US3836467A - Cold metal forming lubricant - Google Patents
Cold metal forming lubricant Download PDFInfo
- Publication number
- US3836467A US3836467A US00138357A US13835771A US3836467A US 3836467 A US3836467 A US 3836467A US 00138357 A US00138357 A US 00138357A US 13835771 A US13835771 A US 13835771A US 3836467 A US3836467 A US 3836467A
- Authority
- US
- United States
- Prior art keywords
- composition
- lubricant
- alkali metal
- metal
- percent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M173/00—Lubricating compositions containing more than 10% water
- C10M173/02—Lubricating compositions containing more than 10% water not containing mineral or fatty oils
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2201/00—Inorganic compounds or elements as ingredients in lubricant compositions
- C10M2201/02—Water
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2201/00—Inorganic compounds or elements as ingredients in lubricant compositions
- C10M2201/06—Metal compounds
- C10M2201/062—Oxides; Hydroxides; Carbonates or bicarbonates
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2201/00—Inorganic compounds or elements as ingredients in lubricant compositions
- C10M2201/06—Metal compounds
- C10M2201/065—Sulfides; Selenides; Tellurides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2201/00—Inorganic compounds or elements as ingredients in lubricant compositions
- C10M2201/06—Metal compounds
- C10M2201/065—Sulfides; Selenides; Tellurides
- C10M2201/066—Molybdenum sulfide
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2201/00—Inorganic compounds or elements as ingredients in lubricant compositions
- C10M2201/08—Inorganic acids or salts thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2201/00—Inorganic compounds or elements as ingredients in lubricant compositions
- C10M2201/08—Inorganic acids or salts thereof
- C10M2201/081—Inorganic acids or salts thereof containing halogen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2201/00—Inorganic compounds or elements as ingredients in lubricant compositions
- C10M2201/08—Inorganic acids or salts thereof
- C10M2201/082—Inorganic acids or salts thereof containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2201/00—Inorganic compounds or elements as ingredients in lubricant compositions
- C10M2201/08—Inorganic acids or salts thereof
- C10M2201/082—Inorganic acids or salts thereof containing nitrogen
- C10M2201/083—Inorganic acids or salts thereof containing nitrogen nitrites
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2201/00—Inorganic compounds or elements as ingredients in lubricant compositions
- C10M2201/08—Inorganic acids or salts thereof
- C10M2201/084—Inorganic acids or salts thereof containing sulfur, selenium or tellurium
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2201/00—Inorganic compounds or elements as ingredients in lubricant compositions
- C10M2201/085—Phosphorus oxides, acids or salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2201/00—Inorganic compounds or elements as ingredients in lubricant compositions
- C10M2201/086—Chromium oxides, acids or salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2201/00—Inorganic compounds or elements as ingredients in lubricant compositions
- C10M2201/10—Compounds containing silicon
- C10M2201/102—Silicates
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2201/00—Inorganic compounds or elements as ingredients in lubricant compositions
- C10M2201/10—Compounds containing silicon
- C10M2201/102—Silicates
- C10M2201/103—Clays; Mica; Zeolites
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/021—Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/103—Polyethers, i.e. containing di- or higher polyoxyalkylene groups
- C10M2209/104—Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/12—Polysaccharides, e.g. cellulose, biopolymers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/18—Containing nitrogen-to-nitrogen bonds, e.g. hydrazine
- C10M2215/182—Azo compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/04—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
- C10M2219/044—Sulfonic acids, Derivatives thereof, e.g. neutral salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/04—Groups 2 or 12
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/20—Metal working
- C10N2040/24—Metal working without essential removal of material, e.g. forming, gorging, drawing, pressing, stamping, rolling or extruding; Punching metal
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/20—Metal working
- C10N2040/241—Manufacturing joint-less pipes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/20—Metal working
- C10N2040/242—Hot working
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/20—Metal working
- C10N2040/243—Cold working
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/20—Metal working
- C10N2040/244—Metal working of specific metals
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/20—Metal working
- C10N2040/244—Metal working of specific metals
- C10N2040/245—Soft metals, e.g. aluminum
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/20—Metal working
- C10N2040/244—Metal working of specific metals
- C10N2040/246—Iron or steel
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/20—Metal working
- C10N2040/244—Metal working of specific metals
- C10N2040/247—Stainless steel
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2050/00—Form in which the lubricant is applied to the material being lubricated
- C10N2050/01—Emulsions, colloids, or micelles
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2070/00—Specific manufacturing methods for lubricant compositions
- C10N2070/02—Concentrating of additives
Definitions
- This invention relates to an improved lubricating composition and more particularly it relates to an improved lubricant which is useful in lubricating chemically coated metal surfaces prior to deformation and which can be used for extended periods without separation or salting out of the components.
- This invention also relates to a flowable to semi-solid lubricant composition concentrate possessing improved rheological properties whereby said lubricant can be readily removed from a storage container prior to use.
- a chemical coating e.g., phosphate, oxide, oxalate, sulfide or the like
- a lubricant such as a hot, aqueous soap solution.
- lubricant composition e.g., aqueous soap solutions containing one or more inorganic materials which act as diluents in the lubricant compositions
- these compositions have been found to have numerous disadvantages including the separation or salting out of the soap and organic materials from the lubricant composition. When this occurs, the entire lubricant bath must be dumped and another is made up which gives rise to one or more severe limitations including the cost and the loss of time due to the interruption of production schedules.
- Still another, most important object of this invention is to provide a lubricant concentrate which can be used in the form of an aqueous solution thereby facilitating its application and use, and said composition comprising comparatively inexpensive and readily available constituents.
- the composition of this invention is a flowable to semi-solid lubricant composition concentrate or a solution thereof, comprising (A) an intimate mixture of an alkali metal orthophosphate, (B) a fatty acid soap, and (C) an anionic hydrotropic surface active agent to substantially prevent the lubricant from separating into layers and to provide such rheological properties of the composition thus permitting the lubricant to be readily removed from a storage container prior to use.
- This lubricant composition has been found to be especially useful in metal deforming operations when it is applied over a chemical coating, e.g., phosphate, oxide, sulfide, oxalate coating or the like, on the metal surface to be deformed.
- the improved lubricant concentrate composition of the present invention is a flowable to semi-solid lubricant composition concentrate comprising (A) an intimate mixture of about 3 to percent by weight of an alkali metal orthophosphate, (B) about 20 to 97 percent by weight of an alkali metal fatty acid soap containing from about 8 to 22 carbon atoms, and (C) a sufficient, but minor amount of a solid, anionic hydrotropic surface active agent to substantially prevent said lubricant from separating into layers when in use and to provide such rheological properties of said composition that the lubricant concentrate can be readily removed from a storage container prior to use.
- the fatty acid soaps which may be used in the composition of the present invention are exemplified by those fatty acid soaps containing from about 8 to 22 carbon atoms and are preferably fatty acid soaps containing from about 12 to about 18 carbon atoms.
- Sp cifically preferred for use in the present invention are the sodium tallow soaps.
- compositions which contain components which react to form the soap in situ in the composition such as compositions containing a fatty acid, a fat, or an oil and an alkali, e.g., an alkali metal hydroxide or an alkali metal carbonate.
- the amount of fatty acid soap which is employed is about 20 to 97 percent and preferably about- 35- to 80 percent by weight of the total composition.
- the alkali metal orthophosphate which may be used in the present composition is selected from the group consisting of mono-, di-, and trialkali metal phosphates, and mixtures thereof. It is to be appreciated that as used in the specification and claims, the term alkali metal is intended to refer to lithium, sodium, potassium, cesium, and rubidium. Of these, the preferred alkali metal is sodium and for this reason, primary reference hereinafter will be made to this material. This is not, however, to be regarded as a limitation of the alkali metals which may be used, as excellent results may also be obtained with other alkali metals such as potassium.
- the preferred materials is trisodium phosphate. Generally, from about 3 to about 80 percent and preferably from about to 60 percent by weight of the alkali metal orthophosphate is present in the composition.
- the solid, anionic hydrotropic surface active agent which is employed in the practice of the invention may include compounds of the formula wherein R is an alkyl group of 3 to 12 carbon atoms; X is an aryl or diphenyl ether group; M is an alkali metal, and n is at least 1.
- the alkyl group generally contains from 3 to 12 carbon atoms and preferably from 4 to 10 carbon atoms.
- the alkyl chain may be branched or an essentially straight chain with straight chain alkyl groups being preferred.
- the aryl group may be selected from the group consisting of benzene, naphthalene, biphenyl and diphenyl ether.
- the value of n in the above formula is at least 1 and preferably 1 or 2.
- the acid salt group attached to the aryl nucleus is in the form of an alkali metal salt with M being an alkali metal and having the same definition as set forth above.
- Typical of the solid anionic hydrotropic surface active agents that are employed in the practice of this invention include sodium sulfonate of dodecyl (50 percent straight and 50 percent branched chain) benzene, sodium sulfonate of propyl (branched chain) naphthalene, sodium sulfonate of secondary butyl naphthalene, sodium sulfonate of nonyl (branched chain) naphthalene. Best results are obtained with sodium sulfonate of butyl (straight chain) benzene, sodium sulfonate of monobu-tyl (straight chain) biphenyl and sodium disulfonate of dodecyl (branched chain) diphenyl ether.
- the solid anionic hydrotropic surface active agent is employed in the composition in a minor, but sufiicient amount to prevent the lubricant solution from separating into layers when in use and to provide the lubricant concentrate with such rheological properties so that the lubricant can be readily removed from a storage container prior to use.
- This amount is generally between about 0.1 and percent and preferably between 1 and 25 percent and prefer-ably between 1 and 10 percent by weight of the total composition.
- the lubricant compositions of the present invention may also contain one or more water dispersible diluent or .adjuvant materials, as optional ingredients. These diluent-s may be incorporated in the composition in addition to or as a replacement for a part of the alkali metal orthophosphate component.
- the diluent materials employed are water soluble although non-water soluble diluents which will remain dispersed in the aqueous lubricant composition are also suitable.
- the diluents are present in the composition in amounts within the range of about 0.1 to percent by weight of the composition, with amounts within the range of about 10 to about 50 percent by weight of the composition being preferred.
- These diluent materials may be either inorganic or organic in nature and include antimony oxide, antimony sulfide, arsenious oxide, arsenious sulfide, barium pyrophosphate, bismuth sulfide, boric anhydride, calcium tetraborate, calcium carbonate, cadmium pyrophosphate, cobalt sulfide, chromium fluoride, copper sulfide, ferrous sulfide, ferrous phosphate, lead borate, lead chromate, lead molybdate, lead oxide, lead phosphate, lead metasilicate, lead sulfide, manganese pyrophosphate, manganese borate, mercury sulfide, mercury chloride, molybdic oxide, nickel sul
- the preferred diluent materials for use in the present composition have been found to be sugar and the polyethylene glycols.
- the polyethylene glycols have a molecular weight from about to about 10,000, with the intermediate molecular weight of from about 2,000 to 8,000, being preferred.
- These and other diluent materials have been found to make the present lubricating composition easier to clean from the workpiece after the deforming operation and have also been found to reduce the attack of the lubricant composition on the chemical coating, e.g., the phosphate coating, on the metal surface.
- the lubricant composition of the present invention may also contain corrosion inhibitors, e.g., alkali metal nitrate and alkali metal nitrites.
- corrosion inhibitors e.g., alkali metal nitrate and alkali metal nitrites.
- these and other corrosion inhibitors known to those skilled in the art, when used, are typically present in amounts within the range of about 0.1 to about 5 percent by weight of the composition and are preferably present in amounts within the range of about 0.1 to about 3 percent by weight of the composition.
- dyes such as Bismarck brown, and the like, and perfumes and other materials for imparting a pleasant odor to the composition, e.g., pine oil and the like, may also be incorporated in the lubricant composition in amounts sufficient to impart the desired color and/ or odor to the composition.
- the lubricant concentrate compositions of the present invention may also contain water, the amount depending upon the physical form which is desired for the composition. Typically, water in amounts up to about 80 percent by weight of the total composition may be used, with amounts within the range of about 15 to about 75 percent by weight of the total composition being preferred.
- water in amounts up to about 80 percent by weight of the total composition may be used, with amounts within the range of about 15 to about 75 percent by weight of the total composition being preferred.
- the amount of water included in the concentrate composition may vary widely, but in most instances will be added just prior to use.
- the concentration of the composition may still be sufliciently high as to be undesirable for many applications to metallic surfaces. Accordingly, in formulating a working composition for application to a metal surface, the concentrated lubricant composition as has been described hereinabove will frequently be diluted with water.
- Typical working compositions may contain the above described lubricant concentrate in amounts within the range of about to about 400 pounds per hundred gallons of solution, and preferably in amounts within the range of about 50 to about 200 pounds per hundred gallons of solution.
- the lubricant concentrate compositions of this invention are flowable to semi-solid materials.
- semi-solid it is intended to refer to those compositions which are not readily flowable but which is thixotropic and has a consistency similar to molasses such that the composition can be removed from a drum or other container by means of a spatula.
- This term is not intended to include a composition which has a degree of hardness such that the composition can only be removed from a drum or other container with a crowbar.
- the aqueous working lubricant solution as described above may be applied to the metal surfaces to be deformed in various ways, e.g., by roller application, flow coating, spraying, or by immersing the metal surface in the lubricant solution.
- the lubricant temperature may vary widely, from about room temperature up to about 100 degrees centigrade. Typical temperatures for application by immersion technique are within the range of about 60 to 100 degrees centigrade with temperatures from about room temperature up to about 60 degrees centigrade are typical for roller application. In some instances, it has been found that in the use of roller applications, it may be desirable to use the lubricant composition as a concentrate, with no further dilution.
- the concentrate composition may be applied to the applicator rolls with air pressure, a reciprocating piston pump, or a centrifugal pump. It is believed that the details of the various techniques whereby the present lubricant compositions may be applied are sufficiently familiar to those in the art that further description of the details of such methods are not necessary.
- the lubricant compositions are applied to a chemically coated metal surface using the application techniques described above, to obtain the desired amount of lubricant on the surface.
- the lubricant coating is then dried and the coated surface is, thereafter, subjected to drawing, cold forming, or other deformation operations.
- the chemical coating on the metal surface such as a phosphate, oxide, sulfide, oxalate coating, or the like, may be applied using various application techniques as are known in the art, such as spraying immersion, flowing, roller coating, and the like.
- the application of the chemical coating to the metal surface is preceded by a cleaning or pickling step and a rinse to remove the cleaning or pickling solution.
- the chemically coated surface is also rinsed to remove unreacted coating material.
- this latter rinse may be a water rinse, alkaline or neutralizing rinses are also frequently used. It is believed that the composition and nature of the various chemical coating materials, as well as the specific details of the processes of applying them to the metal surface and the details of various metal deforming operations are all sufliciently well known to those in the art that a further detailed description of these compositions and processes is not necessary.
- Example 1 An aqueous lubricant composition was prepared containing 213 grams trisodium phosphate, 9.9 grams sodium metasilicate, 8.5 grams polyethylene glycol (M.W. 6000), 38.3 grams of high titer sodium tallow soap and 17.7 grams sodium sulfonate of monobutyl (straight chain) biphenyl (Roberts Chemicals RWA 300). Each of the ingredients were added to a one quart jar in the order shown and mixed dry. At this point, the bottle was capped and put aside until the next day. The following morning some hot water was added to the jar and the jar was heated to 190 F. in an oven. While heating the jar, the ingredients were stirred on a continuous basis. The jar was then capped and held in an oven at 190 F. and observed for stability. This composition was found to be stable for 15 days.
- Example 2 The procedure of Example 1 was repeated with the exception that for sodium sulfate of monobutyl (straight chain) biphenyl there was substituted 7.9 grams sodium disulfonate of dodecyl (branched chain) diphenyl ether (Dow Chemical Dowfax 2A1). Upon subjecting the lubricant composition to a temperature of 190 F. in an oven, the composition was found to be stable for 23 days.
- Example 3 A lubricant concentrate was prepared containing 112.5 grams trisodium phosphate (TSPJZH O), 5.37 grams of sodium sulfonate of butyl (straight chain) benzene (Santomerse E), 5.25 grams sodium metasilicate, 4.5 grams of polyethylene glycol (M.W. 6000), and 20.25 grams of high titer sodium tallow soap.
- This composition was by weighing out, in the order indicated above, the trisodium phosphate, and then the surface active agent and intimately mixing the two ingredients in a bottle. The remaining materials were then weighed and individually mixed with the materials in the bottle. When all the materials had been added, the materials were further mixed and the bottle was then capped and allowed to stand on the shelf. The product was found to be soft, free-flowing product after having been on a shelf for a period of eight weeks.
- a flowable to semi-solid cold forming lubricant composition concentrate consisting essentially of an intimate mixture of about 3 to percent by weight of an alkali metal orthophosphate, about 20 to 97 percent by Weight of an alkali metal fatty acid soap containing about 8 to 22 carbon atoms and a sutficient but minor amount of a sulfonated compound of the formula RfX+f a )n wherein R is alkyl containing from 3 to 12 carbon atoms; X is aryl or diphenyl ether; M is an alkali metal; and n is at least 1, to substantially prevent said lubricant from separating into layers and to provide such rheological properties of said composition that lubricant can be readily removed from a storage container prior to use.
- composition of claim 1 comprising from about 0.1 to 25 percent by weight of said sulfonated compound.
- composition of claim 1 comprising from about 1 to 10 percent by Weight of said sulfonated compound.
- composition of claim 1 wherein said alkyl group contains 4 to 10 carbon atoms.
- composition of claim 1 wherein said sulfonated compound is selected from the group of sulfonated compounds consisting of alkyl benzene, alkyl naphthalene, alkyl diphenyl ether, and alkyl biphenyl.
- composition of claim 1 wherein said sulfonated alkyl aryl compound is sodium sulfonate of linear alkyl benzene, said alkyl group containing about 4 carbon atoms.
- composition of claim 1 wherein said sulfonated alkyl aryl compound is sodium disulfonate of dodecyl diphenyl ether.
- composition of claim 1 wherein said sulfonated alkyl aryl compound is sodium sulfonate of monobutyl biphenyl.
- composition of claim 9 which further comprises at least one water dispersible diluent selected from the group consisting of alkali metal silicate, polyethylene glycol having a molecular weight from about 100 to 10,000, and mixtures thereof, in an amount within the range of about 0.1 to 80 percent by weight.
- composition of claim 10 wherein said alkali metal silicate is sodium metasilicate.
- composition of claim 12 which further comprises at least one water dispersible diluent selected from the group consisting of alkali metal silicate, polyethylene glycol having a molecular weight from about 100 to 10,000, and mixtures thereof, in an amount within the range of about 0.1 to percent by weight of the concentrate composition.
- a method for cold forming a metal article comprising contacting said metal with an aqueous lubricant composition containing from 10 to 400 pounls per hundred gallons of solution of the concentrate recited in Claim 1, and thereafter colld forming said article.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Lubricants (AREA)
Abstract
Description
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US00138357A US3836467A (en) | 1971-04-28 | 1971-04-28 | Cold metal forming lubricant |
CA138,270A CA997328A (en) | 1971-04-28 | 1972-03-27 | Cold forming lubricant |
FR7213553A FR2134388B1 (en) | 1971-04-28 | 1972-04-18 | |
GB1864372A GB1360139A (en) | 1971-04-28 | 1972-04-21 | Lubricant compositions |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US00138357A US3836467A (en) | 1971-04-28 | 1971-04-28 | Cold metal forming lubricant |
Publications (1)
Publication Number | Publication Date |
---|---|
US3836467A true US3836467A (en) | 1974-09-17 |
Family
ID=22481664
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00138357A Expired - Lifetime US3836467A (en) | 1971-04-28 | 1971-04-28 | Cold metal forming lubricant |
Country Status (4)
Country | Link |
---|---|
US (1) | US3836467A (en) |
CA (1) | CA997328A (en) |
FR (1) | FR2134388B1 (en) |
GB (1) | GB1360139A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3950258A (en) * | 1973-12-07 | 1976-04-13 | Sanyo Chemical Industries, Ltd. | Aqueous lubricants |
US3953344A (en) * | 1973-08-09 | 1976-04-27 | Nippon Paint Co., Ltd. | Surface treatment composition for metal working |
US4099989A (en) * | 1975-09-08 | 1978-07-11 | Kaiser Aluminum & Chemical Corporation | Protective coating for aluminum products |
US4201681A (en) * | 1977-10-03 | 1980-05-06 | Exxon Research & Engineering Co. | Metalworking corrosion inhibition/drawing lubricant |
US4257902A (en) * | 1976-08-04 | 1981-03-24 | Singer & Hersch Industrial Development (Pty.) Ltd. | Water-based industrial fluids |
US4740323A (en) * | 1984-12-14 | 1988-04-26 | Idemitsu Kosan Company Limited | Method of lubricating working machinery |
US4802999A (en) * | 1986-04-30 | 1989-02-07 | Shell Oil Company | Lubricating grease |
US4927550A (en) * | 1989-01-27 | 1990-05-22 | Castrol Industrial Inc. | Corrosion preventive composition |
US5012662A (en) * | 1989-02-07 | 1991-05-07 | Henkel Corporation | Water soluble salt precoats for wire drawing |
US5149451A (en) * | 1989-02-07 | 1992-09-22 | Henkel Corporation | Water soluble salt precoats for wire drawing |
US5169564A (en) * | 1987-03-16 | 1992-12-08 | King Industries, Inc. | Thermooxidatively stable compositions |
US5484541A (en) * | 1994-05-17 | 1996-01-16 | Century Chemical Corporation | Process and product for lubricating metal prior to cold forming |
US5503506A (en) * | 1993-06-24 | 1996-04-02 | Hughes Aircraft Company | High precision, high surface finish broaching tool |
US6376433B1 (en) | 1999-07-13 | 2002-04-23 | Century Chemical Corporation | Process and product for lubricating metal prior to cold forming |
US20040156995A1 (en) * | 2001-08-17 | 2004-08-12 | Shinobu Komiyama | Treating agent for forming a protective coating and metallic materials with a protective coating |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3372117A (en) * | 1965-11-26 | 1968-03-05 | Hooker Chemical Corp | Cold forming lubricant |
FR2086367A1 (en) * | 1970-04-27 | 1971-12-31 | Parker Ste Continentale |
-
1971
- 1971-04-28 US US00138357A patent/US3836467A/en not_active Expired - Lifetime
-
1972
- 1972-03-27 CA CA138,270A patent/CA997328A/en not_active Expired
- 1972-04-18 FR FR7213553A patent/FR2134388B1/fr not_active Expired
- 1972-04-21 GB GB1864372A patent/GB1360139A/en not_active Expired
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3953344A (en) * | 1973-08-09 | 1976-04-27 | Nippon Paint Co., Ltd. | Surface treatment composition for metal working |
US3950258A (en) * | 1973-12-07 | 1976-04-13 | Sanyo Chemical Industries, Ltd. | Aqueous lubricants |
US4099989A (en) * | 1975-09-08 | 1978-07-11 | Kaiser Aluminum & Chemical Corporation | Protective coating for aluminum products |
US4257902A (en) * | 1976-08-04 | 1981-03-24 | Singer & Hersch Industrial Development (Pty.) Ltd. | Water-based industrial fluids |
USRE33124E (en) * | 1976-08-04 | 1989-12-05 | Singer and Hersch Industrial Development (PTY) Ltd. | Water-based industrial fluids |
US4201681A (en) * | 1977-10-03 | 1980-05-06 | Exxon Research & Engineering Co. | Metalworking corrosion inhibition/drawing lubricant |
US4740323A (en) * | 1984-12-14 | 1988-04-26 | Idemitsu Kosan Company Limited | Method of lubricating working machinery |
US4802999A (en) * | 1986-04-30 | 1989-02-07 | Shell Oil Company | Lubricating grease |
US5169564A (en) * | 1987-03-16 | 1992-12-08 | King Industries, Inc. | Thermooxidatively stable compositions |
US4927550A (en) * | 1989-01-27 | 1990-05-22 | Castrol Industrial Inc. | Corrosion preventive composition |
US5149451A (en) * | 1989-02-07 | 1992-09-22 | Henkel Corporation | Water soluble salt precoats for wire drawing |
US5012662A (en) * | 1989-02-07 | 1991-05-07 | Henkel Corporation | Water soluble salt precoats for wire drawing |
US5503506A (en) * | 1993-06-24 | 1996-04-02 | Hughes Aircraft Company | High precision, high surface finish broaching tool |
US6265357B1 (en) | 1993-06-24 | 2001-07-24 | Hughes Electronics Corporation | High precision, high surface finish broaching method, tool, and lubricant/coolant |
US5484541A (en) * | 1994-05-17 | 1996-01-16 | Century Chemical Corporation | Process and product for lubricating metal prior to cold forming |
US5624888A (en) * | 1994-05-17 | 1997-04-29 | Century Chemical Corporation | Process and product for lubricating metal prior to cold forming |
US5776867A (en) * | 1994-05-17 | 1998-07-07 | Century Chemical Corporation | Process and product for lubricating metal prior to cold forming |
US6376433B1 (en) | 1999-07-13 | 2002-04-23 | Century Chemical Corporation | Process and product for lubricating metal prior to cold forming |
US20040156995A1 (en) * | 2001-08-17 | 2004-08-12 | Shinobu Komiyama | Treating agent for forming a protective coating and metallic materials with a protective coating |
US7651556B2 (en) * | 2001-08-17 | 2010-01-26 | Henkel Ag & Co. Kgaa | Treating agent for forming a protective coating and metallic materials with a protective coating |
Also Published As
Publication number | Publication date |
---|---|
CA997328A (en) | 1976-09-21 |
FR2134388B1 (en) | 1974-10-04 |
FR2134388A1 (en) | 1972-12-08 |
GB1360139A (en) | 1974-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3556996A (en) | Cold forming lubricant | |
US3836467A (en) | Cold metal forming lubricant | |
US4382825A (en) | Alkaline cleaner for ferrous-based metal surfaces | |
US3313729A (en) | Lubricating composition and method | |
US2588234A (en) | Method of drawing metal | |
US3313728A (en) | Lubricating composition | |
KR100621693B1 (en) | Aqueous lubricant for plastic working of metallic material and method of lubricant film processing | |
US4199381A (en) | Preparation of metals for cold forming | |
KR100621692B1 (en) | Aqueous lubricant for plastic working of metallic material and method for forming lubricant film | |
US3390562A (en) | Lubricant for metal cold forming | |
US2430400A (en) | Lubricating and cooling compound for cold reducing mills | |
US3293148A (en) | Method of cleaning steel surfaces | |
US3114657A (en) | Composition and method for cleaning and stripping metals | |
US2357269A (en) | Art of treating ferrous metal articles | |
US3239467A (en) | Metal cleaning and treating compositions | |
US2101553A (en) | Coating iron or steel with aluminum or an alloy thereof | |
US2957825A (en) | Powdered soap lubricant containing inorganic sulfur salts | |
US4834891A (en) | Lubricant compositions for metalworking | |
DK163825B (en) | PROCEDURE FOR SURFACE TREATMENT OF ALUMINUM OR ALUMINUM ALLOYS | |
US2471908A (en) | Method of and material for preparing surfaces of ferriferous metals for the reception of a siccative finishing coat | |
US2074224A (en) | Drawing wire | |
EP0073306B1 (en) | Cold forming lubricants and process | |
US2960420A (en) | Method and composition for blackening metal articles | |
USRE26609E (en) | Aluminum cleaning compositions | |
US1734706A (en) | Cleaning metal surface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HOOKER CHEMICALS & PLASTICS CORP 32100 STEPHENSON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:OXY METAL INDUSTRIES CORPORATION;REEL/FRAME:003942/0016 Effective date: 19810317 |
|
AS | Assignment |
Owner name: OXY METAL INDUSTRIES CORPORATION Free format text: CHANGE OF NAME;ASSIGNOR:OXY METAL FINISHING CORPORATION;REEL/FRAME:003967/0084 Effective date: 19741220 |
|
AS | Assignment |
Owner name: OCCIDENTAL CHEMICAL CORPORATION Free format text: CHANGE OF NAME;ASSIGNOR:HOOKER CHEMICAS & PLASTICS CORP.;REEL/FRAME:004126/0054 Effective date: 19820330 |
|
AS | Assignment |
Owner name: PARKER CHEMICAL COMPANY, 32100 STEPHENSON HWY., MA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:OCCIDENTAL CHEMICAL CORPORATION;REEL/FRAME:004194/0047 Effective date: 19830928 |