US3836342A - Gasoline containing a methyl phenol and an ether - Google Patents

Gasoline containing a methyl phenol and an ether Download PDF

Info

Publication number
US3836342A
US3836342A US00265850A US26585072A US3836342A US 3836342 A US3836342 A US 3836342A US 00265850 A US00265850 A US 00265850A US 26585072 A US26585072 A US 26585072A US 3836342 A US3836342 A US 3836342A
Authority
US
United States
Prior art keywords
gasoline
ron
ether
range
phenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00265850A
Inventor
J Shang
B Bisson
R Wynkoop
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Research and Development Co
Original Assignee
Sun Research and Development Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Research and Development Co filed Critical Sun Research and Development Co
Priority to US00265850A priority Critical patent/US3836342A/en
Priority to CA174,698A priority patent/CA988299A/en
Priority to US05/505,820 priority patent/US3976437A/en
Application granted granted Critical
Publication of US3836342A publication Critical patent/US3836342A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • C10L1/023Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for spark ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/182Organic compounds containing oxygen containing hydroxy groups; Salts thereof
    • C10L1/183Organic compounds containing oxygen containing hydroxy groups; Salts thereof at least one hydroxy group bound to an aromatic carbon atom
    • C10L1/1832Organic compounds containing oxygen containing hydroxy groups; Salts thereof at least one hydroxy group bound to an aromatic carbon atom mono-hydroxy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/185Ethers; Acetals; Ketals; Aldehydes; Ketones
    • C10L1/1852Ethers; Acetals; Ketals; Orthoesters

Definitions

  • a useful fuel for an internal combustion engine comprises a hydrocarbon base stock of gasoline boiling range, a methyl-substituted phenol and an ether containing a branched alkyl group and boiling below 460F., said phenol and said ether each being present in amount (e.g., 0.1-15 wt. sufficient to increase the Research octane number (RON).
  • the invention also includes a gasoline blending system.
  • preferred compositions can be made by blending 89 RON gasoline containing 5 vol. p-cresol with 97 RON gasoline containing 5% methyl methoxy propane. Beneficial synergism is noted in such blends for RON blending values.
  • the invention includes a novel gasoline blending systern, the use of this system to produce motor fuel of improved octane rating, and novel gasoline compositions containing certain phenols and ethers.
  • One embodiment is gasoline comprising a hydrocarbon base stock of gasoline boiling range, a methyl substituted phenol and an ether having at least one branched alkyl group and boiling below 460F., said phenol and said ether each being present in amount sufficient to increase the Research octane number.
  • Another embodiment is a gasoline blending system comprising a supply of a relatively high Research octane number gasoline containing an octane improving amount of an ether boiling below 460F., and a supply of a relatively low Research octane number gasoline containing an octane improving amount of a methyl substituted phenol boiling below about 460F., and means for blending said two supplies to produce gasolines having octane numbers intermediate to those of said high and low octane number gasolines.
  • the preferred methyl substituted phenols include the cresols (e.g., p-cresol), the xylenols (e.g., 2,3 dimethyl phenol) and the trimethyl-substituted phenols (e. g., hydroxy pseudocumene, hydroxy mesetylene, and hemimelitol) and mixtures of such phenols, with the cresols being the preferred additives to a low RON hydrocarbon base stock in our blending system where the high RON hydrocarbon base contains an ether additlve.
  • cresols e.g., p-cresol
  • the xylenols e.g., 2,3 dimethyl phenol
  • the trimethyl-substituted phenols e. g., hydroxy pseudocumene, hydroxy mesetylene, and hemimelitol
  • the preferred ethers comprise the dialkyl ethers wherein at least one alkyl group is branched, and include diisopropyl ether, diisobutyl ether, methyl isopentyl ether, methyl isopropyl ether, and mixtures of two or more said ethers.
  • Phenyl alkyl ethers can also be used (e.g., isopropyl phenyl ether).
  • One non-branched alkyl phenyl ether, methyl phenyl ether (methoxy benzene) can be used in a gasoline containing a methyl phenol or as the ether in the blending system described herein.
  • the ethers and phenols which can be used in our invention include those described by G. H. Unzdman, E. .l. Forster and A. M. Burns, in AP! Preprint (Div. of Refining) No. 47-71, titled Are There Substitutes for Lead Antiknocks, presented at the API Meeting in San Francisco, May 14, 1971.
  • the amount of the ether can be in the range of 0.05-30% and the amount of the phenol in the range of 0.05-35% (the limit being determined by solubility); however, the preferred amounts are in the range of 0. ll%. More preferred, the phenol is in the range of 0.5- wt. and the total of said amounts is in the range of 1-15 wt.
  • FIGS. 1 and 2 illustrate the beneficial synergistic effect on research octane blending and motor octane blending values which can be obtained by practice of the blending system of the present invention wherein the low RON gasoline contains p-cresol and the high RON gasoline contains methyl methoxy propane.
  • FIGS. l and 2 were obtained with gasoline base stocks of slightly different composition and are presented for purposes of illustration. If desired, the data in Table 2 herein can be plotted, in a manner similar to FIG. 1, to provide a comparison of RON and MON blending values for the same gasoline bases.
  • the low RON gasoline contains a cresol (or mixture of cresols) and preferably contains p-cresol (typically, l-l5 wt. more preferred 2-10 wt. and the high RON gasoline contains methyl tertiary butyl ether, methyl methoxy propane (MMOP), typically 1-20 wt. more preferred 2-15 wt. (e.g., 7%).
  • p-cresol typically, l-l5 wt. more preferred 2-10 wt.
  • MMOP methyl methoxy propane
  • the gasolines can also contain a lead antiknock e. g., 0.1-4 cc. TEL/gal), a lead scavenger (e.g., organo bromides, ethylene dichloride), deposit modifiers (e.g., boron and phosphorous compounds), lower acyclic alcohols (e.g., methanol, ethanol, isopropanol, butanol, etc.), a lead appreciator (e.g., t-butylacetate), oxidation inhibitors (e.g., aromatic amines and/or alkyl phenols, such as 2,6-di-t-butyl-p-cresol), metal deactivators (e.g., NN-disalicylidene-l,2-propylene diamine), corrosion inhibitors (e.g., high molecular weight phosphoric, carboxylic or sulfon ic acids or their reaction products with nitrogen bases, such as amines, and include Ethyl MP
  • one or both of the gasolines can contain an acyclic alcohol containing in the range of 1-4 carbon atoms preferably the supply which contains the ether contains in the range of ll5 wt. of the alcohol. Such alcohols increase the RON of the gasolines.
  • the high RON gasoline will typically have an RON in the range of 90-105 and the low RON gasoline will be at least 5 RON lower.
  • the high RON gasoline can have an RON as high as 120 (the low RON gasoline being, typically, in the range of 75-90 RON).
  • the hydrocarbon base of the high RON gasoline can contain in the range of 20-40% aromatics, 0-20% olefins, 0-l0% naphthenes, with the balance being para'ffins (the minimum paraffin content being 45%, more preferred 55%).
  • the low RON gasoline can contain in the range of 15-40% aromatics, 025% olefins, 2-20% naphthenes, with the balance being paraffms, the minimum paraffin content being 35% (more preferred 45%).
  • the preferred hydrocarbon base stock contains in the range of 40-75% paraffins, 0-10% naphthenes, 0-20% olefins and 20-40% aromatics. More preferred, the base stock will have an RON in the range of -100, and an MON in the range of 75-95.
  • the preferred base stock contains in the range of 50-60% paraffins, 1-10% naphthenes, 2-l0% olefins and 28-38% aromatics.
  • Table 111 reports the percentages by volume of paraffins, naphthenes, olefins and aromatics in these base stocks.
  • Table IV reports in more detail on the composition of a stabilized sample of each blend stock.
  • Methyl methoxy propane (MMOP) was added, 5 wt. to a sample of the high RON base stock and pcresol, 5 wt. was added to a sample of the low RON base stock.
  • EXAMPLE 2 High and low RON hydrocarbon base stocks, in the gasoline boiling range, were obtained by blending the same types of selected refinery streams and in about the same proportions as in Example 1. Since the refinery streams were not identical to those used in the Example bases, the chemical compositions and octane ratings were not the same as in Example 1, but represent the usual variation which is encountered in refining practice. 5 wt. pscresol was added to a sample of the low RON base and,-l5 lwt. MMOP was added to the high RON base. The tiivo gasolines were blended as in Example 1 and both research (RON) and motor (MON) octane numbers were obtained. Research and motor blending values were calculated.
  • FIG. 2 presents curves summarizing the results of the motor octane number testing of this example.
  • Table V attached hereto presents analyses of typical refinery streams which can be used to make hydrocarbon base stocks which can be used in the present invention. Table V also shows proportions for blending these streams to make a high RON and a low RON base which are particularly desirable in our blending system.
  • the low RON base analyzes (in volume paraffins, 7% naphthenes, 15% olefins and 38% aromatics.
  • the high RON base contains 63% paraffins, 0% naphthenes, 3% olefins and 34% aromatics.
  • the ortho and meta isomers are less preferred in gasoline than p-cresol. That is, paracresol has higher research and motor octane blending values (and lower sensitivity) than the other isomers.
  • Each of these isomers can absorb (or dissolve) in the order of 2 wt. water and, with about 15 wt. cresols in gasoline the water solubility is about 0.5 wt If this amount of water is added to the gasoline, it reduces flame temperature and, thus, the NOx (nitrogen oxides) emission and increases the power output of the engine.
  • nt can be varied to obtain the desired Reid Vapor Pressure (typically in the range be present in winter gasoline.
  • Gasoline comprising a hydrocarbon base stock of gasoline boiling range, from 0.05 to 35% of a methyl substituted phenol and from 0.05 to 30 of a hydrocarbyl ether having at least one branched alkyl group and boiling below 460F., said phenol and said ther each being present in amount sufficient to increase the Research octane number.
  • ether is selected from the group consisting of diisopropyl ether, diisobutyl ether, methyl isopentyl ether, methyl isopropyl ether, and mixtures of two or more said ethers.
  • composition of claim 1 wherein said base stock contains in the range of 40-75% paraffins, O-l 0% naphthenes, 0-20% olefins, and 20-40% aromatics.
  • composition of claim 1 wherein said base stock has an RON in the range of 80-100 and an MON in the range of -95.
  • composition of claim 13 wherein said base stock contains in the range of 50-60% paraffins, l-l0% naphthenes, 2-l0% olefins and 28-38% aromatics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

A useful fuel for an internal combustion engine comprises a hydrocarbon base stock of gasoline boiling range, a methylsubstituted phenol and an ether containing a branched alkyl group and boiling below 460*F., said phenol and said ether each being present in amount (e.g., 0.1-15 wt. %) sufficient to increase the Research octane number (RON). The invention also includes a gasoline blending system. For example, preferred compositions can be made by blending 89 RON gasoline containing 5 vol. % p-cresol with 97 RON gasoline containing 5% methyl methoxy propane. Beneficial synergism is noted in such blends for RON blending values.

Description

States Patent Shang et al.
[ GASOLINE CONTAINING A METIIYI PHIENOL AND AN ETHER [75] Inventors: Jer-Yu Shang; Barry A. Bisson, both of Wilmington, Del.; Raymond Wynkoop, Gladwyne, Pa.
[73] Assignee: Sun Research and Development Co.,
Philadelphia, Pa.
[22] Filed: June 23, I972 [21] Appl. No.: 265,850
3,030,195 4/1962 Ewan 44/56 3,224,848 12/1965 Henderson 44/56 OTHER PUBLICATIONS Unzelman et 211., Are there substitutes for lead antiknocks? May 14, 1971, p. 888, API Division of Re- [451 Sept. 17, I974 fining Proceedings.
Van Winkle, Matthew, Aviation Gasoline Manufacture, 1944, p. 199, McGraw Hill Book Company.
Primary Examiner-Patrick P. Garvin Assistant Examiner-Andrew H. Metz Attorney, Agent, or FirmMr. George L. Church; Mr. J. Edward Hess; Mr. Barry A. Bisson [5 7 ABSTRACT A useful fuel for an internal combustion engine comprises a hydrocarbon base stock of gasoline boiling range, a methyl-substituted phenol and an ether containing a branched alkyl group and boiling below 460F., said phenol and said ether each being present in amount (e.g., 0.1-15 wt. sufficient to increase the Research octane number (RON). The invention also includes a gasoline blending system. For example, preferred compositions can be made by blending 89 RON gasoline containing 5 vol. p-cresol with 97 RON gasoline containing 5% methyl methoxy propane. Beneficial synergism is noted in such blends for RON blending values.
13 Claims, 2 Drawing Figures PATENILUSEP mam SHEET 1 BF 2 FIG.
O BASE STOCK U BASE STOCK 5% WT. MIXTURE A BLENDING VALUE 5 5% WT. MIXTURE VOL.% HIGH RON BASE 5% MMOP PAIENIED 3, 8 36.342
sum 2 [IF 2 FIG. 2
O BASE STOCK 87 R 0 BASES P-CRESOL a MMOP A BLENDING VALUES MOTOR OCTANE NUMBER I I I 0 25 5o 75 I00 VOL. LOW RON BASE 5% P-CRESOL l I l I I00 75 so 25 o VOL. HIGH RON BASE 5% MMOP MOTOR BLENDING VALUES GASOLINE CONTAINING A METHYL PHENOL AND AN lETK-llER SUMMARY OF THE INVENTION The invention includes a novel gasoline blending systern, the use of this system to produce motor fuel of improved octane rating, and novel gasoline compositions containing certain phenols and ethers.
One embodiment is gasoline comprising a hydrocarbon base stock of gasoline boiling range, a methyl substituted phenol and an ether having at least one branched alkyl group and boiling below 460F., said phenol and said ether each being present in amount sufficient to increase the Research octane number.
Another embodiment is a gasoline blending system comprising a supply of a relatively high Research octane number gasoline containing an octane improving amount of an ether boiling below 460F., and a supply of a relatively low Research octane number gasoline containing an octane improving amount of a methyl substituted phenol boiling below about 460F., and means for blending said two supplies to produce gasolines having octane numbers intermediate to those of said high and low octane number gasolines.
The preferred methyl substituted phenols include the cresols (e.g., p-cresol), the xylenols (e.g., 2,3 dimethyl phenol) and the trimethyl-substituted phenols (e. g., hydroxy pseudocumene, hydroxy mesetylene, and hemimelitol) and mixtures of such phenols, with the cresols being the preferred additives to a low RON hydrocarbon base stock in our blending system where the high RON hydrocarbon base contains an ether additlve.
The preferred ethers comprise the dialkyl ethers wherein at least one alkyl group is branched, and include diisopropyl ether, diisobutyl ether, methyl isopentyl ether, methyl isopropyl ether, and mixtures of two or more said ethers. Phenyl alkyl ethers can also be used (e.g., isopropyl phenyl ether). One non-branched alkyl phenyl ether, methyl phenyl ether (methoxy benzene) can be used in a gasoline containing a methyl phenol or as the ether in the blending system described herein.
The ethers and phenols which can be used in our invention include those described by G. H. Unzdman, E. .l. Forster and A. M. Burns, in AP! Preprint (Div. of Refining) No. 47-71, titled Are There Substitutes for Lead Antiknocks, presented at the API Meeting in San Francisco, May 14, 1971.
Generally, the amount of the ether can be in the range of 0.05-30% and the amount of the phenol in the range of 0.05-35% (the limit being determined by solubility); however, the preferred amounts are in the range of 0. ll%. More preferred, the phenol is in the range of 0.5- wt. and the total of said amounts is in the range of 1-15 wt.
BRIEF DESCRIPTION OF THE DRAWINGS The accompanying FIGS. 1 and 2 illustrate the beneficial synergistic effect on research octane blending and motor octane blending values which can be obtained by practice of the blending system of the present invention wherein the low RON gasoline contains p-cresol and the high RON gasoline contains methyl methoxy propane.
As is described in more detail hereinafter, the data for FIGS. l and 2 were obtained with gasoline base stocks of slightly different composition and are presented for purposes of illustration. If desired, the data in Table 2 herein can be plotted, in a manner similar to FIG. 1, to provide a comparison of RON and MON blending values for the same gasoline bases.
FURTHER DESCRIPTION In a preferred blending system the low RON gasoline contains a cresol (or mixture of cresols) and preferably contains p-cresol (typically, l-l5 wt. more preferred 2-10 wt. and the high RON gasoline contains methyl tertiary butyl ether, methyl methoxy propane (MMOP), typically 1-20 wt. more preferred 2-15 wt. (e.g., 7%).
The gasolines can also contain a lead antiknock e. g., 0.1-4 cc. TEL/gal), a lead scavenger (e.g., organo bromides, ethylene dichloride), deposit modifiers (e.g., boron and phosphorous compounds), lower acyclic alcohols (e.g., methanol, ethanol, isopropanol, butanol, etc.), a lead appreciator (e.g., t-butylacetate), oxidation inhibitors (e.g., aromatic amines and/or alkyl phenols, such as 2,6-di-t-butyl-p-cresol), metal deactivators (e.g., NN-disalicylidene-l,2-propylene diamine), corrosion inhibitors (e.g., high molecular weight phosphoric, carboxylic or sulfon ic acids or their reaction products with nitrogen bases, such as amines, and include Ethyl MPA), antistatic additives (e.g., Shell ASA-3") and anti-icing additives (e.g, methylcellosolve and glycerol). Some of these gasoline additives are described, for example, by J. P. Heuston, Chemical Additives in Petroleum Fuels, S. African Ind. Chemist, 20:65-70, 74 (1966).
In our gasoline blending system, one or both of the gasolines can contain an acyclic alcohol containing in the range of 1-4 carbon atoms preferably the supply which contains the ether contains in the range of ll5 wt. of the alcohol. Such alcohols increase the RON of the gasolines.
In the blending system, on a lead free basis the high RON gasoline will typically have an RON in the range of 90-105 and the low RON gasoline will be at least 5 RON lower. However, where one: or both gasolines contain a lead antiknock compound (such as mixed methyl and ethyl leads, e.g., dimethyl diethyl lead, etc.), the high RON gasoline can have an RON as high as 120 (the low RON gasoline being, typically, in the range of 75-90 RON).
In our blending system, typically, the hydrocarbon base of the high RON gasoline can contain in the range of 20-40% aromatics, 0-20% olefins, 0-l0% naphthenes, with the balance being para'ffins (the minimum paraffin content being 45%, more preferred 55%). The low RON gasoline can contain in the range of 15-40% aromatics, 025% olefins, 2-20% naphthenes, with the balance being paraffms, the minimum paraffin content being 35% (more preferred 45%).
In our preferred gasoline compositions, containing both the ether and phenol (such as the blends from our system), the preferred hydrocarbon base stock contains in the range of 40-75% paraffins, 0-10% naphthenes, 0-20% olefins and 20-40% aromatics. More preferred, the base stock will have an RON in the range of -100, and an MON in the range of 75-95. For the synergistic effect disclosed herein with p-cresol and MMOP, the preferred base stock contains in the range of 50-60% paraffins, 1-10% naphthenes, 2-l0% olefins and 28-38% aromatics.
ILLUSTRATIVE EXAMPLES EXAMPLE 1 Typical low Research octane rating and high Research octane rating hydrocarbon base stocks, in the gasoline boiling range, were obtained by blending selected refinery streams, including catalytically cracked gasoline, straight run gasoline, reformate, aviation alkylate, etc.
Table 111 reports the percentages by volume of paraffins, naphthenes, olefins and aromatics in these base stocks. Table IV reports in more detail on the composition of a stabilized sample of each blend stock.
Methyl methoxy propane (MMOP) was added, 5 wt. to a sample of the high RON base stock and pcresol, 5 wt. was added to a sample of the low RON base stock.
A series of blends was made of various proportions of the high RON base with the low RON base and of the high RON base plus 5% MMOP with the low RON base plus 5% p-cresol.
Research octane ratings were obtained for each of the base stocks and blends. The significance of the blending value octane number and its method of calculation are described in US. Pat. No. 3,030,195, issued 4-17-62 to Evan B. Ewan. The blending value RON was then calculated for selected blends. The results of these tests and calculations are reported in Table l and are summarized by the curves in FIG. 1. A beneficial synergistic effect was noted for the RON blending values of 30 the blends containing both p-cresol and MMOP.
'There was an insufficient amount of the two hydrocarbon bases to permit testing for motor octane number (MON).
EXAMPLE 2 High and low RON hydrocarbon base stocks, in the gasoline boiling range, were obtained by blending the same types of selected refinery streams and in about the same proportions as in Example 1. Since the refinery streams were not identical to those used in the Example bases, the chemical compositions and octane ratings were not the same as in Example 1, but represent the usual variation which is encountered in refining practice. 5 wt. pscresol was added to a sample of the low RON base and,-l5 lwt. MMOP was added to the high RON base. The tiivo gasolines were blended as in Example 1 and both research (RON) and motor (MON) octane numbers were obtained. Research and motor blending values were calculated. Table 11 reports the results of these tests and calculations. Slight synergism (in comparison with Example 1) was noted in the RON blending values for some blends and greater synergism (but less than in Example 1) was noted for most blends in the MON blending values. FIG. 2 presents curves summarizing the results of the motor octane number testing of this example.
Table V attached hereto presents analyses of typical refinery streams which can be used to make hydrocarbon base stocks which can be used in the present invention. Table V also shows proportions for blending these streams to make a high RON and a low RON base which are particularly desirable in our blending system.
20 The low RON base analyzes (in volume paraffins, 7% naphthenes, 15% olefins and 38% aromatics. The high RON base contains 63% paraffins, 0% naphthenes, 3% olefins and 34% aromatics.
In gasoline for automobiles-using conventional piston engines, it has been found that knocking under actual road conditions (or road octane) can be better correllated with a function such as R+M/2 or R+2M,/2, which combines RON (i.e., R) and MON (i.e., M), than with either RON or MON. Therefore, it is apparent that both of the previous examples indicate that the present blending system and gasolines can provide improved performance in an automobile under actual road conditions.
Among the cresols, the ortho and meta isomers are less preferred in gasoline than p-cresol. That is, paracresol has higher research and motor octane blending values (and lower sensitivity) than the other isomers. Each of these isomers can absorb (or dissolve) in the order of 2 wt. water and, with about 15 wt. cresols in gasoline the water solubility is about 0.5 wt If this amount of water is added to the gasoline, it reduces flame temperature and, thus, the NOx (nitrogen oxides) emission and increases the power output of the engine.
TABLE I p-CRESOL AND METHYL t-BUTYL ETHER 1N GASOLINE BLENDS Base Composition (Volume C D E F RUN A B G H Low RON Base Stock 5% Wt. p-Cresol 85.7 71.4 57.1 42.9 28.6 14.3 High RON Base Stock 5% Wt. MMOP 100 14.3 28.6 42.9 57.1 71.4 85.7 Research, F-1 Clear Duplicates 89.0 97.8 90.4 91.6 93.0 94.6 95.6 97.0 89.1 97.8 90.6 91.8 93.0 94.6 95.6 96.8 Average 89.05 97.8 90.5 91.7 93.0 94.6 95.6 96.9
A B C D E F G H Low RON Base Stock 100 85.7 71.4 57.1 42.9 28.6 14.3 High RON Base Stock 100 14.3 28.6 42.9 57.1 71.4 85.7 Research, F-l Clear Duplicates 83.6 96.3 85.2 87.0 88.9 90.3 92.0 93.6 83.8 96L 85.4 87.0 88.8 90.4 92.0 93.6 Average 83.7 96.25 85.3 87.0 88.85 90.35 92.0 93.6 Increased RON 5.35 1.55 5.20 4.70 4.15 4.25 3.60 3.30 Blending Value RON 191 127 189 181 172 175 164 TABLE II p-Cresol and methyl methoxy propane (MMOP) in gasoline blends (All concentrations in volume percent, unless otherwise noted) Blend No 1 2 3 4 5 6 7 8 9 10 11 12 18 14 15 16 Low Octane Base 100 85.7 71.4 57.1 42.9 28.6 14 3 LOB plus 5% wt.
p-cresol 100 85- 7 7 4 57. 1 42. 9 28. 6 14,3 High Octane Base H0 100 14.3 28.6 42. 9 57.1 71.4 5,7 HOB plus 5% wt.
MMOP 100 14.3 28.6 42.9 57.1 71.4 35 7 Research (RON):
Cl r 84. 9 89. 2 95. 2 96. 6 86. 0 90. 2 87. 5 90. 9 89. 1 91. 8 90. 8 03. 4 9'1. 9 94. 5 93, 7 95, 4 Duplicate 85. 0 89. 2 95. 2 96. 6 86. 0 90. 3 87. 5 91. 2 89. 2 92. 0 91. 0 93. 3 92. 0 94. 4 93. 6 95. 4 Average 84. 95 89. 2 95. 2 96. 6 86. 0 90. 87. 5 91. 0.5 89. 15 91. 9 90. 9 93. 91. 95 94. 65 4 Blndg.value RON 169.95 123.2 171.0 1 8.5 144.15 139.9 141.85 128.65 Motor (MON) clear. 78. 0 82. 0 85. 6 86. 0 78. 7 82. 7 79. 5 83. 3 81. 1 83. 9 82. 4 84. 3 83. 4 84. 9 84. 0 85. 4 Duplicate 78. 0 82.0 85.3 86. 0 78. 9 82. 4 78. 8 83. 0 81. 2 83. 8 82. 4 84. 3 83. 4 84. 9 84. 3 85. 5
Average 78.0 82.0 85.45 86.0 78.8 82. 78. 83. 15 81. 15 83. i5 .4 83. 4 84. 9 84. 15 85. 45 Blndg. value MON 8.0 110. 15 Sensitivity R-M. 6.95 7. 20 9. 9. 95 B.V. sensitivity 05 18. 50
TABLE 111 GASOLINE COMPOSITION (VOLUME PERCENT) 25 Blends (Base Stocks) Low RON High RON Paraffims 55 58 Naphthenes 9 6 Monocyclic paraffins 8.8 1.9 Olefins l0 4 di-cyclic paraffms 0.6 0.1 lQfiL 25 32 tri-cyclic paraffins 0.1 0 TOTAL 100 100 3 Olefins 9.6 3.7 Research Octane (RON) Aliphatic monoolefins 7.6 3.2 Mmor Octane (MON) 78 85 Cyclic monoolefins 2.0 0.5 Aromatics 30.2 34.6
(Alkyl Benzenes) (29.2) (34.4) v Benzene 1.1 0.5 Toluene 5.5 15.8 35 0,35 I00 TABLE IV C s 8.0 5.6 CXOS 3.6 2.1 n 1.0 0.4 STAB1LlZED* GASOLINE COMPOSITION (VOLUME PERCENT) (Alkyl Naphthalene) (1.0) (0.2)
Base Stock Low RON High RON Naphthakne 5 02 0 Methyl naphthalene 0 5 0,0 Paraffins 50.9 59.7 4 TOTAL 100.2 100.0
Parafflns 50.9 59.7 N112 1111161185 Stabilized by distillation to remove components boiling below 100F.
TABLE V Base Stock Vol.% Component Refinery Analysis (Vol. of Component) Low High Component Paraffins Naphthenes Olefins Aromatics RON RON Alkyl benzenes* 100 11.0 Reformate 35.2 0.6 0.1 64.1 10.6 25.8 Catalytic Gasoline 1 1.9 8.0 20.3 59.8 63.4 Straight Run Gaso. 55.8 33.2 1.2 9.8 2.5 lsopentane 100 12.1 7.4 lsomerizate" 89.8 10.2 0.8 Alkylate 98.0 2.0 1.8 40.6 Poly Gasoline 100 0.3 2.1 Udex Raffirnate 86.8 6.4 3.6 3.2 1.0 Butanes** 7.5 13.1
Typically bottoms from toluene manufacture. containing mostly xylenes (typically 50-80%) and toluene (typically 5-30%). remainder (e.g.. 5l5%) Product of hydroisomerizati of 9-15 psi). Propane can also being other alkyl benzenes (up 10 C). on of refinery streams which contain normal paraffins (e.g., Udex raffinate).
nt can be varied to obtain the desired Reid Vapor Pressure (typically in the range be present in winter gasoline.
The invention claimed is:
l. Gasoline comprising a hydrocarbon base stock of gasoline boiling range, from 0.05 to 35% of a methyl substituted phenol and from 0.05 to 30 of a hydrocarbyl ether having at least one branched alkyl group and boiling below 460F., said phenol and said ther each being present in amount sufficient to increase the Research octane number.
2. Gasoline according to claim 1 and wherein the amounts of said phenol and said ether are in the range of 01-15 wt.
3. Gasoline according to claim 2 and wherein the amount of said phenol is in the range of 0.1- wt. and the total of said amounts is in the range of 1-15 wt.
4. Gasoline according to claim 1 and wherein said ether is methyl methoxypropane.
5. Gasoline according to claim 1 and wherein said phenol is selected from the group consisting of ortho, meta and paracresol and mixtures of two or more said cresols.
. 6. Gasoline according to claim 5 and wherein said ether is methyl methoxypropane.
7. Gasoline according to claim 6 and wherein said phenol consists essentially of paracresol.
,8- .qa ql ns .3299551'195.tqslaimaniwherei aid amount of said phenol is in the range of 05-15%, said amount of said ether is in the range of 0.5-1 5% and the total of said amounts is in the range of l-l6%.
9. Gasoline according to claim 8 and wherein the total of said amounts is in the range of 2-l0%.
l0. Gasoline according to claim 1 wherein said ether is selected from the group consisting of diisopropyl ether, diisobutyl ether, methyl isopentyl ether, methyl isopropyl ether, and mixtures of two or more said ethers.
11. The composition of claim 1 wherein said base stock contains in the range of 40-75% paraffins, O-l 0% naphthenes, 0-20% olefins, and 20-40% aromatics.
12. The composition of claim 1 wherein said base stock has an RON in the range of 80-100 and an MON in the range of -95.
13. The composition of claim 12 wherein said base stock contains in the range of 50-60% paraffins, l-l0% naphthenes, 2-l0% olefins and 28-38% aromatics.

Claims (12)

  1. 2. Gasoline according to claim 1 and wherein the amounts of said phenol and said ether are in the range of 0.1-15 wt. %.
  2. 3. Gasoline according to claim 2 and wherein the amount of said phenol is in the range of 0.1-10 wt. % and the total of said amounts is in the range of 1-15 wt. %.
  3. 4. Gasoline according to claim 1 and wherein said ether is methyl methoxypropane.
  4. 5. Gasoline according to claim 1 and wherein said phenol is selected from the group consisting of ortho, meta and paracresol and mixtures of two or more said cresols.
  5. 6. Gasoline according to claim 5 and wherein said ether is methyl methoxypropane.
  6. 7. Gasoline according to claim 6 and wherein said phenol consists essentially of paracresol.
  7. 8. Gasoline according to claim 6 and wherein said amount of said phenol is in the range of 0.5-15%, said amount of said ether is in the range of 0.5-15% and the total of said amounts is in the range of 1-16%.
  8. 9. Gasoline according to claim 8 and wherein the total of said amounts is in the range of 2-10%.
  9. 10. Gasoline according to claim 1 wherein said ether is selected from the group consisting of diisopropyl ether, diisobutyl ether, methyl isopentyl ether, methyl isopropyl ether, and mixtures of two or more said ethers.
  10. 11. The composition of claim 1 wherein said base stock contains in the range of 40-75% paraffins, 0-10% naphthenes, 0-20% olefins, and 20-40% aromatics.
  11. 12. The composition of claim 1 wherein said base stock has an RON in the range of 80-100 and an MON in the range of 75-95.
  12. 13. The composition of claim 12 wherein said base stock contains in the range of 50-60% paraffins, 1-10% naphthenes, 2-10% olefins and 28-38% aromatics.
US00265850A 1972-06-23 1972-06-23 Gasoline containing a methyl phenol and an ether Expired - Lifetime US3836342A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US00265850A US3836342A (en) 1972-06-23 1972-06-23 Gasoline containing a methyl phenol and an ether
CA174,698A CA988299A (en) 1972-06-23 1973-06-22 Gasoline containing a methyl phenol and an ether
US05/505,820 US3976437A (en) 1972-06-23 1974-09-13 Composition comprising a methyl phenol and an ether for gasoline fuels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00265850A US3836342A (en) 1972-06-23 1972-06-23 Gasoline containing a methyl phenol and an ether

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/505,820 Continuation-In-Part US3976437A (en) 1972-06-23 1974-09-13 Composition comprising a methyl phenol and an ether for gasoline fuels

Publications (1)

Publication Number Publication Date
US3836342A true US3836342A (en) 1974-09-17

Family

ID=23012115

Family Applications (1)

Application Number Title Priority Date Filing Date
US00265850A Expired - Lifetime US3836342A (en) 1972-06-23 1972-06-23 Gasoline containing a methyl phenol and an ether

Country Status (2)

Country Link
US (1) US3836342A (en)
CA (1) CA988299A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4407661A (en) * 1981-12-07 1983-10-04 Standard Oil Company Motor fuel additives derived from shale oil
US4412847A (en) * 1978-10-03 1983-11-01 The Standard Oil Company Motor fuel additive
US5593567A (en) * 1990-12-13 1997-01-14 Jessup; Peter J. Gasoline fuel
US20030046862A1 (en) * 2001-05-02 2003-03-13 Wolf Leslie R. Method and an unleaded low emission gasoline for fueling an automotive engine with reduced emissions
WO2012057986A2 (en) 2010-10-29 2012-05-03 Kior Inc. Production of renewable bio-gasoline

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2240040A (en) * 1941-04-29 Stabilization of ethers
US2952612A (en) * 1957-06-27 1960-09-13 Shell Oil Co Production of high octane motor fuel with an alkyl ether additive
US3030195A (en) * 1959-01-20 1962-04-17 Sun Oil Co Motor fuels
US3224848A (en) * 1959-03-16 1965-12-21 Shell Oil Co Gasoline composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2240040A (en) * 1941-04-29 Stabilization of ethers
US2952612A (en) * 1957-06-27 1960-09-13 Shell Oil Co Production of high octane motor fuel with an alkyl ether additive
US3030195A (en) * 1959-01-20 1962-04-17 Sun Oil Co Motor fuels
US3224848A (en) * 1959-03-16 1965-12-21 Shell Oil Co Gasoline composition

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Unzelman et al., Are there substitutes for lead antiknocks May 14, 1971, p. 888, API Division of Refining Proceedings. *
Van Winkle, Matthew, Aviation Gasoline Manufacture, 1944, p. 199, McGraw Hill Book Company. *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4412847A (en) * 1978-10-03 1983-11-01 The Standard Oil Company Motor fuel additive
US4407661A (en) * 1981-12-07 1983-10-04 Standard Oil Company Motor fuel additives derived from shale oil
US5593567A (en) * 1990-12-13 1997-01-14 Jessup; Peter J. Gasoline fuel
US5653866A (en) * 1990-12-13 1997-08-05 Union Oil Company Of California Gasoline fuel
US5837126A (en) * 1990-12-13 1998-11-17 Union Oil Company Of California Gasoline fuel
US6030521A (en) * 1990-12-13 2000-02-29 Union Oil Company Of California Gasoline fuel
US20030046862A1 (en) * 2001-05-02 2003-03-13 Wolf Leslie R. Method and an unleaded low emission gasoline for fueling an automotive engine with reduced emissions
US7557255B2 (en) * 2001-05-02 2009-07-07 Bp Corporation North America Inc. Method and an unleaded low emission gasoline for fueling an automotive engine with reduced emissions
WO2012057986A2 (en) 2010-10-29 2012-05-03 Kior Inc. Production of renewable bio-gasoline
EP2633007A2 (en) * 2010-10-29 2013-09-04 KiOR, Inc. Production of renewable bio-gasoline
EP2633007A4 (en) * 2010-10-29 2014-12-10 Kior Inc Production of renewable bio-gasoline

Also Published As

Publication number Publication date
CA988299A (en) 1976-05-04

Similar Documents

Publication Publication Date Title
US6238446B1 (en) Unleaded aviation gasoline
US20080244963A1 (en) Lead-Free Aviation Fuel
US4812146A (en) Liquid fuels of high octane values
US6767372B2 (en) Aviation gasoline containing reduced amounts of tetraethyl lead
US10683462B2 (en) Aviation gasoline composition, its preparation and use
GB753223A (en) Improvements in and relating to motor fuels
US20030046862A1 (en) Method and an unleaded low emission gasoline for fueling an automotive engine with reduced emissions
US3224848A (en) Gasoline composition
US3836342A (en) Gasoline containing a methyl phenol and an ether
US2409157A (en) Fuel composition
US3976437A (en) Composition comprising a methyl phenol and an ether for gasoline fuels
US3038791A (en) Phenyl phosphate compositions
US2087582A (en) Motor fuel
US2897067A (en) Alcohol-containing gasoline composition
US3009793A (en) Motor fuel containing synergistic anti-knock additive
US3212867A (en) Motor fuel compositions
US2560602A (en) Fuel composition
JP5285221B2 (en) Unleaded gasoline composition
US2275175A (en) Motor fuel
US4602919A (en) Gasoline compositions containing malonates
US3168385A (en) Motor fuels
JP5285222B2 (en) Unleaded gasoline composition
US2676094A (en) Para-alkylphenols as rich mixture additives
CN113736527A (en) No. 94 lead-free aviation gasoline and production method thereof
US2479326A (en) Antiknock motor fuel