US3837126A - Fire screen for a structural panel - Google Patents

Fire screen for a structural panel Download PDF

Info

Publication number
US3837126A
US3837126A US00263762A US26376272A US3837126A US 3837126 A US3837126 A US 3837126A US 00263762 A US00263762 A US 00263762A US 26376272 A US26376272 A US 26376272A US 3837126 A US3837126 A US 3837126A
Authority
US
United States
Prior art keywords
fire
panel
screening
screen
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00263762A
Inventor
J Voiturier
F Jacquemin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Glass Europe SA
Glaverbel Mecaniver SA
Original Assignee
Glaverbel Belgium SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Glaverbel Belgium SA filed Critical Glaverbel Belgium SA
Priority to US00263762A priority Critical patent/US3837126A/en
Priority to US05/495,513 priority patent/US3935681A/en
Application granted granted Critical
Publication of US3837126A publication Critical patent/US3837126A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B5/00Doors, windows, or like closures for special purposes; Border constructions therefor
    • E06B5/10Doors, windows, or like closures for special purposes; Border constructions therefor for protection against air-raid or other war-like action; for other protective purposes
    • E06B5/16Fireproof doors or similar closures; Adaptations of fixed constructions therefor
    • E06B5/165Fireproof windows
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • B32B17/10045Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets with at least one intermediate layer consisting of a glass sheet
    • B32B17/10055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets with at least one intermediate layer consisting of a glass sheet with at least one intermediate air space
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10293Edge features, e.g. inserts or holes
    • B32B17/10302Edge sealing
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/94Protection against other undesired influences or dangers against fire
    • E04B1/941Building elements specially adapted therefor
    • E04B1/942Building elements specially adapted therefor slab-shaped
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/54Slab-like translucent elements

Definitions

  • ABSTRACT [52] US. Cl 52/1, 52/ 168, 52/171, A Structural panel comprising one or a plurality of 52/232 spaced sheet numbers has a frame around its edge. At [51] Int. Cl E04! 1/92 least One body of material capable of screening the [58] Field of Search 52/ 1,202, 203, 232, 171, structural panel against fire is provided either in the 52/168, 172; 169/2 R, 26; l60/1-5 form of a mechanical member or a chemically activated substance.
  • the member or substance are re- [56] R f r Cit d tained in an inoperative position in the vicinity of the UNITED STATES PATENTS structural panel and are released to an operative position in response to a predetermined rise of temperagg'fiffig ture wherein a body of material covers substantially I,369:5l8 2/1921 Bumbarger 160/1 one or more faces of the Panel- 2,l42,164 l/l939 vauig 1 52/232 2,419,400 4 1947 Haven 52 172 13 Clams 9 Draw guns 6 2 q 4 5 9 N N 70 I I A I 4/ 2 I E I o N N I N f I A 2 N 2 N 3 PAIENIED sP24
  • the present invention relates to a structural panel having a fire screen, more particularly, to such a fire screen which is provided in the operative protecting position in response to indication of a fire.
  • glazing panel formed either of glass, vitrocrystalline material, or plastics.
  • Fire resistance may be determined against a standard test in which the structural component is exposed to a specified temperature cycle for a certain duration of time.
  • the fire resistance property of the component will be determined by the length of time for which the component can retain the strength required in order to fulfill its intended function.
  • the standard of fire resistance of a given component can be quantified as a function of the time for which the component satisfies one or more of the specified criteria during a test in which the component is exposed to the interior of an enclosure in which the temperature is raised according to a predetermined schedule.
  • standards of fire resistance designated l, 2 and 3 may be established corresponding to resistance times of l5, and 60 minutes respectively in a test in which the temperature of the test enclosure is 720, 820 and 925C during that time.
  • This known system is designed to assist in extinguishing a fire within or in the vicinity of the building.
  • the system cannot prevent intense heat propagation through the window or door panels or the complete destruction of these panels if the fire persists.
  • lt is therefore the principal object of the present invention to provide a novel and improved fire screen system for a structural panel.
  • a structural panel is provided with a fire screening means which is retained in an inoperative position within or in the vicinity of the panel.
  • a screen releasing or activating component is associated with the fire screening means so as to release or activate the screening means in response to a rise in temperature indicative in the presence of fire.
  • Upon activation of the fire screening means there is provided at least one fire screening body of material which substantially covers the area of the panel.
  • the fire screening means in its operative position covers at least one outer face of the structural panel. In most cases it will be sufficient to provide the fire screen over only one side of the panel.
  • the system according to present invention can be used for fire screening any kind of a panel including panels comprising a single sheet number or plurality of spaced sheet numbers.
  • the fire screening means can also cover both faces of the panel. This may be desirable when the panel is a component of a partition between rooms in either of which a fire may occur and it is desired to contain any such occurrence of fire.
  • the invention may also be applied to a structural panel comprising two or more spaced sheet numbers so as to define a hollow interior chamber with the fire screening means being operative within the chamber.
  • a structural panel comprising two or more spaced sheet numbers so as to define a hollow interior chamber with the fire screening means being operative within the chamber.
  • Such panels might occur in a multiple glazing unit comprising two or more spaced light transmitting sheet members at least one of which is of glass.
  • the fire screening means may be operative within the panel and also externally of the panel to cover at least one outer face thereof.
  • the fire screening means may also comprise a mechanical screening member or members which may be a sheet of fire resistant material such as asbestos.
  • the fire resistant sheet is held in an inoperative position by a release number which yields when its temperature is raised to a certain predetermined value.
  • the release member may comprise a material which melts when a predetermined temperature is reached.
  • the fire screening means may also comprise a fiowable material or materials which when released or activated flow into position to form a fire screening body of material substantially covering the area of the panel. In flowing into the operative position, such materials can make very close contact with the adjacent surface or surfaces of the panel.
  • a system according to the present invention may incorporate screening means comprising a flowable material together with a me chanical screening member as mentioned above.
  • the flowable material may comprise a liquid which thus inherently has good flow properties.
  • the flowable material may also comprise a liquid with solid particles therein in suspension. The dispersed solid may participate in creating a very effective thermal barrier and/or may confer other advantages properties on the fire screen.
  • the flowable material may also comprise a material in power or particular form.
  • This system has the important advantage, that if a fire occurs on one side of the panel, the space on the other side of the panel becomes positively screened off from the fire by the automatic interposition of a body of firescreening material.
  • this material By a suitable choice of this material and of the quantity thereof which comes into operation, very high standards of fire resistance can be achieved.
  • a veil or mist of water or other fire extinguishing agent cannot adequately prevent the transmission of heat rays or provide ahigh degree of thermal insulation.
  • a veil or mist very likely to drift or to become dispersed so that a reliable barrier effect could not be achieved.
  • the invention may be applied for fire screening panels of various materials.
  • the invention is primarily'intended for fire-screening light-transmitting panels, particularly panels composed wholly or predominantly of glass, vitrocrystalline material or plastics.
  • FIG. 1 is a front elevational view of a structural panel incorporating the the screening means according to the present invention
  • FIG. 2 is a sectional view taken along the line II--Il of FIG. 1;
  • FIGS. 3-6 are sectional views similar to that of FIG.
  • FIG. 7 is a diagrammatic sectional view taken parallel to the faces of a panel and showing a further modification of the invention.
  • FIG. 8 is a sectional view similar to that of FIG. 2 and showing still another modification.
  • FIG. 9 is sectional view similar to that of FIG. 2 and showing an additional modification.
  • the panel illustrated in FIG. 1 and 2 is a glazing panel comprising a frame I in which two light-transmitting sheets 2, 3 each ofa laminated form are held in spaced relationship by elastically compressed spacing members 4 which are disposed in spaced relation around the margins of the sheets and keep the margins or said sheets pressed firmly against inside surfaces of the frame 1.
  • Each of the top bottom and side members of frame 1 is a channel-form member. At least the top and bottom members are formed to provide an interior chamber.
  • the top frame member comprises an interior chamber and an adjacent open channel, defined by the walls 6, 7, 8 and 9. Apertures 10 are formed in the wall 6.
  • the interior chamber 5 of the top frame member is tilled with a hydrated salt, such as sodium silicate, which foams when heated.
  • each of the apertures 10 in this frame member is closed by a plug 11 formed of substance having a low melting point.
  • the plugs are made of wax.
  • the plugs 11 hermetically seal the chamber 5, but as soon as the temperature rises to a given abnormally high value the plugs melt so that the substance in the chamber 5 can flow through the apertures'lt) into the interior space between the sheets 2 and 3.
  • the chamber 5 in the bottom frame member may contain a dessicating material as often used in hollow glazing units, such as silica-gel. In that case the apertures 10 in the wall of such chamber are left unsealed.
  • Each of the glazing sheets 2, 3 is of laminated form comprising two thin sheets (2 mm) thick of chemically tempered soda-lime glass and an interposed plastic sheet such as polyvinyl chloride.
  • the chemical tempering of the sheets of glass was performed by immersing them in a both of molten KN03 at a temperature of 450C. for several hours.
  • the sheet of glass facing the fire is able to withstand the heat to which it is exposed for an appreciable time, 5 minutes for a sheet size of 0.65m X 0.80m, due to the high resistance to thermal shock conferred on the glass sheet by the chemical tempering treatment.
  • the intermediate layer of plastic in the laminate will retain the fragments of glass so that they are not scattered.
  • the plugs 11 melt and allow the liquid in chamber 5 of the top frame member to trickle along the inside faces of the sheets 2 and 3.
  • the interior space between these sheets becomes progressively filled with the liquid.
  • the chambers S in the side member of the frame may also be filled with hydrated sodium silicate.
  • the mixture of sodium silicate and water expands to form a liquid foam and the water then evaporates to leave a solid cellular body of a ceramic nature which provides a stable thermal barrier against the fire.
  • each of the glazing sheets 2 and 3 was a thin sheet of chemically reinforced glass 0.65m X 0.80m in size, glued together by means of an intermediate layer of polyvinyl chloride.
  • the panel was subjected to a test in which the panel was mounted in the wall of a room in which the mean temperature was raised to 900C. over a period of 45 minutes.
  • the outside face of the glass sheet located on the outside of the panel reached a temperature of 280C, and remained intact.
  • wax for the plugs 11, these may be composed of polyisobutylene-based glue such as Vistanex," of a mixture of such a glue with wax, or of a metal such as lead, or bismuth, or a lead, antimony or bismuth alloy.
  • the sheet 3 is a sheet of wired glass 7 mm in thickness.
  • the sheet2 is a laminate of the same kind as the laminate 2 in the panel shown in FIGS. 1 and 2.
  • the chamber 5 in the top frame member contains borax.
  • the apertures 10 are closed by plugs 11 composed of a material having a low melting point, such as lead.
  • the substance held in the chamber 5 of the top frame member forms a fire-screening body of material within the interior of the panel.
  • the sheet 3 was a sheet of transparent vitrocrystalline material with outstanding fire-resisting properties.
  • transparent vitrocrystalline materials can be obtained by heat-treating a glass having the following composition, expressed in percentage by weight: SiO z 65-75 percent A1 16-26 percent; Li O: 4-5 percent", TiO z 4-6 percent.
  • the heat-treatment is performed to bring about a controlled crystallisation of the glass.
  • the heat treatment can raise the coefficient of thermal expansion to a value of the order of 4.8-5.3 X 10" cm/C.
  • the frame 1 has two grooves 12, 13 in which the panels 2, 3 are hermetically sealed by means of an adhesive substance such as Thiokol.
  • the central portion of the frame which acts as a spacing member between the panel sheets, is hollow and therefore provides the chamber 5 for holding substances adapted to form a fire-screen.
  • the chamber 5 is filled, for instance, with hydrated silica-gel.
  • the apertures are sealed by plugs composed of a mixture of was and Vistanex.”
  • the interior chamber of the bottom frame member is filled with anhydrous silica gel acting as a dessicating agent to prevent condensation of moisture on the inside faces of the panel sheets 2, 3.
  • Sheet 2 is a laminate similar to the laminate 2 of the panel shown in FIGS. 1 and 2, while panel 3 is a sheet of thermally tempered glass, having a thickness of 6 mm.
  • the panel shown in FIG. 5 is a glazing unit.
  • the sheet 2 is a sheet of thermally tempered glass bearing a thin infra-red reflecting coating 18 on its inner face.
  • Sheet 3 is a vitrocrystalline sheet. Sheets 2 and 3 are held in spaced relation by an interposed metal strip which is soldered or welded to the margins of the sheets as known per se.
  • the container holds a quantity of substance such as hydrated borax.
  • a deflecting device such as the inverted V-section member 17, may be attached to the container 16 to direct the substance from the container onto the inner sheet faces.
  • Modifications of the present invention may be provided wherein several substances are normally held apart in an inoperative position but upon being released or activated because of the presence of fire become mixed and enter into a chemical reaction to produce a material which flows into the operative position to form the fire screening body of material substantially covering the area of the panel.
  • the formed material may be a foam.
  • the fire screen can thus be formed from materials which can be very conveniently accommodated in relatively small chambers in or adjacent to the panel.
  • the substances so contained may include a hydrated material.
  • the panel shown in FIG. 6 comprises a sheet 2 of chemically tempered glass 4-5 mm in thickness and a sheet 3 of vitrocrystalline material.
  • the panels 2, 3 are held in spaced relation in a frame 1.
  • This frame is similar to the frame 1 in the embodiment illustrated in FIG. 4 but has twin chambers 19, 20 containing different substances.
  • the chamber 19 may contain a mixture of the following composition expressed in percentages by weight: sodium, silicate 69 percent; sodium bicarbonate 7 percent; water 17 percent; and soda 7 percent
  • the chamber 20 may contain a mixture comprising, by weight, 59 percent concentrated phophoric acid, 39 percent water and a foaming agent, for instance 2 percent liquid soap.
  • a foaming agent for instance 2 percent liquid soap.
  • suitable volume ratio of the two mixtures held in cham- 4 bers I9 and 20 is 1.2 liters of the first mixture per 0.3 liters of the second mixture.
  • the liquids from the chambers 19, 20 trickle along the inner faces of the sheets 2, 3 and mix together in the bottom of the space between these sheets.
  • the mixture On coming together, and under the action of the heat to which the panel is exposed, the mixture forms a foam which finally occupies 4-5 times the initial volume of the mixtures.
  • the water evaporates from the foam, leaving a porous cellular solid or substantially solid body of ceramic nature based on silicates, carbonates and phosphates, which forms a very effective thermal barrier.
  • Suitable hydrated substances are hydrated compounds and mixtures of hydrated compounds such as sodium silicate, silica-gel, silicaaluminates, ferrous sulfate and carbonates. These hydrated substances can be conveniently held in inoperative position and will form when released or activated in a very good thermal barrier in close contact with the adjacent panel surface.
  • the above listed hydrated materials have the advantage that they do not produce poisonous products when exposed to high temperatures.
  • the close contact of the composition with the face or faces of the panel during the flow of the composition into operative position has the effect of delaying a rise in temperature of the sheet members constituting the panel.
  • the fire screening means may also comprise a sub stance which upon being heated undergoes a chemical reaction to generate a pressure which causes the fire screening means to become operative.
  • the release may occur by the action of an activating component which is a component of the substance constituting the fire screening means.
  • the panel shown in FIG. 7 comprises a frame assem bly for holding two panel sheets in spaced relation.
  • the frame assembly comprises top, bottom and side hollow frame members 21, 22, 23, and 24.
  • Each of the top and bottom hollow frame members 21 and 22 is divided into two compartments 25 and 26.
  • Each of the compartments 25 holds an aqueous solution containing 2 moles of sodium silicate, threefourths of a mole of sodium bicarbonate and 2 moles of caustic soda (NaOH).
  • Each of the compartments 26 holds an aqueous solution containing equal parts by weight of phosphoric acid and RBS 25 or RBS 48, which is a sulphonate foaming agent marketed by Chemical Products of Kerkstraat l6, i610 Ruisbroeck, Belgium.
  • Each of the side frame members 23 and 24 is divided into two compartments 27 and 28.
  • Each of the compartments 27 holds a dilute aqueous solution of phosphoric acid and each of the compartments 28 holds calcium carbonate.
  • the compartments 27 and 28 of each of the side frame members are separated by a wall 29 but there is an opening in this wall leading into a tube 30 which extends into the compartment 28. in the event of the outbreak of fire causing an abnormally high temperature rise in the panel, acid from the compartment 27 in each side frame member flows along the tube 30 into the compartment 28 containing the calcium carbonate.
  • each of these tubes there are tubes 32.
  • an orifice 33 opening into one of the compartments 28.
  • the left hand tube 32 places the top and bottom compartments 25 into communication with the compartment 28 in the left hand side frame member whereas the right hand tube 32 places the top and bottom compartments 26 into communication with the compartment 28 in the right hand side frame member.
  • the compartments 25 and 26 in the top frame member are furnished with tubes 34 and 35 closed by rubber plugs 36.
  • the compartments 25 and 26 in the bottom frame member are provided with tubes 37 and 38 which are also closed by rubber plugs 36.
  • the wax plugs 31 melt and the acid solution contained in the compartments 27 flows into the compartments 28 and reacts with the calcium carbonate in those compartments with consequent evolution of gas which via the tubes 32 gives rise to an increase in pressure in the compartments 25 and 26 in the top and bottom frame members. In consequence, the liquids contained in the said compartments 25 and 26 are subjected to pressure.
  • the rubber plugs 36 are forced out of place and the solution contained in the compartments 25 and 26 in the top and bottom frame members commence to discharge through the tubes 34, 35 and 37, 38.
  • the tubes 34 and 35 are inclined towards one another so as to ensure that the liquids discharging from the top compartments 25 and 26 become mixed together.
  • the bottom tubes 37 and 38 are similarly mutually inclined to ensure mixing of the liquids discharging from the bottom compartments 25 and 26.
  • the mixing of the solutions from compartments 25 and 26 gives rise to the formation of a foam which progressively fills the whole of the space between the spaced sheets of the panel. This foam constitutes a very effective thermal barrier.
  • the creation of the fire screen to be controlled at a position external to or remote from the structural panel.
  • the fire-screening means may be rendered operative in the event of the outbreak of fire at'a given place which is at some distance from the place where the structural panel is installed.
  • a structural panel with a remote control system for the firescreening means is illustrated in FIG. 8.
  • the panel shown in FIG. 8 comprises two chemically tempered sheets 39 and 40 of ordinary glass, 2 mm in thickness.
  • the sheets 39 and 40 are held in spaced relationship within a metal frame having bottom and top members 41 and 42.
  • Within the bottom frame member 41 there is a chamber 43 which communicates with an interior space 44 of the panel via an aperture 45 in the bottom frame member.
  • the chamber 43 is filled with a dessicating material 46 which is an alumina type molecular sieve.
  • the top frame member 42 is composed of a channel section component 47 and a bottom plate 48 which is soldered to that component.
  • the component 47 includes vertical flanges 49 which extends along the said component.
  • the component also includes a central thicker flange 50 which divides the space enclosed between the components 47 and the plate 48 into two compartments 51 and 52 into which the flanges 49 extend.
  • Tubes 53 and 54 extend from the interior of the compartments 51 and 52, at places located outwardly of the flanges 49, through the plate 48, and into the interior space 44 of the panel.
  • the tubes 53 and 54 are closed by rubber plugs 55.
  • control device 59 located at a place remote from the panel.
  • This control device comprises two compartments formed by facing containers 60 and 61 formed of polyvinyl chloride and secured to a partition member 62 made of anodised aluminium.
  • the partition member 62 is pierced by a hole which is plugged with a material 63 having a low melting point, e.g., wax.
  • the compartment 65 of the control device communicates with the compartment 66 via a tube 64 which extends through the partition member 62 and ensures equalisation of the pressures in the compartments.
  • the material 63 which plugs the hole in the partition member 62 melts and an aqueous solution of hydrochloric acid contained in the compartment 65 flows into the compartment 66 which contains calcium carbonate.
  • the hydrochloric acid solution reacts with the calcium carbonate with a resulting evolution of gas which'discharges along the conduit 58 and places the compartments 51 and 52 in the top frame member of the panel under pressure.
  • the compartment 51 contains a solution comprising two moles of sodium silicate, three quarters of a mole of sodium bicarbonate and 2 moles of caustic soda (NaOH).
  • the compartment 52 holds an aqueous solution containing 14 moles of phosphoric acid.
  • the pressure in the compartments 51 and 52 causes the plugs 55 in the lower ends of the tubes 53 and 54 to be ejected from these tubes and forces the solutions contained in the said compartments 51 and 52 through these tubes and into the interior space 44 between the panel sheets. Due to the mutual inclination of the tubes 53 and 54 the solutions mix together immediately on discharge from the tubes. On being mixed, the solutions react and give rise to the formation of a foam which progressively fills the space 44 and creates a very effective thermal barrier.
  • the pressure employed for creating the foam should preferably be of the order of 50 to I mm of mercury.
  • the compartment 52 can be charged with'a solution comprising: 4 moles of phosphoric acid, 50 percent by volume of RBS25 and 0.5 moles of aluminium chloride (AlCl)
  • AlCl aluminium chloride
  • FIG. 9 there is shown a glazing unit 67 along the top of which there is a container 68.
  • this container is concealed within a part of the wall in which the glazing unit is fitted.
  • the glazing unit is a double glazing unit comprising two sheets 2, 3, of glass which has been chemically tempered by ion exchange.
  • the sheets are held in spaced relation by a metal frame including a bottom frame member 69 in which there is an interior chamber holding a quantity of dessicating material 70 e.g. anhydrous calcium chloride, and an upper frame member 71 which supports the container 68.
  • dessicating material 70 e.g. anhydrous calcium chloride
  • the interior of the container 68 is normally sealed off by means of a plug 72 made of low-melting material, e.g., wax or a series of such plugs.
  • the container 68 holds a quantity of thermally insulating substances 73, which in this particular embodiment is sand or silico-aluminous granules which is introduced into the container 68 through a top aperture which is subsequently closed by a closure member 74.
  • the plug 72 melts'and the sand or other material in the container 68 pours down into the space 75, between the glass panes and thus creates a fire screen.
  • the unit of FIG. 9 could be constructed with an electrical resistance heating element within the plug 72, this heating element being connected to a source of electric current located externally of the unit.
  • the electric heating circuit could be controlled by switch means which is automatically actuated on the advent of tire, such switch means being located at a strategic position. Should the electric control system fail, the fire-screening means will still become operative when the temperature of the glazing unit rises sufficiently for the plug 72 to melt.
  • the quantity of sand 73 was replaced by a solid plate of thermally insulating'and/or refractory material which is supported against gravity by a fusible support 72 so that the plate falls into position between the glass panes when that support melts.
  • a solid firescreening plate is used but is supported externally of the unit so that when released the plate falls down in front of the glazing unit instead of between the glazing unit panes.
  • this container could be filled with an appropriate liquid.
  • a liquid can contain any required chemical compounds or be otherwise composed in order to provide a good resistance to the transmission of heat rays.
  • the invention is applicable to the fire-screening of multiple glazing units, e.g., triple glazing units or quadruple glazing units.
  • the invention can also be applied to the firescreening of panels comprising a single sheet, e.g., by providing fire-screening means in the form of a solid sheet which on the advent of fire descends into operative position in front of the said sheet.
  • the invention can be applied to the fire-screening of panels comprising one or more sheets of glass which may be thermally or chemically tempered, or comprising one or more sheets of vitrocrystalline, vitroceramic, or ceramic material.
  • the invention can also be applied to the firescreening of panels in which the sheet or sheets is or are of one or more other materials.
  • panels comprising a frame
  • this may be made of any suitable material.
  • frames made of iron, copper, aluminium and alloys of such metals.
  • the system in all embodiments of the invention it is preferable for the system to incorporate fire-screening means located along an upper edge or marginal portion of the panel so that on being activated or released the firescreening means moves into its operative position under or with the aid of gravity.
  • the advantage of this arrangement is that gravity does not have to be overcome in order to give an all-over coverage of the panel area.
  • the screening means it is preferred for the screening means to be localised along at least one edge or margin of panel in order to facilitate the construction and installation of the panel.
  • the fire-screening system can advantageously be combined with a hollow panel comprising sheets which are held in spaced relation in a frame which serves to promote mechanical strength both in normal service and in the event that the unit is exposed to fire.
  • the system When applying a system according to the invention to a hollow panel, the system preferably comprises firescreening means which is contained in a chamber or chambers in or structurally united with a frame holding the panel sheets.
  • the hollow panel and fire-screening system can be conveniently transported and installed as a single unit.
  • the fire-screening system is combined with a hollow panel comprising sheets which are held in spaced relation by a resilient spacing member or members.
  • a resilient spacing member or members can serve to press the sheets into direct or indirect contact with a frame holding the sheets.
  • a system according to the invention is combined with a hollow glazing panel comprising at least one sheet the external layers of which are under compressive stress.
  • sheet or sheets may for example be a sheet or sheets of thermally tempered glass.
  • the panel includes at least one sheet of chemically tempered glass, i.e., a sheet ofglass in which compressive surface stresses have been introduced by chemical action and notably by an ion exchange between the glass in the external layers of the sheet, and a contacting medium.
  • the ion exchange involved in chemical tempering comprises an exchange of alkali metal ions.
  • such an ion exchange can advantageously comprise an exchange of sodium ions in the glass for potassium or lithium ions contained in a contacting medium.
  • the sheet glass can be thin, e.g., 4 mm or less in thickness.
  • the use of thin tempered sheet glass in the construction of hollow glazing units is of course an advantage in that the unit can be given a high resistance to thermal shock while being of favourably low dimensions and weight.
  • the invention includes embodiments in which the fire-screening system is combined with a lighttransmitting panel comprising at least one sheet which is a laminate comprising at least two thinner sheets directly or indirectly united in face to face relationship.
  • a laminate may comprise two sheets of chemically tempered glass united by means of an interposed plastics sheet.
  • the laminate itself provides a number of thermal barriers inhibiting flame propagation and the laminate-sheet has a high mechanical strength because if the outer sheet which is exposed to the fire should break the fragments of this sheet are retained by means of the interposed plastics sheet.
  • a fire screen for a light transmitting structural panel comprising means for providing at least one body of material capable of screening a structural panel against fire, means for retaining said fire screening means in an inoperative position in the vicinity of the periphery of the structural panel, and means responsive to a rise to a predetermined temperature for releasing said fire screening means from its inoperative position into an operative position in which at least one fire screening body of material covers substantially the area of the panel, and wherein said fire screening material comprises a flowable hydrated material containing absorbed water and which material is flowable when heated.
  • a fire screen as claimed in claim 1 wherein said hydrated material is selected from the group consisting of sodium silicate, silica-gel, borax, silica-aluminate, a ferrous sulphate or a ferrous carbonate.
  • a fire screen as claimed in claim 1 and comprising a frame enclosing said panel, means within said frame for defining a chamber therein, said fire screening means being contained in said chamber.
  • a fire screen as claimed in claim 1 wherein said panel comprises a plurality of spaced sheet members, and resilient spacer means for retaining said sheet members in spaced relation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Special Wing (AREA)
  • Building Environments (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

A structural panel comprising one or a plurality of spaced sheet numbers has a frame around its edge. At least one body of material capable of screening the structural panel against fire is provided either in the form of a mechanical member or a chemically activated substance. The member or substance are retained in an inoperative position in the vicinity of the structural panel and are released to an operative position in response to a predetermined rise of temperature wherein a body of material covers substantially one or more faces of the panel.

Description

United States Patent 1 1 Voiturier et al.
1 Sept. 24, 1974 FIRE SCREEN FOR A STRUCTURAL PANEL 3,154,821 11/1964 Wcker 52/168 3,460,303 8 1969 Al 52 616 [75] Inventors: f Gerpmnes; 3,543,460 1 12/1970 sm s iiiyl... 52i232 Francis Jacquemm, 3,566,564 3/1971 Gaeth 52/232 Monceau-sur-Sambre, both of Belgium FOREIGN PATENTS OR APPLICATIONS Assigneez GlaverbeLMecaniver, 1,529,708 5/1968 France 52/317 W t ael-B itsf t, Bel 'u a erm o or g] m Primary Examiner-John E. Murtagh Flledi J 1972 Attorney, Agent, or FirmEdrnund M. Jaskiewicz [21] Appl. No.: 263,762
[57] ABSTRACT [52] US. Cl 52/1, 52/ 168, 52/171, A Structural panel comprising one or a plurality of 52/232 spaced sheet numbers has a frame around its edge. At [51] Int. Cl E04!) 1/92 least One body of material capable of screening the [58] Field of Search 52/ 1,202, 203, 232, 171, structural panel against fire is provided either in the 52/168, 172; 169/2 R, 26; l60/1-5 form of a mechanical member or a chemically activated substance. The member or substance are re- [56] R f r Cit d tained in an inoperative position in the vicinity of the UNITED STATES PATENTS structural panel and are released to an operative position in response to a predetermined rise of temperagg'fiffig ture wherein a body of material covers substantially I,369:5l8 2/1921 Bumbarger 160/1 one or more faces of the Panel- 2,l42,164 l/l939 vauig 1 52/232 2,419,400 4 1947 Haven 52 172 13 Clams 9 Draw guns 6 2 q 4 5 9 N N 70 I I A I 4/ 2 I E I o N N I N f I A 2 N 2 N 3 PAIENIED sP24|s14 SHEET 3 OF 6 Fig.6.
Fig.5.
FIRE SCREEN FOR A STRUCTURAL PANEL The present invention relates to a structural panel having a fire screen, more particularly, to such a fire screen which is provided in the operative protecting position in response to indication of a fire.
In the construction of buildings panels are frequently used in exterior or interior walls which are not resistant to fire. One such example is a' glazing panel formed either of glass, vitrocrystalline material, or plastics.
It is frequently necessary that structural components of a building must comply with high standards of fire resistance. Fire resistance may be determined against a standard test in which the structural component is exposed to a specified temperature cycle for a certain duration of time. The fire resistance property of the component will be determined by the length of time for which the component can retain the strength required in order to fulfill its intended function. Under certain circumstances it may be necessary to comply with fire resistance standards which require the componentto have a minimum strength retention time, to be completely flame proof, and to comply with other stringent tests of thermal insulating power to ensure that the component will deter spreading of a fire a radiation of heat from the component but will not become so hot as to cause serious risk of burning to a person who may touch the panel while it is exposed to the fire.
The standard of fire resistance of a given component can be quantified as a function of the time for which the component satisfies one or more of the specified criteria during a test in which the component is exposed to the interior of an enclosure in which the temperature is raised according to a predetermined schedule. For example, standards of fire resistance designated l, 2 and 3 may be established corresponding to resistance times of l5, and 60 minutes respectively in a test in which the temperature of the test enclosure is 720, 820 and 925C during that time.
By reason of the materials of which they are composed, light-transmitting panels do not have a very high inherent fire resistance.
It has been proposed to provide buildings with a fire protection system which operates automatically in the event of an outbreak of fire. Thus it has been proposed to provide over the door and window openings of a building, heat-responsive sprinkler heads from which a fire-extinguishing agent is automatically discharged to produce a veil" or mist in front of the window or door openings in the event of a fire.
This known system is designed to assist in extinguishing a fire within or in the vicinity of the building. The system cannot prevent intense heat propagation through the window or door panels or the complete destruction of these panels if the fire persists.
lt is therefore the principal object of the present invention to provide a novel and improved fire screen system for a structural panel.
It is another object of the present invention to provide a system which screens a structural panel which is not resistant to fire and which is automatically released to an operative position to render the panel fire resistam.
It is further object of the present invention to provide a fire screen system for a structural panel which is automatically actuated upon a rise in temperature indicative of the presence of fire so as to provide a fire screening body of material to protect the panel'fr'om damage and at least from complete destruction.
The objects of the present invention are achieved and the disadvantages of the prior art as described above are eliminated by the fire screening system for a structural panel disclosed as the present invention. According to the present invention a structural panel is provided with a fire screening means which is retained in an inoperative position within or in the vicinity of the panel. A screen releasing or activating component is associated with the fire screening means so as to release or activate the screening means in response to a rise in temperature indicative in the presence of fire. Upon activation of the fire screening means there is provided at least one fire screening body of material which substantially covers the area of the panel.
In a one embodiment, the fire screening means in its operative position covers at least one outer face of the structural panel. In most cases it will be sufficient to provide the fire screen over only one side of the panel. The system according to present invention can be used for fire screening any kind of a panel including panels comprising a single sheet number or plurality of spaced sheet numbers.
In its operative position, the fire screening means can also cover both faces of the panel. This may be desirable when the panel is a component of a partition between rooms in either of which a fire may occur and it is desired to contain any such occurrence of fire.
The invention may also be applied to a structural panel comprising two or more spaced sheet numbers so as to define a hollow interior chamber with the fire screening means being operative within the chamber. Such panels might occur in a multiple glazing unit comprising two or more spaced light transmitting sheet members at least one of which is of glass. In such hollow panels, the fire screening means may be operative within the panel and also externally of the panel to cover at least one outer face thereof.
The fire screening means may also comprise a mechanical screening member or members which may be a sheet of fire resistant material such as asbestos. The fire resistant sheet is held in an inoperative position by a release number which yields when its temperature is raised to a certain predetermined value. The release member may comprise a material which melts when a predetermined temperature is reached.
The fire screening means may also comprise a fiowable material or materials which when released or activated flow into position to form a fire screening body of material substantially covering the area of the panel. In flowing into the operative position, such materials can make very close contact with the adjacent surface or surfaces of the panel. A system according to the present invention may incorporate screening means comprising a flowable material together with a me chanical screening member as mentioned above.
The flowable material may comprise a liquid which thus inherently has good flow properties. The flowable material may also comprise a liquid with solid particles therein in suspension. The dispersed solid may participate in creating a very effective thermal barrier and/or may confer other advantages properties on the fire screen. The flowable material may also comprise a material in power or particular form.
This system has the important advantage, that if a fire occurs on one side of the panel, the space on the other side of the panel becomes positively screened off from the fire by the automatic interposition of a body of firescreening material. By a suitable choice of this material and of the quantity thereof which comes into operation, very high standards of fire resistance can be achieved. This is not possible with the previously known system described above because a veil or mist of water or other fire extinguishing agent cannot adequately prevent the transmission of heat rays or provide ahigh degree of thermal insulation. Moreover, is such a veil or mist very likely to drift or to become dispersed so that a reliable barrier effect could not be achieved.
'of fire-resistant material which can have sufficiently good thermally insulating properties to preserve the panel, or at least that part of the panel protected by the screen, from serious damage or destruction so that the panel can itself continue to function, if necessary, as a flame and smoke-proof closure or even as a strength member.
The invention may be applied for fire screening panels of various materials. The invention is primarily'intended for fire-screening light-transmitting panels, particularly panels composed wholly or predominantly of glass, vitrocrystalline material or plastics.
Other objects and advantages of the present invention will be apparent upon reference to the accompanying description when taken in conjunction with the following drawings, which are exemplary, wherein;
a FIG. 1 is a front elevational view ofa structural panel incorporating the the screening means according to the present invention;
FIG. 2 is a sectional view taken along the line II--Il of FIG. 1;
FIGS. 3-6 are sectional views similar to that of FIG.
2 and show modifications of the present invention;
FIG. 7 is a diagrammatic sectional view taken parallel to the faces of a panel and showing a further modification of the invention;
FIG. 8 is a sectional view similar to that of FIG. 2 and showing still another modification; and
FIG. 9 is sectional view similar to that of FIG. 2 and showing an additional modification.
Proceeding next to the drawings wherein like reference symbols indicate the same parts throughout the various views a specific embodiment and modifications of the present invention will be described in detail.
The panel illustrated in FIG. 1 and 2 is a glazing panel comprising a frame I in which two light-transmitting sheets 2, 3 each ofa laminated form are held in spaced relationship by elastically compressed spacing members 4 which are disposed in spaced relation around the margins of the sheets and keep the margins or said sheets pressed firmly against inside surfaces of the frame 1. Each of the top bottom and side members of frame 1 is a channel-form member. At least the top and bottom members are formed to provide an interior chamber. Thus, the top frame member comprises an interior chamber and an adjacent open channel, defined by the walls 6, 7, 8 and 9. Apertures 10 are formed in the wall 6. The interior chamber 5 of the top frame member is tilled with a hydrated salt, such as sodium silicate, which foams when heated.
'Each of the apertures 10 in this frame member is closed by a plug 11 formed of substance having a low melting point. In the present embodiment the plugs are made of wax. At normal ambient temperature the plugs 11 hermetically seal the chamber 5, but as soon as the temperature rises to a given abnormally high value the plugs melt so that the substance in the chamber 5 can flow through the apertures'lt) into the interior space between the sheets 2 and 3.
The chamber 5 in the bottom frame member may contain a dessicating material as often used in hollow glazing units, such as silica-gel. In that case the apertures 10 in the wall of such chamber are left unsealed.
Each of the glazing sheets 2, 3 is of laminated form comprising two thin sheets (2 mm) thick of chemically tempered soda-lime glass and an interposed plastic sheet such as polyvinyl chloride. The chemical tempering of the sheets of glass was performed by immersing them in a both of molten KN03 at a temperature of 450C. for several hours.
If fire should break out, the sheet of glass facing the fire is able to withstand the heat to which it is exposed for an appreciable time, 5 minutes for a sheet size of 0.65m X 0.80m, due to the high resistance to thermal shock conferred on the glass sheet by the chemical tempering treatment.
If the sheet should break, the intermediate layer of plastic in the laminate will retain the fragments of glass so that they are not scattered.
As soon as the plugs 11 reach a temperature of the order of C, they melt and allow the liquid in chamber 5 of the top frame member to trickle along the inside faces of the sheets 2 and 3. The interior space between these sheets becomes progressively filled with the liquid. If necessary, the chambers S in the side member of the frame may also be filled with hydrated sodium silicate.
Under the action of the heat, the mixture of sodium silicate and water expands to form a liquid foam and the water then evaporates to leave a solid cellular body of a ceramic nature which provides a stable thermal barrier against the fire.
In one particular construction of the panel shown in FIGS. 1 and 2, each of the glazing sheets 2 and 3 was a thin sheet of chemically reinforced glass 0.65m X 0.80m in size, glued together by means of an intermediate layer of polyvinyl chloride. The panel was subjected to a test in which the panel was mounted in the wall of a room in which the mean temperature was raised to 900C. over a period of 45 minutes.
The outside face of the glass sheet located on the outside of the panel reached a temperature of 280C, and remained intact.
As alternative to the use of wax for the plugs 11, these may be composed of polyisobutylene-based glue such as Vistanex," of a mixture of such a glue with wax, or of a metal such as lead, or bismuth, or a lead, antimony or bismuth alloy.
In the panel shown in FIG. 3, the sheet 3 is a sheet of wired glass 7 mm in thickness. The sheet2 is a laminate of the same kind as the laminate 2 in the panel shown in FIGS. 1 and 2. In the panel shown in FIG. 3, the chamber 5 in the top frame member contains borax. The apertures 10 are closed by plugs 11 composed of a material having a low melting point, such as lead.
In the event of the outbreak of fire, the substance held in the chamber 5 of the top frame member forms a fire-screening body of material within the interior of the panel.
In another embodiment which is not shown, but which is very similar to that illustrated in FIG. 3, the sheet 3 was a sheet of transparent vitrocrystalline material with outstanding fire-resisting properties. Such transparent vitrocrystalline materials can be obtained by heat-treating a glass having the following composition, expressed in percentage by weight: SiO z 65-75 percent A1 16-26 percent; Li O: 4-5 percent", TiO z 4-6 percent. The heat-treatment is performed to bring about a controlled crystallisation of the glass. The heat treatment can raise the coefficient of thermal expansion to a value of the order of 4.8-5.3 X 10" cm/C.
In the panel shown in FIG. 4, the frame 1 has two grooves 12, 13 in which the panels 2, 3 are hermetically sealed by means of an adhesive substance such as Thiokol. The central portion of the frame, which acts as a spacing member between the panel sheets, is hollow and therefore provides the chamber 5 for holding substances adapted to form a fire-screen. The chamber 5 is filled, for instance, with hydrated silica-gel. The apertures are sealed by plugs composed of a mixture of was and Vistanex." The interior chamber of the bottom frame member is filled with anhydrous silica gel acting as a dessicating agent to prevent condensation of moisture on the inside faces of the panel sheets 2, 3. Sheet 2 is a laminate similar to the laminate 2 of the panel shown in FIGS. 1 and 2, while panel 3 is a sheet of thermally tempered glass, having a thickness of 6 mm.
The panel shown in FIG. 5 is a glazing unit. The sheet 2 is a sheet of thermally tempered glass bearing a thin infra-red reflecting coating 18 on its inner face. Sheet 3 is a vitrocrystalline sheet. Sheets 2 and 3 are held in spaced relation by an interposed metal strip which is soldered or welded to the margins of the sheets as known per se. Within the glazing, and suspended from the top portion ofthe strip 15, there is a container 16 having apertures 10 in its bottom wall. There are two parallel series of such apertures, disposed on opposite sides, of a mid-plane parallel with sheets 2, 3. The container holds a quantity of substance such as hydrated borax. If the plugs 11 composed of low-melting material such as wax melt, the contents of the container are released and trickle over the inside faces of the sheets 2, 3. If required, a deflecting device such as the inverted V-section member 17, may be attached to the container 16 to direct the substance from the container onto the inner sheet faces.
Modifications of the present invention may be provided wherein several substances are normally held apart in an inoperative position but upon being released or activated because of the presence of fire become mixed and enter into a chemical reaction to produce a material which flows into the operative position to form the fire screening body of material substantially covering the area of the panel. The formed material may be a foam. The fire screen can thus be formed from materials which can be very conveniently accommodated in relatively small chambers in or adjacent to the panel. The substances so contained may include a hydrated material.
The panel shown in FIG. 6 comprises a sheet 2 of chemically tempered glass 4-5 mm in thickness and a sheet 3 of vitrocrystalline material. The panels 2, 3 are held in spaced relation in a frame 1. This frame is similar to the frame 1 in the embodiment illustrated in FIG. 4 but has twin chambers 19, 20 containing different substances. By way of example, the chamber 19 may contain a mixture of the following composition expressed in percentages by weight: sodium, silicate 69 percent; sodium bicarbonate 7 percent; water 17 percent; and soda 7 percent, and the chamber 20 may contain a mixture comprising, by weight, 59 percent concentrated phophoric acid, 39 percent water and a foaming agent, for instance 2 percent liquid soap. A
suitable volume ratio of the two mixtures held in cham- 4 bers I9 and 20 is 1.2 liters of the first mixture per 0.3 liters of the second mixture.
If the temperature rises sufficiently to melt the plugs 11 the liquids from the chambers 19, 20 trickle along the inner faces of the sheets 2, 3 and mix together in the bottom of the space between these sheets. On coming together, and under the action of the heat to which the panel is exposed, the mixture forms a foam which finally occupies 4-5 times the initial volume of the mixtures. The water evaporates from the foam, leaving a porous cellular solid or substantially solid body of ceramic nature based on silicates, carbonates and phosphates, which forms a very effective thermal barrier.
Other examples of suitable hydrated substances are hydrated compounds and mixtures of hydrated compounds such as sodium silicate, silica-gel, silicaaluminates, ferrous sulfate and carbonates. These hydrated substances can be conveniently held in inoperative position and will form when released or activated in a very good thermal barrier in close contact with the adjacent panel surface. The above listed hydrated materials have the advantage that they do not produce poisonous products when exposed to high temperatures. The close contact of the composition with the face or faces of the panel during the flow of the composition into operative position has the effect of delaying a rise in temperature of the sheet members constituting the panel.
It is not necessary for the materials flowing into the interior chamber of the panel to completely fill the chamber because in these cases it is also possible for the materials to flow along the interior faces of the sheet members defining the space so as to form separate coatings each of which constitutes a body of fire screening materials according to the invention.
The fire screening means may also comprise a sub stance which upon being heated undergoes a chemical reaction to generate a pressure which causes the fire screening means to become operative. The release may occur by the action of an activating component which is a component of the substance constituting the fire screening means.
The panel shown in FIG. 7 comprises a frame assem bly for holding two panel sheets in spaced relation. The frame assembly comprises top, bottom and side hollow frame members 21, 22, 23, and 24.
Each of the top and bottom hollow frame members 21 and 22 is divided into two compartments 25 and 26. Each of the compartments 25 holds an aqueous solution containing 2 moles of sodium silicate, threefourths of a mole of sodium bicarbonate and 2 moles of caustic soda (NaOH). Each of the compartments 26 holds an aqueous solution containing equal parts by weight of phosphoric acid and RBS 25 or RBS 48, which is a sulphonate foaming agent marketed by Chemical Products of Kerkstraat l6, i610 Ruisbroeck, Belgium.
Each of the side frame members 23 and 24 is divided into two compartments 27 and 28. Each of the compartments 27 holds a dilute aqueous solution of phosphoric acid and each of the compartments 28 holds calcium carbonate. The compartments 27 and 28 of each of the side frame members are separated by a wall 29 but there is an opening in this wall leading into a tube 30 which extends into the compartment 28. in the event of the outbreak of fire causing an abnormally high temperature rise in the panel, acid from the compartment 27 in each side frame member flows along the tube 30 into the compartment 28 containing the calcium carbonate.
Under normal conditions the flow of acid into the compartment 28 is prevented by a wax plug 31 in the end of the tube 30.
Along the sides of the frame assembly there are tubes 32. In the peripheral wall of each of these tubes there is an orifice 33 opening into one of the compartments 28. Thus the left hand tube 32 places the top and bottom compartments 25 into communication with the compartment 28 in the left hand side frame member whereas the right hand tube 32 places the top and bottom compartments 26 into communication with the compartment 28 in the right hand side frame member.
The compartments 25 and 26 in the top frame member are furnished with tubes 34 and 35 closed by rubber plugs 36. The compartments 25 and 26 in the bottom frame member are provided with tubes 37 and 38 which are also closed by rubber plugs 36.
in the event that the panel is exposed to fire, the wax plugs 31 melt and the acid solution contained in the compartments 27 flows into the compartments 28 and reacts with the calcium carbonate in those compartments with consequent evolution of gas which via the tubes 32 gives rise to an increase in pressure in the compartments 25 and 26 in the top and bottom frame members. In consequence, the liquids contained in the said compartments 25 and 26 are subjected to pressure.
When this pressure exceeds a certain value, the rubber plugs 36 are forced out of place and the solution contained in the compartments 25 and 26 in the top and bottom frame members commence to discharge through the tubes 34, 35 and 37, 38. The tubes 34 and 35 are inclined towards one another so as to ensure that the liquids discharging from the top compartments 25 and 26 become mixed together. The bottom tubes 37 and 38 are similarly mutually inclined to ensure mixing of the liquids discharging from the bottom compartments 25 and 26. The mixing of the solutions from compartments 25 and 26 gives rise to the formation of a foam which progressively fills the whole of the space between the spaced sheets of the panel. This foam constitutes a very effective thermal barrier.
In certain cases it is an advantage for the creation of the fire screen to be controlled at a position external to or remote from the structural panel. For example it may be necessary for the fire-screening means to be rendered operative in the event of the outbreak of fire at'a given place which is at some distance from the place where the structural panel is installed. A structural panel with a remote control system for the firescreening means is illustrated in FIG. 8.
The panel shown in FIG. 8 comprises two chemically tempered sheets 39 and 40 of ordinary glass, 2 mm in thickness. The sheets 39 and 40 are held in spaced relationship within a metal frame having bottom and top members 41 and 42. Within the bottom frame member 41 there is a chamber 43 which communicates with an interior space 44 of the panel via an aperture 45 in the bottom frame member. The chamber 43 is filled with a dessicating material 46 which is an alumina type molecular sieve.
The top frame member 42 is composed of a channel section component 47 and a bottom plate 48 which is soldered to that component. The component 47 includes vertical flanges 49 which extends along the said component. The component also includes a central thicker flange 50 which divides the space enclosed between the components 47 and the plate 48 into two compartments 51 and 52 into which the flanges 49 extend. Tubes 53 and 54 extend from the interior of the compartments 51 and 52, at places located outwardly of the flanges 49, through the plate 48, and into the interior space 44 of the panel. The tubes 53 and 54 are closed by rubber plugs 55.
Further tubes 56 and 57 lead from the compartments 51 and 52, through the component 47 and on the outside of the panel are joined to a common conduit 58 so that the compartments 51 and 52 in the top frame member of the panel are in communication with a control device 59 located at a place remote from the panel. This control device comprises two compartments formed by facing containers 60 and 61 formed of polyvinyl chloride and secured to a partition member 62 made of anodised aluminium.
The partition member 62 is pierced by a hole which is plugged with a material 63 having a low melting point, e.g., wax. The compartment 65 of the control device communicates with the compartment 66 via a tube 64 which extends through the partition member 62 and ensures equalisation of the pressures in the compartments.
in the event that the control device 59 becomes exposed to tire, the material 63 which plugs the hole in the partition member 62 melts and an aqueous solution of hydrochloric acid contained in the compartment 65 flows into the compartment 66 which contains calcium carbonate. The hydrochloric acid solution reacts with the calcium carbonate with a resulting evolution of gas which'discharges along the conduit 58 and places the compartments 51 and 52 in the top frame member of the panel under pressure.
The compartment 51 contains a solution comprising two moles of sodium silicate, three quarters of a mole of sodium bicarbonate and 2 moles of caustic soda (NaOH).
The compartment 52 holds an aqueous solution containing 14 moles of phosphoric acid.
The pressure in the compartments 51 and 52 causes the plugs 55 in the lower ends of the tubes 53 and 54 to be ejected from these tubes and forces the solutions contained in the said compartments 51 and 52 through these tubes and into the interior space 44 between the panel sheets. Due to the mutual inclination of the tubes 53 and 54 the solutions mix together immediately on discharge from the tubes. On being mixed, the solutions react and give rise to the formation of a foam which progressively fills the space 44 and creates a very effective thermal barrier.
In tests performed on panels comprising pressure control systems as described with reference to FIGS. 7 and 8 it has been found that the pressure employed for creating the foam should preferably be of the order of 50 to I mm of mercury.
It is therefore apparent that with this modification the fire screening can be rendered operative in response to conditions existing at a location which is not in the immediate vicinity of the panel incorporating the fire screen.
In a modification of the system described with reference to FIG. 8, the compartment 52 can be charged with'a solution comprising: 4 moles of phosphoric acid, 50 percent by volume of RBS25 and 0.5 moles of aluminium chloride (AlCl This solution enables a foam of higher density to be formed and gives rise to the formation of a body of fire-resisting material of ceramic nature.
In FIG. 9, there is shown a glazing unit 67 along the top of which there is a container 68. When the glazing unit is installed in a building or other structure this container is concealed within a part of the wall in which the glazing unit is fitted.
The glazing unit is a double glazing unit comprising two sheets 2, 3, of glass which has been chemically tempered by ion exchange. The sheets are held in spaced relation by a metal frame including a bottom frame member 69 in which there is an interior chamber holding a quantity of dessicating material 70 e.g. anhydrous calcium chloride, and an upper frame member 71 which supports the container 68. The interior of the container 68 is normally sealed off by means of a plug 72 made of low-melting material, e.g., wax or a series of such plugs. The container 68 holds a quantity of thermally insulating substances 73, which in this particular embodiment is sand or silico-aluminous granules which is introduced into the container 68 through a top aperture which is subsequently closed by a closure member 74.
In the event that the glazing unit is exposed to fire or a fire hazard, the plug 72 melts'and the sand or other material in the container 68 pours down into the space 75, between the glass panes and thus creates a fire screen.
As a modification, the unit of FIG. 9 could be constructed with an electrical resistance heating element within the plug 72, this heating element being connected to a source of electric current located externally of the unit. The electric heating circuit could be controlled by switch means which is automatically actuated on the advent of tire, such switch means being located at a strategic position. Should the electric control system fail, the fire-screening means will still become operative when the temperature of the glazing unit rises sufficiently for the plug 72 to melt.
According to another modification, the quantity of sand 73 was replaced by a solid plate of thermally insulating'and/or refractory material which is supported against gravity by a fusible support 72 so that the plate falls into position between the glass panes when that support melts.
According to a further modification, a solid firescreening plate is used but is supported externally of the unit so that when released the plate falls down in front of the glazing unit instead of between the glazing unit panes.
Instead of filling the container 68 with sand or another discrete solid material, this container could be filled with an appropriate liquid. Such a liquid can contain any required chemical compounds or be otherwise composed in order to provide a good resistance to the transmission of heat rays.
While reference has in particular been made to double glazing units it will be understood that the invention is applicable to the fire-screening of multiple glazing units, e.g., triple glazing units or quadruple glazing units. The invention can also be applied to the firescreening of panels comprising a single sheet, e.g., by providing fire-screening means in the form of a solid sheet which on the advent of fire descends into operative position in front of the said sheet.
Any of the embodiments of the invention as described can be modified by substituting different materials from those referred to without departing from the scope of the invention.
The invention can be applied to the fire-screening of panels comprising one or more sheets of glass which may be thermally or chemically tempered, or comprising one or more sheets of vitrocrystalline, vitroceramic, or ceramic material.
The invention can also be applied to the firescreening of panels in which the sheet or sheets is or are of one or more other materials.
In the case of panels comprising a frame, this may be made of any suitable material. However preference is given to frames made of iron, copper, aluminium and alloys of such metals.
When employing a liquid which flows into position to create the fire screen, it is of interest to use a liquid which has the property of wetting and adhering to the adjacent sheet or sheets of the panel but which does not flow freely, even under the effect of high temperature. The adherence to the sheet can be promoted by virtue of a partial or total solidification of the material, e.g., as a result of chemical transformation.
In all embodiments of the invention it is preferable for the system to incorporate fire-screening means located along an upper edge or marginal portion of the panel so that on being activated or released the firescreening means moves into its operative position under or with the aid of gravity. The advantage of this arrangement is that gravity does not have to be overcome in order to give an all-over coverage of the panel area. In any case it is preferred for the screening means to be localised along at least one edge or margin of panel in order to facilitate the construction and installation of the panel.
The fire-screening system can advantageously be combined with a hollow panel comprising sheets which are held in spaced relation in a frame which serves to promote mechanical strength both in normal service and in the event that the unit is exposed to fire.
When applying a system according to the invention to a hollow panel, the system preferably comprises firescreening means which is contained in a chamber or chambers in or structurally united with a frame holding the panel sheets. In such circumstances the hollow panel and fire-screening system can be conveniently transported and installed as a single unit.
It is apparent that in one embodiment of the invention the fire-screening system is combined with a hollow panel comprising sheets which are held in spaced relation by a resilient spacing member or members. Such spacing member or members can serve to press the sheets into direct or indirect contact with a frame holding the sheets. By means of such a resilient spacing means, mechanical strength is promoted, as well as the effective sealing of the panel sheets in the frame, and the resilient spacing means can yield to allow some deformation of the panel sheets under the action of heat.
Advantageously a system according to the invention is combined with a hollow glazing panel comprising at least one sheet the external layers of which are under compressive stress. Such sheet or sheets may for example be a sheet or sheets of thermally tempered glass. Preferably the panel includes at least one sheet of chemically tempered glass, i.e., a sheet ofglass in which compressive surface stresses have been introduced by chemical action and notably by an ion exchange between the glass in the external layers of the sheet, and a contacting medium. Usually the ion exchange involved in chemical tempering comprises an exchange of alkali metal ions. In particular such an ion exchange can advantageously comprise an exchange of sodium ions in the glass for potassium or lithium ions contained in a contacting medium. It is an advantage of using a chemical tempering technique that the sheet glass can be thin, e.g., 4 mm or less in thickness. The use of thin tempered sheet glass in the construction of hollow glazing units is of course an advantage in that the unit can be given a high resistance to thermal shock while being of favourably low dimensions and weight.
The invention includes embodiments in which the fire-screening system is combined with a lighttransmitting panel comprising at least one sheet which is a laminate comprising at least two thinner sheets directly or indirectly united in face to face relationship. For example, such a laminate may comprise two sheets of chemically tempered glass united by means of an interposed plastics sheet. In such an embodiment the laminate itself provides a number of thermal barriers inhibiting flame propagation and the laminate-sheet has a high mechanical strength because if the outer sheet which is exposed to the fire should break the fragments of this sheet are retained by means of the interposed plastics sheet.
It will be understood that this invention is susceptible to modification in order to adapt it to different usages and conditions, and accordingly, it is desired to comprehend such modifications within this invention as may fall within the scope of appended claims.
What is claimed is:
l. A fire screen for a light transmitting structural panel comprising means for providing at least one body of material capable of screening a structural panel against fire, means for retaining said fire screening means in an inoperative position in the vicinity of the periphery of the structural panel, and means responsive to a rise to a predetermined temperature for releasing said fire screening means from its inoperative position into an operative position in which at least one fire screening body of material covers substantially the area of the panel, and wherein said fire screening material comprises a flowable hydrated material containing absorbed water and which material is flowable when heated.
2. A fire screen as claimed in claim 1 wherein said panel is hollow, said fire screening means being released to an operative position within the panel.
3. A fire screen as claimed in claim 1 wherein said fire screening means comprises a flowable material which when released forms said tire screening body of material.
4. A fire screen as claimed in claim 3 wherein said flowable material is a liquid.
5. A fire screen as claimed in claim 3 wherein said flowable material is a solids/liquid suspension.
6. A fire screen as claimed in claim 1 wherein said hydrated material is selected from the group consisting of sodium silicate, silica-gel, borax, silica-aluminate, a ferrous sulphate or a ferrous carbonate.
7. A fire screen as claimed in claim 1 wherein the liquid ingredient of the hydrated material will evaporate after the fire screening means has been released to its operative position to leave a substantially solid fire screening body of material.
8. A fire screen as claimed in claim 3 wherein said fire screening body of material flows to form a coating on one of the faces of said panel when released.
9. A fire screen as claimed in claim 3 wherein said panel is hollow, said fire screening material flowing into and filling the panel upon being released.
10. A fire screen as claimed in claim 1 and comprising a frame enclosing said panel, means within said frame for defining a chamber therein, said fire screening means being contained in said chamber.
11. A fire screen as claimed in claim 1 wherein said panel comprises a plurality of spaced sheet members, and resilient spacer means for retaining said sheet members in spaced relation.
12. A fire screen as claimed in claim 1 wherein said panel comprises at least one sheet of chemically tempered glass.
13. A fire screen as claimed in claim 1 wherein said panel comprises at least one laminated sheet, said laminated sheet comprising a plurality of sheets of chemically tempered glass and a layer of plastic therebetween uniting said glass sheets.

Claims (13)

1. A fire screen for a light transmitting structural panel comprising means for providing at least one body of material capable of screening a structural panel against fire, means for retaining said fire screening means in an inoperative position in the vicinity of the periphery of the structural panel, and means responsive to a rise to a predetermined temperature for releasing said fire screening means from its inoperative position into an operative position in which at least one fire screening body of material covers substantially the area of the panel, and wherein said fire screening material comprises a flowable hydrated material containing absorbed water and which material is flowable when heated.
2. A fire screen as claimed in claim 1 wherein said panel is hollow, said fire screening means being released to an operative position within the panel.
3. A fire screen as claimed in claim 1 wherein said fire screening means comprises a flowable material which when released forms said fire screening body of material.
4. A fire screen as claimed in claim 3 wherein said flowable material is a liquid.
5. A fire screen as claimed in claim 3 wherein said flowable material is a solids/liquid suspension.
6. A fire screen as claimed in claim 1 wherein said hydrated material is selected from the group consisting of sodium silicate, silica-gel, borax, silica-aluminate, a ferrous sulphate or a ferrous carbonate.
7. A fire screen as claimed in claim 1 wherein the liquid ingredient of the hydrated material will evaporate after the fire screening means has been released to its operative position to leave a substantially solid fire screening body of material.
8. A fire screen as claimed in claim 3 wherein said fire screening body of material flows to form a coating on onE of the faces of said panel when released.
9. A fire screen as claimed in claim 3 wherein said panel is hollow, said fire screening material flowing into and filling the panel upon being released.
10. A fire screen as claimed in claim 1 and comprising a frame enclosing said panel, means within said frame for defining a chamber therein, said fire screening means being contained in said chamber.
11. A fire screen as claimed in claim 1 wherein said panel comprises a plurality of spaced sheet members, and resilient spacer means for retaining said sheet members in spaced relation.
12. A fire screen as claimed in claim 1 wherein said panel comprises at least one sheet of chemically tempered glass.
13. A fire screen as claimed in claim 1 wherein said panel comprises at least one laminated sheet, said laminated sheet comprising a plurality of sheets of chemically tempered glass and a layer of plastic therebetween uniting said glass sheets.
US00263762A 1971-06-18 1972-06-19 Fire screen for a structural panel Expired - Lifetime US3837126A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US00263762A US3837126A (en) 1971-06-18 1972-06-19 Fire screen for a structural panel
US05/495,513 US3935681A (en) 1971-06-18 1974-08-07 Fire screen for a structural panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
LU63370 1971-06-18
US00263762A US3837126A (en) 1971-06-18 1972-06-19 Fire screen for a structural panel

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/495,513 Division US3935681A (en) 1971-06-18 1974-08-07 Fire screen for a structural panel

Publications (1)

Publication Number Publication Date
US3837126A true US3837126A (en) 1974-09-24

Family

ID=29218047

Family Applications (1)

Application Number Title Priority Date Filing Date
US00263762A Expired - Lifetime US3837126A (en) 1971-06-18 1972-06-19 Fire screen for a structural panel

Country Status (1)

Country Link
US (1) US3837126A (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3981111A (en) * 1974-03-01 1976-09-21 Berthagen N T L Insulating unit
US4164108A (en) * 1977-07-15 1979-08-14 Saint-Gobain Industries Fire-proof window
US4164107A (en) * 1977-10-14 1979-08-14 Saint-Gobain Industries Fire-proof window
US4471589A (en) * 1981-01-29 1984-09-18 Eltreva Ag Window or door
GB2179977A (en) * 1985-09-04 1987-03-18 Shell Int Research Fire resistant structure
US5481834A (en) * 1994-04-08 1996-01-09 Hufcor, Inc. Fire-rated panel
US20090260303A1 (en) * 2002-07-05 2009-10-22 Securo As Method for fire blocking in a ventilation device and a fireblocking ventilation device
US20130086859A1 (en) * 2007-08-22 2013-04-11 California Expanded Metal Products Company Fire-rated wall and ceiling system
US8938922B2 (en) 2009-09-21 2015-01-27 California Expanded Metal Products Company Wall gap fire block device, system and method
US8973319B2 (en) 2007-08-06 2015-03-10 California Expanded Metal Products Company Two-piece track system
US9045899B2 (en) 2012-01-20 2015-06-02 California Expanded Metal Products Company Fire-rated joint system
US9290932B2 (en) 2010-04-08 2016-03-22 California Expanded Metal Products Company Fire-rated wall construction product
US9523193B2 (en) 2012-01-20 2016-12-20 California Expanded Metal Products Company Fire-rated joint system
US9683364B2 (en) 2010-04-08 2017-06-20 California Expanded Metal Products Company Fire-rated wall construction product
US9752318B2 (en) 2015-01-16 2017-09-05 California Expanded Metal Products Company Fire blocking reveal
US9879421B2 (en) 2014-10-06 2018-01-30 California Expanded Metal Products Company Fire-resistant angle and related assemblies
US9909298B2 (en) 2015-01-27 2018-03-06 California Expanded Metal Products Company Header track with stud retention feature
US10000923B2 (en) 2015-01-16 2018-06-19 California Expanded Metal Products Company Fire blocking reveal
US10077550B2 (en) 2012-01-20 2018-09-18 California Expanded Metal Products Company Fire-rated joint system
US10184246B2 (en) 2010-04-08 2019-01-22 California Expanded Metal Products Company Fire-rated wall construction product
US20190360195A1 (en) * 2018-03-15 2019-11-28 California Expanded Metal Products Company Fire-rated joint component and wall assembly
US10563399B2 (en) * 2007-08-06 2020-02-18 California Expanded Metal Products Company Two-piece track system
US10619347B2 (en) 2007-08-22 2020-04-14 California Expanded Metal Products Company Fire-rated wall and ceiling system
US10689842B2 (en) 2018-03-15 2020-06-23 California Expanded Metal Products Company Multi-layer fire-rated joint component
CN111576689A (en) * 2020-05-28 2020-08-25 深圳市智玻实业股份有限公司 Novel energy-saving fireproof dimming glass
US10914065B2 (en) 2019-01-24 2021-02-09 California Expanded Metal Products Company Wall joint or sound block component and wall assemblies
US11111666B2 (en) 2018-08-16 2021-09-07 California Expanded Metal Products Company Fire or sound blocking components and wall assemblies with fire or sound blocking components
US11162259B2 (en) 2018-04-30 2021-11-02 California Expanded Metal Products Company Mechanically fastened firestop flute plug
US11268274B2 (en) * 2019-03-04 2022-03-08 California Expanded Metal Products Company Two-piece deflection drift angle
US11486150B2 (en) 2016-12-20 2022-11-01 Clarkwestern Dietrich Building Systems Llc Finishing accessory with backing strip
US11643864B2 (en) 2018-01-23 2023-05-09 Pella Corporation Screen edge retention and screen rethreading features for a hidden screen assembly and a fenestration assembly
US11885138B2 (en) 2020-11-12 2024-01-30 Clarkwestern Dietrich Building Systems Llc Control joint
US11920343B2 (en) 2019-12-02 2024-03-05 Cemco, Llc Fire-rated wall joint component and related assemblies
USD1026252S1 (en) 2020-11-12 2024-05-07 Clarkwestern Dietrich Building Systems Llc Control joint
US12000208B2 (en) 2020-01-31 2024-06-04 Pella Corporation Integrated pleated screen assembly

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US843462A (en) * 1905-09-23 1907-02-05 William Spencer Hutchinson Fire-resisting shutter.
US980443A (en) * 1908-05-28 1911-01-03 Arno Shuman Fire-curtain for windows.
US1369518A (en) * 1919-09-02 1921-02-22 Geo W Johnson Mfg Co Fire-door
US2142164A (en) * 1936-02-27 1939-01-03 Robertson Co H H Fireproofing member
US2419400A (en) * 1943-01-11 1947-04-22 Libbey Owens Ford Glass Co Multiple glazing unit
US3154821A (en) * 1960-10-13 1964-11-03 Marconi Co Ltd Inspection window arrangements
FR1529708A (en) * 1967-04-14 1968-06-21 Air Balance Moderator device, in particular for flame arrestor installation
US3460303A (en) * 1965-06-29 1969-08-12 Glaverbel Multipane glazing unit
US3543460A (en) * 1968-02-22 1970-12-01 Basf Ag Fire-resistant composite elements containing internal layers of expanded plastics
US3566564A (en) * 1967-12-20 1971-03-02 Basf Ag Fire resisting doors having metallic outer layers

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US843462A (en) * 1905-09-23 1907-02-05 William Spencer Hutchinson Fire-resisting shutter.
US980443A (en) * 1908-05-28 1911-01-03 Arno Shuman Fire-curtain for windows.
US1369518A (en) * 1919-09-02 1921-02-22 Geo W Johnson Mfg Co Fire-door
US2142164A (en) * 1936-02-27 1939-01-03 Robertson Co H H Fireproofing member
US2419400A (en) * 1943-01-11 1947-04-22 Libbey Owens Ford Glass Co Multiple glazing unit
US3154821A (en) * 1960-10-13 1964-11-03 Marconi Co Ltd Inspection window arrangements
US3460303A (en) * 1965-06-29 1969-08-12 Glaverbel Multipane glazing unit
FR1529708A (en) * 1967-04-14 1968-06-21 Air Balance Moderator device, in particular for flame arrestor installation
US3566564A (en) * 1967-12-20 1971-03-02 Basf Ag Fire resisting doors having metallic outer layers
US3543460A (en) * 1968-02-22 1970-12-01 Basf Ag Fire-resistant composite elements containing internal layers of expanded plastics

Cited By (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3981111A (en) * 1974-03-01 1976-09-21 Berthagen N T L Insulating unit
US4164108A (en) * 1977-07-15 1979-08-14 Saint-Gobain Industries Fire-proof window
US4164107A (en) * 1977-10-14 1979-08-14 Saint-Gobain Industries Fire-proof window
US4471589A (en) * 1981-01-29 1984-09-18 Eltreva Ag Window or door
GB2179977A (en) * 1985-09-04 1987-03-18 Shell Int Research Fire resistant structure
GB2179977B (en) * 1985-09-04 1989-08-23 Shell Int Research Fire resistant structure
US5481834A (en) * 1994-04-08 1996-01-09 Hufcor, Inc. Fire-rated panel
US20090260303A1 (en) * 2002-07-05 2009-10-22 Securo As Method for fire blocking in a ventilation device and a fireblocking ventilation device
US11560712B2 (en) 2007-08-06 2023-01-24 Cemco, Llc Two-piece track system
US11773587B2 (en) 2007-08-06 2023-10-03 Cemco, Llc Two-piece track system
US8973319B2 (en) 2007-08-06 2015-03-10 California Expanded Metal Products Company Two-piece track system
US10563399B2 (en) * 2007-08-06 2020-02-18 California Expanded Metal Products Company Two-piece track system
US9995039B2 (en) 2007-08-06 2018-06-12 California Expanded Metal Products Company Two-piece track system
US11041306B2 (en) 2007-08-06 2021-06-22 California Expanded Metal Products Company Two-piece track system
US9290934B2 (en) 2007-08-06 2016-03-22 California Expanded Metal Products Company Two-piece track system
US9739054B2 (en) * 2007-08-06 2017-08-22 California Expanded Metal Products Company Two-piece track system
US10227775B2 (en) 2007-08-06 2019-03-12 California Expanded Metal Products Company Two-piece track system
US9127454B2 (en) 2007-08-22 2015-09-08 California Expanded Metal Products Company Fire-rated wall and ceiling system
US11802404B2 (en) 2007-08-22 2023-10-31 Cemco, Llc Fire-rated wall and ceiling system
US10214901B2 (en) 2007-08-22 2019-02-26 California Expanded Metal Products Company Fire-rated wall and ceiling system
US9637914B2 (en) * 2007-08-22 2017-05-02 California Expanded Metal Products Company Fire-rated wall and ceiling system
US10011983B2 (en) 2007-08-22 2018-07-03 California Expanded Metal Products Company Fire-rated wall and ceiling system
US9739052B2 (en) 2007-08-22 2017-08-22 California Expanded Metal Products Company Fire-rated wall and ceiling system
US9481998B2 (en) 2007-08-22 2016-11-01 California Expanded Metal Products Company Fire-rated wall and ceiling system
US10619347B2 (en) 2007-08-22 2020-04-14 California Expanded Metal Products Company Fire-rated wall and ceiling system
US20130086859A1 (en) * 2007-08-22 2013-04-11 California Expanded Metal Products Company Fire-rated wall and ceiling system
US11466449B2 (en) 2007-08-22 2022-10-11 California Expanded Metal Products Company Fire-rated wall and ceiling system
US8938922B2 (en) 2009-09-21 2015-01-27 California Expanded Metal Products Company Wall gap fire block device, system and method
US9931527B2 (en) 2009-09-21 2018-04-03 California Expanded Metal Products Company Wall gap fire block device, system and method
US11141613B2 (en) 2009-09-21 2021-10-12 California Expanded Metal Products Company Wall gap fire block device, system and method
US9616259B2 (en) 2009-09-21 2017-04-11 California Expanded Metal Products Company Wall gap fire block device, system and method
US11896859B2 (en) 2009-09-21 2024-02-13 Cemco, Llc Wall gap fire block device, system and method
US9371644B2 (en) 2009-09-21 2016-06-21 California Expanded Metal Products Company Wall gap fire block device, system and method
US10406389B2 (en) 2009-09-21 2019-09-10 California Expanded Metal Products Company Wall gap fire block device, system and method
US9683364B2 (en) 2010-04-08 2017-06-20 California Expanded Metal Products Company Fire-rated wall construction product
US11060283B2 (en) 2010-04-08 2021-07-13 California Expanded Metal Products Company Fire-rated wall construction product
US10184246B2 (en) 2010-04-08 2019-01-22 California Expanded Metal Products Company Fire-rated wall construction product
US9290932B2 (en) 2010-04-08 2016-03-22 California Expanded Metal Products Company Fire-rated wall construction product
US11905705B2 (en) 2010-04-08 2024-02-20 Cemco, Llc Fire-rated wall construction product
US10246871B2 (en) 2012-01-20 2019-04-02 California Expanded Metal Products Company Fire-rated joint system
US10077550B2 (en) 2012-01-20 2018-09-18 California Expanded Metal Products Company Fire-rated joint system
US9523193B2 (en) 2012-01-20 2016-12-20 California Expanded Metal Products Company Fire-rated joint system
US10900223B2 (en) 2012-01-20 2021-01-26 California Expanded Metal Products Company Fire-rated joint system
US11898346B2 (en) 2012-01-20 2024-02-13 Cemco, Llc Fire-rated joint system
US9458628B2 (en) 2012-01-20 2016-10-04 California Expanded Metal Products Company Fire-rated joint system
US9045899B2 (en) 2012-01-20 2015-06-02 California Expanded Metal Products Company Fire-rated joint system
US9879421B2 (en) 2014-10-06 2018-01-30 California Expanded Metal Products Company Fire-resistant angle and related assemblies
US10000923B2 (en) 2015-01-16 2018-06-19 California Expanded Metal Products Company Fire blocking reveal
US9752318B2 (en) 2015-01-16 2017-09-05 California Expanded Metal Products Company Fire blocking reveal
US9909298B2 (en) 2015-01-27 2018-03-06 California Expanded Metal Products Company Header track with stud retention feature
US11486150B2 (en) 2016-12-20 2022-11-01 Clarkwestern Dietrich Building Systems Llc Finishing accessory with backing strip
US11725401B2 (en) 2016-12-20 2023-08-15 Clarkwestern Dietrich Building Systems Llc Finishing accessory with backing strip
US12018496B2 (en) 2016-12-20 2024-06-25 Clarkwestern Dietrich Building Systems Llc Finishing accessory with backing strip
US11643865B2 (en) 2018-01-23 2023-05-09 Pella Corporation Roller assembly and screen end retention features for a hidden screen assembly and a fenestration assembly
US11643864B2 (en) 2018-01-23 2023-05-09 Pella Corporation Screen edge retention and screen rethreading features for a hidden screen assembly and a fenestration assembly
US10954670B2 (en) 2018-03-15 2021-03-23 California Expanded Metal Products Company Multi-layer fire-rated joint component
US11421417B2 (en) * 2018-03-15 2022-08-23 California Expanded Metal Products Company Fire-rated joint component and wall assembly
US10689842B2 (en) 2018-03-15 2020-06-23 California Expanded Metal Products Company Multi-layer fire-rated joint component
US20190360195A1 (en) * 2018-03-15 2019-11-28 California Expanded Metal Products Company Fire-rated joint component and wall assembly
US10753084B2 (en) * 2018-03-15 2020-08-25 California Expanded Metal Products Company Fire-rated joint component and wall assembly
US11866932B2 (en) 2018-03-15 2024-01-09 Cemco, Llc Fire-rated joint component and wall assembly
US11162259B2 (en) 2018-04-30 2021-11-02 California Expanded Metal Products Company Mechanically fastened firestop flute plug
US11933042B2 (en) 2018-04-30 2024-03-19 Cemco, Llc Mechanically fastened firestop flute plug
US11111666B2 (en) 2018-08-16 2021-09-07 California Expanded Metal Products Company Fire or sound blocking components and wall assemblies with fire or sound blocking components
US11873636B2 (en) 2018-08-16 2024-01-16 Cemco, Llc Fire or sound blocking components and wall assemblies with fire or sound blocking components
US11891800B2 (en) 2019-01-24 2024-02-06 Cemco, Llc Wall joint or sound block component and wall assemblies
US11280084B2 (en) 2019-01-24 2022-03-22 California Expanded Metal Prod ucts Company Wall joint or sound block component and wall assemblies
US10914065B2 (en) 2019-01-24 2021-02-09 California Expanded Metal Products Company Wall joint or sound block component and wall assemblies
US11268274B2 (en) * 2019-03-04 2022-03-08 California Expanded Metal Products Company Two-piece deflection drift angle
US11920344B2 (en) 2019-03-04 2024-03-05 Cemco, Llc Two-piece deflection drift angle
US11920343B2 (en) 2019-12-02 2024-03-05 Cemco, Llc Fire-rated wall joint component and related assemblies
US12000208B2 (en) 2020-01-31 2024-06-04 Pella Corporation Integrated pleated screen assembly
CN111576689A (en) * 2020-05-28 2020-08-25 深圳市智玻实业股份有限公司 Novel energy-saving fireproof dimming glass
US11885138B2 (en) 2020-11-12 2024-01-30 Clarkwestern Dietrich Building Systems Llc Control joint
USD1026252S1 (en) 2020-11-12 2024-05-07 Clarkwestern Dietrich Building Systems Llc Control joint

Similar Documents

Publication Publication Date Title
US3837126A (en) Fire screen for a structural panel
US3935681A (en) Fire screen for a structural panel
CA1038742A (en) Fire screening glazing panel and a method for forming the panel
NO139137B (en) FIRE-BURNING SCREEN SYSTEM FOR CONSTRUCTION PLATES
US4557089A (en) Structural element such as building facade and the like
US4178728A (en) Fire-proof window
JP3145490B2 (en) Fireproof panel
SK3612001A3 (en) Fire wall
GB2266112A (en) Fire-retarding window assembly
US4164108A (en) Fire-proof window
JPWO2014168219A1 (en) Fireproof double glazing
WO2008087112A1 (en) Fire-resistant glazing
GB2195136A (en) A fire-resistant glazing assembly
JPH09165975A (en) Glass board mounting structure of fireproof paper sliding door
CN212743789U (en) Door and window with fire resistance
JPH07330386A (en) Multiple glass
KR102188926B1 (en) Transparent fire glazing with protection and antipanic properties
JPH08239248A (en) Multilayer panel plate glass unit
JP2745171B2 (en) Fire protection unit
JPS6114384A (en) Fire-proof glass inlay structure having pressure system acting on edge region of glass panel at time of fire
JPS5818586B2 (en) Fire retardant low temperature insulation panel and its manufacturing method
JP6341462B2 (en) Fireproof double glazing unit
CN111101613A (en) Fireproof partition wall structure
JPS5849356Y2 (en) Fire protection window glass structure
JPS5938413Y2 (en) double glazing