US3835305A - Computing device - Google Patents

Computing device Download PDF

Info

Publication number
US3835305A
US3835305A US00281637A US28163772A US3835305A US 3835305 A US3835305 A US 3835305A US 00281637 A US00281637 A US 00281637A US 28163772 A US28163772 A US 28163772A US 3835305 A US3835305 A US 3835305A
Authority
US
United States
Prior art keywords
price
cost
volume
pulse
unit volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00281637A
Inventor
C Kus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Veeder Industries Inc
Original Assignee
Veeder Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Veeder Industries Inc filed Critical Veeder Industries Inc
Priority to US00281637A priority Critical patent/US3835305A/en
Application granted granted Critical
Publication of US3835305A publication Critical patent/US3835305A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D7/00Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes
    • B67D7/06Details or accessories
    • B67D7/08Arrangements of devices for controlling, indicating, metering or registering quantity or price of liquid transferred
    • B67D7/22Arrangements of indicators or registers
    • B67D7/224Arrangements of indicators or registers involving price indicators
    • B67D7/227Arrangements of indicators or registers involving price indicators using electrical or electro-mechanical means
    • B67D7/228Arrangements of indicators or registers involving price indicators using electrical or electro-mechanical means using digital counting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/60Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
    • G06F7/62Performing operations exclusively by counting total number of pulses ; Multiplication, division or derived operations using combined denominational and incremental processing by counters, i.e. without column shift
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply

Definitions

  • a computing device for a multiple product gasoline dispensing system having a cost counter for accumulating the cost of gasoline dispensed, a bank of three price decade switches for each gasoline product settable for establishing the amounts of the three places respectively of a three place unit volume price, and a pulse generator for generating a pulse for each onehundredth of a unit volume of gasoline dispensed.
  • a sequencing circuit is operated by each pulse to sequentially set a binary predetermining counter at the straight binary complement of the amount established by each decade switch for the gasoline product being delivered and an oscillator is gated to index the predetermining counter from such setting to a maximum count and simultaneously index the cost counter to enter such amount into the cost counter at a level corresponding to its order of significance in unit volume price.
  • the present invention relates to computing devices having notable utility in gasoline dispensing systems for computing the cost of gasoline dispensed in accordance with the volume dispensed and a unit volume price established by the setting of the computing device.
  • FIGURE is a partial schematic illustration of a multiple product gasoline dispensing system incorporating an embodiment of the computing device of the present invention.
  • the gasoline delivery subsystem 12 comprises a pair of meters 14 having output shafts 16 connected to a summation differential 18.
  • the output shaft 20 of summation differential 18 is connected for driving a suitable pulse generator 30 of the computing device 10 which generates a single train of pulses as gasoline is dispensed, for example, one pulse for each one-hundredth part of a unit volume (i.e., the unit volume on which the gasoline price is based) of gasoline dispensed and therefore pulses for each such unit volume dispensed.
  • a suitable pulse generator 30 of the computing device 10 which generates a single train of pulses as gasoline is dispensed, for example, one pulse for each one-hundredth part of a unit volume (i.e., the unit volume on which the gasoline price is based) of gasoline dispensed and therefore pulses for each such unit volume dispensed.
  • a cost register 36 having a 'cost counter or accumulator 37 and a cost indicator 38 is connected to accumulate the cost of the fuel delivered in accordance with the total volume dispensed and a unit volume price (within a three place unit volume price range of the computing device 10) established by the setting of the computing device.
  • the counter 37 is shown comprising six decade sections 41-46 of increasing order of significance, and the cost indicator 38 comprises four 0-9 digit indicators 47-50 which are suitably connectedvia decoder-driver circuits 52 to the four highest order decades 43-46 to provide a readout of the total cost of fuel delivered.
  • the cost register 36 (along with the usual volume register, not shown) is resettable and is connected to be reset to 0 before the commencement of each fuel delivery.
  • the computing device 10 comprises a bank 72 of three price decade switches 74 for each of the available fuel products and the switch banks 72 are individually activated in accordance with the fuel product selected as described in the aforementioned US. patent application of Reed H. Johnston. For simplicity only one decade switch bank 72 is shown in' the drawing of this application.
  • the price decade switches 74 may be BCD switches of the type shown and described in US. Pat. No. 3,445,636 of Joseph A. Richards entitled Single Wheel Counter Circuit and having a number wheel 76 providing a numerical readout of the binary switch position and suitable means such as a push button 78 for selectively setting the switch and number wheel.
  • each binary switch may in a conventional manner have binary values of l, 2, 4 and 8 respectively such that if the binary switch were designed to produce a straight BCD signal of the number wheel setting, lead 83 would be energized when the number wheel 76 is set at 1, lead 84 would be energized when the number wheel is set at 2, leads 83 and 84 would be energized when the number wheel is set at 3, etc.
  • the price decade switches 74 for each place of the three place unit volume price are connected in parallel and are suitably isolated, as by the provision of diodes 92 in the output leads 83-86 of each switch 74, to prevent feedback through inactive switches such that the BCD signal in the output leads 93-96 for each place of the three place unit volume price is dependent upon the setting of the corresponding price decade switch 74 for the selected gasoline product.
  • a predetermining counter is adapted to be set in accordance with the setting of each decade switch 74 of the selected switch bank 72 by selective operation of units control gate 132, tens" control gate 134, and hundreds" control gate 136.
  • the predetermining counter 130 is preferably a binary decade counter having four flip-flops 137 and is connected via a suitable preset circuit 138 to be set at the straight binary complement of the number setting of the active price decade switch 74.
  • the binary switch 74 may be designated to produce a BCD signal which is the straight binary complement of the number wheel setting for directly setting the predetermining counter 130.
  • the binary switch 74 may be designed to produce a straight BCD signal of the number wheel setting in which case the preset circuit 138 would be designed to provide a complementary binary signal of the switch signal for setting the predetermining counter 130.
  • An oscillator 140 is provided for generating stepping or clocking pulses (for example, at a frequency of IOOKH and a control gate 146 is provided for connecting the oscillator 140 for simultaneously stepping or pulsing the predetermining counter 130 and the cost counter 37.
  • the flip-flops 137 of the predetermining counter 130 are connected via a suitable predetermining logic circuitlSOto operate the control gate 146 for disconnecting the oscillator whenthe binary counter 130 reaches its maximum count (i.e., 11 l l or binary 15).
  • the hundreds control gate 136 is operated to set the predetermining counter 130 at the straight BCD complement of 3
  • the control gate 146 will be opened momentarily to provide for pulsing the predetermining counter 130 and cost counter 37 three steps.
  • Additional units, tens and hundreds control gates 152, 154, 156 are operated in conjunction with the corresponding control gates 132, 134, 136 respectively to provide for parallel entry into the cost counter 37 in accordance with the relative weights or orders of significance of the units, tens and hundreds amounts of the unit volume price.
  • a count is added to the cost counter 37 which is dependent upon the amount and order of significance of the corresponding place of the established unit volume price.
  • a suitable sequencing circuit 160 is operated by each pulse generated by the pulse generator 30 for sequentially operating the pairs of control gates 132, 1152; 134, 154; and 136, 156 with the output leads 162-164 respectively.
  • each pulse generated by the pulse generator 30 operates the sequencing circuit 160 to in turn operate units control gates 132, 152 with units lead 162 to index the lowest order decade 41 of cost counter 37 a number of steps equal to the number setting of the selected units price switch 74.
  • the sequencing circuit 160 then operates the tens control gates 134, 154 with the tens lead 163 and operates the hundreds control gates 136, 156 with the hundreds lead 164 for respectively indexing each counter decade 42, 43 a number of steps equal to the setting of the corresponding price switch 74.
  • the response of the logic circuitry is suitably fast such that the sequencing circuit 160 is operated by each pulse generated to in turn operate the units, tens and hundreds control gates in sequence before the succeeding pulse is generated by the pulse generator 30.
  • the cost counter 37 is made suitably compatible with the pulse generator 30 so that the indicator 38 is adapted to provide a readout of the actual cost of the fuel delivered to the desired place (e.g., tenths of a cent).
  • the cost counter 37 would be indexed 000359 for each one-hundredth of a unit volume delivered and to register an'additional $0.359 (i.e., the price per gallon) for each full gallon of fuel delivered.
  • the cost indicator 38 therefore provides a readout of the total cost of gasoline delivered in accordancev with the volume of gasoline delivered and the unit volume price pre-established for the fluid product being delivered.
  • a fluid cost computing system for accumulating the cost of fluid dispensed in accordance with the volume of fluid dispensed and an established multiple place unit volume price
  • firstrelatively low frequency electrical pulse generating means connected to be operated in accordance with the volume of fluid dispensed to generate a single relatively low frequency volume pulse train having a pulse frequency dependent on the rate of fluid-dispensed and spaced volume pulses with a volume pulse for each pre-established fixed unit volume amount of fluid dispensed
  • second relatively high frequency electrical pulse generating means having a substantially constant relatively high pulse frequency
  • an electronic cost accumulator, cyclically operable control means comprising electronic counter means and a plurality of manually settable multiple position price selector switches of ascending order for the multiple places respectively of the multiple place unit volume price each independently manually settable to each of at least 10 settings for establishing an amount of 0 through 9 respectively of the respective place of the multiple place unit vlolume price
  • the electronic cost accumulator and electronic counter means being adapted to be pulsed by the high frequency pulse
  • a fluid cost computing system according to claim 1 wherein the multiple position switches are rotary multiple position switches.

Abstract

A computing device for a multiple product gasoline dispensing system having a cost counter for accumulating the cost of gasoline dispensed, a bank of three price decade switches for each gasoline product settable for establishing the amounts of the three places respectively of a three place unit volume price, and a pulse generator for generating a pulse for each onehundredth of a unit volume of gasoline dispensed. A sequencing circuit is operated by each pulse to sequentially set a binary predetermining counter at the straight binary complement of the amount established by each decade switch for the gasoline product being delivered and an oscillator is gated to index the predetermining counter from such setting to a maximum count and simultaneously index the cost counter to enter such amount into the cost counter at a level corresponding to its order of significance in unit volume price.

Description

United States Patent 1191 Kus COMPUTING DEVICE [75] Inventor: Crawford M. Kus, Vernon, Conn. [73] Assignee: Veeder Industries Inc., Hartford,
Conn.
[ Notice: The portion of the term of this patent subsequent to Oct. 3, 1989, has been disclaimed.
[22] Filed: Aug. 18, 1972 [21] Appl. No.: 281,637
Related US. Application Data [63] Continuation of Ser. No. 64,278, Aug. 17, 1970, Pat.
[52] US. Cl 235/151.34, 222/25, 235/92 EL [51] Int. Cl G06f 15/56, G06f-7/52 [58] Field of Search 222/25; 235/l5l.34, 92 FL [56] References Cited UNITED STATES PATENTS 2,209,700 7/1940 Mayo et al. 235/92 FL 3,043,508 7/1962 Wright 235/l51.34 3,081,031 3/1963 Livesay 235/92 FL 3,199,727 8/1965 Romanowski 235/l5l.34 UX 3,221,149 ll/l965 Giot et al. 235/92 FL 3,543,008 11/1970 Kes et al. 235/92 FL 3,566,087 2/1971 Dilger 235/l5l.34 X 3,569,679 3/1971 Bly 222/25 X SEQUENCING 1 1T GENE 11] 3,835,305 1*Sept. 10, 1974 1/19'72 Bickford ..235/1s1.34 9/1972 Johnston ..235/151.34X
Primary Examiner-Charles E. Atkinson Assistant Examiner-Errol A. Krass Attorney, Agent, or F irm- Prutzman, Hayes, Kalb 8L Chilton ABSTRACT A computing device for a multiple product gasoline dispensing system having a cost counter for accumulating the cost of gasoline dispensed, a bank of three price decade switches for each gasoline product settable for establishing the amounts of the three places respectively of a three place unit volume price, and a pulse generator for generating a pulse for each onehundredth of a unit volume of gasoline dispensed. A sequencing circuit is operated by each pulse to sequentially set a binary predetermining counter at the straight binary complement of the amount established by each decade switch for the gasoline product being delivered and an oscillator is gated to index the predetermining counter from such setting to a maximum count and simultaneously index the cost counter to enter such amount into the cost counter at a level corresponding to its order of significance in unit volume price.
2 Claims, 1 Drawing Figure COMPUTING DEVICE This application is a continuing application of my cpending application Ser. No. 64,278 now Patent No. 3,696,236 filed Aug. 17, 1970 and entitled Computing Device.
BRIEF SUMMARY OF THE INVENTION The present invention relates to computing devices having notable utility in gasoline dispensing systems for computing the cost of gasoline dispensed in accordance with the volume dispensed and a unit volume price established by the setting of the computing device.
It is a primary aim of the present invention to provide a low cost electronic computing device for gasoline dispensing systems for computing the cost of gasoline dispensed.
It is another aim of the present invention to provide a new and improved electronic computing device for accumulating the product of a pre-established multiple place multiplier and a second variable amount.
It is a further aim of the present invention to provide a new and improved computing device for accumulating the product of a pre-established multiplier and a second amount proportional to, for example, the rotation of a rotary input.
It is another aim of the present invention to provide a new and improved computing device for multiple product fluid dispensing systems which provides for pre-establishing the unit volume price of each of the fluid products and which is adapted to be readily conditioned for computing the cost of fluid dispensed in accordance with each of the pre-established unit volume prices.
It is another aim of the present invention to provide a new and improved electronic cost computer for fluid dispensing apparatus employing conventional and reliable logic components.
Other objects will be in part obvious and in part pointed out more in detail hereinafter.
A better understanding of the invention will be obtained from the following detailed description and the accompanying drawing of an illustrative application of the invention.
BRIEF DESCRIPTION OF THE DRAWING In the drawing:
The FIGURE is a partial schematic illustration of a multiple product gasoline dispensing system incorporating an embodiment of the computing device of the present invention.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring now in detail to the drawing, a multiple product gasoline dispensing system incorporating an embodiment of a computing device of the present invention comprises a multiple product gasoline delivery subsystem 12 of the type shown and described in related United States patent application Ser. No. 64,337, now Pat. No. 3,678,253 of Reed H. Johnston entitled Computing Device and filed on Aug. 17, 1970. As described more fully in such application of Reed H. Johnston, the gasoline delivery subsystem 12 comprises a pair of meters 14 having output shafts 16 connected to a summation differential 18. The output shaft 20 of summation differential 18 is connected for driving a suitable pulse generator 30 of the computing device 10 which generates a single train of pulses as gasoline is dispensed, for example, one pulse for each one-hundredth part of a unit volume (i.e., the unit volume on which the gasoline price is based) of gasoline dispensed and therefore pulses for each such unit volume dispensed.
A cost register 36 having a 'cost counter or accumulator 37 and a cost indicator 38 is connected to accumulate the cost of the fuel delivered in accordance with the total volume dispensed and a unit volume price (within a three place unit volume price range of the computing device 10) established by the setting of the computing device. The counter 37 is shown comprising six decade sections 41-46 of increasing order of significance, and the cost indicator 38 comprises four 0-9 digit indicators 47-50 which are suitably connectedvia decoder-driver circuits 52 to the four highest order decades 43-46 to provide a readout of the total cost of fuel delivered. Preferably the cost register 36 (along with the usual volume register, not shown) is resettable and is connected to be reset to 0 before the commencement of each fuel delivery.
The computing device 10 comprises a bank 72 of three price decade switches 74 for each of the available fuel products and the switch banks 72 are individually activated in accordance with the fuel product selected as described in the aforementioned US. patent application of Reed H. Johnston. For simplicity only one decade switch bank 72 is shown in' the drawing of this application. The price decade switches 74 may be BCD switches of the type shown and described in US. Pat. No. 3,445,636 of Joseph A. Richards entitled Single Wheel Counter Circuit and having a number wheel 76 providing a numerical readout of the binary switch position and suitable means such as a push button 78 for selectively setting the switch and number wheel. The four output leads 83-86 of each binary switch may in a conventional manner have binary values of l, 2, 4 and 8 respectively such that if the binary switch were designed to produce a straight BCD signal of the number wheel setting, lead 83 would be energized when the number wheel 76 is set at 1, lead 84 would be energized when the number wheel is set at 2, leads 83 and 84 would be energized when the number wheel is set at 3, etc.
The price decade switches 74 for each place of the three place unit volume price are connected in parallel and are suitably isolated, as by the provision of diodes 92 in the output leads 83-86 of each switch 74, to prevent feedback through inactive switches such that the BCD signal in the output leads 93-96 for each place of the three place unit volume price is dependent upon the setting of the corresponding price decade switch 74 for the selected gasoline product.
A predetermining counter is adapted to be set in accordance with the setting of each decade switch 74 of the selected switch bank 72 by selective operation of units control gate 132, tens" control gate 134, and hundreds" control gate 136. The predetermining counter 130 is preferably a binary decade counter having four flip-flops 137 and is connected via a suitable preset circuit 138 to be set at the straight binary complement of the number setting of the active price decade switch 74. Thus, if the selected hundreds price switch 74 is set at 3, the predetermining counter 130 will be preset at the straight binary complement of the number 3 or 1100 when the hundreds control gate 136 is operated. The binary switch 74 may be designated to produce a BCD signal which is the straight binary complement of the number wheel setting for directly setting the predetermining counter 130. Alternatively the binary switch 74 may be designed to produce a straight BCD signal of the number wheel setting in which case the preset circuit 138 would be designed to provide a complementary binary signal of the switch signal for setting the predetermining counter 130.
An oscillator 140 is provided for generating stepping or clocking pulses (for example, at a frequency of IOOKH and a control gate 146 is provided for connecting the oscillator 140 for simultaneously stepping or pulsing the predetermining counter 130 and the cost counter 37. The flip-flops 137 of the predetermining counter 130 are connected via a suitable predetermining logic circuitlSOto operate the control gate 146 for disconnecting the oscillator whenthe binary counter 130 reaches its maximum count (i.e., 11 l l or binary 15). Thus, for example, when the hundreds control gate 136 is operated to set the predetermining counter 130 at the straight BCD complement of 3, the control gate 146 will be opened momentarily to provide for pulsing the predetermining counter 130 and cost counter 37 three steps.
Additional units, tens and hundreds control gates 152, 154, 156 are operated in conjunction with the corresponding control gates 132, 134, 136 respectively to provide for parallel entry into the cost counter 37 in accordance with the relative weights or orders of significance of the units, tens and hundreds amounts of the unit volume price. Thus, upon operation of each pair of control gates 132, 152; 134, 154; and 136, 156 a count is added to the cost counter 37 which is dependent upon the amount and order of significance of the corresponding place of the established unit volume price.
A suitable sequencing circuit 160 is operated by each pulse generated by the pulse generator 30 for sequentially operating the pairs of control gates 132, 1152; 134, 154; and 136, 156 with the output leads 162-164 respectively. Thus, each pulse generated by the pulse generator 30 operates the sequencing circuit 160 to in turn operate units control gates 132, 152 with units lead 162 to index the lowest order decade 41 of cost counter 37 a number of steps equal to the number setting of the selected units price switch 74. The sequencing circuit 160 then operates the tens control gates 134, 154 with the tens lead 163 and operates the hundreds control gates 136, 156 with the hundreds lead 164 for respectively indexing each counter decade 42, 43 a number of steps equal to the setting of the corresponding price switch 74. The response of the logic circuitry is suitably fast such that the sequencing circuit 160 is operated by each pulse generated to in turn operate the units, tens and hundreds control gates in sequence before the succeeding pulse is generated by the pulse generator 30.
The cost counter 37 is made suitably compatible with the pulse generator 30 so that the indicator 38 is adapted to provide a readout of the actual cost of the fuel delivered to the desired place (e.g., tenths of a cent). Thus, with a pulse generator 30 producing one hundred pulses per gallon, an established gasoline price of 35.9 cents per gallon and an indicator 38 providing a readout to tenths of a cent, the cost counter 37 would be indexed 000359 for each one-hundredth of a unit volume delivered and to register an'additional $0.359 (i.e., the price per gallon) for each full gallon of fuel delivered. The cost indicator 38 therefore provides a readout of the total cost of gasoline delivered in accordancev with the volume of gasoline delivered and the unit volume price pre-established for the fluid product being delivered. I
As will be apparent to persons skilled in the art, various modifications, adaptations and variationsof the foregoing specific disclosure can be made without departing from the teachings of the present invention.
1 claim:
1. A fluid cost computing system for accumulating the cost of fluid dispensed in accordance with the volume of fluid dispensed and an established multiple place unit volume price comprising firstrelatively low frequency electrical pulse generating means connected to be operated in accordance with the volume of fluid dispensed to generate a single relatively low frequency volume pulse train having a pulse frequency dependent on the rate of fluid-dispensed and spaced volume pulses with a volume pulse for each pre-established fixed unit volume amount of fluid dispensed, second relatively high frequency electrical pulse generating means having a substantially constant relatively high pulse frequency, an electronic cost accumulator, cyclically operable control means comprising electronic counter means and a plurality of manually settable multiple position price selector switches of ascending order for the multiple places respectively of the multiple place unit volume price each independently manually settable to each of at least 10 settings for establishing an amount of 0 through 9 respectively of the respective place of the multiple place unit vlolume price, the electronic cost accumulator and electronic counter means being adapted to be pulsed by the high frequency pulses of the second electrical pulse generating means, and gate means operable for selectively connecting and disconnecting the second electrical pulse generating means for simultaneously pulsing the electronic counter means and electronic cost accumulator, the cyclically operable control means being connected to be cycled by each volume pulse of the first pulse generating means and, upon being cycled by each volume pulse, being operable by the electronic counter means and the manual settings of the plurality of price selector switches for operating the gate means for selectively connecting and disconnecting the second pulse generating means for pulsing-the electronic cost accumulator to accumulate an additional count in accordance with the multiple place unit volume price established by the manual settings of the price selector switches.
2. A fluid cost computing system according to claim 1 wherein the multiple position switches are rotary multiple position switches.

Claims (2)

1. A fluid cost computing system for accumulating the cost of fluid dispensed in accordance with the volume of fluid dispensed and an established multiple place unit volume price comprising first relatively low frequency electrical pulse generating means connected to be operated in accordance with the volume of fluid dispensed to generate a single relatively low frequency volume pulse train having a pulse frequency dependent on the rate of fluid dispensed and spaced volume pulses with a volume pulse for each pre-established fixed unit volume amount of fluid dispensed, second relatively high frequency electrical pulse generating means having a substantially constant relatively high pulse frequency, an electronic cost accumulator, cyclically operable control means comprising electronic counter means and a plurality of manually settable multiple position price selector switches of ascending order for the multiple places respectively of the multiple place unit volume price each independently manually settable to each of at least 10 settings for establishing an amount of 0 through 9 respectively of the respective place of the multiple place unit vlolume price, the electronic cost accumulator and electronic counter means being adapted to be pulsed by the high frequency pulses of the second electrical pulse generating means, and gate means operable for selectively connecting and disconnecting the second electrical pulse generating means for simultaneously pulsing the electronic counter means and electronic cost accumulator, the cyclically operable control means being connected to be cycled by each volume pulse of the first pulse generating means and, upon being cycled by each volume pulse, being operable by the electronic counter means and the manual settings of the plurality of price selector switches for operating the gate means for selectively connecting and disconnecting the second pulse generating means for pulsing the electronic cost accumulator to accumulate an additional count in accordance with the multiple place unit volume price established by the manual settings of the price selector switches.
2. A fluid cost computing system according to claim 1 wherein the multiple position switches are rotary multiple position switches.
US00281637A 1970-08-17 1972-08-18 Computing device Expired - Lifetime US3835305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00281637A US3835305A (en) 1970-08-17 1972-08-18 Computing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US6427870A 1970-08-17 1970-08-17
US00281637A US3835305A (en) 1970-08-17 1972-08-18 Computing device

Publications (1)

Publication Number Publication Date
US3835305A true US3835305A (en) 1974-09-10

Family

ID=26744345

Family Applications (1)

Application Number Title Priority Date Filing Date
US00281637A Expired - Lifetime US3835305A (en) 1970-08-17 1972-08-18 Computing device

Country Status (1)

Country Link
US (1) US3835305A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4031366A (en) * 1975-10-30 1977-06-21 Howell Instruments, Inc. Low cycle fatigue damage counter
US4038525A (en) * 1975-04-28 1977-07-26 Freeman Arthur G Tallying method and means
US4580127A (en) * 1983-03-28 1986-04-01 Jet Electronics & Technology Inc. Circuit for converting analog bipolar signals to digital signals
US5018645A (en) * 1990-01-30 1991-05-28 Zinsmeyer Herbert G Automotive fluids dispensing and blending system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2209700A (en) * 1938-03-08 1940-07-30 Frank V Mayo Liquid metering and cost computing apparatus
US3043508A (en) * 1958-09-24 1962-07-10 Sun Oil Co Electronic multiplier for fluid dispensers
US3081031A (en) * 1958-03-18 1963-03-12 Sun Oil Co Calculating apparatus for price and volume indicators
US3199727A (en) * 1961-12-12 1965-08-10 Bowser Inc Fuel dispensing system
US3221149A (en) * 1961-04-26 1965-11-30 Pour Tous App Mecaniques Sa Metering and computing apparatus
US3543008A (en) * 1968-05-22 1970-11-24 Veeder Industries Inc Pulse generating device
US3566087A (en) * 1966-09-01 1971-02-23 Veeder Industries Inc Computing device
US3569679A (en) * 1967-10-05 1971-03-09 Veeder Industries Inc Counting system
US3633000A (en) * 1969-10-21 1972-01-04 Veeder Industries Inc Computing device
US3689749A (en) * 1970-07-16 1972-09-05 Veeder Industries Inc Digital multiplier useful in multiple product dispensing apparatus

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2209700A (en) * 1938-03-08 1940-07-30 Frank V Mayo Liquid metering and cost computing apparatus
US3081031A (en) * 1958-03-18 1963-03-12 Sun Oil Co Calculating apparatus for price and volume indicators
US3043508A (en) * 1958-09-24 1962-07-10 Sun Oil Co Electronic multiplier for fluid dispensers
US3221149A (en) * 1961-04-26 1965-11-30 Pour Tous App Mecaniques Sa Metering and computing apparatus
US3199727A (en) * 1961-12-12 1965-08-10 Bowser Inc Fuel dispensing system
US3566087A (en) * 1966-09-01 1971-02-23 Veeder Industries Inc Computing device
US3569679A (en) * 1967-10-05 1971-03-09 Veeder Industries Inc Counting system
US3543008A (en) * 1968-05-22 1970-11-24 Veeder Industries Inc Pulse generating device
US3633000A (en) * 1969-10-21 1972-01-04 Veeder Industries Inc Computing device
US3689749A (en) * 1970-07-16 1972-09-05 Veeder Industries Inc Digital multiplier useful in multiple product dispensing apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4038525A (en) * 1975-04-28 1977-07-26 Freeman Arthur G Tallying method and means
US4031366A (en) * 1975-10-30 1977-06-21 Howell Instruments, Inc. Low cycle fatigue damage counter
US4580127A (en) * 1983-03-28 1986-04-01 Jet Electronics & Technology Inc. Circuit for converting analog bipolar signals to digital signals
US5018645A (en) * 1990-01-30 1991-05-28 Zinsmeyer Herbert G Automotive fluids dispensing and blending system

Similar Documents

Publication Publication Date Title
US3860807A (en) Electronic taximeter having serially energized indicator means
US3696236A (en) Computing device
US3674097A (en) Motion detector for weighing apparatus
US3666928A (en) Gasoline pump calculator
US4051998A (en) Digital electronic data system for a fluid dispenser
US3751642A (en) Quantity and price computer system
US3043508A (en) Electronic multiplier for fluid dispensers
US3835305A (en) Computing device
US3169185A (en) Totalizer
US3684870A (en) Percentage counter
US3650205A (en) Serial number printing machines
US2860327A (en) Binary-to-binary decimal converter
US3598283A (en) Gasoline pump computer
US3678253A (en) Computing device
US3809866A (en) Computing system
US3612393A (en) Computing device
US3543008A (en) Pulse generating device
US3984661A (en) Price calculating and indicating circuit for dispensers
US3689749A (en) Digital multiplier useful in multiple product dispensing apparatus
US3393302A (en) Computer means for use with scales
US3633000A (en) Computing device
US3422253A (en) Reverse counting logic systems
US3551657A (en) Counting
US3566087A (en) Computing device
US3639735A (en) Multiple product fluid dispensing system