-diethylamino-5-methyl-7-aminofluoran (in II, R =CH R =H). 16.5 g. of benzyl chloride, 10 g. of anhydrous potassium carbonate and m1. of toluene are subjected to reaction in a manner similar to that of Example 1.
White crystals Yield: 9.1 g. (48.3% of theoretical value) Melting point: 173-174 C. Results of analysis: C H N O Calculated: C, 80.69%; H, 6.21; N, 4.83% Found: C, 80.01%; H, 6.02%; N, 4.75%
EXAMPLE 5 Preparation of 3-diethylamino-7-di(3'-methylbenzyl) amino fluoran (in I, R =R =H, R -=3'CH 7.72 g. of 3-diethylamino-7-amino-fiuoran, 11.24 g. of 3-methylbenzyl chloride, 8.2 g. of anhydrous potassium carbonate and 100 ml. of toluene are subjected to reaction in a manner similar to that of Example 1.
White crystals Yield: 6.5 g. (56% of theoretical value) Melting point: 174-177 C.
Results of analysis: C H N O Calculated: C, 80.81%; H, 6.40%; N, 4.71% Found: C, 80.33%;H, 6.39%; N, 4.57%
EXAMPLE 6 Preparation of 3-diethylamino-7-bis(2',4'-dimehylbenzyl aminofluoran (in I, R =R =H, R =CH in positions of 2' & 4)
7.72 g. of diethylamino-7-aminofluoran, 12.36 g. of 2, 4-dimethylbenzyl chloride, 8.28 g. of anhydrous potassium carbonate and 80 ml. of toluene are subjected to reaction in a manner similar to that of Example 1.
White crystals Yield: 9.5 g. (76.5% of theoretical value) Melting point: 225-228 C.
Results of analysis: C O N O Calculated: C, 81.03%; H, 6.75%; N, 4.56%. Found: C, 80.51%;H, 6.80%; N, 4.32%.
EXAMPLE 7 Preparation of 3-diethylamino-7-bis(2',5'-dimethylbenzyl) aminofiuoran (in I, R =R =I-I, R =CH in each posi tion of 2 & 5)
7.72 of 3-diethylamino-7-aminofluoran, 12.36 g. of 2,5- dimethylbenzyl chloride, 8.28 g. of anhydrous potassium carbonate, and 80 ml. of toluene are subjected to reaction in a manner similar to that of Example 1.
White crystals Yield: 10.5 g. (84% of theoretical value) Melting point: 214-216 0.
Results of analysis: C H N O Calculated: C, 81.03%; H, 6.75%; N, 4.50%. Found: C, 80.66%; H, 6.75%; N, 4.36%.
EXAMPLE 8 Preparation of 3-diethylamino-7-bis(mixed dimethylbenzyl) aminofluoran [in I, :R =R =H, R =CH (placed in two of any of the positions 2, 3, 4', 5' and 6')] 7.72 g. of 3-diethylamino-7-aminofluoran, 12.36 g. of mixed-dimethylbenzyl chloride (it is prepared by chloromethylating mixed xylene with formalin and hydrochloric acid), 8.28 g. of potassium carbonate anhydride and 80 ml. of toluene are subjected to reaction in a manner similar to that of Example 1.
White crystals Yield: 8.5 g. (68.5% of theoretical value) Melting point: 225-228 C.
Results in analysis: C H N O Calculated: C, 81.03%; H, 6.75%; N, 4.50. Found: C, 80.01%; H, 6.92%; N, 4.31.
-6 EXAMPLE 9 Preparation of 3-diethylamino-6-chloro-7-dibenzylaminofluoran (in I, R =H, R =Cl, R =H) 3.4 g. of 3-diethylamino-6-chloro-7-aminofiuoran, 5.1 g. of benzyl chloride, 3.18 g. of anhydrous potassium carbonate and 40 ml. of toluene are subjected to reaction in a manner similar to that of Example 1.
Light orange colored white crystals Yield: 1 g. (22.5% of theoretical value) Melting point: -105 C.
Results of analysis: C H N O Cl Calculated: C, 75.94%; H, 5.50%; N, 4.66%. Found: C, 75.88%; H, 6.06%; N, 4.13%.
EXAMPLE 10 A pressure sensitive copying paper which uses 3-diethylamino 7bis( 2'5 '-dimethylbenzyl) aminofluoran (which was obtained in Example 7), as its color former was prepared as follows:
60 g. of gelatin and 60 g. of gum arabic were dissolved in 50 ml. of water at 40 C. Separately 6 g. of 3-diethylamino-7-bis(2',5-dimethylbenzyl)aminofluoran was dissolved in 150 g. of diphenyl chloride. Then it was added to the aqueous solution of gelatin and gum arabic, and was completely dispersed and emulsified by means of a homomixer. To this dispersion was added water at 50 C. to increase the volume of the dispersion to 2000 nil. Then 90 ml. of 10% acetic acid, and water at 50 C. was added with continuous stirring until the weight of the whole was increased to 4 kg. After an hours stirring, the dispersion was cooled down to below 10 C. with iced water under stirring, and 10% caustic soda was added to adjust its pH to 9. It was then gradually brought back to room temperature. It was applied to the lower surface of the upper leaf and dried.
Separately a solid acid, such as acid clay and phenolic compounds, was applied to the upper surface of the lower leaf.
When copying was effected with the pressure sensitive copying paper consisting of the upper and lower leaves thus prepared, it immediately developed a green image with an excellent light resistance.
EXAMPLE 1 l A pressure sensitive copying paper which uses the color former obtained in Example 5 was prepared as follows:
By dissolving 4 g. of 3-diethylamino-7-di(3'-methylbenzyl)aminofluoran in g. of diphenyl chloride and treating the resulting solution in the same manner as described in Example 10, an aqueous solution containing dispersed minute capsules was obtained. It was dried, by spraying, into a dust of minute capsules, which were then mixed and dispersed in a 4% xylene solution of a p-phenylphenol-formaldehyde condensation product. This dispersed solution was applied to a sheet of paper and dried to make a pressure sensitive copying paper. When a regional pressure was exerted on the coated paper, it immediately developed a green image having an excellent light resistance.
EXAMPLE 12 A pressure sensitive copying paper which uses the color former obtained in Example 6 was prepared as follows:
By dissolving 4 g. of 3-diethylamino-7-bis(2',4'-dimethlybenzyl) aminofuran in 120 g. of diphenyl chloride and treating the resulting solution in the same manner as described in Example 10, an aqueous solution containing dispersed minute capsules was obtained. This was mixed and dispersed with 8 g. of minute dust of p-phenylphenolformaldehyde condensation product, and further admixed with 40 g. of pulp. Then, after having been diluted with water so that the final solid contents was reduced to 0.5 percent, it was passed over a net of a Fourdrinier to form a sheet of pressure sensitive copying paper. When a regional pressure was exerted on this sheet, it immediately 7 developed a green image with an excellent light resistance.
In Examples 10, 11 and 12 the solvent of low volatility is diphenyl chloride. Substantially similar results are obtained if, in place of the diphenyl chloride, the solvent of low volatility is a lower alkyl diphenyl such as methyl-, ethyl-, and propyl diphenyl or a higher alkyl benzene, such as dodecyldecyland octylbenzene, having a boiling point of above 15 C. If the boiling point of the solvent is at least 150 C. it has suflicient low volatility according to the invention.
The solid acid functions as an electron acceptive absorbent. In lieu of those used in the previous examples zeolite, bentonite, attapulgite and silton can be used with excellent results.
We claim:
1. A dibenzylaminofluoran compound of the formula:
wherein R and R are individually members selected from the group consisting of hydrogen, chlorine, bromine and methyl; R is a member selected from the group consisting of hydrogen, chlorine, bromine, and C lower alkyl; R; and R are individually members selected from the group consisting of methyl and ethyl; and n is an integer of from 1 to 2.
2. A compound of Claim 1 which is 3-diethylamino-6- methyl-7-dibenzylaminofluoran.
3. A compound of Claim 1 which is 3-diethylamino-7- di (p-chlorob enzyl aminofluoran. methyl-7-dibenzylaminofluoran.
4. A compound of Claim 1 which is 3-diethylamino-5- methyl-7-dibenzylaminofluoran.
5. A compound of Claim 1 which is 3-diethylamino-7- di (3 '-methylbenzyl) aminofluoran.
6. A compound of claim 1 which is 3-diethylamino-7- bis (2',4'-dimethylb enzyl) aminofluoran.
7. A compound of Claim 1 which is 3-diethylamino-7- bis (2'-5 '-dimethylbenzyl) aminofluoran.
8. A compound of claim 1 which is S-dimethylamino- 7-dibenzylaminofluoran.
9. A compound of claim 1 which is 3-diethylamino-7- bis(dimethylbenzyl)aminofluoran.
10. A compound of claim 1 which is 3-diethylamino-6 chloro-7-dibenzylaminofiuoran.
11. A dibenzylaminofluoran of the formula:
wherein R and R are individually members selected from the group consisting of hydrogen, chlorine, bromine, and methyl; R is a member selected from the group consisting of hydrogen, chlorine, bromine, and C lower alkyl; R; and R are individually members selected from the group consisting of methyl and ethyl; and n is an integer of from 1 to 2, further wherein at least one of R R and R is other than hydrogen.
12. A dibenzylaminofluoran of claim 11 in which at least one of the substituents R R and R is chlorine or bromine.
13. A compound of claim 11 in which R is chlorine, bromine or C lower alkyl.
References Cited UNITED STATES PATENTS 3,244,548 4/ 1966 Sullivan 117-362 3,501,331 3/1970 Kimura et al. 11736.2 3,627,787 12/1971 Lin 117--36.2 3,669,711 6/1972 Kimura et al. 117-36.2 3,681,390 8/1972 Lin 260-335 FOREIGN PATENTS 2,024,859 11/1970 Germany 260-335 DONALD G. DAUS, Primary Examiner A. M. T. TIGHE, Assistant Examiner US. Cl. X.R.

Claims (1)

1. A DIBENZYLAMINOFLUORAN COMPOUND OF THE FORMULA: 3-(O=),3''-(R4-N(-R5)-),5''-R1,6''-R2,7''-((((R3)N-PHENYL)CH2-)2-N -)SPIRO(PHTHALAN-1,9''-XANTHENE) WHEREIN R1 AND R2 ARE INDIVIDUALLY MEMBERS SELECTED FROM THE GROUP CONSISTING OF HYDROGEN, CHLORINE, BROMINE AND METHYL; R3 IS A MEMBER SELECTED FROM THE GROUP CONSISTING OF HYDROGEN, CHLORINE, BROMINE, AND C1-4 LOWER ALKYL; R4 AND R5 ARE INDIVIDUALLY MEMBERS SELECTED FROM THE GROUP CONSISTING OF METHYL AND ETHYL; AND N IS AN INTEGER OF FROM 1 TO 2.
US00123069A 1970-07-08 1971-03-10 Dibenzylamino fluoran compounds Expired - Lifetime US3839361A (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
SE7016736A SE385010B (en) 1970-07-08 1970-12-10 DIBENSYLAMINOFLUORANE ASSOCIATION FOR USE AS COLOR FORMERS IN PRINTED COPY PAPER AND WAY TO PRODUCE THE ASSOCIATION IN QUESTION
SE7313464A SE394868B (en) 1970-07-08 1970-12-10 PRINT-LIKE COPY PAPER, WHICH A BENZYLAMINOFLUORANE DERIVATIVE IS USED AS A COLOR
US00123069A US3839361A (en) 1970-07-08 1971-03-10 Dibenzylamino fluoran compounds
BE765179A BE765179A (en) 1970-07-08 1971-04-02 PREPARATION OF A CHROMOGENIC COPULANT AND PRESSURE SENSITIVE COPULANT INCORPORATING THIS CHROMOGENIC COPULANT
GB2623271*A GB1335762A (en) 1970-07-08 1971-04-19 Dibenzylamino-fluorans
CH682871A CH558351A (en) 1970-07-08 1971-05-10 PROCESS FOR PRODUCING DIBENZYLAMINOFLUORANE COMPOUNDS AND USING THE SAME FOR THE PRODUCTION OF COLOR COPY PAPERS.
AT414671A AT308105B (en) 1970-07-08 1971-05-13 Process for the preparation of dibenzylaminofluoran compounds
AT06986/72A AT318660B (en) 1970-07-08 1971-05-13 PRINT SENSITIVE COPY PAPER
DE2166374A DE2166374C2 (en) 1970-07-08 1971-06-22 Pressure sensitive copier paper
DE2130845A DE2130845B2 (en) 1970-07-08 1971-06-22 Dibenzylaminofluoranes, their manufacture and use
CA117,043A CA992085A (en) 1970-07-08 1971-06-29 Process for the production of fluoran compounds containing dibenzylamino group or its nucleons substitution derivative group
FR7124972A FR2100398A5 (en) 1970-07-08 1971-07-08
US00288993A US3824119A (en) 1970-07-08 1972-09-14 Pressure sensitive copy paper employing dibenzylamino fluoran compounds
US05/450,167 US3998846A (en) 1970-07-08 1974-03-11 Process for preparing dibenzylamino fluoran compounds

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5971170A JPS4939163B1 (en) 1970-07-08 1970-07-08
US00123069A US3839361A (en) 1970-07-08 1971-03-10 Dibenzylamino fluoran compounds
US00288993A US3824119A (en) 1970-07-08 1972-09-14 Pressure sensitive copy paper employing dibenzylamino fluoran compounds

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/450,167 Division US3998846A (en) 1970-07-08 1974-03-11 Process for preparing dibenzylamino fluoran compounds

Publications (1)

Publication Number Publication Date
US3839361A true US3839361A (en) 1974-10-01

Family

ID=27296979

Family Applications (2)

Application Number Title Priority Date Filing Date
US00123069A Expired - Lifetime US3839361A (en) 1970-07-08 1971-03-10 Dibenzylamino fluoran compounds
US00288993A Expired - Lifetime US3824119A (en) 1970-07-08 1972-09-14 Pressure sensitive copy paper employing dibenzylamino fluoran compounds

Family Applications After (1)

Application Number Title Priority Date Filing Date
US00288993A Expired - Lifetime US3824119A (en) 1970-07-08 1972-09-14 Pressure sensitive copy paper employing dibenzylamino fluoran compounds

Country Status (9)

Country Link
US (2) US3839361A (en)
AT (2) AT318660B (en)
BE (1) BE765179A (en)
CA (1) CA992085A (en)
CH (1) CH558351A (en)
DE (2) DE2130845B2 (en)
FR (1) FR2100398A5 (en)
GB (1) GB1335762A (en)
SE (2) SE385010B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3959571A (en) * 1973-05-22 1976-05-25 Shin Nisso Kako Co., Ltd. Chromogenic fluoran derivatives and the preparation and use thereof
US3970671A (en) * 1971-08-21 1976-07-20 Kanzaki Paper Manufacturing Co., Ltd. Chromogenic compounds and method for preparation thereof
US4334406A (en) * 1978-03-15 1982-06-15 Dowty Fuel Systems Limited Fuel supply system
US4515971A (en) * 1980-03-31 1985-05-07 Hilton-Davis Chemical Co. 5'/6'-Carboxyfluorans and derivatives thereof
US5006563A (en) * 1989-12-14 1991-04-09 Hoechst-Roussel Pharmaceuticals Inc. Alkylamino- and alkylamino alkyl diarylketones
US5071480A (en) * 1986-10-31 1991-12-10 Ciba-Geigy Corporation Fluoran color former mixture and use thereof in recording materials
US5149689A (en) * 1986-10-31 1992-09-22 Ciba-Geigy Corporation Fluoran color former mixture and use thereof in recording materials
US5177111A (en) * 1989-12-14 1993-01-05 Hoechst-Roussel Pharmaceuticals Inc. Alkylamino- and alkylamino alkyl diarylketones and pharmaceutical compositions thereof
US20040043314A1 (en) * 2002-08-30 2004-03-04 Nusrallah Jubran Organophotoreceptors with a fluoran-based compound

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE397360B (en) * 1970-10-13 1977-10-31 Kanzaki Paper Mfg Co Ltd FLUORANIC ASSOCIATIONS, ESPECIALLY BENZLUOROUS ASSOCIATIONS, USED AS FERRY MATERIALS IN REGISTRATION AND COPYING SYSTEMS AND METHODS OF PRODUCING THESE NEW ASSOCIATIONS
JPS5033891B2 (en) * 1971-10-29 1975-11-04
US3929825A (en) * 1974-04-18 1975-12-30 Mead Corp Pyrazoloxanthene compounds and process for producing same
US4020056A (en) * 1975-04-10 1977-04-26 Ncr Corporation Di-vinyl phthalides color formers
GB9414637D0 (en) * 1994-07-20 1994-09-07 Wiggins Teape Group The Limite Presure-sensitive copying material
CA2680371A1 (en) 2007-03-15 2008-09-18 Basf Se Heat-sensitive coating compositions based on resorcinyl triazine derivatives
CN101801676B (en) 2007-07-18 2012-10-03 巴斯夫欧洲公司 Laser-sensitive coating formulation
ES2377852T3 (en) 2007-08-22 2012-04-02 Datalase Ltd Laser sensitive coating composition
US8900414B2 (en) 2007-11-07 2014-12-02 Datalase, Ltd. Fiber products
CN102197076A (en) 2008-10-23 2011-09-21 巴斯夫欧洲公司 Heat absorbing additives
WO2010049282A1 (en) 2008-10-27 2010-05-06 Basf Se Coating composition for marking substrates
US20120045624A1 (en) 2008-10-27 2012-02-23 Basf Se Aqueous laser-sensitive composition for marking substrates
MX354358B (en) 2011-05-25 2018-02-28 Tetra Laval Holdings & Finance Improved near infrared absorbers.
EP2898029B1 (en) 2011-12-30 2019-01-23 Tetra Laval Holdings & Finance SA Laminated color forming composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1671545U (en) 1952-03-15 1954-02-11 Neue Argus Gmbh BALL VALVE.
FR1553291A (en) 1967-01-27 1969-01-10

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3970671A (en) * 1971-08-21 1976-07-20 Kanzaki Paper Manufacturing Co., Ltd. Chromogenic compounds and method for preparation thereof
US3959571A (en) * 1973-05-22 1976-05-25 Shin Nisso Kako Co., Ltd. Chromogenic fluoran derivatives and the preparation and use thereof
US4334406A (en) * 1978-03-15 1982-06-15 Dowty Fuel Systems Limited Fuel supply system
US4515971A (en) * 1980-03-31 1985-05-07 Hilton-Davis Chemical Co. 5'/6'-Carboxyfluorans and derivatives thereof
US5071480A (en) * 1986-10-31 1991-12-10 Ciba-Geigy Corporation Fluoran color former mixture and use thereof in recording materials
US5149689A (en) * 1986-10-31 1992-09-22 Ciba-Geigy Corporation Fluoran color former mixture and use thereof in recording materials
US5006563A (en) * 1989-12-14 1991-04-09 Hoechst-Roussel Pharmaceuticals Inc. Alkylamino- and alkylamino alkyl diarylketones
US5177111A (en) * 1989-12-14 1993-01-05 Hoechst-Roussel Pharmaceuticals Inc. Alkylamino- and alkylamino alkyl diarylketones and pharmaceutical compositions thereof
US5300527A (en) * 1989-12-14 1994-04-05 Hoechst-Roussel Pharmaceuticals Incorporated Alkylamino-and alkylamino alkyl diarylketones
US20040043314A1 (en) * 2002-08-30 2004-03-04 Nusrallah Jubran Organophotoreceptors with a fluoran-based compound

Also Published As

Publication number Publication date
SE394868B (en) 1977-07-18
DE2166374A1 (en) 1973-11-15
SE385010B (en) 1976-05-31
GB1335762A (en) 1973-10-31
AT308105B (en) 1973-06-25
CA992085A (en) 1976-06-29
FR2100398A5 (en) 1972-03-17
BE765179A (en) 1971-08-30
AT318660B (en) 1974-11-11
DE2130845B2 (en) 1973-12-06
US3824119A (en) 1974-07-16
DE2130845A1 (en) 1972-01-13
DE2166374C2 (en) 1984-03-01
CH558351A (en) 1975-01-31

Similar Documents

Publication Publication Date Title
US3839361A (en) Dibenzylamino fluoran compounds
US4330473A (en) Recording material
US3619239A (en) Pressure sensitive copying paper
US3929831A (en) Heterocyclic substituted fluorans
EP0431425A2 (en) Chromogen enamine compounds, their preparation and use as colour formers
US4536220A (en) Fluoran derivatives as new compounds and recording system utilizing the same as colorless chromogenic material
US4007195A (en) Heterocyclic substituted fluorans
JPS60101152A (en) Novel fluoran and use
DE3116815C2 (en)
US4524373A (en) Fluoran derivatives as new compounds, process for preparing the same and recording system utilizing the same as colorless chromogenic material
US4123439A (en) Chromenoindole compounds
US3998846A (en) Process for preparing dibenzylamino fluoran compounds
US3997561A (en) Pressure sensitive copying paper
US4291902A (en) Recording material employing substituted 3,6-diaminophthalides as color formers
EP0220515B1 (en) Fluoran derivatives, process for preparation thereof and recording material containing the same
US3837889A (en) Colour formers
US4100169A (en) Thiazolylphthalide compounds
US4611070A (en) Spirodibenzopyrans
FI90424B (en) Chromogenic fluorane compounds
GB1567489A (en) 2-furanones and preparation thereof
EP0281891A2 (en) Dye builders, their preparation and use
DE2240991C2 (en) Basic substituted fluoran compounds and their use
US4028357A (en) 2'-(4,6-Disubstituted)-s-triazin-2-yl)amino-6'-dialkylamino flurans
JPH0156103B2 (en)
EP0430486B1 (en) Divinyl carbinol or carbinol derivative chromogenic compounds and their use in record material