US3837790A - Method and apparatus for heating metallic strip - Google Patents

Method and apparatus for heating metallic strip Download PDF

Info

Publication number
US3837790A
US3837790A US00319281A US31928172A US3837790A US 3837790 A US3837790 A US 3837790A US 00319281 A US00319281 A US 00319281A US 31928172 A US31928172 A US 31928172A US 3837790 A US3837790 A US 3837790A
Authority
US
United States
Prior art keywords
strip
rolls
heating
temperature
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00319281A
Inventor
M Pierson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Armco Steel Co LP
Original Assignee
Armco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Armco Inc filed Critical Armco Inc
Priority to US00319281A priority Critical patent/US3837790A/en
Priority to CA187,378A priority patent/CA990070A/en
Priority to ZA739281A priority patent/ZA739281B/en
Priority to IT54286/73A priority patent/IT1008081B/en
Priority to GB5828373A priority patent/GB1396086A/en
Priority to DE2363223A priority patent/DE2363223C3/en
Priority to SE7317395A priority patent/SE409214B/en
Priority to FR7346655A priority patent/FR2212916A5/fr
Priority to JP485474A priority patent/JPS5441009B2/ja
Application granted granted Critical
Publication of US3837790A publication Critical patent/US3837790A/en
Priority to BE153750A priority patent/BE825993Q/en
Assigned to ARMCO STEEL COMPANY, L.P., A DE LIMITED PARTNERSHIP reassignment ARMCO STEEL COMPANY, L.P., A DE LIMITED PARTNERSHIP ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: ARMCO INC., A CORP. OF OHIO
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0038Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
    • C23C2/004Snouts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments

Definitions

  • This invention relates to a method and apparatus for continuously heating a ferrous strip in a furnace having rolls about which the strip passes under tension.
  • the invention has great and particular utility in connection with a furnace having one or more sections through which the strip passes vertically, and having turnaround rolls and roll chambers between adjacent sections which are baffied from the furnace atmosphere.
  • Furnaces of the type under consideration are commonly used in connection with a metallic coating operation, wherein the cold reduced strip to be coated is heated continuously in the furnace for annealing while simultaneously preparing the surface to receive a molten metallic coating.
  • Continuous strip heating furnaces per se, are very old in the art.
  • the most common continuous strip heating furnace is of a horizontal configuration. That is, the furnace is elongate in the horizontal direction, and the strip to be heated passes through the furnace in a substantially straight, horizontal path of travel.
  • the strip is normally maintained under tension primarily applied by roll mechanisms of known configuration outside of the furnace.
  • Various driven supporting rolls will of course be provided within the furnace atmosphere itself.
  • continuous strip heating furnaces for metallic coating have been designed which utilize what might be called a vertical configuration. That is, the furnace includes one or more sections through which the strip to be heated passes in a substantially vertical path of travel.
  • Turn-around rolls and perhaps roll chambers are provided at the entrance and exit ends of such a vertical furnace, and between adjacent vertical sections. These rolls normally have water cooled shafts for structural purposes, and are not heated except by the strip.
  • One of the major advantages of such an arrangement is that no rolls are necessary within the hot or cold sections of the furnace. In other words, the turn-around rolls and roll chambers are often baffled from the regular furnace atmosphere.
  • Tension buckles are intermittent or continuous longitudinal corrugations in the strip usually occurring in the center area.
  • tension buckles have usually been found associated with the passage of a heated strip over a relatively cold roll surface.
  • the formation of tension buckles during cooling and/or heating clearly results in an unacceptable finished product coated strip which must be scrapped.
  • the formation of tension buckles makes it more difficult to move the strip through the coating line and often results in strip breakage and consequent shut-down of the coating line.
  • this invention is directed to a method and apparatus which has been found empirically to virtually eliminate the formation of tension buckles in a continuous strip heating furnace of the vertical configuration.
  • this invention relates to a method of continuously heating a metallic strip in a furnace having one or more sections through which the strip passes in a substantially straight, vertical path of travel, and having turn-around rolls about which the strip passes under tension located without the primary heating and cooling sections.
  • the invention contemplates the provision of heating elements adjacent each of the rolls, along with means for controlling these heating elements so that the temperature of the roll chambers are independently controlled and the surface of the roll at least will be maintained approximately at the temperature of the strip passing thereabout, and not be unduly influenced by the cooling effect of the water cooled shaft or the adjacent cooling furnace section.
  • FIGURE illustrates schematically a continuous strip heating furnace embodying the apparatus of this invention and which may advantageously be used for the practice of the method of this invention.
  • the strip to be heated is indicated at 10. It enters the first section 12 of the furnace over the rolls 14 and 16.
  • the first section of the furnace in the process under consideration may be a direct fired non-oxidizing heating section. By non-oxidizing it is contemplated that the furnace be supplied with approximately a 5 percent excess of combustibles.
  • the temperature of the furnace in this section may be on the order of 2,300 F.
  • the function of this direct fired section of the furnace 12 is to quickly burn oil and the like from the surface of the strip.
  • This section of the furnace, at the temperature indicated, will be sufficient to heat the entering strip to a temperature of 1,000 F. to l,400 F. by the time it passes through the baffle plates 18 at the bottom of the furnace section 12.
  • this section of the furnace can be of the radiant tube type heating
  • maximum strip temperature will be reached at the point the strip passes through the opening 34. This temperature may be on the order of l,200 to l,700 F.
  • This section of the furnace, in a metallic coating operation may be a tube cooling section of the furnace.
  • the strip then passes around the turn-around rolls 52 and 54, and upwardly through the opening 56 in the lower baffle plates into the furnace section 58.
  • the strip passes upwardly in this section of the furnace, through the opening 60 in the upper baffle plates, around the turn-around roll 62, downwardly through the opening 64 and through the furnace section 58, and finally out through the opening 66.
  • This section of the furnace may be of the jet cooling type and will serve to bring the strip down to a temperature of approximately 850 in the case of a metallic coating operation contemplating molten zinc.
  • the strip passes about the turn-around rolls 68 and 70, downwardly through the snout 72 and into the bath of molten coating metal, not shown.
  • tension buckles are non-uniform longitudinal corrugations. Generally, they form in the center portion of the strip and may form intermittently or continuously. Tension buckled strip must be scrapped, with the resulting loss of productive time. Equally importantly, it is extremely difficult to convey buckled strip through the coating line and a serious strip breakage hazard is present.
  • a suitable control structure will be pro vided so as to maintain the surface of the turn-around roll approximately at the temperature of the strip passing thereabout.
  • Such a control system is largely conventional per se, it would include means for sensing the temperature of the strip as it approaches the roll (indicated schematically at 76).
  • means for sensing the temperature of the roll chamber such as the zone thermo couples indicated schematically at 78), and means for actuating the radiant tubes so as to control roll cham ber temperature thereby controlling roll surface temperature to approximately the temperature of the strip passing thereabout.
  • a method of preventing tension buckles during the continuous processing of ferrous strip by passing said strip through an annealing furnace of the type having at least one primary means for producing a desired temperature of said strip located in at least one vertically oriented section through which said strip passes in vertically oriented flights and conveyor rolls at the entrance and exit ends of said section and at the top thereof about which the strip passes under longitudinal tension, said method comprising the steps of:
  • An annealing furnace for continuously processing ferrous strip comprising:
  • At least one vertically oriented heating section through which said strip passes in vertically oriented flights and primary heating means located within said section;
  • heating means in addition to said strip independent of said primary heating and cooling means disposed adjacent the surface of each of said rolls, and
  • An annealing furnace for continuously processing ferrous strip comprising at least one vertically oriented section through which said strip passes in vertically oriented flights, at least one primary means for producing a desired temperature of said strip located within said section, conveyor rolls located at the entrance and exit ends of said section and at the top thereof about which said strip passes in longitudinal tension and means in addition to said strip and independent of said primary means to maintain the surfaces of said rolls at least approximately at the temperature of said strip passing thereabout.
  • said means to maintain said roll surface temperature comprises heating means disposed adjacent said surface of each of said rolls and control means for said heating means.

Abstract

A method and apparatus for continually heating a metallic strip in a furnace having one or more sections through which the strip passes in a vertical path of travel, and having turn-around rolls and roll chambers baffled from the furnace atmosphere between adjacent vertical sections. Independent heating means are disposed adjacent the surface of each roll and individually controlled so as to maintain the temperature of at least the surface of each roll at substantially the temperature of the strip passing thereabout.

Description

United States Patent Pierson METALLIC STRIP METHOD AND APPARATUS FOR HEATING 3,191,918 6/1965 Kamm 266/3 R Primary Examiner-John J. Camby [75] Inventor: Marvm Pierson Frankhn Ohlo Attorney, Agent, or Firm-John W. Melville; Albert E. [73] Assignee: Armco Steel Corporation, Strasser; Stanley H. Foster Middletown, Ohio 22 Filed: Dec. 29, 1972 [57] h d d ABSTRACT h A met 0 an apparatus for continually eating a melzl] Appl 319281 tallic strip in a furnace having one or more sections through which the strip passes in a vertical path of [52] US. Cl 432/8, 266/3, 432/59 travel, and having und r lls and roll chambers [51] 1nt.Cl F271) 9/28 baffled from the furnace atmosphere between j 58 Field of Search 266/3; 432/8, 59, 60 cent vertical seetiens- Independent heating means are disposed adjacent the surface of each roll and individ- [56] Referen s Cit d ually controlled so as to maintain the temperature of UNITED STATES PATENTS at least the surface of each roll at substantially the 2,199,472 5/1940 Wean...., 432/60 x temperature of the Sum passmg thereabout' 3,070,362 12/1962 Young et a1. 432/8 X 7 Claims, 1 Drawing Figure 11 ll 1F v I Y W M 0% W Q f w m 145 METHOD AND APPARATUS FOR HEATING METALLIC STRIP BACKGROUND OF THE INVENTION This invention relates to a method and apparatus for continuously heating a ferrous strip in a furnace having rolls about which the strip passes under tension. The invention has great and particular utility in connection with a furnace having one or more sections through which the strip passes vertically, and having turnaround rolls and roll chambers between adjacent sections which are baffied from the furnace atmosphere. Furnaces of the type under consideration are commonly used in connection with a metallic coating operation, wherein the cold reduced strip to be coated is heated continuously in the furnace for annealing while simultaneously preparing the surface to receive a molten metallic coating.
Continuous strip heating furnaces, per se, are very old in the art. The most common continuous strip heating furnace is of a horizontal configuration. That is, the furnace is elongate in the horizontal direction, and the strip to be heated passes through the furnace in a substantially straight, horizontal path of travel. In this type of furnace, the strip is normally maintained under tension primarily applied by roll mechanisms of known configuration outside of the furnace. Various driven supporting rolls will of course be provided within the furnace atmosphere itself.
More recently, continuous strip heating furnaces for metallic coating have been designed which utilize what might be called a vertical configuration. That is, the furnace includes one or more sections through which the strip to be heated passes in a substantially vertical path of travel. Turn-around rolls and perhaps roll chambers are provided at the entrance and exit ends of such a vertical furnace, and between adjacent vertical sections. These rolls normally have water cooled shafts for structural purposes, and are not heated except by the strip. One of the major advantages of such an arrangement is that no rolls are necessary within the hot or cold sections of the furnace. In other words, the turn-around rolls and roll chambers are often baffled from the regular furnace atmosphere.
Under these circumstances, it will of course be apparent that the strip is under considerable tension as it passes about these turn-around rolls.
Commercial experiences with a continuous strip heating furnace of the vertical configuration (as a part of a metallic coating operation) has produced a problem rarely heretofore encountered in connection with horizontal strip heating furnaces. This problem is the formation of tension buckles" in the furnace. Tension buckles are intermittent or continuous longitudinal corrugations in the strip usually occurring in the center area. At the present time, the precise mechanism of tension buckle formation is not known. However, tension buckles have usually been found associated with the passage of a heated strip over a relatively cold roll surface. In any event, the formation of tension buckles during cooling and/or heating clearly results in an unacceptable finished product coated strip which must be scrapped. Equally importantly, the formation of tension buckles makes it more difficult to move the strip through the coating line and often results in strip breakage and consequent shut-down of the coating line.
Keeping the above background in mind. this invention is directed to a method and apparatus which has been found empirically to virtually eliminate the formation of tension buckles in a continuous strip heating furnace of the vertical configuration.
SUMMARY OF THE INVENTION Broadly considered, this invention relates to a method of continuously heating a metallic strip in a furnace having one or more sections through which the strip passes in a substantially straight, vertical path of travel, and having turn-around rolls about which the strip passes under tension located without the primary heating and cooling sections. The invention contemplates the provision of heating elements adjacent each of the rolls, along with means for controlling these heating elements so that the temperature of the roll chambers are independently controlled and the surface of the roll at least will be maintained approximately at the temperature of the strip passing thereabout, and not be unduly influenced by the cooling effect of the water cooled shaft or the adjacent cooling furnace section.
BRIEF DESCRIPTION OF THE DRAWING The single FIGURE accompanying this application illustrates schematically a continuous strip heating furnace embodying the apparatus of this invention and which may advantageously be used for the practice of the method of this invention.
DESCRIPTION OF THE PREFERRED EMBODIMENT This invention has great and particular utility in connection with the continuous heating of a ferrous base metal strand to prepare the surface of the strand to receive a molten metallic coating. The drawings and this specific description will be directed primarily to a continuous furnace utilized in such a process, but it will be understood that other heating applications are contem plated within the scope of this invention.
The strip to be heated is indicated at 10. It enters the first section 12 of the furnace over the rolls 14 and 16. The first section of the furnace in the process under consideration may be a direct fired non-oxidizing heating section. By non-oxidizing it is contemplated that the furnace be supplied with approximately a 5 percent excess of combustibles. The temperature of the furnace in this section may be on the order of 2,300 F. In the metallic coating operation, the function of this direct fired section of the furnace 12 is to quickly burn oil and the like from the surface of the strip. This section of the furnace, at the temperature indicated, will be sufficient to heat the entering strip to a temperature of 1,000 F. to l,400 F. by the time it passes through the baffle plates 18 at the bottom of the furnace section 12.
The strip then passes about the turn-around rolls 20 and 22, through the opening 24 in the baffle plates, and into the furnace section 26. The strip passes upwardly through this section, through the opening 28 in the upper baffle plates, around the turn-around roll 30, then downwardly through the opening 32 in the furnace section 26, and out through the opening 34 at the bottom of this furnace section. Preferably, this section of the furnace can be of the radiant tube type heating,
and will serve to further raise the temperature of the strip. In the embodiment under consideration, maximum strip temperature will be reached at the point the strip passes through the opening 34. This temperature may be on the order of l,200 to l,700 F.
After leaving the furnace section 26, the strip passes about the turn-around rolls 36 and 38, through the opening 40 in the roller baffle plates and into the furnace section 42. Within this section, the strip passes upwardly, through the opening 40, about the turn-around roll 46, downwardly through the opening 48 and back through the furnace section 42, and finally out the opening 50 at the bottom. This section of the furnace, in a metallic coating operation may be a tube cooling section of the furnace.
The strip then passes around the turn-around rolls 52 and 54, and upwardly through the opening 56 in the lower baffle plates into the furnace section 58. Once again, the strip passes upwardly in this section of the furnace, through the opening 60 in the upper baffle plates, around the turn-around roll 62, downwardly through the opening 64 and through the furnace section 58, and finally out through the opening 66. This section of the furnace may be of the jet cooling type and will serve to bring the strip down to a temperature of approximately 850 in the case of a metallic coating operation contemplating molten zinc.
Finally, the strip passes about the turn-around rolls 68 and 70, downwardly through the snout 72 and into the bath of molten coating metal, not shown.
Commercial practice utilizing a furnace generally of the configurations described above has resulted in a strip defect which might be called tension buckles. These tension buckles are non-uniform longitudinal corrugations. Generally, they form in the center portion of the strip and may form intermittently or continuously. Tension buckled strip must be scrapped, with the resulting loss of productive time. Equally importantly, it is extremely difficult to convey buckled strip through the coating line and a serious strip breakage hazard is present.
Investigations have established that the hazard of tension buckles increases significantly with decreasing strip thickness. In addition, the tendency to form tension buckles is relatively dependent upon strip tension in the furnace. For example, when passing light gauge material through a furnace of the type described, the only known way prior to this invention to minimize the hazard of tension buckle formation was to use minimal strip tension and limit the maximum strip temperature to less than about l,300 F. In other words, it has been impossible to utilize the vertical configuration furnace just described to practice the high drawing quality annealing cycle involving temperatures on the order of l,500 to 1,700" F. on light gauge strip.
As indicated earlier, one of the nominal advantages of the furnace of a vertical configuration is the fact that the turn-around rolls need not be located in the low or high temperature furnace atmosphere. To this end, it will be observed that each of the turn-around rolls previously described is baffled or otherwise effectively placed in a roll chamber which is outside of the high or low (depending on heating or cooling sections) temperature furnace atmosphere. It is furthermore clear that in the continuous furnace processing of steel strip, the strip temperature is usually significantly different from the temperature of the heating and cooling furnace sections through which it is passing. This invention con templates the provision of means independent of strip heat to control surface temperature of each of the turnaround rolls. To this end, radiant heating tubes 74 or other heating means are disposed in the roll chambers somewhere adjacent the surface of each of the turn around rolls. A suitable control structure will be pro vided so as to maintain the surface of the turn-around roll approximately at the temperature of the strip passing thereabout. Such a control system is largely conventional per se, it would include means for sensing the temperature of the strip as it approaches the roll (indicated schematically at 76). means for sensing the temperature of the roll chamber (such as the zone thermo couples indicated schematically at 78), and means for actuating the radiant tubes so as to control roll cham ber temperature thereby controlling roll surface temperature to approximately the temperature of the strip passing thereabout.
Numerous modifications may be made without departing from the scope and spirit of this invention. Accordingly, no limitations are intended except insofar as specifically set forth in the claims which follow.
The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. A method of preventing tension buckles during the continuous processing of ferrous strip in an annealing furnace of the type having primary heating and cooling means in vertically oriented heating and cooling sections respectively through which said strip passes in vertically oriented flights and conveyor rolls at the entrance and exit ends of the heating and cooling sections and at the tops thereof baffled or otherwise effectively placed from said primary heating and cooling means and about which the strip passes under longitudinal tension, said method comprising the steps of:
a. heating the roll chambers and at least the surfaces of said rolls by heat sources independent of said primary cooling and heating sources and independent of the heat of the strip, and
b. controlling said independent heat sources so as to maintain the surfaces of said rolls at least approximately at the temperature of said strip passing thereabout.
2. The method claimed in claim 1 wherein said independent heat sources are controlled so as to maintain the temperature of the surfaces of said rolls at least at the temperature of said strip passing thereabout.
3. A method of preventing tension buckles during the continuous processing of ferrous strip by passing said strip through an annealing furnace of the type having at least one primary means for producing a desired temperature of said strip located in at least one vertically oriented section through which said strip passes in vertically oriented flights and conveyor rolls at the entrance and exit ends of said section and at the top thereof about which the strip passes under longitudinal tension, said method comprising the steps of:
a. providing at least one heat source adjacent the surface of each of said rolls, said heat sources being independent of said primary means and independent of the temperature of said strip, and
b. controlling said independent heat sources so as to maintain the temperature of the surfaces of said rolls near the temperature of said strip passing thereabout.
4. The process claimed in claim 3 wherein said independent heat sources are controlled so as to maintain the temperature of the surfaces of said rolls at least at the temperatureof said strip passing thereabout.
5. An annealing furnace for continuously processing ferrous strip comprising:
a. at least one vertically oriented heating section through which said strip passes in vertically oriented flights and primary heating means located within said section;
b. at least one vertically oriented cooling section through which said strip passes in vertically oriented flights and primary cooling means located within said section;
c. conveyor rolls at the entrance and exit ends and at the tops of said heating and cooling sections about which said ferrous strip passes under longitudinal tension;
d. means for baffling or otherwise effectively placing said rolls away from said primary heating and cooling means,
e. heating means in addition to said strip independent of said primary heating and cooling means disposed adjacent the surface of each of said rolls, and
f. means for controlling said independent heating means whereby to maintain the surfaces of said rolls at least approximately at the temperature of said strip passing thereabout.
6. An annealing furnace for continuously processing ferrous strip comprising at least one vertically oriented section through which said strip passes in vertically oriented flights, at least one primary means for producing a desired temperature of said strip located within said section, conveyor rolls located at the entrance and exit ends of said section and at the top thereof about which said strip passes in longitudinal tension and means in addition to said strip and independent of said primary means to maintain the surfaces of said rolls at least approximately at the temperature of said strip passing thereabout.
7. The structure claimed in claim 6 wherein said means to maintain said roll surface temperature comprises heating means disposed adjacent said surface of each of said rolls and control means for said heating means.

Claims (7)

1. A method of preventing tension buckles during the continuous processing of ferrous strip in an annealing furnace of the type having primary heating and cooling means in vertically oriented heating and cooling sections respectively through which said strip passes in vertically oriented flights and conveyor rolls at the entrance and exit ends of the heating and cooling sections and at the tops thereof baffled or otherwise effectively placed from said primary heating and cooling means and about which the strip passes under longitudinal tension, said method comprising the steps of: a. heating the roll chambers and at least the surfaces of said rolls by heat sources independent of said primary cooling and heating sources and independent of the heat of the strip, and b. controlling said independent heat sources so as to maintain the surfaces of said rolls at least approximately at the temperature of said strip passing thereabout.
2. The method claimed in claim 1 wherein said independent heat sources are controlled so as to maintain the temperature of the surfaces of said rolls at least at the temperature of said strip passing thereabout.
3. A method of preventing tension buckles during the continuous processing of ferrous strip by passing said strip through an annealing furnace of the type having at least one primary means for producing a desired temperature of said strip located in at least one vertically oriented section through which said strip passes in vertically oriented flights and conveyor rolls at the entrance and exit ends of said section and at the top thereof about which the strip passes under longitudinal tension, said method comprising the steps of: a. providing at least one heat source adjacent the surface of each of said rolls, said heat sources being independent of said primary means and independent of the temperature of said strip, and b. controlling said independent heat sources so as to maintain the temperature of the surfaces of said rolls near the temperature of said strip passing thereabout.
4. The process claimed in claim 3 wherein said independent heat sources are controlled so as to maintain the temperature of the surfaces of said rolls at least at the temperature of said strip passing thereabout.
5. An annealing furnace for continuously processing ferrous strip comprising: a. at least one vertically oriented heating section through which said strip passes in vertically oriented flights and primary heating means located within said section; b. at least one vertically oriented cooling section through which said strip passes in vertically oriented flights and primary cooling means located within said section; c. conveyor rolls at the entrance and exit ends and at the tops of said heating and cooling sections about which said ferrous strip passes under longitudinal tension; d. means for baffling or otherwise effectively placing said rolls away from said primary heating and cooling means, e. heating means in addition to said strip independent of said primary heating and cooling means disposed adjacent the surface of each of said rolls, and f. means for controlling said independent heating means whereby to maintain the surfaces of said rolls at least approximately at the temperature of said strip passing thereabout.
6. An annealing furnace for continuously processing ferrous strip comprising at least one vertically oriented section through which said strip passes in vertIcally oriented flights, at least one primary means for producing a desired temperature of said strip located within said section, conveyor rolls located at the entrance and exit ends of said section and at the top thereof about which said strip passes in longitudinal tension and means in addition to said strip and independent of said primary means to maintain the surfaces of said rolls at least approximately at the temperature of said strip passing thereabout.
7. The structure claimed in claim 6 wherein said means to maintain said roll surface temperature comprises heating means disposed adjacent said surface of each of said rolls and control means for said heating means.
US00319281A 1972-12-29 1972-12-29 Method and apparatus for heating metallic strip Expired - Lifetime US3837790A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US00319281A US3837790A (en) 1972-12-29 1972-12-29 Method and apparatus for heating metallic strip
CA187,378A CA990070A (en) 1972-12-29 1973-12-05 Method and apparatus for heating metallic strip
ZA739281A ZA739281B (en) 1972-12-29 1973-12-06 Method and apparatus for heating metallic strip
IT54286/73A IT1008081B (en) 1972-12-29 1973-12-14 PROCEDURE AND APPARATUS FOR THE HEAT TREATMENT OF IRON BAND
GB5828373A GB1396086A (en) 1972-12-29 1973-12-17 Method and apparatus for heating metallic strip
DE2363223A DE2363223C3 (en) 1972-12-29 1973-12-19 Device for continuous heating in a tower furnace
SE7317395A SE409214B (en) 1972-12-29 1973-12-21 SETS AND GOLDING OVEN FOR CONTINUOUS HEAT TREATMENT OF IRON BELT
FR7346655A FR2212916A5 (en) 1972-12-29 1973-12-27
JP485474A JPS5441009B2 (en) 1972-12-29 1973-12-28
BE153750A BE825993Q (en) 1972-12-29 1975-02-26 METHOD AND APPARATUS FOR HEATING A METAL STRIP.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00319281A US3837790A (en) 1972-12-29 1972-12-29 Method and apparatus for heating metallic strip

Publications (1)

Publication Number Publication Date
US3837790A true US3837790A (en) 1974-09-24

Family

ID=23241597

Family Applications (1)

Application Number Title Priority Date Filing Date
US00319281A Expired - Lifetime US3837790A (en) 1972-12-29 1972-12-29 Method and apparatus for heating metallic strip

Country Status (10)

Country Link
US (1) US3837790A (en)
JP (1) JPS5441009B2 (en)
BE (1) BE825993Q (en)
CA (1) CA990070A (en)
DE (1) DE2363223C3 (en)
FR (1) FR2212916A5 (en)
GB (1) GB1396086A (en)
IT (1) IT1008081B (en)
SE (1) SE409214B (en)
ZA (1) ZA739281B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4165964A (en) * 1976-10-27 1979-08-28 Nippon Steel Corporation Vertical direct fired strip heating furnaces
US4231167A (en) * 1978-04-07 1980-11-04 Societe Alsacienne De Constructions Mecaniques De Mulhouse Apparatus for heat treatment of continuous textile products
US4364728A (en) * 1981-05-19 1982-12-21 The Electric Furnace Company Continuous strip preheat furnace and method of operation
US4545762A (en) * 1982-10-28 1985-10-08 Toray Industries, Inc. Apparatus for producing oxidized filaments
US4559010A (en) * 1984-05-01 1985-12-17 Toray Industries, Inc. Apparatus for producing oxidized filaments
US4743196A (en) * 1985-06-10 1988-05-10 Chugai Ro Co., Ltd. Continuous annealing furnace for a strip
US4759807A (en) * 1986-12-29 1988-07-26 Rasmet Ky Method for producing non-aging hot-dip galvanized steel strip
AT500686B1 (en) * 2004-06-28 2007-03-15 Ebner Ind Ofenbau METHOD FOR THE HEAT TREATMENT OF A METAL STRIP BEFORE A METALLIC COATING

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53119208A (en) * 1977-03-28 1978-10-18 Nippon Kokan Kk <Nkk> Preventing method for meandering of strip in continuous annealing furnace
JPS53130211A (en) * 1977-04-20 1978-11-14 Chugai Ro Kogyo Kaisha Ltd Vertical type continuous heat treatment furnace with separate roll chamber
US4183983A (en) * 1978-08-17 1980-01-15 Selas Corporation Of America Method for reducing metal oxide formation on a continuous metal sheet in the hot dip coating thereof
JPS5942733B2 (en) * 1979-10-31 1984-10-17 川崎製鉄株式会社 Steel strip continuous annealing equipment
US4494929A (en) * 1982-03-19 1985-01-22 Nippon Steel Corporation Continuous heat treatment furnace
JP2634881B2 (en) * 1988-10-31 1997-07-30 日本鋼管株式会社 Vertical preheating furnace for direct-fired strip heating furnace
JPH0726356Y2 (en) * 1990-01-10 1995-06-14 日本鋼管株式会社 Vertical continuous heat treatment furnace for metal plates
FR2820148B1 (en) * 2001-01-31 2003-10-31 Stein Heurtey IMPROVEMENTS IN METHODS FOR HEATING STEEL STRIPS IN VERTICAL OVENS
JP5119787B2 (en) * 2007-07-30 2013-01-16 Jfeスチール株式会社 Operation method of continuous annealing line

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2199472A (en) * 1939-02-09 1940-05-07 Wean Engineering Co Inc Method and apparatus for annealing strip
US3070362A (en) * 1961-03-02 1962-12-25 Midland Ross Corp Furnace roller
US3191918A (en) * 1961-06-15 1965-06-29 American Can Co Apparatus for flow brightening electrolytic tinplate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2585277A (en) * 1946-06-27 1952-02-12 Drever Co Apparatus for annealing strip
JPS3810009Y1 (en) * 1961-03-13 1962-05-25
US3622140A (en) * 1970-01-30 1971-11-23 Nat Steel Corp Continuous heat treating line

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2199472A (en) * 1939-02-09 1940-05-07 Wean Engineering Co Inc Method and apparatus for annealing strip
US3070362A (en) * 1961-03-02 1962-12-25 Midland Ross Corp Furnace roller
US3191918A (en) * 1961-06-15 1965-06-29 American Can Co Apparatus for flow brightening electrolytic tinplate

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4165964A (en) * 1976-10-27 1979-08-28 Nippon Steel Corporation Vertical direct fired strip heating furnaces
US4231167A (en) * 1978-04-07 1980-11-04 Societe Alsacienne De Constructions Mecaniques De Mulhouse Apparatus for heat treatment of continuous textile products
US4364728A (en) * 1981-05-19 1982-12-21 The Electric Furnace Company Continuous strip preheat furnace and method of operation
US4545762A (en) * 1982-10-28 1985-10-08 Toray Industries, Inc. Apparatus for producing oxidized filaments
US4559010A (en) * 1984-05-01 1985-12-17 Toray Industries, Inc. Apparatus for producing oxidized filaments
US4743196A (en) * 1985-06-10 1988-05-10 Chugai Ro Co., Ltd. Continuous annealing furnace for a strip
US4759807A (en) * 1986-12-29 1988-07-26 Rasmet Ky Method for producing non-aging hot-dip galvanized steel strip
AT500686B1 (en) * 2004-06-28 2007-03-15 Ebner Ind Ofenbau METHOD FOR THE HEAT TREATMENT OF A METAL STRIP BEFORE A METALLIC COATING

Also Published As

Publication number Publication date
DE2363223A1 (en) 1974-07-11
IT1008081B (en) 1976-11-10
GB1396086A (en) 1975-05-29
DE2363223C3 (en) 1981-09-03
SE409214B (en) 1979-08-06
ZA739281B (en) 1974-10-30
DE2363223B2 (en) 1981-01-22
JPS5441009B2 (en) 1979-12-06
JPS4998308A (en) 1974-09-18
CA990070A (en) 1976-06-01
BE825993Q (en) 1975-06-16
FR2212916A5 (en) 1974-07-26

Similar Documents

Publication Publication Date Title
US3837790A (en) Method and apparatus for heating metallic strip
US2756169A (en) Method of heat treating hot rolled steel rods
CN101611159B (en) Continuous annealing equipment
US3257835A (en) Method of hot forming metal
US3877684A (en) Continuous annealing furnace
US4759807A (en) Method for producing non-aging hot-dip galvanized steel strip
US3684475A (en) Float glass apparatus for producing sheet glass crystalline material from a glass band
KR100221789B1 (en) Method of continuous annealing of cold rolled steel plate and equipment thereof
KR930001781B1 (en) Method for controlling the thickness of an intermetallic layer on a steel strip in a continuous hot-dip galvanzing process
JPH03100154A (en) Production of alloying hot dip galvanized steel strip
US2393363A (en) Heat treatment of thin metal articles
US2673080A (en) Strip heating
US4090697A (en) Apparatus and method for treating wire
US2797177A (en) Method of and apparatus for annealing strip steel
US2172933A (en) Galvanizing process
US4530858A (en) Process and installation for continuous manufacturing of an old (over-aged) steel band having a coating of ZN, Al or ZN-Al alloy
US2459674A (en) Continuous tinplate brightening apparatus
US3311463A (en) Process of annealing glass sheets
KR900006693B1 (en) Continous annealing method and apparatus for cold rolled steel strips
DE2035126B2 (en) DEVICE FOR THE PRODUCTION OF FLAT GLASS
US4724165A (en) Process and apparatus for coating metal strips on both sides with coats of enamel
US2224410A (en) Apparatus for continuous heat treatment and metal coating of metallic objects
US6036485A (en) Annealing furnace
US4026731A (en) Method for heat treating wire
US4595357A (en) Continuous annealing method and apparatus for cold rolled steel strips

Legal Events

Date Code Title Description
AS Assignment

Owner name: ARMCO STEEL COMPANY, L.P., 703 CURTIS STREET, MIDD

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:ARMCO INC., A CORP. OF OHIO;REEL/FRAME:005110/0744

Effective date: 19890511