US3836743A - Localized heat treating machine - Google Patents

Localized heat treating machine Download PDF

Info

Publication number
US3836743A
US3836743A US00435333A US43533374A US3836743A US 3836743 A US3836743 A US 3836743A US 00435333 A US00435333 A US 00435333A US 43533374 A US43533374 A US 43533374A US 3836743 A US3836743 A US 3836743A
Authority
US
United States
Prior art keywords
articles
screws
bars
zone
quenching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00435333A
Inventor
C Wardwell
N Holcomb
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Engineering and Manufacturing Inc
SPX Technologies Inc
Original Assignee
Research Engineering and Manufacturing Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Engineering and Manufacturing Inc filed Critical Research Engineering and Manufacturing Inc
Priority to US00435333A priority Critical patent/US3836743A/en
Application granted granted Critical
Publication of US3836743A publication Critical patent/US3836743A/en
Assigned to AMCA INTERNATIONAL CORPORATION, A CORP OF DELAWARE reassignment AMCA INTERNATIONAL CORPORATION, A CORP OF DELAWARE ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: AMTEL, INC., A CORP OF RI.
Assigned to AMCA INTERNATONAL CORPORATION, A CORP. OF DE., PHIPARD, HARVEY F., JR. reassignment AMCA INTERNATONAL CORPORATION, A CORP. OF DE. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: RESEARCH ENGINEERING & MANUFACTURING, INC., A CORP. OF MA.
Assigned to RESEARCH ENGINEERING & MANUFACTURING, INC., A CORP OF MASSACHUSETTS reassignment RESEARCH ENGINEERING & MANUFACTURING, INC., A CORP OF MASSACHUSETTS ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: AMCA INTERNATIONAL CORPORATION, A CORP OF DE.
Assigned to AMTEL, INC. reassignment AMTEL, INC. MERGER (SEE DOCUMENT FOR DETAILS). JANUARY 22, 1986 Assignors: RESEARCH ENGINEERING & MANUFACTURING, INC.
Assigned to RESEARCH ENGINEERING & MANUFACTURING, INC. reassignment RESEARCH ENGINEERING & MANUFACTURING, INC. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: PHIPARD, HARVEY F., JR.
Anticipated expiration legal-status Critical
Assigned to ROCKFORD PRODUCTS CORPORATION reassignment ROCKFORD PRODUCTS CORPORATION RELEASE OF PATENT LICENSES Assignors: CONGRESS FINANCIAL CORPORATION (CENTRAL)
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • ABSTRACT An article is hardened or tempered in a localized zone. Where the article is a thread-forming device the zone is that part of its thread that does the threadforming in the workpiece. The hardness of the remainder of the body of the article is left unchanged.
  • the localized hardening is carried out by a method that includes high frequency induction heating only of the zone followed by quenching of the zone whereby the hardened zone is a skin of predetermined depth.
  • a machine for making articles in accordance with the method comprises means for delivering the articles in succession to an induction heating element, a mechanism for advancing the articles through the heating element for progressive heating of the surface of the article in the localized zone to a predetermined depth, a quenching manifold for applying a spray of quenching liquid to the heated articles from the heating element and conveying them to the quenching manifold.
  • This invention relates to a selectively heat-treated article, such as a screw, threaded article, or the like and to a method and machine for making the same.
  • Case hardening involves heat treating in a special atmosphere, usually one that is enriched in carbon.
  • the screw or other workpiece is heated through its entire body, and during the heating the carbon penetrates a predetermined distance into the body.
  • the carbonized skin forms a hardened shell or case.
  • a mild temper for stress relief may follow the quenching operation.
  • the zone of hardness is controlled or limited to a predetermined depth necessary to provide the workenteringportion of the thread with such hardness as may be necessary towithstand the thread-forming pressure from the workpiece.
  • the thread-forming portion or zone need not'have a' knife edge as in athread cutting device.
  • Afurther object of this invention is to provide a thread-swaging screw in which the depth of hardness of the localized zone is reasonably consistent throughout the circumference of the screw at such zone.
  • the thread-swaging screw may be of various known types; however, a type, having an arcuate polygonal crosssection with arcuate sides and arcuate intermediate thread-swaging lobes is a particularly suitable this invention.
  • the core of the article that is surrounded by the hardened zone as well as the remainder of article remote from the zone is left substantially unchanged as to hardness.
  • the method is particularly suitable for thread-swaging screws of the type stated, but the principles are applicable to other kinds of threadforming devices (e.g., taps, locking screws or bolts) or to other types of screws wherein the hardening or tempering of only a portion of the article is desired.
  • the induced field results in a skin effect heating to a predetermined depth that may be controlled so as to be no greater than is actually needed.
  • the process is carried out in ordinary ambient air.
  • a further object of this invention is to provide a machine for carrying out the aforesaid method to produce the zone hardened articles on a continuous flow, massproduction basis, or to temper articles on a mass-flow basis.
  • a more specific object of this invention is to provide a machine that comprises an induction heating element for heating articles only in a desired localized zone, mechanism for feeding the articles automatically to said induction heating element, mechanism for auto matically removing the heated articles from the heating element, and a quenching manifold for spraying a quenching liquid, such as water or oil, onto the-heated zone while the latter is still sufficiently hot to produce the desired hardness.
  • the machine is principally intended for zone hardening of screws, but other elongated articles might also be zone hardened by the machine.
  • articles such as thread-forming screws, are supplied from a hopper to a raceway in which the screws are fed, one at a time, by a pusher mechanism onto a support so that the shanks of the screws are disposed between and perpendicular to the general plane defined by parallel bars that form part of a single turn induction heater.
  • the height of the bars and their positions relative to the shanks of the screws are such that the bars induce a current field locally into the selected zone of each shank peripherally therearound.
  • a group of screws is positioned in abutting parallel relation between the bars so that the screws are progressively heated as they are pushed through the path between the bars in a step-by-step manner by the pusher.
  • FIG. 1 is a fragmentary perspective view showing portions of a machine constructed in accordance with and embodying the present invention
  • FIG. 2 is a fragmentary and elevational view of the machine
  • FIG. 3 is a front elevational view thereof
  • FIG. 4 is an enlarged fragmentary sectional view taken along line 4-4 of FIG. 3;
  • FIGS. 5 and 6 are fragmentary sectional views taken along lines 5-5 and 6-6 respectively of FIG. 4;
  • FIGS. 7 and 8 are fragmentary sectional views taken along lines 77 and 88 respectively of FIG. 6;
  • FIG. 9 is a perspective view of the induction heating element that forms part of the present invention.
  • FIG. 10 is a fragmentary plan view as seen from line 10-10 of FIG. 2;
  • FIG. 11 is a fragmentary sectional view taken along line 11-11 of FIG. 10;
  • FIG. 12 is an enlarged fragmentary sectional view taken approximately along line 12-12 of FIG. 11;
  • FIG. 13 is a fragmentary sectional view taken along line 13-13 of FIG. 12;
  • FIG. 14 is an enlarged fragmentary sectional view taken approximately along line 14-14 of FIG. 3;
  • FIG. 15 is an enlarged fragmentary sectional view taken along line 15-15 of FIG. 14;
  • FIG. 16 is a fragmentary longitudinal sectional view of a thread-forming screw constructed in accordance with and produced by the method of the present invention.
  • FIG. 17 is a sectional view taken along line 17-17 of FIG. 16.
  • the screw 2 includes a shank 4 having a helical thread 6 thereon.
  • the thread 6 includes a threadswaging portion 8 at which the crest of the thread is of progressively decreasing diameter toward the workentering end 10 of the screw.
  • the cross-section of the thread defines a regular polygon with an odd number of sides. This crosssectional configuration may be present throughout the full length of the thread 6 or it may simply be in the threadswaging zone 8 and such lead section 12 as may be present.
  • the crosssection of the thread defines three arcuate sides l4, 15, 16 with arcuate intermediate thread-swaging lobes 17, 18, 19.
  • the screw 2 also has a head 20 that. is larger in diameter than the adjacent part of the shank 4.
  • the machine generally designated at 22, comprises a hopper 24 for holding a-supply of screws 2.
  • the hopper includes a feeding mechanism of known type for feeding the screws one by one into a downwardly inclined raceway 26.
  • the raceway 26 is mounted at the desired angle of inclination on an upstanding support 28 which is, in turn, mounted on a suitable frame portion 30 of the machine.
  • the raceway support 28 includes side members 32, 32 that are bolted to end blocks 34, 34. Passing through the end blocks 34, 34 are bolts 36, 36 for threaded engagement with rails 38, 38.
  • the screw head 20 rests on the tops of the rails 38, 38 and the screw shank 4 projects into the gap between the rails 38, 38.
  • the bolts 35 are disposed in elongated slots 40, one such slot being shown in FIG. 7.
  • a hold down bar 42 is disposed above the rails 38, 38 and is adjustably positioned so that the heads of the screws when on the rails 38, 38 keep the screws perpendicular to the raceway.
  • the mounting for the hold down bar 42 includes two assemblies 43, 43 each having a bracket 44 that is bolted to one of the side members 32. At its upper end the bracket has a flange 46 for receiving the threaded stud 48, the lower end of which is secured to the hold down bar 42.
  • a coil spring 50 encircles the stud 48 and is interposed between the flange 46 and the hold down bar 42, and above the flange 46 a hand screw 52 is threaded onto the stud 48.
  • the position of the hold down bar 42 may be adjusted relative to the rails 38, 38.
  • the feeding mechanism within the hopper 24 should maintain a supply of screws 2 in the raceway 26.
  • a light source 54 and a photocell 56 that may be used to control the motor that operates the feeder within the hopper 24.
  • the feeder begins to operate to discharge screws from the hopper 24 into the raceway 26.
  • the machine has an induction heating element 58 and related structure 59 for mounting the element in place and for providing a slidesupport for the screws that pass through the element 58.
  • the heating element is in the nature of a one turn induction coil.
  • the element 58 is a tubular copper member of rectangular crosssections (see FIG. 8) having spaced parallel bars 60, 60, the forward ends of which have downturned legs 62, 62 that are cross connected by an end section 64.
  • cooling water may be circulated from a suitable source of supply through the lines 76 and the leads 70 to the coil 58 to maintain the coil at the desired operating temperature.
  • the electric current supply to the coil is preferably of a radio frequency and may be of the order of 400KHz.
  • the structure 59 includes a base plate 78 that is bolted or otherwise rigidly secured to a frame portion 80 of the machine.
  • Bolted to the upper surface of the base plate 78 are spacer blocks 80 that support an upper block 82.
  • the upper block 82v is secured to the spacer blocks 80 by hand screws 84, 84..
  • On top of the block 82 are dielectric members 86, 86 which are disposed on opposite sides of the coil bars 60, 60.
  • the members 86, 86 may be secured to the block 82 by fiber nuts and studs 88.
  • Ceramic plates 90 that provide a relatively low friction surface for engagement by the heads of the screws 2 as the screws pass between the coil bars 60, 60.
  • insulating glass spacer rods 92, 92 Interposed between the upper surfaces of the bars 60, 60 and-the ceramic plates 90 are insulating glass spacer rods 92, 92.
  • the heating is confined to the localized area of the thread-swaging zone 8 leaving substantially unheated the core of the screw that surrounds the heated zone and the parts of the screw axially remote therefrom.
  • the heating is progressive and may be readily controlled so that just the proper amount of depth of heating in the localized zones is attained.
  • the depth and length of the heated zone need only be that sufficient to withstand the thread-forming pressures to which the screws are intended to be subjected during use.
  • FIGS. 4 and 5 Suitably secured to the frame of the machine is an upstanding motor bracket '96 having a top plate 98 upon which is mounted a variable speed feeder motor 100.
  • the top plate 98 is apertured for receiving the motor shaft which has thereon a crank102that is journalled at one end of a connecting rod 104.
  • the other end of the connecting rod 104 is journalled on apin 106 that is secured to a yoke 108.
  • the yoke 108 carries with it a depending angle bracket 110 which, in turn, carries a pusher 112.
  • the angle bracket is adjustably secured to the yoke 108 by bolt 114 while the pusher 112 is adjustably secured to the angle bracket 110 by bolt 116. This allows for adjustments for various sizes of screws being processed.
  • the pusher 112 reciprocates and has a stroke as determined by the throw of the crank 102.
  • a flange 118 is bolted to the motor bracket 96 for rigidly supporting spaced parallel guide pins 120, 120.
  • Nuts 122, 122 retain the guide pins in place.
  • the edge 124 of the pusher engages the bottommost screw in the raceway 26 and pushes it into the space between the coil bars 60, 60 to commence the zone heating of the screw.
  • An anti-jam feature of the pusher 112 is also provided.
  • the vertical arm portion 126 of the pusher 112 is rigidly secured to a member 128 that is slidable within the horizontal portion 130 of the pusher 112.
  • a spring 132 is operatively interposed between the leading end of the slidable member 128 and the vertical arm portion 126. This biases the arm portion 126 into abutting relationship with the portion 130.
  • the leading edge 124 meets excessive resistance due to jamming of the machine, the member 128 will slide relative to the portion 130 causing the spring 132 to expand. The member 126 and the member 128 will then be able to move to the left (FIG. 4) relative to the member 130 to take up the stroke of the mechanism.
  • a plurality of screws 2 with the heads thereof in abutting relationship are supported on the ceramic plates 90 for step-bystep movement between the bars 60 so that each screw becomes locally heated a sufficient amount as it reaches the left hand end (FIGS. 4 and 6) of the heater.
  • the left hand end of the heater is suitably provided with a device for removing the heated screw and delivering the screw to a downwardly inclined raceway 134 for movement to a water quenching device, which forms part of the machine.
  • the upper end of the raceway 134 is adjacent to the discharge end of the induction heater.
  • This feedoff mechanism comprises a motor 136 that is mounted on a bracket 97 and includes a shaft 138 that has a feed off roller 140 overlying the ceramic plate 40 at the end of the coil.
  • the periphery of the feed roller 140 engages the fully heated screw at the head thereof each time the pusher 112 feeds a screw from the raceway 26 into the space between the bars 60, 60.
  • the raceway 134 comprises opposed plates 142, 142 on which the head of the screw slides, and the plates define a gap 144 through which the screw shank projects.
  • the raceway plates 142, 142 may be mounted on the frame of the machine by a support structure 135.
  • Mounted on the plates 142, 142 is a first electric eye control mechanism comprising a light transmitting source 146 and a photocell 148 that actuates a time delay safety mechanism. If a screw does not, within a specified period of time, interrupt the light beam, the machine is shut off. This may occur, for instance, should the machine jam.
  • a second photocell control arrangement comprising a light transmitting source 150 and a photocell 152 for the purpose of operating an escapement mechanism, to be hereinafter described.
  • a hold down member 154 is provided to maintain the screws 2 in the raceway in the proper positions, that is generally perpendicular to the plates 142, 142.
  • the hold down member 154 includes brackets 156, 156 that are mounted on one of the plates 142 and contain adjusting screws 158 by which the height of the member 154 relative to the raceway 134 may be adjusted for different sizes of screws.
  • quenching manifolds 164, 164 Mounted on and depending from the raceway 134 are members 160, 160 having secured thereto as by bolts 162 a pair of opposed quenching manifolds 164, 164.
  • quenching manifolds 164, 164 Formed in the quenching manifolds 164, 164 are orifices 166, which are disposed along a substantial length of the raceway 134 and provide a means by which quenching liquid, such as water or oil, may be applied to the heated screws in the localized zone at which the screws are heated in the induction heating element 58.
  • quenching manifolds 164, 164 should be mounted at distances'below the raceway plates 142, 142 such that the orifices 166 are approximately in alignment with the locally heated thread-swaging zone 8, as seen in FIG. 15.
  • the vertical positions and the spacing of the quenching manifolds are adjustable.
  • Water for the quenching manifold may be stored in a suitable reservoir or tank 168 (FIG. 2).
  • a pump 170 driven by electric motor 172, draws water from the tank 168 and delivers the water under pressure to manifold piping 174 which connects with pipe sections 176, 176 (FIG. for delivery of the fluid to the respective manifolds 164, 164.
  • the quenching water that impinges upon the screws drops downwardly between the manifolds and may be suitably collected for recirculation to the supply tank 168.
  • the initial quenching is quite rapid, which gives desired hardness properties to the localized zone. Further cooling of the screws 2 takes place at the lower portions of the quenching manifolds 164 where, as shown in FIG. 10, several screws 2 may be positioned, the lowermost of which is in abutment with an escapement mechanism 178.
  • the escapement mechanism 178 is of a type that is capable of operating faster than the normal machine feed and independently thereof.
  • the escapement mechanism 178 includes a sector-shaped member 180 that is journalled for rocking movement on a pin 182, the pin 182 being carried by an escapement mounting bracket 184 that is bolted to one of the raceway plates 134.
  • a pneumatic piston and cylinder assembly 186 is pivotally connected to the member 180 and also pivotally connected to the bracket 184, the connection to the latter being at pivot pin 188.
  • the piston of the assembly 186 operates to rock the escapement member 180 back and forth through one cycle of operation when the stack or group of screws fills the raceway 134 up to the beam from the light source 150.
  • the photocell 152 controls the actuation of the piston and cylinder assembly 186.
  • the arrangement of suitable valves for the assembly 186 and the manner of operating them by the photocell 152 can be carried out in accordance with known techniques.
  • Arcuate plates 189, 189 are bolted to the free ends of the sector member and present portions 190, 192 that define an opening 194 (FIG. 12).
  • a screw 2 will drop into the opening 194 and will be held therein between the portions 190, 192.
  • the offset portion 192 will be out of the way of the screw in the opening 194 so that the screw will slide freely down the raceway 134 to a receptacle below.
  • the next screw in line abuts the up raceway side of the member 190.
  • the plate 189 moves back counterclockwise past dead center, the aforesaid next screw will become lodged in the opening 194.
  • the screws 2 thus treated are now locally hardened uniformly in an annular zone which is of a predetermined depth from the periphery of the swaging portion 8 of the screw thread.
  • Such depth of hardness is indicated by the line 94 in FIGS. 16 and 17.
  • This depth may be only a minor fractional part of the nominal diameter of the screw threads and need encompass only a few turns of the thread, namely those that do the threadswaging in the work.
  • the core of the screw surrounded by the locally hardened zone and the part of the screw axially of the hardened zone is of optimum hardness for intended use. Those regions are essentially unchanged as to composition or grain structure as a result of the process of this invention.
  • a machine for heat-treating elongated articles in a localized peripheral zone that is a fractional part of the length of the article and which envelopes a core of the article comprising an induction heater, said heater having spaced bars, means for suspending said articles between said bars so that said localized zone is adjacent to said bars and said articles are sufficiently closely spaced to be inductively coupled for complete peripheral heating in said zone, means for feeding said articles through said induction heater, means for quenching in succession each article in said peripheral zone, means for conveying the heated articles in succession to the quenching means, and wherein the lengths of the bars are such that a plurality of articles can be supported between said bars by said suspending means with the articles running substantially perpendicular to the general plane defined by said bars and with the articles extending beyond said general plane, said means for feeding said articles through said induction heater cooperating with said means for conveying the heated articles to the quenching means to feed an article to an initial induction heating position between said bars and at the same time discharge another article from a final heating position from
  • a machine including a raceway for containing a plurality of said articles, said raceway terminating adjacent to said bars for delivery of articles to said feeding means, said feeding means comprising means engageable with the articles delivered theretoby said raceway, and said conveying means comprises a rotatable feed wheel.
  • a machine for heat-treating screws each having a head and a peripherally threaded shank with a localized zone of the thread being. of a type for producing a shanks that are surrounded by said zones, said induction heater being of such extent relative to the axial extent of said shanks that said zones are adjacent to said heater and said shanks extend beyond said heater thereby to leave substantially unheated the shanks remote from said zones, means by which said screws are withdrawn from said heater, and means for supporting said screws at their heads as they are fed through said field.
  • a machine according to claim 3 including means for quenching said screws at said zones.
  • a machine including a race way for receiving said screws as they are withdrawn from said heater, said raceway including means for slidably supporting the heads of said screws, said lastnamed means forming a gap for receiving the shanks of said screws.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

An article is hardened or tempered in a localized zone. Where the article is a thread-forming device the zone is that part of its thread that does the thread-forming in the workpiece. The hardness of the remainder of the body of the article is left unchanged. The localized hardening is carried out by a method that includes high frequency induction heating only of the zone followed by quenching of the zone whereby the hardened zone is a skin of predetermined depth. A machine for making articles in accordance with the method comprises means for delivering the articles in succession to an induction heating element, a mechanism for advancing the articles through the heating element for progressive heating of the surface of the article in the localized zone to a predetermined depth, a quenching manifold for applying a spray of quenching liquid to the heated articles from the heating element and conveying them to the quenching manifold.

Description

United States Patent 1191 Wardwell et al.
[ Sept. 17, 1974 LOCALIZED HEAT TREATING MACHINE Inventors: Charles H. Wardwell; Norman L.
Holcomb, both of South Dartmouth,
Mass.
Research Engineering & Manufacturing, Inc., New Bedford, Mass.
Filed: Jan. 21, 1974 Appl. No.: 435,333
Related US. Application Data Continuation of Ser. No. 334,879, Feb. 22, 1973, abandoned, which is a division of Ser. No. 128,040, March 25, 1971, Pat. No. 3,769,103.
Assignee:
References Cited UNITED STATES PATENTS Primary ExaminerBruce A. Reynolds Attorney, Agent, or FirmOlson, Trexler, Wolters, Bushnell & Fosse, Ltd.
[5 7 ABSTRACT An article is hardened or tempered in a localized zone. Where the article is a thread-forming device the zone is that part of its thread that does the threadforming in the workpiece. The hardness of the remainder of the body of the article is left unchanged. The localized hardening is carried out by a method that includes high frequency induction heating only of the zone followed by quenching of the zone whereby the hardened zone is a skin of predetermined depth. A machine for making articles in accordance with the method comprises means for delivering the articles in succession to an induction heating element, a mechanism for advancing the articles through the heating element for progressive heating of the surface of the article in the localized zone to a predetermined depth, a quenching manifold for applying a spray of quenching liquid to the heated articles from the heating element and conveying them to the quenching manifold.
6 Claims, 17 Drawing Figures PAIENIEusEn (I974 SHEEI 1 or 6 xxngmxxmnm MIN) PAIENTEDSEP 1 mm snm 2 or 6 PAIENTEDSEPI 719m 3.886.743- SHEET 3 OF 6 mm NW m5 PATENIED SEPI H974 sum 6 u; 6
LOCALIZED HEAT TREATING MACHINE This is a Continuation of application Ser. No.
334,879, Filed Feb. 22, 1973, now abandoned, which in turn is a division of Ser. No. 128,040, filed Mar. 25, 1971 now US. Pat. No. 3,769,103.
BACKGROUND OF THE INVENTION This invention relates to a selectively heat-treated article, such as a screw, threaded article, or the like and to a method and machine for making the same.
In the manufacture of thread-forming screws of hardenable metal, it is a common practice to case harden the screws so that the thread thereon will be effective to swage or cut a thread in the workpiece. Case hardening involves heat treating in a special atmosphere, usually one that is enriched in carbon. In accordance with case hardening techniques, the screw or other workpiece is heated through its entire body, and during the heating the carbon penetrates a predetermined distance into the body. Upon quenching in water or oil the carbonized skin forms a hardened shell or case. A mild temper for stress relief may follow the quenching operation.
It is also known to harden and temper thread-forming devices (e.g., self-tapping screws, taps) by simply hardening in an atmosphere that contains sufficient carbon to prevent reduction of the carbon content of the surface of the thread. However, the process skill involves a heating of the entire device to the requisite treatment temperature.
Conventional hardening processes of the foregoing type, and others of the prior art, do not always produce a thread-swaging screw of desired properties. The hardening may be satisfactory so far as producing a thread that isable to withstand thread-forming pressure in the workpiece; however, it often results in a screw that has undesirable structure and/or composition for certain purposes. In this regard it should be noted that in many thread-swaging fasteners, only a portion of the thread actually is used to form the thread while the remainder of the thread is for holding the screw and workpiece assembled. Thus, where the screw, when assembled with the workpiece, is subjected to dynamic stresses or even of the fastener and ultimate failure thereof.
OBJECTS AND SUMMARY OF THE INVENTION It is an object of this invention to provide a threaded article, such as a self-tapping screw, in which the thread is locally hardened at the work-entering portion of the thread (i.e., the part of the thread that forms a thread in the workpiece) but wherein the remainder of the screw is left at a hardness to which it has been previously heat-treated and which is ordinarily the hardness that is best adapted totheuse for which the screw is intended. The zone of hardness is controlled or limited to a predetermined depth necessary to provide the workenteringportion of the thread with such hardness as may be necessary towithstand the thread-forming pressure from the workpiece. The thread-forming portion or zone need not'have a' knife edge as in athread cutting device.
Afurther object of this invention is to provide a thread-swaging screw in which the depth of hardness of the localized zone is reasonably consistent throughout the circumference of the screw at such zone. The thread-swaging screw may be of various known types; however, a type, having an arcuate polygonal crosssection with arcuate sides and arcuate intermediate thread-swaging lobes is a particularly suitable this invention.
It is also an important object of this invention to provide a method of making a thread-forming article that comprises locally heating a thread-forming zoneof the article to a predetermined depth that includes the thread thereat and then quenching the heated zone to harden such zone. The core of the article that is surrounded by the hardened zone as well as the remainder of article remote from the zone is left substantially unchanged as to hardness. The method is particularly suitable for thread-swaging screws of the type stated, but the principles are applicable to other kinds of threadforming devices (e.g., taps, locking screws or bolts) or to other types of screws wherein the hardening or tempering of only a portion of the article is desired.
It is a further object of this invention to provide a method of the type stated in which the localized heating in the aforesaid zone is carried out by an inductive heater that induces at said zone a high frequency alternating current field. The induced field results in a skin effect heating to a predetermined depth that may be controlled so as to be no greater than is actually needed. The process is carried out in ordinary ambient air.
A further object of this invention is to provide a machine for carrying out the aforesaid method to produce the zone hardened articles on a continuous flow, massproduction basis, or to temper articles on a mass-flow basis.
A more specific object of this invention is to provide a machine that comprises an induction heating element for heating articles only in a desired localized zone, mechanism for feeding the articles automatically to said induction heating element, mechanism for auto matically removing the heated articles from the heating element, and a quenching manifold for spraying a quenching liquid, such as water or oil, onto the-heated zone while the latter is still sufficiently hot to produce the desired hardness. The machine is principally intended for zone hardening of screws, but other elongated articles might also be zone hardened by the machine.
In accordance with the foregoing objects, articles such as thread-forming screws, are supplied from a hopper to a raceway in which the screws are fed, one at a time, by a pusher mechanism onto a support so that the shanks of the screws are disposed between and perpendicular to the general plane defined by parallel bars that form part of a single turn induction heater. The height of the bars and their positions relative to the shanks of the screws are such that the bars induce a current field locally into the selected zone of each shank peripherally therearound. In the normal operation of the machine, a group of screws is positioned in abutting parallel relation between the bars so that the screws are progressively heated as they are pushed through the path between the bars in a step-by-step manner by the pusher. As a screw is fed from the raceway and into the space between the bars to commence heating of that screw, another screw that has now been moved completely through the path between the bars form of charge end of the quenching manifold to allow a quenched screw to be released for further movement down the raceway to a receptacle as soon as a heated screw is discharged from the induction heater and approaches the quenching manifold.
BRIEF DESCRIPTION OF THE FIGURES In the drawings:
FIG. 1 is a fragmentary perspective view showing portions of a machine constructed in accordance with and embodying the present invention;
FIG. 2 is a fragmentary and elevational view of the machine;
FIG. 3 is a front elevational view thereof;
FIG. 4 is an enlarged fragmentary sectional view taken along line 4-4 of FIG. 3;
FIGS. 5 and 6 are fragmentary sectional views taken along lines 5-5 and 6-6 respectively of FIG. 4;
FIGS. 7 and 8 are fragmentary sectional views taken along lines 77 and 88 respectively of FIG. 6;
FIG. 9 is a perspective view of the induction heating element that forms part of the present invention;
FIG. 10 is a fragmentary plan view as seen from line 10-10 of FIG. 2;
FIG. 11 is a fragmentary sectional view taken along line 11-11 of FIG. 10;
FIG. 12 is an enlarged fragmentary sectional view taken approximately along line 12-12 of FIG. 11;
FIG. 13 is a fragmentary sectional view taken along line 13-13 of FIG. 12;
FIG. 14 is an enlarged fragmentary sectional view taken approximately along line 14-14 of FIG. 3;
FIG. 15 is an enlarged fragmentary sectional view taken along line 15-15 of FIG. 14;
FIG. 16 is a fragmentary longitudinal sectional view of a thread-forming screw constructed in accordance with and produced by the method of the present invention; and
FIG. 17 is a sectional view taken along line 17-17 of FIG. 16.
DETAILED DESCRIPTION Referring now in more detail to the drawing and in particular to FIGS. 15-17, there is shown a self-tapping screw ,of one type with which the present invention is concerned. The screw 2 includes a shank 4 having a helical thread 6 thereon. The thread 6 includes a threadswaging portion 8 at which the crest of the thread is of progressively decreasing diameter toward the workentering end 10 of the screw. In the form of screw shown in FIG. 16, there is a relatively long unthreaded tapered portion 12 between the work-entering end 10 and the thread-swaging portion or zone 8; however, the screw 2 may be of a type having its thread extending to the work-entering end 10 or almost thereto. As seen in FIG. 17, the cross-section of the thread defines a regular polygon with an odd number of sides. This crosssectional configuration may be present throughout the full length of the thread 6 or it may simply be in the threadswaging zone 8 and such lead section 12 as may be present. In the specific form shown, the crosssection of the thread defines three arcuate sides l4, 15, 16 with arcuate intermediate thread- swaging lobes 17, 18, 19. The screw 2 also has a head 20 that. is larger in diameter than the adjacent part of the shank 4.
Referring now to FIGS. l-3, 6 and 7, the machine, generally designated at 22, comprises a hopper 24 for holding a-supply of screws 2. The hopper includes a feeding mechanism of known type for feeding the screws one by one into a downwardly inclined raceway 26. The raceway 26 is mounted at the desired angle of inclination on an upstanding support 28 which is, in turn, mounted on a suitable frame portion 30 of the machine. The raceway support 28 includes side members 32, 32 that are bolted to end blocks 34, 34. Passing through the end blocks 34, 34 are bolts 36, 36 for threaded engagement with rails 38, 38. When the screws 2 slide down the raceway 26, the screw head 20 rests on the tops of the rails 38, 38 and the screw shank 4 projects into the gap between the rails 38, 38. To provide for adjustable spacings of the rails 38, 38 the bolts 35 are disposed in elongated slots 40, one such slot being shown in FIG. 7.
Also in FIG. 7, a hold down bar 42 is disposed above the rails 38, 38 and is adjustably positioned so that the heads of the screws when on the rails 38, 38 keep the screws perpendicular to the raceway. The mounting for the hold down bar 42 includes two assemblies 43, 43 each having a bracket 44 that is bolted to one of the side members 32. At its upper end the bracket has a flange 46 for receiving the threaded stud 48, the lower end of which is secured to the hold down bar 42. A coil spring 50 encircles the stud 48 and is interposed between the flange 46 and the hold down bar 42, and above the flange 46 a hand screw 52 is threaded onto the stud 48. Thus, by turning the screws 52, 52, the position of the hold down bar 42 may be adjusted relative to the rails 38, 38.
In the normal operation of the machine, the feeding mechanism within the hopper 24 should maintain a supply of screws 2 in the raceway 26. To make sure that the raceway is kept supplied, there is shown diagramatically in FIG. 1, a light source 54 and a photocell 56 that may be used to control the motor that operates the feeder within the hopper 24. When the light beam ceases to be interrupted by screws 2, the feeder begins to operate to discharge screws from the hopper 24 into the raceway 26.
At the bottom of the raceway 26 the machine has an induction heating element 58 and related structure 59 for mounting the element in place and for providing a slidesupport for the screws that pass through the element 58. The heating element is in the nature of a one turn induction coil. As best seen in FIG. 9, the element 58 is a tubular copper member of rectangular crosssections (see FIG. 8) having spaced parallel bars 60, 60, the forward ends of which have downturned legs 62, 62 that are cross connected by an end section 64.
At its opposite ends there are additional depending legs 66, 66 which are electrically and mechanically connected through fittings 68, 68 to electrical tubular copper leads 70, 70. Intermediate the fittings 68, 68 and the legs 66, 66 the leads 70, 70 may be clamped in a suitable manifold 72 (FIGS. 4 and 6). As best seen in FIG. 8, the element 58 may be coated with glass or ceramic 61 for insulation purposes. Currentmay be supplied to the leads 70, 70 from an induction heating generator 74 (FIG. 2) through a pair of tubular supply lines 76 that are respectively connected to the leads 70, 70. In addition to electric current, cooling water may be circulated from a suitable source of supply through the lines 76 and the leads 70 to the coil 58 to maintain the coil at the desired operating temperature. The electric current supply to the coil is preferably of a radio frequency and may be of the order of 400KHz.
Referring more particularly to FIGS. 4, 5, 6 and 8 it will be seen that the structure 59 includes a base plate 78 that is bolted or otherwise rigidly secured to a frame portion 80 of the machine. Bolted to the upper surface of the base plate 78 are spacer blocks 80 that support an upper block 82. The upper block 82v is secured to the spacer blocks 80 by hand screws 84, 84.. On top of the block 82 are dielectric members 86, 86 which are disposed on opposite sides of the coil bars 60, 60. The members 86, 86 may be secured to the block 82 by fiber nuts and studs 88. On top of the members 86,86 and secured thereto in any suitable manner are ceramic plates 90 that provide a relatively low friction surface for engagement by the heads of the screws 2 as the screws pass between the coil bars 60, 60. Interposed between the upper surfaces of the bars 60, 60 and-the ceramic plates 90 are insulating glass spacer rods 92, 92.
As each screw 2 leaves the lower end of'the raceway 26 and comes to rest on the ceramic plates 90, 90, as shown in FIG. 6, the screws will progressively pass between the bars 60, 60 to become inductively heated. The relative positions of the bars 60, 60 with respect to the thread-swaging zone 8 of the screw 2 and the sides of the bars 60, 60 should be such-that the bars approximately span the axiallengthof the thread-swaging zone 8 and with thethread-swaging zone 8'being closely adjacent to the bars 60, 60 to effect maximum inductive heating and close control over the depth of heating. Accordingly, when the screws are advanced in the space between the bars 60, 60, the high frequency electric current will be induced at the zone 8 through a predetermined depth such as indicated by the line 94 in FIGS. 16 and 17. Since the high frequency alternating current produces a skin effect," the heating is confined to the localized area of the thread-swaging zone 8 leaving substantially unheated the core of the screw that surrounds the heated zone and the parts of the screw axially remote therefrom. The heating is progressive and may be readily controlled so that just the proper amount of depth of heating in the localized zones is attained. The depth and length of the heated zone need only be that sufficient to withstand the thread-forming pressures to which the screws are intended to be subjected during use.
The mechanism for feeding the screws between the coil bars 60, 60 will now be described; and for this purpose reference should be had to FIGS. 4 and 5. Suitably secured to the frame of the machine is an upstanding motor bracket '96 having a top plate 98 upon which is mounted a variable speed feeder motor 100. The top plate 98 is apertured for receiving the motor shaft which has thereon a crank102that is journalled at one end of a connecting rod 104. The other end of the connecting rod 104 is journalled on apin 106 that is secured to a yoke 108.- The yoke 108 carries with it a depending angle bracket 110 which, in turn, carries a pusher 112. The angle bracket is adjustably secured to the yoke 108 by bolt 114 while the pusher 112 is adjustably secured to the angle bracket 110 by bolt 116. This allows for adjustments for various sizes of screws being processed. The pusher 112 reciprocates and has a stroke as determined by the throw of the crank 102. For purposes of guiding the yoke 108 and thus the pusher 112 in the path of reciprocation, a flange 118 is bolted to the motor bracket 96 for rigidly supporting spaced parallel guide pins 120, 120. Nuts 122, 122 retain the guide pins in place. For each rotation of the crank 102, the edge 124 of the pusher engages the bottommost screw in the raceway 26 and pushes it into the space between the coil bars 60, 60 to commence the zone heating of the screw.
An anti-jam feature of the pusher 112 is also provided. For this purpose the vertical arm portion 126 of the pusher 112 is rigidly secured to a member 128 that is slidable within the horizontal portion 130 of the pusher 112. A spring 132 is operatively interposed between the leading end of the slidable member 128 and the vertical arm portion 126. This biases the arm portion 126 into abutting relationship with the portion 130. However, if the leading edge 124 meets excessive resistance due to jamming of the machine, the member 128 will slide relative to the portion 130 causing the spring 132 to expand. The member 126 and the member 128 will then be able to move to the left (FIG. 4) relative to the member 130 to take up the stroke of the mechanism.
As will best be seen from FIGS. 4 and 6, a plurality of screws 2 with the heads thereof in abutting relationship are supported on the ceramic plates 90 for step-bystep movement between the bars 60 so that each screw becomes locally heated a sufficient amount as it reaches the left hand end (FIGS. 4 and 6) of the heater. Accordingly, the left hand end of the heater is suitably provided with a device for removing the heated screw and delivering the screw to a downwardly inclined raceway 134 for movement to a water quenching device, which forms part of the machine. As shown, the upper end of the raceway 134 is adjacent to the discharge end of the induction heater. This feedoff mechanism comprises a motor 136 that is mounted on a bracket 97 and includes a shaft 138 that has a feed off roller 140 overlying the ceramic plate 40 at the end of the coil. The periphery of the feed roller 140 engages the fully heated screw at the head thereof each time the pusher 112 feeds a screw from the raceway 26 into the space between the bars 60, 60.
Referring more particularly to FIG. 10, the raceway 134 comprises opposed plates 142, 142 on which the head of the screw slides, and the plates define a gap 144 through which the screw shank projects. The raceway plates 142, 142 may be mounted on the frame of the machine by a support structure 135. Mounted on the plates 142, 142 is a first electric eye control mechanism comprising a light transmitting source 146 and a photocell 148 that actuates a time delay safety mechanism. If a screw does not, within a specified period of time, interrupt the light beam, the machine is shut off. This may occur, for instance, should the machine jam. Further down the raceway 134 is a second photocell control arrangement comprising a light transmitting source 150 and a photocell 152 for the purpose of operating an escapement mechanism, to be hereinafter described.
A hold down member 154 is provided to maintain the screws 2 in the raceway in the proper positions, that is generally perpendicular to the plates 142, 142. The hold down member 154 includes brackets 156, 156 that are mounted on one of the plates 142 and contain adjusting screws 158 by which the height of the member 154 relative to the raceway 134 may be adjusted for different sizes of screws.
Mounted on and depending from the raceway 134 are members 160, 160 having secured thereto as by bolts 162 a pair of opposed quenching manifolds 164, 164. Formed in the quenching manifolds 164, 164 are orifices 166, which are disposed along a substantial length of the raceway 134 and provide a means by which quenching liquid, such as water or oil, may be applied to the heated screws in the localized zone at which the screws are heated in the induction heating element 58. Accordingly, the quenching manifolds 164, 164 should be mounted at distances'below the raceway plates 142, 142 such that the orifices 166 are approximately in alignment with the locally heated thread-swaging zone 8, as seen in FIG. 15. Thus, the vertical positions and the spacing of the quenching manifolds are adjustable.
Water for the quenching manifold may be stored in a suitable reservoir or tank 168 (FIG. 2). A pump 170, driven by electric motor 172, draws water from the tank 168 and delivers the water under pressure to manifold piping 174 which connects with pipe sections 176, 176 (FIG. for delivery of the fluid to the respective manifolds 164, 164. The quenching water that impinges upon the screws drops downwardly between the manifolds and may be suitably collected for recirculation to the supply tank 168.
Since the heated screws 2 are rapidly fed from the heater 58 by the roller 140 and the screws quickly slide down the raceway 134 to the quenching manifolds 164, 164, the initial quenching is quite rapid, which gives desired hardness properties to the localized zone. Further cooling of the screws 2 takes place at the lower portions of the quenching manifolds 164 where, as shown in FIG. 10, several screws 2 may be positioned, the lowermost of which is in abutment with an escapement mechanism 178.
The escapement mechanism 178 is of a type that is capable of operating faster than the normal machine feed and independently thereof. The escapement mechanism 178 includes a sector-shaped member 180 that is journalled for rocking movement on a pin 182, the pin 182 being carried by an escapement mounting bracket 184 that is bolted to one of the raceway plates 134. A pneumatic piston and cylinder assembly 186 is pivotally connected to the member 180 and also pivotally connected to the bracket 184, the connection to the latter being at pivot pin 188. The piston of the assembly 186 operates to rock the escapement member 180 back and forth through one cycle of operation when the stack or group of screws fills the raceway 134 up to the beam from the light source 150. This interruption must be for a predetermined period of time so as to prevent actuation of the escapement when a screw is fed from the heating coil and momentarily breaks the beam from the light source 150. Thus, the photocell 152 controls the actuation of the piston and cylinder assembly 186. The arrangement of suitable valves for the assembly 186 and the manner of operating them by the photocell 152 can be carried out in accordance with known techniques.
Arcuate plates 189, 189 are bolted to the free ends of the sector member and present portions 190, 192 that define an opening 194 (FIG. 12). When the plate 189 swings clockwise about the pivot pin 182, reference being to FIG. 11 a screw 2 will drop into the opening 194 and will be held therein between the portions 190, 192. However, when the plate 189 then swings counterclockwise past dead center, the offset portion 192 will be out of the way of the screw in the opening 194 so that the screw will slide freely down the raceway 134 to a receptacle below. The next screw in line abuts the up raceway side of the member 190. When the plate 189 moves back counterclockwise past dead center, the aforesaid next screw will become lodged in the opening 194.
The screws 2 thus treated are now locally hardened uniformly in an annular zone which is of a predetermined depth from the periphery of the swaging portion 8 of the screw thread. Such depth of hardness is indicated by the line 94 in FIGS. 16 and 17. This depth may be only a minor fractional part of the nominal diameter of the screw threads and need encompass only a few turns of the thread, namely those that do the threadswaging in the work. The core of the screw surrounded by the locally hardened zone and the part of the screw axially of the hardened zone is of optimum hardness for intended use. Those regions are essentially unchanged as to composition or grain structure as a result of the process of this invention.
The invention is claimed as follows:
1. A machine for heat-treating elongated articles in a localized peripheral zone that is a fractional part of the length of the article and which envelopes a core of the article, comprising an induction heater, said heater having spaced bars, means for suspending said articles between said bars so that said localized zone is adjacent to said bars and said articles are sufficiently closely spaced to be inductively coupled for complete peripheral heating in said zone, means for feeding said articles through said induction heater, means for quenching in succession each article in said peripheral zone, means for conveying the heated articles in succession to the quenching means, and wherein the lengths of the bars are such that a plurality of articles can be supported between said bars by said suspending means with the articles running substantially perpendicular to the general plane defined by said bars and with the articles extending beyond said general plane, said means for feeding said articles through said induction heater cooperating with said means for conveying the heated articles to the quenching means to feed an article to an initial induction heating position between said bars and at the same time discharge another article from a final heating position from between said bars for conveyance to said quenching means.
2. A machine according to claim 1 including a raceway for containing a plurality of said articles, said raceway terminating adjacent to said bars for delivery of articles to said feeding means, said feeding means comprising means engageable with the articles delivered theretoby said raceway, and said conveying means comprises a rotatable feed wheel.
3. A machine for heat-treating screws each having a head and a peripherally threaded shank with a localized zone of the thread being. of a type for producing a shanks that are surrounded by said zones, said induction heater being of such extent relative to the axial extent of said shanks that said zones are adjacent to said heater and said shanks extend beyond said heater thereby to leave substantially unheated the shanks remote from said zones, means by which said screws are withdrawn from said heater, and means for supporting said screws at their heads as they are fed through said field.
4. A machine according to claim 3 including means for quenching said screws at said zones.
5. A machine according to claim 3 including a race way for receiving said screws as they are withdrawn from said heater, said raceway including means for slidably supporting the heads of said screws, said lastnamed means forming a gap for receiving the shanks of said screws.
6. A machine according to claim 3 in which said heating element comprises spaced bars between which said screws move and with the shanks of said screws being perpendicular to a general plane defined by said bars. =0:
' UNITED STATES PATENT OFFICE CERTIFICATE ()F CORRECTION Patent No; r 3,836,743 v Dated SEEIE 11 1914, lnventofl i CHARLES 'H. fwARbwELL and NORMAN LY. HOLCOMB It is'certified that error appears in the above identified patent and that said Letters Patent are hereby corrected as shown below:
Abstract; line 17, "articles" should be -.-article--;
' [after "article" insert --and means for a g ,.removing the heated articles- Col." 1-, line-22; "carbonized" should be*-'-'-carb J 1 ized-- Col. 1, line-29, "skill should be 111-- Col. 6, line' ll,v After "pusher" insert --l12-- Signed and seal d this-17th day December 1974.
' (SEAL) Atte s t: mccoY'm 613mm.
i i I ,c. MARSHALLQDANN Attesting Officer l I Commissioner of Patents .FosM P0 1950 00-59) Y I I uscombolc 3 M Q I Q 1r11.5.covtnnnlnrnmnmaomcumno-cn-au,
i UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3 836 743 Dated SEEIE MBEB 12 1914,
Inventor(s) CHARLES H. WARDWELL and NORMAN L. HOLCOMB It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Abstract, line 17, "articles" should be article--;
i 1 after "article" insert -and means for removing the heated articles-- 001. 1, line 22, "carbggized" should be '--carbg gized-- Col. 1, line 29, "$5111" should be --s t ill-'-.- Col. 6, line'll, After "pusher" insert --ll2-- Signed and sealed this 17th day of December 1974.
(SEAL) Attest:
McCOY M. GIBSON JR. c. MARSHAL-L DANN Attesting Officer I Commissioner of Patents FORM PO-IOSO WW9) t uscounwoc 60316-P69 I u. S. GOVIINIINT ,IHIHNG OFFICE 2 1,, 0"3'6-33L

Claims (6)

1. A machine for heat-treating elongated articles in a localized peripheral zone that is a fractional part of the length of the article and which envelopes a core of the article, comprising an induction heater, said heater having spaced bars, means for suspending said articles between said bars so that said localized zone is adjacent to said bars and said articles are sufficiently closely spaced to be inductively coupled for complete peripheral heating in said zone, means for feeding said articles through said induction heater, means for quenching in succession each article in said peripheral zone, means for conveying the heated articles in succession to the quenching means, and wherein the lengths of the bars are such that a plurality of articles can be supported between said bars by said suspending means with the articles running substantially perpendicular to the general plane defined by said bars and with the articles extending beyond said general plane, said means for feeding said articles through said induction heater cooperating with said means for conveying the heated articles to the quenching means to feed an article to an initial induction heating position between said bars and at the same time discharge another article from a final heating position from between said bars for conveyance to said quenching means.
2. A machine according to claim 1 including a raceway for containing a plurality of said articles, said raceway terminating adjacent to said bars for delivery of articles to said feeding means, said feeding means comprising means engageable with the articles delivered thereto by said raceway, and said conveying means comprises a rotatable feed wheel.
3. A machine for heat-treating screws each having a head and a peripherally threaded shank with a localized zone of the thread being of a type for producing a thread in a workpiece: comprising an induction heater having means forming a region with a high frequency alternating current field, means for feeding said screws substantially non-rotatably through said field and such that said shanks are similarly oriented in said field and are sufficiently closely spaced side-by-side to be inductively coupled for heating at said zones circumferentially therearound at least to a tempering temperature while leaving substantially unheated the cores of the shanks that are surrounded by said zones, said induction heater being of such extent relative to the axial extent of said shanks that said zones are adjacent to said heater and said shanks extend beyond said heater thereby to leave substantially unheated the shanks remote from said zones, means by which said screws are withdrawn from said heater, and means for supporting said screws at their heads as they are fed through said field.
4. A machine according to claim 3 including means for quenching said screws at said zones.
5. A machine according to claim 3 including a raceway for receiving said screws as they are withdrawn from said heater, said raceway including means for slidably supporting the heads of said screws, said last-named means forming a gap for receiving the shanks of said screws.
6. A machine according to claim 3 in which said heating element comprises spaced bars between which said screws move and with the shanks of said screws being perpendicular to a general plane defined by said bars.
US00435333A 1973-02-22 1974-01-21 Localized heat treating machine Expired - Lifetime US3836743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00435333A US3836743A (en) 1973-02-22 1974-01-21 Localized heat treating machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US33487973A 1973-02-22 1973-02-22
US00435333A US3836743A (en) 1973-02-22 1974-01-21 Localized heat treating machine

Publications (1)

Publication Number Publication Date
US3836743A true US3836743A (en) 1974-09-17

Family

ID=26989441

Family Applications (1)

Application Number Title Priority Date Filing Date
US00435333A Expired - Lifetime US3836743A (en) 1973-02-22 1974-01-21 Localized heat treating machine

Country Status (1)

Country Link
US (1) US3836743A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4180718A (en) * 1976-09-10 1979-12-25 Lester Hanson Apparatus and system for processing oil shale
US4405386A (en) * 1982-04-05 1983-09-20 Olin Corporation Process and apparatus for improving cold rollability and/or strip annealability of metals and metal alloys
EP1718118A1 (en) * 2004-02-20 2006-11-02 Neturen Co., Ltd. Method and device for induction heating and hardening apparatus
US20070243043A1 (en) * 2006-04-17 2007-10-18 Acument Intellectual Properties, Llc High performance thread forming screw
US20090065501A1 (en) * 2007-09-12 2009-03-12 Peter Dickson Electric Induction Heating of a Rail Head with Non-Uniform Longitudinal Temperature Distribution
US8912472B1 (en) * 2010-07-19 2014-12-16 Barnes Group Inc. Induction heating of springs
US9585201B1 (en) 2013-07-02 2017-02-28 Inductotherm Corp. Electric induction heating of rails
EP4190920A1 (en) * 2021-12-06 2023-06-07 Soenen Technology NV Method for hardening slides of a perforating press and the resulting slides

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1980875A (en) * 1930-01-01 1934-11-13 Ajax Electrothermic Corp Electric induction furnace
US2840678A (en) * 1956-08-13 1958-06-24 Omark Industries Inc Rivet machine feeding means
US3051812A (en) * 1959-12-31 1962-08-28 North American Phillips Compan Device for inductive heating of workpieces
US3083285A (en) * 1960-10-13 1963-03-26 Induction Heating And Engineer Apparatus for heat treating the ends of work pieces
US3144365A (en) * 1963-07-10 1964-08-11 Ingersoll Rand Co Method of heat treating elongated steel articles
US3251976A (en) * 1963-12-06 1966-05-17 Ohio Crankshaft Co Apparatus and method for heating reduced portions of adjacent workpieces
US3488236A (en) * 1966-12-22 1970-01-06 Beaver Precision Prod Method and apparatus for heat treating a metallic workpiece
US3601571A (en) * 1969-11-12 1971-08-24 Park Ohio Industries Inc Induction heating device with a controlled feeding mechanism
US3699302A (en) * 1971-02-24 1972-10-17 Park Ohio Industries Inc Single turn channel coil

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1980875A (en) * 1930-01-01 1934-11-13 Ajax Electrothermic Corp Electric induction furnace
US2840678A (en) * 1956-08-13 1958-06-24 Omark Industries Inc Rivet machine feeding means
US3051812A (en) * 1959-12-31 1962-08-28 North American Phillips Compan Device for inductive heating of workpieces
US3083285A (en) * 1960-10-13 1963-03-26 Induction Heating And Engineer Apparatus for heat treating the ends of work pieces
US3144365A (en) * 1963-07-10 1964-08-11 Ingersoll Rand Co Method of heat treating elongated steel articles
US3251976A (en) * 1963-12-06 1966-05-17 Ohio Crankshaft Co Apparatus and method for heating reduced portions of adjacent workpieces
US3488236A (en) * 1966-12-22 1970-01-06 Beaver Precision Prod Method and apparatus for heat treating a metallic workpiece
US3601571A (en) * 1969-11-12 1971-08-24 Park Ohio Industries Inc Induction heating device with a controlled feeding mechanism
US3699302A (en) * 1971-02-24 1972-10-17 Park Ohio Industries Inc Single turn channel coil

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4180718A (en) * 1976-09-10 1979-12-25 Lester Hanson Apparatus and system for processing oil shale
US4405386A (en) * 1982-04-05 1983-09-20 Olin Corporation Process and apparatus for improving cold rollability and/or strip annealability of metals and metal alloys
EP1718118A1 (en) * 2004-02-20 2006-11-02 Neturen Co., Ltd. Method and device for induction heating and hardening apparatus
EP1718118A4 (en) * 2004-02-20 2007-05-02 Neturen Co Ltd Method and device for induction heating and hardening apparatus
US20090286608A1 (en) * 2006-04-17 2009-11-19 Price David R Method of forming a high performance thread forming screw
US20070243043A1 (en) * 2006-04-17 2007-10-18 Acument Intellectual Properties, Llc High performance thread forming screw
US8172692B2 (en) 2006-04-17 2012-05-08 Acument Intellectual Properties, Llc Method of forming a high performance thread forming screw
US20090065501A1 (en) * 2007-09-12 2009-03-12 Peter Dickson Electric Induction Heating of a Rail Head with Non-Uniform Longitudinal Temperature Distribution
US9040882B2 (en) * 2007-09-12 2015-05-26 Inductotherm Corp. Electric induction heating of a rail head with non-uniform longitudinal temperature distribution
US8912472B1 (en) * 2010-07-19 2014-12-16 Barnes Group Inc. Induction heating of springs
US20140367374A1 (en) * 2010-07-19 2014-12-18 Barnes Group Inc. Induction heating of springs
US10472695B1 (en) * 2010-07-19 2019-11-12 Barnes Group Inc. Induction heating of spring
US9585201B1 (en) 2013-07-02 2017-02-28 Inductotherm Corp. Electric induction heating of rails
EP4190920A1 (en) * 2021-12-06 2023-06-07 Soenen Technology NV Method for hardening slides of a perforating press and the resulting slides
BE1029987B1 (en) * 2021-12-06 2023-07-03 Soenen Tech Nv Method for hardening slides of a perforating press and the resulting slides

Similar Documents

Publication Publication Date Title
US3769103A (en) Method of heat treating articles
US3836743A (en) Localized heat treating machine
DE68912573T2 (en) DEVICE AND METHOD FOR QUARKING GLASS SHEETS.
DE2540603C2 (en) Method and device for bending and tempering glass panes
WO2006002751A1 (en) Heating furnace for preforms
CN105618648A (en) Automatic feeding device for thread roller
US2490206A (en) Method of normalizing coiled springs by a high-frequency magnetic field
DE69320231T2 (en) Process for heat treatment of a specific area of a number of pieces
US3596037A (en) Apparatus for inductively heat-treating steel workpieces
US2958524A (en) Means for hardening a surface of an article by electrical induction heating and quenching
US4619717A (en) Heating magnetic metal workpieces
US2713930A (en) Apparatus for orienting headed articles
DE3309519C2 (en)
JPS5773134A (en) Method and device for starightening and heat treatment of wire rod
US2146825A (en) Method for manufacturing bolts and similar articles
US3208250A (en) Mechanism for straightening cylindrical bodies by automation
DE102006015669B3 (en) Method for converting the metallic structure of a plasticizing screw comprises impinging the wear region with an alternating current, producing resistance heat to raise the wear region to a hardening temperature and cooling the region
DE3508131C2 (en)
US2573308A (en) End hardening of rails
US2288644A (en) Forging apparatus
US3616807A (en) Device for quenching elongated inductively heated workpieces
US3360976A (en) Apparatus for rotating cylindrical stock
US2007310A (en) Method of making tight fitting nuts
US2226043A (en) Method and apparatus for treating weld rods
US3612804A (en) Induction heating device for successive barlike members

Legal Events

Date Code Title Description
AS Assignment

Owner name: AMCA INTERNATIONAL CORPORATION, DARTMOUTH NATIONAL

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:AMTEL, INC., A CORP OF RI.;REEL/FRAME:004518/0160

Effective date: 19851231

Owner name: RESEARCH ENGINEERING & MANUFACTURING, INC., 2500 S

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:AMCA INTERNATIONAL CORPORATION, A CORP OF DE.;REEL/FRAME:004518/0164

Effective date: 19851231

Owner name: AMCA INTERNATONAL CORPORATION, HANOVER, N.H., A CO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST. INDIVIDUALLY AND AS COLLATERAL AGENT FOR AMCA;ASSIGNOR:RESEARCH ENGINEERING & MANUFACTURING, INC., A CORP. OF MA.;REEL/FRAME:004519/0387

Effective date: 19851231

Owner name: PHIPARD, HARVEY F., JR., POINT MANALAPAN, FL.

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST. INDIVIDUALLY AND AS COLLATERAL AGENT FOR AMCA;ASSIGNOR:RESEARCH ENGINEERING & MANUFACTURING, INC., A CORP. OF MA.;REEL/FRAME:004519/0387

Effective date: 19851231

Owner name: AMCA INTERNATIONAL CORPORATION, A CORP OF DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AMTEL, INC., A CORP OF RI.;REEL/FRAME:004518/0160

Effective date: 19851231

Owner name: RESEARCH ENGINEERING & MANUFACTURING, INC., A COR

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AMCA INTERNATIONAL CORPORATION, A CORP OF DE.;REEL/FRAME:004518/0164

Effective date: 19851231

Owner name: AMCA INTERNATONAL CORPORATION, A CORP. OF DE.,NEW

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RESEARCH ENGINEERING & MANUFACTURING, INC., A CORP. OF MA.;REEL/FRAME:004519/0387

Effective date: 19851231

Owner name: PHIPARD, HARVEY F., JR.,FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RESEARCH ENGINEERING & MANUFACTURING, INC., A CORP. OF MA.;REEL/FRAME:004519/0387

Effective date: 19851231

AS Assignment

Owner name: AMTEL, INC.

Free format text: MERGER;ASSIGNOR:RESEARCH ENGINEERING & MANUFACTURING, INC.;REEL/FRAME:004540/0388

AS Assignment

Owner name: RESEARCH ENGINEERING & MANUFACTURING, INC., RHODE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:PHIPARD, HARVEY F., JR.;REEL/FRAME:005234/0064

Effective date: 19891110

AS Assignment

Owner name: ROCKFORD PRODUCTS CORPORATION, ILLINOIS

Free format text: RELEASE OF PATENT LICENSES;ASSIGNOR:CONGRESS FINANCIAL CORPORATION (CENTRAL);REEL/FRAME:008268/0441

Effective date: 19961126