US3836584A - Tricyclo(5,4,0,03,9)undeca-5,10-dien-2-ones - Google Patents

Tricyclo(5,4,0,03,9)undeca-5,10-dien-2-ones Download PDF

Info

Publication number
US3836584A
US3836584A US00300603A US30060372A US3836584A US 3836584 A US3836584 A US 3836584A US 00300603 A US00300603 A US 00300603A US 30060372 A US30060372 A US 30060372A US 3836584 A US3836584 A US 3836584A
Authority
US
United States
Prior art keywords
dien
tricyclo
undeca
trimethyl
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00300603A
Inventor
H Schmid
G Frater
H Greuter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
F Hoffmann La Roche AG
Hoffmann La Roche Inc
Original Assignee
F Hoffmann La Roche AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by F Hoffmann La Roche AG filed Critical F Hoffmann La Roche AG
Priority to US460631A priority Critical patent/US3923899A/en
Priority to US460395A priority patent/US3925479A/en
Priority to US477865A priority patent/US3925477A/en
Application granted granted Critical
Publication of US3836584A publication Critical patent/US3836584A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C403/00Derivatives of cyclohexane or of a cyclohexene or of cyclohexadiene, having a side-chain containing an acyclic unsaturated part of at least four carbon atoms, this part being directly attached to the cyclohexane or cyclohexene or cyclohexadiene rings, e.g. vitamin A, beta-carotene, beta-ionone
    • C07C403/02Derivatives of cyclohexane or of a cyclohexene or of cyclohexadiene, having a side-chain containing an acyclic unsaturated part of at least four carbon atoms, this part being directly attached to the cyclohexane or cyclohexene or cyclohexadiene rings, e.g. vitamin A, beta-carotene, beta-ionone having side-chains containing only carbon and hydrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/385Saturated compounds containing a keto group being part of a ring
    • C07C49/417Saturated compounds containing a keto group being part of a ring polycyclic
    • C07C49/423Saturated compounds containing a keto group being part of a ring polycyclic a keto group being part of a condensed ring system
    • C07C49/453Saturated compounds containing a keto group being part of a ring polycyclic a keto group being part of a condensed ring system having three rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/587Unsaturated compounds containing a keto groups being part of a ring
    • C07C49/613Unsaturated compounds containing a keto groups being part of a ring polycyclic
    • C07C49/617Unsaturated compounds containing a keto groups being part of a ring polycyclic a keto group being part of a condensed ring system
    • C07C49/643Unsaturated compounds containing a keto groups being part of a ring polycyclic a keto group being part of a condensed ring system having three rings
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B9/00Essential oils; Perfumes
    • C11B9/0042Essential oils; Perfumes compounds containing condensed hydrocarbon rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Abstract

TRICYCLO(5,4,0,03.9)UNDECEA - 5,10 -DIEN-2-ONES AND TRICYCLO(5,3,1,03.8)UNDECA-5,9-DIEN-2-ONES WHICH ARE USEFUL IN THEE PREFUMARY ART AND A PROCESS FOR THEIR PREPARATION FROM PHENOLS AND CYCLOHEXENONES.

Description

United States Patent O US. Cl. 260-586 M 9 Claims ABSTRACT OF THE DISCLOSURE Tricyclo[5,4,0,0 ]undeca 5,10 dien-Z-ones and tricyclo[5,3,l,0 ]undeca-5,9-dien-2-ones which are useful in the perfumary art and a process for their preparation from phenols and cyclohexenones.
SUMMARY OF THE INVENTION This invention relates to tricyclo ketones selected from the group consisting of the formula:
and
wherein R R and R are independently selected from the group consisting of lower alkyl, hydrogen and lower alkoxy; R is a hydrogen atom, lower alkyl or lower alkenyl; R and R are independently selected from the group consisting of hydrogen or lower alkyl; R and R are independently lower alkyl; and wherein the dotted bond can be optionally hydrogenated.
The compounds of formula I above have a camphorlike, woody, earthy and fatty odor. The compounds of formula I above and their acid addition salts because of their fragrance are useful in the preparation of perfumes, colognes and other scented compositions.
3,836,584 Patented Sept. 17, 1974 The compounds of formulae I-A and LB can be prepared from compounds of the formula:
B1 II wherein R R R R R R R and R are as above; and the dotted bond can be optionally hydrogenated.
DETAILED DESCRIPTION OF THE INVENTION As used in this application, the expression lower alkyl includes both straight-chain and branched-chain hydrocarbon groups containing 1-6 carbon atoms such as methyl, ethyl, propyl, isopropyl, pentyl, 3-pentyl and the like. The alkyl moieties in the lower alkoxy groups are of the same kind. The expression lower alkenyl includes both straight-chain and branched-chain hydrocarbon groups containing 2-6 carbon atoms such as vinyl, allyl, butenyl,
pentenyl and the like. The expression halogen includes fluorine, chlorine, bromine and iodine.
Preferred tricyclic ketones of formulae I-A and I-B above are those in which R R and R each represent a lower alkyl group, preferably a methyl group. Also preferred are those compounds wherein R R and R are lower alkyl, particularly methyl and those compounds where R R R and R are lower alkyl, particularly methyl. Especially preferred tricyclic ketones are:
1,3,6-trimethyl-tricyclo [5,49,0 1 undeca-5,10-dien-2-one; 1,3,6-trimethyl-tricyclic[5,3,1,0 ]undeca-5,9-dien-2-one; 1,3, lO-trimethyl-tricyclo 5,4,0,0 undeca-S, l 0-dien-2- one; 1,3,9-trimethyl-tricyclo [5,3 1,0 ]undeca-5,9-dien-2-one; 1,3,6, 1 O-tetramethyl-tricyclo [5 ,4, 0,0 undeca-S 10- dien-Z-one; 1,3,6,9-tetramethyl-tricyclo[5,3,1,0 ]undeca-S,9-dien- 2-one; 1,3,6-trimethyl-tricyclo [5,3 1 ,0 undecan-Z-one; l, 3, lO-trimethyl-tricyclo [5,4,0,0 undecan-Z-one; 1,3,6-trimethyl-tricycl0[5,43,0 1undecan-Z-one; and 1,3,9-trimethyl-tricyclo [5,3 1,0 undecan-Z-one.
ferred reaction temperature depends upon the nature of,
the substituents R R R R R R R and R in the compounds of the formula II above and the particular solvent. For instance, when R in the starting material of formula II is methyl, better yields can be obtained in a shorter time than with the analogous compound of for-' mula II where R is hydrogen. The same is true for the reaction temperature. Thus, for best results in terms of yields, a decrease of the reaction time can be dispensed with in favor of a reduction of the reaction temperature. Also increasing the pressure will decrease the reaction time necessary to obtain optimum yields of the compounds of the formulae LA and I-B.
While reaction temperatures of 40 degrees centigrade to about 200 degrees centigrade are generally utilized, thereaction can also take place at temperatures below 40 degrees centigrade. However, at temperatures below 40 degrees centigrade, the velocity of the reaction is slow requiring long reaction times. Thus, the utilization of temperatures below 40 degrees centigrade makes the process not practical for large scale purposes.
The compounds of formulae I-A and 1-H are formed from the compounds of the formula II by heating the compounds of the formula II in an inert organic solvent. In carrying out this reaction, any conventional inert organic solvent can be utilized. Generally, it is preferred to utilize inert organic solvents boiling above 40 degrees centigrade. Among the preferred inert organic solvents are hydrocarbons such as hexane, octane, decane, benzene, toluene, etc.; halogenated hydrocarbons such as chloroform, methylenechloride, carbontetrachloride and chlorobenzene; ethers such as dioxane, tetrahydrofuran and anisole; amines such as aniline, dimethylaniline, triethylamine, pyridine, and quinoline; amides such as dimethylformamide, tetramethylurea or hexamethylphosphoric acid triamide; nitriles such as benzonitrile, acetonitrile, etc.; esters such as ethylacetate, butylacetate, etc.; ketones such as acetone, diethylketone and cyclohexanone; or a similar inert organic solvent such as dimethylsulfoxide, tetrahydrothiophene dioxide. When a low-boiling solvent is used, heating is conveniently carried out in an autoclave or a bomb tube so that the temperature can be raised in order to avoid unnecessary long reacting times.
In carrying out this reaction, it is generally best to avoid temperatures above 200 degrees centigrade. This is true since at high temperatures decomposition of the starting material and/or the product can set in.
If desired, the process can be carried out in the presence of a Lewis acid. Any conventional Lewis acid can be utilized in carrying out the process. Examples of Lewis acids which can be used are the protons, aluminum chloride, zinc chloride, tin tetrachloride, antimony chloride, iron trichloride, boron trifiuoride, boron trifiuoride etherate, etc. It is frequently advantageous to use as the proton donator a phenol corresponding to the starting material of formula II.
By heating the compound of formula II, a mixture of the compound of the formulae I-A and I-B is formed. The separation of this mixture into the individual components can be carried out by conventional means such as chromatography. Any conventional method of chromatography can be utilized to carry out this separation. A preferred method is by chromatography on silica gel with hexane/ethyl acetate (8:2 parts by volume) being an especially preferred elution agent. The mixture can also be separated by distillation. Any conventional method of distillation such as distillation in a high vacuum can be utilized. The tricyclic ketone of formula I-B can be obtained in pure form by crystallization from saturated hydorcarbons such as pentane or hexane. It is preferred to carry out the chromatography or distillation step after the major amount of the tricyclic ketone of formula I-B has been crystallized. By this procedure of crystallization, an enrichment of the tricyclic ketone of formula I-A in the mixture is accomplished prior to preparation by chromatography or distillation.
Where the tricyclic ketone of formula I-A or formula I-B contains at least one double bond, this compound may, if desired, be hydrogenated in the presence of a noble metal catalyst. Any conventional noble metal hydrogenation catalyst can be utilized for this purpose. In carrying out this hydrogenation, the appropriate tricyclic ketone of formula I-A or formula I-B can be dissolved in an inert organic solvent, And the mixture treated with a noble metal catalyst. Any conventional inert organic solvent can be utilized for this purpose. Among the preferred noble metal hydrogenation catalysts are included platinum oxide, platinum black, mixtures of platinum oxide and platinum black, rhodium alone or on a support such as carbon or aluminum oxide. Especially preferred as a catalyst for use in this process is palladium, alone or on a support such as carbon. The hydrogen is introduced in the usual manner and the hydrogenation terminated after the up- R1 III wherein R R R R and R are as above; with a compound of the formula:
R4 R3 X(IJHCH==JJ-CH=CHR3 IV wherein R R and R are as above; and X is chlorine, bromine, iodine or aryl sulfonyloxyor lower alkyl sulfonyloxy.
In carrying out this reaction, any conventional inert organic solvent can be used as the reaction medium. Among the preferred inert organic solvents are included aromatic hydrocarbons such as benzene, chlorobenzene and toluene. Among conventional inorganic bases which can be utilized to form the salt of compound III are included alkali metals such as sodium and potassium, and alkali metal hydrides such as sodium hydride.
According to a preferred embodiment of carrying out this reaction a phenol of formula III is dissolved, for example, in benzene and the solution treated with sodium hydride. After salt-formation has occurred, a compound of formula IV is introduced and the mixture is stirred for several hours at a temperature between 0 degrees centigrade and 40 degrees centigrade. Thereafter, the reaction mixture is poured on to water and shaken out with a strong base in order to remove the phenolic constituents. The organic phase is evaporated and the residue purified in the usual manner. As will be evident from the foregoing, the symbol X in formula IV stands for a leaving atom or group. Preferably, X stands for a bromine atom or a tosyloxy or mesyloxy group.
The stereochemistry (cis/trans isomerism) of the sidechain in a compound of formula II is not critical. All isomers can be used as the starting material.
Compounds of formula II in which the bond denoted by the broken line is hydrogenated need not be isolated but are used directly in situ as the starting material.
The tricyclic ketones of formulae I-A and I-B provided by the present invention possess particular ordorant properties, their odor being camphor-like, woody, earthy and fatty.
The compounds of formulae I-A and 1-H are utilized to impart fragrance to various materials such as cosmetics, perfume oils, soaps, lotions, detergents, etc. These compounds are incorporated into various materials in olfactory amounts to impart a fragrance to the material. Also, these scented compositions can contain conventional perfume carriers and perfume diluents. Any conventional perfume carrier and perfume diluent can be utilized in preparing scented compositions in accordance with this invention.
The tricyclic ketones of formulae I-A and I-B can be used in the manufacture of a wide variety of odorant compositions. They can be used, in particular, as components of perfume bases for modern lines (e.g., for bases of hay-, tobaccoor honey-like character) as, well as for fougere, chypre and lavender bases. Furthermore, the character of compositions having, for example, flower notes, especially hyacinth, gardenia, violet and lavender notes, can be altered or intensified with the aid of the present tricyclic ketones. These tricyclic ketones harmonize well in compositions with couman'ns, ionones and rare wood essences such as vetiver oil, sandalwood oil or patchouli oil. The tricyclic ketones of formulae I-A and I-B also possess fixative properties.
The amounts in which the tricyclic ketones of formulae I-A and LB can be used in odorant compositions vary within wide limits. In perfume bases they can be used, for example, in amounts of about 2-40 weight percent and in finished products such as perfumes, lotions, etc., they can be present in an amount of from about 1-5 percent. For the perfuming of technical products (e.g., solid and liquid detergents, synthetic washing agents, aerosols or cosmetic products of all kinds such as soaps), there can in general be used about 0.1-0.3 weight percent (in the case of washing agents) or about 0.8-2 percent (in the case of soaps) of such perfume bases.
Accordingly, it will be appreciated that the present invention also includes within its scope an odorant composition which contains as an essential odor-imparting ingredient or essential odor-imparting ingredients one or more of the tricyclic ketones of formula I-A and/or formula I-B hereinbefore. Further, this invention also includes a method of imparting an odor to materials by applying thereto or incorporating therein an odor-imparting amount of one or more of the tricyclic ketones of formulae I-A and/or I-B hereinbefore or an odorant composition as hereinbefore defined.
The following examples are illustrative but not limitative of the invention. All temperatures are in degrees centigrade.
EXAMPLE 1 5 g. of 6 (3 methyl-penta-2,4-dienyl)-2,6-dimethylcyclohexa-2,4-dien-1-one are dissolved in 25 ml. of benzene and treated with 5 g. of 2,6-dimethylphenol. The mixture is heated at reflux for 6 hours. After cooling to room temperature, the mixture is shaken portionwise with a solution of 36 g. of potassium hydroxide, 25 ml. of Water and 100 ml. of methanol. The organic phase is concentrated and the residue distilled at 70-90 C./0.03 mm. Hg. The distillate contains 1,3,6-trimethyl-tricyclo [5,4,0,0 ]undeca 5,10 dien-Z-one and 1,3,6-trimethyltricyclo[5,3,1,0 ]undeca 5,9-dien-2-one in the approximate proportion of 3 :1 parts by volume.
The 3:1 mixture is dissolved in equal parts by volume of hexane and cooled to -30 C. The first-named solid tricyclic ketone separates out to a large extent with scratching. Concentration of the filtrate and repetition of this operation yields further crystals of this tricyclic ketone. The composition of the mixture of the aforementioned tricyclic ketones thereby changes from 3:1 parts by volume to approximately 1:3 parts by volume. The ultimate separation is carried out by chromatography on silicagel using hexane/ethyl acetate (8:2 parts by volume) as the elution agent. There are thus obtained 1,3,6 trimethyl tricyclo[5,4,0,0 ]undeca 5,10-dien-2- one of melting point 5455 C. and 1,3,6-trimethyl-tricycl0[5,3,1,0 ]undeca 5,9 dien-2-one of boiling point 70-75 C./0.03 mm. Hg.
EXAMPLE 2 By the procedure of Eample 1:
6 (penta 2,4 dienyl)-2,4,6-trimethyl-cyclohexa-2,4- dien-l-one is converted to 1,3,10-trimethyl-tricyclo[5,4, 0,0 ]undeca-5,10-dien-2-one of melting point 49 50 C. and 1,3,9 trimethyl tricyclo[5,3,1,0 ]undeca-5,9- dien-2-one of boiling point 7075 C./ 0.03 mm. Hg (reaction time 48 hours).
EXAMPLE 3 By the procedure of Example 1:
6 (3 methyl-penta-2,4-dienyl)-2,4,6-trimethyl-cyclohexa-2,4-dien-1-one is converted to 1,3,6,l0-tetramethyltricyclo[5,4,0,0 ]undeca 5,10 dien-2-one of melting point 83 -86 C. and 1,3,6,9 tetramethyl tricyclo[5,3, 1,0 ]undeca 5,9 dien-2-one of boiling point 7075 C./0.03 mm. Hg (reaction time 12 hours).
6 EXAMPLE 4 A 1 molar solution of 2,6-dimethylphenol in benzene is treated with sodium hydride and, after completion of the hydrogen evolution, the mixture is treated with a 10 percent molar excess of 3-methyl-penta-2,4-dieny1 1- bromide. After stirring overnight at 0-5 C., the reaction mixture is taken up in diethyl ether and shaken with water, 10 percent by weight aqueous potassium hydroxide solution with water. The dried organic phase contains the 6 (3 methyl-penta-2,4-dienyl)-2,6-dimethylcyclohexa-2,4-dien-1-one which occurs in -90 percent yield. This dienone can be stored in solution at -10 C., but it is unstable in concentrated form and at higher temperatures. [U.V. in n-hexane: maxima at 2300 A. (5:22000) and 3050 A. (E=4270).]
EXAMPLE 5 By the procedure of Example 4:
2,4,6-trimethylphenol and penta-2,4-dienyl '1-bromide are reacted to form 6-(penta-2,4-dienyl)-2,4,6-trimethylcyclohexa-2,4-dien-1-one. [U.V. in n-hexane: maxima at 2250 A. (e=26200) and 3130 A. (e=4460).]
EXAMPLE 6 By the procedure of Example 4: 2,4,6-trimethylphenol and 3-methyl-penta-2,4-dienyl 1- bromide are reacted to form 6 (3 methyl penta-2,4- dienyl) 2,4,6-trimethy1-cyclohexa-2,4-dien-l-one. [U.V. in n-hexane: maxima at 2290 A. (5:2350) and 3100 A. (E=4400).]
EXAMPLE 7 16 g. of 1,3,6 trimethyl tricyclo[5,3,1,0 ]undeca- 5,9-dien-2-one are dissolved in 250 ml. of methanol and hydrogenated in the presence of 1 g. palladium-on-carbon (5 percent). After the uptake of two mols of hydrogen, the mixture is filtered off from the catalyst, evaporated and distilled. The distillate contains 1,3,6-trimethyl-tricyclo[5,3,1,0 ]undeca-2-one of boiling point 68-70 C./ 0.05 mm. Hg. This product is about a 4:1 by volume mixture of the isomers at carbon atom 6.
EXAMPLE 8 By the procedure of Example 7:
1,3,10 trimethyl-tricyclo[5,4,0,0 ]undeca-5,10-dien- 2-0ne is converted to 1,3,IO-trimethyl-tricyclo[5,4,0,0 undecan-Z-one of boiling point 68 -70 C./ 0.05 mm. Hg;
EXAMPLE 9 By the procedure of Example 7:
1,3,6 trimethyl tricyclo[5,4,0,0 undeca-5,10-dien- 2-one was converted to 1,3,6-trimethyl-tricyclo [5,4,0,0 undecan-Z-one of boiling point 7275 C./ 0.05 mm. Hg.
EXAMPLE 10 By the procedure of Example 7:
1,3,9 trimethyl tricyclo [5,3,1,0 ]undeca-5,9-dien-2- one was converted to 1,3,9 trimethyl-tricyclo[5,3,1,0 undecan-Z-one of boiling point 68 70 C./0.05 mm. Hg.
EXAMPLE 11 By the procedure of Example 7:
1,3,6 trimethyl tricyclo[5,4,0,0 ]undeca-5,IO-dien- 2-one was converted to l,3,6-trimethyl-tricyclo[5,4,0,0 undeca-S-en-Z-One boiling point 71 -70 C./ 0.05 mm. Hg. However, the hydrogenation was interrupted after the uptake of one mol of hydrogen.
EXAMPLE 12 6.8 g. of mesitol dissolved in 50 ml. of benzene are treated with 2.4 g. of sodium hydride (50 percent suspension in oil). After completion of the salt-formation, 8.5 g. of S-bromo-l-pentene are added thereto. The reaction mixture is heated at reflux for 24 hours, taken up in hexane and shaken with an aqueous potassium hydroxide solution (10 percent by weight) and Claisens alkali (35 g. of KOH, 25 ml. of water and 100 ml. of methanol). The organic phase is dried, evaporated and chromatographed on silicagel using hexane and 3 percent diethylether in hexane as the elution agent. Evaporation of the eluate and recrystallization of the residue from hexane yields 1,3,9- trimethyl-tricyclo[5,3 1,0 ]undeca-9-en-2-one of melting point 4647 C.
EXAMPLE 13 The following Example illustrates a typical odorant composition provided by the invention.
Odorant composition (Fougere type) containing 1,3,6- trimethyl tricyclo [5,3,1,0 ]undeca-5,9-dien-2-one.
Sandalwood oil East Indian 50 Sandela Givaudan 1 160 Coumarin 30 Patchouli oil 20 Vetiver oil Bourbon 2O Isobutyl salicylate 110 Lavender oil cultivated 300 Mousse de chene soluble CF 20 Orange oil Italian 30 Bergamotte oil Reggio 90 Aldehyde Cl2 MNA 10 percent in phthalic acid diethyl ester 5 Versalide Givaudan 2 2O Lilial Givaudan 3 30 Aldehyde C-11 undecylenic 1 percent in phthalic acid diethyl ester 10 Geranium oil Bourbon 10 Galbanum oil 1 percent in phthalic acid diethyl ester Ylang ylang oil Bourbon 1O Hydroxycitronellal 15 1,3,6 Trimethyl tricyclo[5,3,l,0 ]undeca 5,9-
dien-2-one 50 1 Isocamphylcyclohexanol.
2 1,1,4,4= tetramethyl-Gethyl-Tacetyl 1,2,3,4 tetrahydronaphthalene.
3 p-t-butyl-a-methylhydrocinnamaldehyde.
What is claimed is:
1. A compound of the formula:
wherein R R and R are independently selected from the group consisting of lower alkyl, hydrogen and lower alkoxy; R is hydrogen, lower al-kyl or lower alkenyl; R and R are independently selected from the group consisting of hydrogen and lower alkyl; and R and R are independently lower alkyl.
2. A compound of claim 1 wherein R R and R are methyl.
3. The compound of claim 1 wherein R R and R is methyl.
4. The compound of claim 1 wherein said R R R and R are methyl.
and
wherein R R and R are independently selected from the group consisting of lower alkyl, hydrogen and lower alkoxy; R is a hydrogen atom, lower alkyl or lower alkenyl; R and \R; are independently selected from the group consisting of hydrogen or lower alkyl; R and R are independently lower alkyl; and wherein the dotted bond can be optionally hydrogenated;
comprising heating compounds of the formula:
R1 wherein R R R R R R R and R are as above; and the dotted bond can be optionally hydrogenated;
to a temperature of from about 40 C. to about 200 C. in an inert organic solvent.
9. A process of claim 8 wherein the heating is carried out in the presence of a Lewis acid.
References Cited UNITED STATES PATENTS 3,678,119 7/1972 Kitchens et a1. 260586 R X 3,711,553 1/1973 Schmid et a1. 260-586 R LEON ZITVER, Primary Examiner N. MORGENSTERN, Assistant Examiner US. Cl. X.R.
US00300603A 1971-11-05 1972-10-25 Tricyclo(5,4,0,03,9)undeca-5,10-dien-2-ones Expired - Lifetime US3836584A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US460631A US3923899A (en) 1971-11-12 1974-04-12 Tricyclo(5,3,1,0{hu 3.8{b )undeca-5,9-dien-2-ones
US460395A US3925479A (en) 1971-11-05 1974-04-12 Tricyclo (5,4,0,0{hu 3,9{b )undecan-2-ones
US477865A US3925477A (en) 1971-11-12 1974-06-10 Tricyclo{8 5,3,1,0{hu 3,8{b {9 undecan-2-ones and the corresponding mono- and di-unsaturated derivatives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH1651771A CH566279A5 (en) 1971-11-12 1971-11-12

Publications (1)

Publication Number Publication Date
US3836584A true US3836584A (en) 1974-09-17

Family

ID=4418053

Family Applications (1)

Application Number Title Priority Date Filing Date
US00300603A Expired - Lifetime US3836584A (en) 1971-11-05 1972-10-25 Tricyclo(5,4,0,03,9)undeca-5,10-dien-2-ones

Country Status (10)

Country Link
US (1) US3836584A (en)
JP (1) JPS4854052A (en)
BE (1) BE791185A (en)
BR (1) BR7207875D0 (en)
CH (1) CH566279A5 (en)
DE (1) DE2252865A1 (en)
ES (1) ES408512A1 (en)
FR (1) FR2159473B1 (en)
GB (1) GB1346977A (en)
NL (1) NL7214766A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3962340A (en) * 1974-01-11 1976-06-08 Takasago Perfumery Co., Ltd. 1,2,6-Trimethyltricyclo[5,3,2,02,7 ]dodeca-5-one
US3963782A (en) * 1974-04-01 1976-06-15 Takasago Perfumery Co., Ltd. 5-Acetyl-1,2,6-trimethyltricyclo[5,3,2,02,7 ]dodeca-5-ene
US3978008A (en) * 1974-03-07 1976-08-31 Firmenich S.A. Sesquiterpenic derivatives as odor- and taste-modifying agents
US3984355A (en) * 1974-01-11 1976-10-05 Takasago Perfumery Co., Ltd. 1,2,6-Trimethyltricyclo[5,3,2,02,7 ]dodeca-5-one perfume composition
US4011269A (en) * 1974-08-23 1977-03-08 Firmenich S.A. Process for the preparation of sesquiterpenic derivatives
US4124642A (en) * 1977-09-19 1978-11-07 Firmenich, S.A. 6,6,7-Trimethyl-tricyclo[5.2.2.01,5 ]undec-8-en-2-one
US4250338A (en) * 1979-11-16 1981-02-10 International Flavors & Fragrances Inc. Bridged ketones and process for preparing same
USRE32721E (en) * 1979-11-16 1988-07-26 International Flavors & Fragrances Inc. Bridged ketones and process for preparing same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3962340A (en) * 1974-01-11 1976-06-08 Takasago Perfumery Co., Ltd. 1,2,6-Trimethyltricyclo[5,3,2,02,7 ]dodeca-5-one
US3984355A (en) * 1974-01-11 1976-10-05 Takasago Perfumery Co., Ltd. 1,2,6-Trimethyltricyclo[5,3,2,02,7 ]dodeca-5-one perfume composition
US3978008A (en) * 1974-03-07 1976-08-31 Firmenich S.A. Sesquiterpenic derivatives as odor- and taste-modifying agents
US3963782A (en) * 1974-04-01 1976-06-15 Takasago Perfumery Co., Ltd. 5-Acetyl-1,2,6-trimethyltricyclo[5,3,2,02,7 ]dodeca-5-ene
US4011269A (en) * 1974-08-23 1977-03-08 Firmenich S.A. Process for the preparation of sesquiterpenic derivatives
US4124642A (en) * 1977-09-19 1978-11-07 Firmenich, S.A. 6,6,7-Trimethyl-tricyclo[5.2.2.01,5 ]undec-8-en-2-one
US4250338A (en) * 1979-11-16 1981-02-10 International Flavors & Fragrances Inc. Bridged ketones and process for preparing same
USRE32721E (en) * 1979-11-16 1988-07-26 International Flavors & Fragrances Inc. Bridged ketones and process for preparing same

Also Published As

Publication number Publication date
NL7214766A (en) 1973-05-15
DE2252865A1 (en) 1973-05-17
ES408512A1 (en) 1976-02-16
CH566279A5 (en) 1975-09-15
BE791185A (en) 1973-05-10
JPS4854052A (en) 1973-07-30
FR2159473A1 (en) 1973-06-22
FR2159473B1 (en) 1976-04-23
GB1346977A (en) 1974-02-13
BR7207875D0 (en) 1973-08-30

Similar Documents

Publication Publication Date Title
US3773836A (en) Indanone derivatives and processes for producing same
US3836584A (en) Tricyclo(5,4,0,03,9)undeca-5,10-dien-2-ones
US3754016A (en) Novel cycloalkenone esters
US3925486A (en) Polycyclic alcohols
US3923899A (en) Tricyclo(5,3,1,0{hu 3.8{b )undeca-5,9-dien-2-ones
US4277618A (en) 2-Substituted-1-acetoxy and hydroxy-1-methyl-cyclohexanes
US4261866A (en) Spirodienones and spirocyclic ketones
US3925479A (en) Tricyclo (5,4,0,0{hu 3,9{b )undecan-2-ones
US3925477A (en) Tricyclo{8 5,3,1,0{hu 3,8{b {9 undecan-2-ones and the corresponding mono- and di-unsaturated derivatives
US4302363A (en) Perfume compositions containing 4(5)-acetyl-7,7,9(7,9,9)-trimethylbicyclo[4.]non-1-ene
US4281204A (en) Substituted spirocyclic derivatives
US3634491A (en) Process for the preparation of 3 5-dialkyl resorcylic acids and esters
US3963675A (en) Cyclopentenes, process therefor and odorant compositions therewith
US3770836A (en) Cyclopropyl cyclohexanes
US3957878A (en) Tricyclic ketones
US5015761A (en) Tricyclo{6.2.1.01,6 }undecanes useful as fragrance chemicals
US3660489A (en) Novel caranone derivatives perfume compositions containing same and process for their preparation
Frater et al. Tricyclo (5, 3, 1, 0 3. 8) undeca-5, 9-dien-2-ones
Frater et al. Tricyclo [5, 3, 1, 0 3, 8] undecan-2-ones and the corresponding mono-and di-unsaturated derivatives
Frater et al. Tricyclo (5, 4, 0, 0 3, 9) undecan-2-ones
US4203925A (en) Process for the production of spirodienones and spirocyclic ketones
US3970682A (en) Novel cyclopentanone odoriferous agent
US4011269A (en) Process for the preparation of sesquiterpenic derivatives
GB1593181A (en) Carane derivatives and their use in fragrance materials
US4904640A (en) 2-alkylidene-3,3,5(3,5,5)-trimethyl cyclopentanones