US3833640A - Prostaglandin e1,f1,and a1 analogs - Google Patents

Prostaglandin e1,f1,and a1 analogs Download PDF

Info

Publication number
US3833640A
US3833640A US00169071A US16907171A US3833640A US 3833640 A US3833640 A US 3833640A US 00169071 A US00169071 A US 00169071A US 16907171 A US16907171 A US 16907171A US 3833640 A US3833640 A US 3833640A
Authority
US
United States
Prior art keywords
pge
methyl
compounds
mixture
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00169071A
Inventor
J Pike
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pharmacia and Upjohn Co
Original Assignee
Upjohn Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Upjohn Co filed Critical Upjohn Co
Priority to US00169071A priority Critical patent/US3833640A/en
Application granted granted Critical
Publication of US3833640A publication Critical patent/US3833640A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C405/00Compounds containing a five-membered ring having two side-chains in ortho position to each other, and having oxygen atoms directly attached to the ring in ortho position to one of the side-chains, one side-chain containing, not directly attached to the ring, a carbon atom having three bonds to hetero atoms with at the most one bond to halogen, and the other side-chain having oxygen atoms attached in gamma-position to the ring, e.g. prostaglandins ; Analogues or derivatives thereof

Definitions

  • This invention relates to compositions of matter and to methods for making and using them.
  • this invention relates to novel analogs of PGE PGF PGF PGA and their salts and esters.
  • PGE has the following structure:
  • Prostaglandin F has the following structure:
  • PEF Prostaglandin F
  • PGE PGF PGF and PGA are derivatives of prostanoic acid which has the following structure and atom numbering:
  • R is hydrogen, alkyl of one to 8 carbon atoms, inclusive, cycloalkyl of 3 to 10 carbon atoms, inclusive, aralkyl of 7 to 12 carbon atoms, inclusive, phenyl, phenyl substituted with one to 3 chloro or alkyl of one to 4 carbon atoms, inclusive, or ethyl substitutedin' the fl-position with 3 chloro, 2 or 3 bromo, or one, 2, or 3 iodo. Also in formulas VIII to XVI, indicates attachment of the group to the ring in alpha or beta configuration, a is zero to 4, and n is 4 to 8.
  • Y is isobutyl, tert-butyl, 3,3- difiuorobutyl, 4,4-difiuorobutyl, or 4,4,4-trifiuorobutyl.
  • G is isobutyl or tert-butyl.
  • Z is 3,3-difluorobutyl, 4,4-trifiuorobutyl, 4,4,4-trifluorobutyl, 3,3,4,4-tetrafluorobutyl, or 3,3,4,4,4-pentafiuorobutyl.
  • formulas XI, XII, and XIII compounds are encompassed by formulas VIII, IX, and X, respectively.
  • the PG E -type compounds of formulas VIII, XI, and XIV are useful for pharmacological and medicinal purposes as will be described hereinafter. These same compounds are also useful as intermediates for the preparation of the corresponding compounds of the PGF -type, the PGF -type, and the PGA -type.
  • Formulas VIII to XV I are intended to include compounds wherein the side chain hydroxy has the same configuration as in PGE i.e., alpha (S), and compounds wherein the side chain hydroxy has the opposite configuration, i.e., beta (R or epi).
  • the carbon-carbon double bond in the side chain is in trans configuration and that side chain is attached to the cyclopentane ring in beta configuration, both as shown in those formulas.
  • alkyl of one to 8 carbon atoms, inclusive are methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, and isomeric forms thereof, e.g., isopropyl, isobutyl, sec-butyl, tert-butyl, isopentyl, Z-methylpentyl, '5- methylhexyl, Z-ethylhexyl, 4,4-dimethylpentyl, and the like.
  • cycloalkyl of 3 to 10 carbon atoms, inclusive which includes alkyl-substituted cycloalkyl
  • examples of cycloalkyl of 3 to 10 carbon atoms, inclusive are cyclopropyl, Z-rnethylcyclopropyl, 2,2-dimethylcyclopropyl, 2,3 diethylcyclopropyl, 2 butylcyclopropyl, cyclobu-tyl, 2-methylcyclobutyl, 3-propylcyclobutyl, 2,3,4-triethylcyclobutyl, cyclopentyl, 2,2-dimethylcyclopentyl, 3- pentylcyclopentyl, 3 tert-butylcyclopentyl, cyclohexyl, 4- tert-butylcyclohexyl, 3-isopropylcyclohexyl, 2,2-dimethylcyclohexyl, cycloheptyl, cyclooct
  • aralkyl 0f 7 to 12 carbon atoms, inclusive are benzyl, phenethyl, l-phenylethyl, Z-phenylpropyl, 4-phenylbutyl, 3-phenylbutyl, 2-( l-naphthylethyl), and I-(Z-naphthylmethyl).
  • phenyl substituted by one to 3 chloro or alkyl of one to 4 carbon atoms, inclusive are p-chlorophenyl, m-chlorophenyl, o-
  • chlorophenyl 2,4-dichlorophenyl, 2,4,6 trichlorophenyl, p-tolyl, m-tolyl, o-tolyl, p-ethylphenyl, ptert-butylphenyl, 2,5-dimethylphenyl, 4-chloro-2-rnethylphenyl, and 2,4-dichloro-S-methylphenyl.
  • PGE PGFIM PGF and PGA and their esters and pharmacologically acceptable salts are extremely potent in causing various biological responses. For that reason, these compounds are useful for pharmacological purposes. See, for example, Bergstrom et al., Pharmacol. Rev. 20, 1 (1968), and references cited therein. A few of those biological responses are systemic arterial blood pressure lowering in the case of PGE PGF and PGA; as measured, for example, in anesthetized (pentobarbital soduim) pentolinium-treated rats with indwelling aortic and right heart cannulas; pressor activity, similarly measured, for PGF stimulation of smooth muscle as shown,
  • these known prostaglandins are useful to study, prevent, control, or alleviate a wide variety of diseases and undesirable physiological conditions in birds and mammals, including humans, useful domestic animals, pets, and zoological specimens, and in laboratory animals, for example, mice, rats, rabbits, and monkeys.
  • these compounds, and especially PGE are useful in mammals, including man, as nasal decongestants.
  • the compounds are used in a dosage range of about g. to about 10 mg. per ml. of a pharmacologically suitable liquid vehicle or as an aerosol spray, both for topical application.
  • PGE and PGA are useful in mammals, including man and certain useful animals, e.g., dogs and pigs, to reduce and control excessive gastric secretion, thereby reducing or avoiding gastrointestinal ulcer formation, and accelerating the healing of such ulcers already present in the gastrointestinal tract.
  • the compounds are injected or infused intravenously, subcutaneously, or intramuscularly in an infusion dose range about 0.1 g. to about 500 g. per kg. of body weight per minute, or in a total daily dose by injection or infusion in the range about 0.1 to about 20 mg. per kg. of body weight per day, the exact dose depending on the age, weight, and condition of the patient or animal, and on the frequency and route of administration.
  • PGE PGA PGFia and PGF are useful whenever it is desired to inhibit platelet aggregation, to reduce the adhesive character of platelets, and to remove or prevent the formation of thrombi in mammals, including man, rabbits, and rats.
  • these compounds are useful in the treatment and prevention of myocardial infarcts, to treat and prevent post-operative thrombosis, to promote potency of vascular grafts following surgery, and to treat conditions such as atherosclerosis, arteriosclerosis, blood clotting defects due to lipemia, and other clinical conditions in which the underlying etiology is associated with lipid imbalance or hyperlipide-mia.
  • these compounds are administered systemically, e.g., intravenously, subcutaneously, intramuscularly, and in the form of sterile implants for prolonged action.
  • intravenous route of administration is preferred. Doses in the range about 0.004 to about 20 mg. per kg. of body weight per day are used, the exact dose depending on the age, weight, and condition of the patient or animal, and on the frequency and route of administration.
  • PGE PGA PGF1., and PGF are especially useful as additives to blood, blood products, blood substitutes, and other fluids which are used in artificial extracorporeal circulation and perfusion of isolated body portions, e.g., limbs and organs, whether attached to the original body, detached and being preserved or'preparcd for transplant, or attached to a new body.
  • isolated body portions e.g., limbs and organs, whether attached to the original body, detached and being preserved or'preparcd for transplant, or attached to a new body.
  • aggregated platelets tend to block the blood vessels and portions of the circulation apparatus. This blocking is avoided by the presence of these compounds.
  • the compound is added gradually or in single or multiple portions to the circulating blood, to the blood of the donor animal, to the perfused body portion, attached or detached, to the recipient, or to two or all of those at a total steady state dose of about .001 to 10 mg. per liter of circulating fluid. It is especially useful to use these compounds in laboratory animals, e.g., cats, dogs, rabbits, monkeys, and rats, for these purposes in order to develop new methods and techniques for organ and limb transplants.
  • PGE is extremely potent in causing stimulation of smooth muscle, and is also highly active in potentiating other known smooth muscle stimulators, for example, oxytocic agents, e.g., oxytocin, and the various ergot alkaloids including derivatives and analogs thereof. Therefore PGE is useful in place of or in combination with less than usual amounts of these known smooth muscle stimulators, for example, to relieve the symptoms of paralytic ileus, or to control or prevent atonic uterine bleeding after abortion or delivery, to aid in expulsion of the placenta, and during the puerperium. For the latter purpose, PGE is administered by intravenous infusion immediately after abortion or delivery at a dose in the range about 0.01 to about 50 pg. per kg.
  • PGE PGA and PGF are useful as hypotensive agents to reduce blood pressure in mammals, including man.
  • the compounds are administered by intravenous infusion at the rate about 0.01 to about 50' pg. per kg. of body weight per minute or in single or multiple doses of about 25 to 500 g. per kg. of body weight total per day.
  • PGE is a potent antagonist of epinephrine-induced mobilization of free fatty acids.
  • this compound is useful in experimental medicine for both in vitro and in vivo studies in mammals, including man, rabbits, and rats, intended to lead to the understanding, prevention, symptom alleviation, and cure of diseases involving abnormal lipid mobilization and high free fatty acid levels, e.g., diabetes mellitus, vascular diseases. and hyperthyroidism.
  • the PGE PGFM, and PGA compounds are useful in the treatment of asthma.
  • these compounds are useful as bronchodilators or as inhibitors of mediators, such as SRS-A, and histamine which are released from cells activated by an antigen-antibody complex.
  • mediators such as SRS-A
  • histamine which are released from cells activated by an antigen-antibody complex.
  • these compounds control spasm and facilitate breathing in conditions such as bronchial asthma, bronchitis, bronchiectasis, pneumonia and emphysema.
  • these compounds are administered in a variety of dosage forms, e.g., orally in the form of tablets, capsules, or liquids; rectally in the form of suppositories; parenterally, subcutaneously, or intramuscularly, with intravenous administration being preferred in emergency situations; by inhalation in the form of aerosols or solutions for nebulizers; or by insufflation in the form of powder.
  • dosage forms e.g., orally in the form of tablets, capsules, or liquids; rectally in the form of suppositories; parenterally, subcutaneously, or intramuscularly, with intravenous administration being preferred in emergency situations; by inhalation in the form of aerosols or solutions for nebulizers; or by insufflation in the form of powder.
  • Doses in the range of about 0.01 to 5 mg. per kg. of body weight are used 1 to 4 times a day, the extact dose depending on the age, weight, and condition of the patient and on the frequency
  • the PGE1, PGA and PGF compounds also increase the flow of blood in the mammalian kidney, thereby increasing volume and electrolyte content of the urine. Therefore, these compounds are useful in managing cases of renal disfunction, especially those involving blockage of the renal vascular bed.
  • the compounds are useful to alleviate and correct cases of edema resulting, for example, from massive surface burns, and in the management of shock.
  • the compounds are preferably first administered by intravenous injection at a dose in the range 10 to 1000 g. per kg. of body weight or by intravenous infusion at a dose in the range 0.1 to 20 g. per kg. of body weight per minute until the desired effect is obtained. Subsequent doses are given by intravenous, intramuscular, or subcutaneous injection or infusion in the range 0.05 to 2 mg. per kg. of body weight per day.
  • the PGFM PGF PGE and PGA compounds are useful for controlling the reproductive cycle in ovulating female mammals, including humans and animals such as monkeys, rats, rabbits, dogs, cattle, and the like.
  • PGF for example, is administered systemically at a dose level in the range 0.01 mg. to about 20 mg. per kg. of body weight of the female mammal, advantageously during a span of time starting approximately at the time of ovulation and ending approximately at the time of menses or just prior to menses.
  • expulsion of an embryo or a fetus is accomplished by similar administration of the compound during the first third of the normal mammalian gestation period.
  • novel compounds of this invention encompassed by formulas VIII to XVI each cause the same biological responses described above for the known prostaglandins.
  • Each of these compounds is accordingly useful for the above-described pharmacological uses, and is used for those purposes as described above.
  • R is ethyl substituted in the fl-position with chloro, bromo, or iodo for these pharmacological purposes.
  • Those compounds are more useful for other purposes as will be described hereinafter.
  • PGE PGF and PGA and the PGE reduction product PGF are all potent in causing multiple biological responses even at low doses.
  • PGE is extremely potent in causing vasodepression and smooth muscle stimulation, and also is potent as an antilipolytic agent.
  • novel formulas VII to XVI compounds are substantially more specific with regard to potency in causing prostaglandin-like biological responses.
  • each of the formula VIII to XVI compounds is surprisingly and unexpectedly more useful than one of the corresponding known prostaglandins for at least one of the pharmacological purposes indicated for the latter, and is surprisingly and unexpectedly more useful for that purpose because it has a different and narrower spectrum of activity than the natural prostaglandin, and therefore is more specific in its activity and causes smaller and fewer undesired side effects than when the natural prostaglandin is used for the same purpose.
  • some of these novel prostaglandin analogs have greater potency in causing one or more of the above-described biological responses than the corresponding natural compound.
  • novel formula VIII to XVI prostaglandin analogs are especially useful because they have a substantially longer duration of activity than the corresponding known compounds, and because they can be administered orally, sublingually, intravaginally, or rectally, as well as by the usual intravenous, intramuscular, or subcutaneous injection or infusion as indicated above for the uses of the known prostaglandins. These qualities are advantageous because they facilitate maintaining uniform levels of these compounds in the body with fewer, shorter, or smaller doses, and make possible self-administration by the patient.
  • Especially preferred compounds for the above-described pharmacological purposes are those within the scope of formulas VIII to XVI wherein n is 6, i.e., wherein --(CH represents hexamethylene.
  • n is 6, i.e., wherein --(CH represents hexamethylene.
  • formulas XI, XII, and XIII another preference is that a be 2 or 3.
  • formulas XIV, XV, and XVI another preference is that a be one or 2.
  • Two other preferences regarding formulas VIII to XVI are that the (CH ),,COOR side chain be attached to the ring in alpha configuration and that the side-chain hydroxy have the same configuration as in PGE, (formula I), i.e., the alpha configuration.
  • novel prostaglandin analogs of formulas VIII to XVI are used for the above-described pharmacological purposes in the free acid form, i.e., when R is hydrogen, in the ester form, or in pharmacologically acceptable salt form.
  • the ester can be any of those within the above definition of R except that as mentioned above, use of the compounds wherein R is ethyl substituted in the 8-p0siti0n with chloro, bromo, or iodo for these purposes is not preferred.
  • alkyl of one to four carbon atoms, inclusive are preferred. Of those alkyl, methyl and ethyl are especially preferred for optimum absorption of the compound by the body or experimental animal system.
  • Pharmacologically acceptable salts of these formula VIII to XVI compounds are those with cations which are quaternary ammonium ions, or the cationic form of a metal, ammonia, or an amine.
  • Especially preferred metal cations are those derived from the alkali metals, e.g., lithium, sodium, and potassium, and from the alkaline earth metals, e.g., magnesium and calcium, although cationic forms of other metals, e.g., aluminum, zinc, and ion, are Within the scope of this invention.
  • amine cations within the scope R are those derived from primary, secondary, or tertiary amines.
  • suitable amines are methylamine, dimethylamine, trimethylamine, ethylamine, dibutylamine, triisopropylamine, N methylhexylamine, decylamine, dodecylamine, allylamine, crotylamine, cyclopentylamine, dicyclohexylamine, benzylamine, dibenzylamine, a-phenylethylamine fi-phenylethylamine, ethylenediamine, diethylenetriamine, and like aliphatic, cycloaliphatic, and araliphatic amines containing up to and including about 18 carbon atoms, as well as heterocyclic amines, e.g., piperidine, morpholine, pyrrolidine, piperazine, and loWer-alkyl derivatives thereof, e.g.,
  • the compounds of formulas VIII to XVI are administered in various ways for various purposes; e.g., intravenously, intramuscularly, subcutaneously, orally, intravaginally, rectally, sublingually, topically, and in the form of sterile implants for prolonged action.
  • sterile aqueous isotonic solutions are preferred.
  • R be hydrogen or a pharmacologically acceptable cation.
  • sterile solutions or suspensions of the acid, salt, or ester form in aqueous or non-aqueous media are used.
  • Tablets, capsules, and liquid preparations such as syrups, elixirs, and simple compounds of formulas IX, XII, and XV, and PGA -type solutions, with the usual pharmaceutical carriers are used for oral or sublingual administration.
  • suppositories prepared as known in the art are used.
  • tissue implants a sterile tablet or silicone rubber capsule or other object containing or impregnated with the substance is used.
  • the PGE -type compounds of for mulas VIII, )6, and XIV are used as intermediates to prepare the corresponding PGF -type, and PGF ,,-type compounds of formulas IX, XII, and XV, and PGA -type compounds of formulas X, XIII, and XVI.
  • the PGF -type and PGF ,,-type compounds are prepared by carbonyl reduction of the corresponding PGE type compounds.
  • carbonyl reduction of a formula VIII PGE -type compound gives a mixture of the corresponding formula IX PGF -type and PGF -type compounds.
  • carbonyl reduction of a formula XI PGE -type compound gives a mixture of the corresponding formula XII PGiF -type and PGF -type compounds
  • carbonyl reduction of a formula XIV PGE type compound gives a mixture of the corresponding formula XV PGF -type and PGF -type compounds.
  • ring carbonyl reductions are carried out by methods known in the art for ring carbonyl reductions of known prostanoic acid derivatives. See, for example, Bergstrom et al., Arkiv Kemi 19, 563 (1963), Acta Chem. Scand. 16, 969 (1962), and British Specification No.
  • Any reducing agent is used which does not react with carbon-carbon double bonds or ester groups.
  • Preferred reagents are lithium(tri-tert-butoxy)aluminum hydride, the metal borohydrides, especially sodium, potassium and zinc borohydrides, the metal trialkoxy borohydrides, e.g., sodium trimethoxyborohydride.
  • the mixtures of alpha and beta hydroxy reduction products are separated into the individual alpha and beta isomers by methods known in the art for the separation of analogous pairs of known isomeric prostanoic acid derivatives. See, for example, Bergstrom et al., cited above, Granstrom et al., J. Biol. Chem. 240, 457 (1965), and Gren et al., J. Lipid Research 5, 117 (1964).
  • Especially preferred as separation methods are partition chromatographic procedures, both normal and reversed phase, preparative thin layer chromatography, and countercurrent distribution procedures.
  • the PGA -type compounds are prepared by acidic dehydration of the corresponding PGE -type compounds.
  • acidic dehydration of a formula VIII PGE type compound gives the corresponding formula X PGA type compound.
  • acidic dehydration of a formula XI PGE -type compound gives the corresponding formula XIII PGA -type compound and acidic dehydration of a formula XIV PGE -type compound gives the corresponding formula XVI PGAflype compound.
  • the PGE -type esters encompassed by formula VIII are prepared by the sequence of reactions shown in Chart B. Similar reaction sequences are used to prepare the PGE -type esters of formulas XI and XIV.
  • a and Y are as defined above, and R; has the same definition as R except that hydrogen is not included in the definition of R R is alkyl of one to 5 carbon atoms, inclusive, and indicates alpha or beta attachment of to the cyclopentane ring and exo or endo configuration with respect to the group attached to the cyclopropane ring.
  • the PGE -type acids of formula VIII (R is hydrogen) are not prepared by this Chart B sequence, but rather from certain of the formula VIIIA esters by methods described below.
  • Exo-bicyclo[3.1.0]hexane olefins of formula XVII have the formula:
  • this formula XX intermediate is alkylated with an to iodo or w-bromo ester of the formula or Br(CH COO'R to give a mixture of the alpha and beta isomers of the formula XVIIA olefin.
  • alpha and beta isomers are separated by chromatography as described in said Belgian patent.
  • H XVIIB These are prepared by reacting endo-bicyclo[3.1.0]hex-2- ene-G-carboxylic acid methyl ester with diborane in a mixture of tetrahydrofuran and diethyl ether to give a mixture of the methyl esters of endo-bicyclo[3.1.0]hexan- 3-ol-6-carboxylic acid and endo-bicyclo[3.1.0]hexan-2-ol- 6-carboxylic acid. This mixture is reacted with dihydropyran to give the corresponding mixture of tetrahydropyranyl ethers.
  • alpha and beta isomers it is necessary to separate alpha and beta isomers at some stage, i.e., olefin XVII, glycol XVIII, bis-sulfonate XIX, or product VIIIA. Separation of alpha and beta isomers of olefin XV-II is preferred. This separation is carried out by silica gel chromatography as described in said Belgian patent and exemplified below.
  • these are triphenylphosphonium bromides prepared as known in the art from the corresponding alkyl or fluoroalkyl bromides, all of which are known in the art or can be prepared by methods known in the art.
  • the necessary alkyl bromides have the formulas (CH3 CH BI and (CH C(CH CH Br, wherein a is zero to 4.
  • the alcohols CH CHCH CH OH and (CH CCH OH are known, and the corresponding bromides are prepared by reacting said alcohols with phosphorous tribromide.
  • the bromides wherein a is one to 4 are prepared by extending the chains of the above two bromides by reacting them with sodium cyanide, hydrolyzing the resulting nitriles to the corresponding carboxylic acids, reducing those acids to primary alcohols, and reacting the alcohols with phosphorous tribromide. This reaction sequence is repeated as often as necessary to prepare all of the required alkyl bromides.
  • the necessary fiuoroalkyl bromides have the formulas wherein a is zero to 4.
  • the bromides of the first group are prepared from ketocarboxylic acids CH COCH CH CH COOH all of which are known.
  • the methyl esters of those acids are prepared and reacted with sulfur tetrafluoride to give CH CF CH CH (CH COOCH which are reduced with lithium aluminum hydride to give primary alcohols, which in turn are reacted with phosphorous tribromide to give the desired bromides.
  • the second group of fiuoroalkyl bromides are prepared from the known carboxylic acids HOOCCH CH CH (CH ),COOH. These are esterified to dimethyl esters and then half saponified with barium hydroxide.
  • the free carboxyl group is changed by known methods to a carboxaldehyde group, and the resulting aldehyde is reacted with sulfur tetrafluoride to give CHF CH CH CH (CH COOCH Successive treatment of that with lithium aluminum hydride and phosphorous tribromide gives the desired fluoroalkyl bromide.
  • the third group of fluoroalkvl bromides is prepared from aldehydes OCHCH CH CH (CH COOCH prepared as above.
  • esters of the various w-iOdO or w-bromo alkanoic acids necessary for the alkylation of exo and endo intermediates XX and XXI are also known in the art or are prepared by methods known in the art.
  • the glycol intermediates of formula XVIII are prepared by hydroxylation of olefins XVII.
  • Hydroxylation reagents and procedures for this purpose are known in the art. See, for example, Gunstone, Advances in Organic Chemistry, Vol. 1, pp- 103147 (1960), Interscience Publishers, New York, NY.
  • Especially useful hydroxylation reagents for this purpose are osmium tetroxide and performic acid (formic acid plus hydrogen peroxide).
  • glycols isomeric with respect to the CH(OH)CH(OH) moiety are obtained by these olefin hydroxylations depending on the nature of the hydroxylation reagent and the cis and trans content of the formula XVI I olefin.
  • These glycol isomers can be separated by silica gel chromatography. However, these separations are usually not necessary since all isomers of a particular glycol are equally useful as intermediates to produce the desired formula VIIIA product.
  • the glycol intermediates of formula XVIII are transformed to bis-alkanesulfonates of formula XIX by reaction of the glycol with an alkanesulfonyl chloride or bromide, the alkane portion of which contains one to 5 carbon atoms, inclusive.
  • the reaction is carried out in the presence of a base to neutralize the by-product acid.
  • bases are tertiary amines, e.g., dimethylaniline or pyridine. It is usually sufficient merely to mix the two reactants and the base, and maintain the mixture in the range 0 to 25 C. for several hours.
  • the bis-sulfonic acid esters of formula XIX are transformed to the desired PGE type esters of Formula VIIA by reacting the bis-sulfonic acid ester with water.
  • This reaction is carried out by mixing the bis-sulfonic acid ester with water in the range about 0 to about 60 C.
  • 25 C. is a suitable reaction temperature, the reaction then proceeding to completion in about 20 hours. It is advantageous to have a homogenous reaction mixture. This is accomplished by adding sufficient amounts of a water-soluble organic diluent which does not enter into the reaction. Acetone is a suitable diluent.
  • the desired product is isolated by evaporation of excess water and diluent if one is used.
  • the residue contains a mixture of formula VIIIA isomers which differ in the configuration of the side chain hydroxy, being either at (S) or ⁇ 3 (R). These are separated "from byproducts and from each other by silica gel chromatography.
  • the processes of Chart B lead to esters of PGE -type compounds.
  • the PGE -type compound be in free acid form, or in salt form which requires the free acid as starting material.
  • formula IX, XII, or XV PGF -type compounds or formula X, XIII, or XVI PGA -type compounds in free acid form or salt form are preferred.
  • Formula IX, XII, and XV PGF -type esters are easily saponified to free acids by procedures known in the art.
  • Zinc dust is preferred as the physical form of the zinc.
  • Mixing the halo ester with the zinc dust at about 25 C. for several hours in the presence of the alkanoic acid causes replacement of the haloethyl moiety with hydrogen.
  • the free acid is then isolated from the reaction mixture by procedures known in the art and exemplified below.
  • the fi,,8,;8-trichloroethyl esters are preferred.
  • This same procedure is also used to prepare PGF PGF and PGA type free acids (R is hydrogen), starting with the corresponding haloethyl ester. However, as mentioned above, this procedure is not necessary to prepare PGF type acids.
  • Chart C described the transformation of a formula XVII olefin ester other than a haloethyl ester to haloethyl estesr of a formula XVIII glycol.
  • Chart C relates only to PGE -type products of formula VIII, as does Chart B.
  • Chart B similar reactions are available leading to the PGE -type products of formulas XI and XIV.
  • formula XVIIA is the same as formula XVII (Chart B) except that haloethyl esters are not included in XVIIA.
  • R has
  • Formula XVIIA olefin esters and formula XVIII glycol esters each have a ring carbonyl ggroup adjacent to the point of attachment of (CH ),,COO'R., to the ring. Saponification of such a keto ester is likely to lead to isomerization such that an alpha-attached chain will change partly to a beta-attached chain, and a beta partly to an alpha.
  • keto ester XVIIA is reduced, for example, with sodium borohydride according to known procedures described above and exemplified below, to hydroxy ester XXII. This hydroxy ester is then saponified to hydroxy acid XXIII, also by known procedures.
  • an especially useful reagent is the I ones reagent, i.e., acidic chromic acid. See J. Chem. Soc. 39 (1946).
  • Acetone is a suitable diluent for this purpose, and a slight excess of oxidant and temperatures at least as low as about 0 C., preferably about -10 to about 2() C. should be used.
  • the oxidation proceeds rapidly and is usually complete in about 5 to about 30 minutes.
  • oxidant is destroyed, for example, by addition of a lower alkanol, advantageously isopropyl alcohol, and the aldehyde is isolated by conventional methods, for example, by extraction with a suitable solvent, e.g., diethyl ether.
  • a suitable solvent e.g., diethyl ether.
  • Other oxidizing agents can also be used. Examples are mixtures of chromium trioxide and pyridine or mixtures of dicyclohexylcarbodiimide and dimethyl sulfoxide. See, for example, J. Am. Chem. Soc. 87, 5661 (1965).
  • the acid is reacted with the appropriate haloethanol, e.g., fl,,8,fl-trichloroethanol, in the presence of a carbodiimide, e.g., dicyclohexylcarbodiimide, and a base, e.g., pyridine, preferably in the presence of an inert liquid diluent, e.g., dichloromethane, for several hours at about 25 C.
  • haloethanol e.g., fl,,8,fl-trichloroethanol
  • a carbodiimide e.g., dicyclohexylcarbodiimide
  • a base e.g., pyridine
  • an inert liquid diluent e.g., dichloromethane
  • the PGE PGF PGF and PGA type free acids of formulas VIII to XVI are transformed to pharmacologically acceptable salts by neutralization with appropriate amounts of the corresponding inorganic or organic base, examples of which correspond to the cations and amines listed above. These transformations are carried out by a variety of procedures known in the art to be generally useful for the preparation of inorganic, i.e., metal or ammonium, salts, amine acid addition salts, and quaternary ammonium salts. The choice of procedure depends in part upon the solubility characteristics of the particular salt to be prepared.
  • the inorganic salts it is usually suitable to dissolve the acid in water containing the stoichiometric amount of a hydroxide, carbonate, or bicarbonate corresponding to the inorganic salt desired.
  • a hydroxide, carbonate, or bicarbonate gives a solution of the sodium salt.
  • Evaporation of the water or addition of a water-miscible solvent of moderate polarity, for example, a lower alkanol or a lower alkanone gives the solid inorganic salt if that form is desired.
  • the acid is dissolved in a suitable solvent of either moderate or low polarity.
  • a suitable solvent of either moderate or low polarity.
  • the former are ethanol, acetone, and ethyl acetate.
  • the latter are diethyl ether and benzene.
  • At least a stoichiometric amount of the amine corresponding to the desired cation is then added to that solution. If the resulting salt does not precipitate, it is usually obtained in solid form by addition of a miscible diluent of low polarity or by evaporation. If the amine is relatively volatile, any excess can easily be removed by evaporation. It is preferred to use stoichiometric amounts of the less volatile amines.
  • Salts wherein the cation is quaternary ammonium are produced by mixing the acid with the stoichiometric amount of the corresponding quaternary ammonium hydroxide in water solution, followed by evaporation of the water.
  • Molecules of each of the compounds encompassed by formulas I to IV, VI to XIX, and XXII to XXVII each have at least one center of asymmetry, and each can exist in racemic form and in either enantiomeric form, i.e., d and l.
  • a formula accurately defining the d form would be the mirror image of the formula which defined the 1 form. Both formulas are necessary to define accurately the corresponding racemic form.
  • the various formulas herein and in the claims are to be construed as including racemic (dl), d, and 1 compounds.
  • preferred compounds are the racemic compounds of formulas VIII to XVI and the optically active enantiomers of those compounds with the same absolute configuration as the PGE obtained from certain mammalian tissues, for example; sheep vesicular glands and human seminal plasma, or compounds obtained by carbonyl reduction or acid dehydration of a compound so obtained.
  • the specific compounds shown in formulas I, H, III, and IV are intended to represent that absolute configuration. See Nature 212, 38 (1966).
  • an optically active ((1 or 1) final compound that is made by resolution of the racemic compound or by resolution of one of the asymmetric racemic intermediates.
  • resolutions are carried out by procedures known in the art.
  • a final compound or an asymmetric intermediate is a free acid
  • the d1 form thereof is resolved into the d and 1 forms by reacting said free acid by known general procedures with an optically active base, e.g., brucine or strychnine, to give a mixture of two diastereoisomers which are separated by known general procedures, e.g., fractional crystallization, to give the separate diastereoisomeric salts.
  • the optically active acid is then obtained by treatment of the salt with an acid by known general procedures.
  • exo or endo bicyclo[3.1.0]hexane olefin reactants XVII or XXVI are transformed to ketals with an optically active 1,2-glycol, e.g., D(-) 2,3-butanediol, by reaction of said 1,2-glycol with the olefin in the presence of a strong acid, e.g., p-toluenesulfonic acid.
  • a strong acid e.g., p-toluenesulfonic acid.
  • the resulting ketal is a mixture of diastereoisomers which is separated into the d and l diastereoisomers, each of which is then hydrolyzed with an acid, e.g., oxalic acid, to the original keto compound, now in optically active form.
  • an acid e.g., oxalic acid
  • the collection of chromatographic eluate fractions starts when the eluant front reaches the bottom of the column.
  • reaction mixture is then poured into 8 l. of an ice and water mixture.
  • the resulting mixture is extracted 6 times with dichloromethane.
  • the combined extracts are washed with aqueous sodium bicarbonate solution, dried, and evaporated to give 27 g. of a mixture of the tetrahydropyranyl ethers of endo bicyclo[3.1.0]hexan 3 ol 6-carboxaldehyde and endo-bicyclo [3 .1.0]hexan-Z-ol-6-carboxaldehyde.
  • EXAMPLE 1 d1 20,20-Dimethyl-PGE Methyl Ester and d1 /320,20-Dimethyl-PGE Methyl Ester A.
  • a solution of 6-methyl-1-bromoheptane (131 g.) and triphenylphosphine (180 g.) in 350 ml. of toluene is heated at reflux for 16 hours under nitrogen.
  • the mixture is cooled, and the solid product is removed by filtration, washed with toluene, and dried to give 220 g. of (6- methyl-heptyl)triphenylphosphonium bromide.
  • the olefin mixture (340 g.) is dissolved in 4 l. of methanol containing 8.4 g. of oxalic acid. This solution is heated at reflux for 1.5 hours. The methanol is then removed under reduced pressure, and the residue is mixed with water and extracted repeatedly with dichloromethane. The dichloromethane extracts are combined, Washed successively with aqueous sodium bicarbonate and brine, dried with sodium sulfate, and evaporated. The residue (120 g.) is chromatographed on 1.5 kg. of silica gel. Elution with 10-15 ethyl acetate in Skellysolve B (a mixture of isomeric hexanes) gives 75.5 g. of a mixture of alcohols; infrared absorption at 3300, 1460, 1440, 1180, 1120, 745, 725, and 697 cm.-
  • D. Jones reagent (133 ml.; see Preparation 4) is added dropwise to a solution of the above-described alcohol mixture (75.5 g.) in 2 l. of acetone at 10 C. After 10 minutes at l0 C., 75 ml. of isopropyl alcohol is added, and the mixture is poured into '8 l. of water. This mixture is extracted repeatedly with dichloromethane. The combined extracts are Washed successively with dilute hydrochloric acid, aqueous sodium bicarbonate, and brine, and then dried with sodium sulfate. Evaporation under reduced-pressure gives 65 g. of a residue which is chromatographed on 2.5 kg. of silica gel.
  • the dichloromethane extracts are combined, washed with water, dried over sodium sulfate, and evaporated under reduced pressure to give 1.0 g. of oil.
  • the oil is chromatographed over g. of silica gel.
  • the column is eluated with 500 ml. of 10%, 1000 ml. of 25%, 1000 ml. of 35%, 1000 ml. of 45%, 1000 ml. of 50%, and 1000 ml. of 60% ethyl acetate in Skellysolve B.
  • the 35% ethyl acetate eluate is concentrated to give 255 mg.
  • the ethyl acetate extracts are combined, washed with cold 10% sulfuric acid, cold 10% sodium carbonate, and ice water, then dried over sodium sulfate, and evaporated to give 338 mg. of dimesylate as an oil.
  • This oil is dissolved in 8 ml. of acetone, diluted with 4 ml. of water, and allowed to stand at 25 C. for about 20 hours.
  • the reaction mixture is then diluted with 25 ml. of water and concentrated under reduced pressure to remove acetone; then 50 ml. of water is added and the mixture is extracted three times with ethyl acetate.
  • the ethyl acetate extracts are combined, washed with saturated aqueous sodium bicarbonate and saturated aqueous sodium chloride, dried over sodium sulfate, and evaporated to give 258 mg. of an oil.
  • Eluate fractions 21 67 to 73 are evaporated and combined to give 64 mg. of d1 1.5fi-20,20-dimethyl-PGE methyl ester; infrared absorption at 3430, 1740, 1250, 1200, 1165, 1075 and 970 cmf
  • Eluate fractions 88 to 104 are evaporated and combined to give 111 mg. of d1 20,20-dimethyl-PGE methyl ester. This is crystallized from a mixture of ether and Skellysolve B to give dl 20,20-dimehyl-PGE m.p.
  • EXAMPLE 2 d1 8B-20,20-Dimethyl-PGE Methyl Ester and dl 813,15,B-20,20-Dimethyl-PGE Methyl Ester
  • dl 8B-20,20-dimethyl-PGE methyl ester Following the procedures of Example 1, parts F and G, methyl 6-endo-(7-methyl-1-octenyl) 3 oxobicyclo- [3.1.0]hexane-2f3-heptanoate from Example 1, part B is transformed to dl 8B-20,20-dimethyl-PGE methyl ester; mass spectral peaks at 396, 378, 360, 347, 297, 279, and 2186; R, 0.47 on TLC with the A-IX solvent system; and dl 8,8,15B-20,20-dimethyl-PGE methyl ester; mass spectral peaks at 396, 378, 360, 347, 297, 279, and 215; R 0.36 on
  • the mixture is diluted with water and extracted three times with dichloromethane.
  • the dichloromethane extracts are combined, washed with water, dried over sodium sulfate, and evaporated under reduced pressure to give 14.0 g. of an oil.
  • the oil is chromatographed over 2 kg. of silica gel.
  • the column is eluted with 8 l. of 15%, 12l.of25%, 161. of 35%, 16 l. of 45% and 8 l. of 60% ethyl acetate in Skellysolve B, taking 600 ml. fractions.
  • Fractions 22 to 66 are evaporated and combined to give 9.0 g. of methyl 6-endo-(6,6-dimethyl-1,2-d1hydroxyheptyl) -3-oxobicyclo [3 1.0] hexane-2 ot-heptanoate.
  • reaction mixture is diluted with 200 ml. of water and concentrated under reduced pressure to remove acetone. Then, 100 ml. of water is added and the mixture is extracted 4 times with ethyl acetate. The ethyl acetate extracts are washed with aqueous sodium bicarbonate and aqueous sodium chloride, dried over sodium sulfate, and evaporated to give 9.5 g. of oil. This oil is chromatographed over 1.6 kg. of silica gel. The column is eluted with 4 l. of 20%, 8 l. of 30%, 8 l. of 40%, 20 l. of 60%; and 20 l.
  • Eluate fractions 96-111 are evaporated and combined to give 1.228 g. of d1 19,19-dimethyl-PGE methyl ester. This is crystallized from a mixture of ether and Skellysolve B to give 19,19-dimethylprostaglandin E methyl ester, m.p. 5355 C.; infrared absorption (mull) at 3450, 3390, 3280, 1740, 1675 (weak), 1310, 1290, 1275, 1235, 1195, 1165, 1105, 1090, 1065, 1020 and 985 cmf mass spectrum spectral peaks at 390, 386, 378, 372, 358 and 343.
  • mull infrared absorption
  • EXAMPLE 4 dl 85,19,19-Dimethyl-PGE Methyl Ester and d1 8,8,155-19,19-Dimethyl-PGE Methyl Ester
  • parts B and C methyl 6-endo-(6, 6-dimethyl-l-heptenyl) 3 oxobicyclo- [3.1.0]hexane-2/3-heptanoate from Example 3, part A is transformed to dl 8B-19,19-dimethyl-PGE methyl ester and dl 8,6,15,B-19,19-dimethyl-PGE methyl ester.
  • EXAMPLE 8 d1 813-19,l9,20,20,20-Pentafluoro-PGE Methyl Ester and d1 8,8,155-19,l9,20,20,20-Pentafluoro-PGE Methyl Ester Following the procedures of Example 1, parts F and G, but using methyl 6-end0-(6',6,7,7,7-pentafluOro-1-heptenyl)-3-oxobicyclo[3.1.0]hexane-2fl-heptanoate as a reactant, there are obtained dl 8B-19,19,20,20,20-pentafluoro-PGE methyl ester and d1 8,8,15p-19,19,20,20,20-pentafluoro-PGE methyl ester.
  • R is methyl, ethyl, Z-ethylhexyl, phenyl, benzyl, cyclohexyl, or fi,fl,B-trichloroethyl.
  • EXAMPLE 9 d1 20,20-Dimethyl-PGE A solution of the 13,5,fl-trichloro-ethyl ester of di 20,20- dimethyl-PGE, (50 mg.) in 5 ml. of 90% acetic acid is stirred with 400 mg. of zinc dust for 2 hours at 25 C.
  • Ethyl acetate (40 ml.) is added, and the mixture is decanted from the unused zinc, washed four times with water and then with brine, dried with sodium sulfate, and evaporated. The residue is chromatographed on silica gel, eluting with a 50100% gradient of ethyl acetate in Skellysolve B, and then with 5% methanol in ethyl acetate.
  • each of the other PGE -type fl,B,;3-trichloroethyl esters described after Example 8, above, is transformed to the corresponding PGE -type acid.
  • Example 9 is dehydrated to the corresponding PGA -type ester and acid.
  • EXAMPLE 11 dl 19,19-Dimethyl-PGF- and d1 19,19-Di-methyl- PGF and Their Methyl Esters
  • a solution of dl 19,19-dime-thyl-PGE methyl ester (500 mg.) in 25 ml. of isopropyl alcohol is stirred at C. under nitrogen, and a cold solution of 250 mg. of sodium borohydr'ide in ml. of water is added. The mixture is stirred at 0 C. for 2.5 hours, then 1 ml. of acetone is added and the mixture is stirred for minutes at 0 C.
  • the mixture is made slightly acidic (pH 5-6) with acetic acid, and is then concentrated under reduced pressure to remove the acetone and isopropyl alcohol.
  • This mixture is poured into saturated aqueous sodium chloride and extracted 3 times with ethyl acetate. The ethyl acetate extracts are combined, washed with saturated aqueous sodium chloride, dried over sodium sulfate, and evaporated to give 507 mg. of a mixture of dl 19,19-dimethyl- PG F methyl ester and d1 19,19-dimethyl-PG'F methyl ester as a white solid. This mixture (503 mg.) is dissolved in ml. of methanol, cooled to about 5 C.
  • the ethyl, 2-ethylhexyl, phenyl, benzyl, and cyclohexyl esters of the Sat-15a, Set-1513, 813-150, and 8 9-155 forms of the racemic and both optically active forms of 19,19-dimethyl-PGF and 19,19-dimethyl-PGF are obtained from the corresponding PGE -type compounds.
  • each of the PGE -type esters described after Example 8 and each of the PGE -type acids described after Example 9 is re- 26 **d to the corresponding PGF -type and PGF -type ester and acid.
  • n is 4 to 8 and a is zero to 4; wherein R is hydrogen, alkyl of one to 8 carbon atoms, inclusive, cycloalkyl of 3 to 10 carbon atoms, inclusive, aralkyl of 7 to 12 carbon atoms, inclusive, phenyl, phenyl substituted with one to 3 chloro or alkyl of one to 4 carbon atoms, inclusive, or ethyl substituted in the tit-position with 3 chloro, 2 or 3 bromo, or one, 2 or 3 iodo; wherein Z is 3,3-difluorobutyl, 4,4-difluorobutyl, 4,4,4-trifluorobutyl, 3,3,4,4- tetrafiuorobutyl, or 3,3,4,4,4-pentafluorobutyl; and wherein indicates attachment of the group to the ring in alpha or beta configuration, and pharmacologically acceptable salts thereof when R, is hydrogen.
  • R is hydrogen or alkyl of one to 4 carbon atoms, inclusive, and pharmacologically acceptable salts thereof when R is hydrogen.
  • a compound according to claim 12 wherein the ring hydroxy adjacent the (CH ),,COOR moiety is in alpha configuration.
  • a compound according to claim 12 wherein the ring hydroxy adjacent the (CH ),,COOR moiety is in beta configuration.
  • a compound according to claim 13 wherein the side-chain hydroxy is in alpha configuration.
  • a compound according to claim 14 wherein the side-chain hydroxy is in alpha configuration.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

THIS INVENTION IS A GROUP OF PROSTAGLANDIN E1, F1, AND A1 ANALOGS WHICH DIFFER FROM THE NATURAL COMPOUNDS IN HAVING ONE OR MORE ALKYL OR FLUORO SUBSTITUENTS NEAR THE END OF THE TERMINAL ALKYL PORTION. THESE COMPOUNDS ARE USEFUL FOR THE SAME PHARMACOLOGICAL PURPOSES AS THE NATURAL COMPOUNDS.

Description

United States Patent US. Cl. 260-468 D 28 Claims ABSTRACT OF THE DISCLOSURE This invention is a group of rostaglandin E F and A analogs which differ from the natural compounds in having one or more alkyl or fluoro substituents near the end of the terminal alkyl portion. These compounds are useful for the same pharmacological purposes as the natural compounds.
CROSS REFERENCE TO RELATED APPLICATION This application is a continuation-in-part of my copending application Ser. No. 748,158, filed July 29, 1968, now abandoned.
DESCRIPTION OF THE INVENTION This invention relates to compositions of matter and to methods for making and using them. In particular, this invention relates to novel analogs of PGE PGF PGF PGA and their salts and esters.
PGE has the following structure:
1| 00011 W H0" 11 \OH I Prostaglandin F (PGF has the following structure:
c0011 MW 110" H OH H Prostaglandin F (PGF has the following structure:
\ coon Ho" 11 OH III Prostaglandin A (PGA has the following structure:
0 I CODE 11 OH 1v PGE PGF PGF and PGA, are derivatives of prostanoic acid which has the following structure and atom numbering:
3,833,640 Patented Sept. 3, 1974 Various isomers of PGE PGF PGF and PGA are known. For example, the compound of the following structure is known as Sfi-PGE, of 8-iso-PGE Also, the compound of the following structure is known as ISfi-PGE although 15R-PGE and IS-epi-PGE are alternative names for this compound.
II coon Q H6 H" OH vrr In formulas I-VII as well as the formulas given hereinafter, broken line attachments to the cyclopentane ring indicate substitutents in alpha configuration, i.e., below the plane of the cyclopentane ring. Heavy solid line attachments to the cyclopentane ring indicate substituents in beta configuration, i.e., above the plane of the cyclo- =pentane ring. The configuration of the hydroxy at C-15 in PGE PGF PGF and PGA is S although alpha is preferred as a designation for that configuration. The configuration of the hydroxy at C-15 in the compound of formula VII is R although beta is preferred as a designation for that configuration. See Nature 212, 38 (1966) for discussion of the configuration of the prostaglandins.
Each of the novel PGE PGF PGF and PGA analogs of this invention is encompassed by one of the following formulas:
116 oHoH- cm).Y
(CHI)n O Rt SHOE-(CH1) G XIII H CHOH-(CHa) .Z XVI Compounds of formulas VIII, XI, and XIV are of the PGE -type. Compounds of formulas IX, XII, and XV are of the PGF -type. Compounds of formulas X, XIII, and XVI are of the PGA -type.
-In formulas VIII to XVI, R; is hydrogen, alkyl of one to 8 carbon atoms, inclusive, cycloalkyl of 3 to 10 carbon atoms, inclusive, aralkyl of 7 to 12 carbon atoms, inclusive, phenyl, phenyl substituted with one to 3 chloro or alkyl of one to 4 carbon atoms, inclusive, or ethyl substitutedin' the fl-position with 3 chloro, 2 or 3 bromo, or one, 2, or 3 iodo. Also in formulas VIII to XVI, indicates attachment of the group to the ring in alpha or beta configuration, a is zero to 4, and n is 4 to 8. In formulas VII I, 'IX, and X, Y is isobutyl, tert-butyl, 3,3- difiuorobutyl, 4,4-difiuorobutyl, or 4,4,4-trifiuorobutyl. In formulas XI, XII, and XIII, G is isobutyl or tert-butyl. In formulas XIV, XV, and XVI, Z is 3,3-difluorobutyl, 4,4-trifiuorobutyl, 4,4,4-trifluorobutyl, 3,3,4,4-tetrafluorobutyl, or 3,3,4,4,4-pentafiuorobutyl. Thus, all of the formulas XI, XII, and XIII compounds are encompassed by formulas VIII, IX, and X, respectively. All of the compounds of formulas XIV, XV, and XVI except those wherein Z is 3,3,4,4-tetrafiuorobutyl and 3,3,4,4,4- pentafiuorobutyl are also encompassed by formulas VIII, IX, and X, respectively. Also included among the novel PGE PGF PGF and PGA analogs of this invention are the pharmacologically acceptable salts of the compounds of formulas VIII to XVI wherein R is hydrogen.
The PG E -type compounds of formulas VIII, XI, and XIV are useful for pharmacological and medicinal purposes as will be described hereinafter. These same compounds are also useful as intermediates for the preparation of the corresponding compounds of the PGF -type, the PGF -type, and the PGA -type.
Formulas VIII to XV I are intended to include compounds wherein the side chain hydroxy has the same configuration as in PGE i.e., alpha (S), and compounds wherein the side chain hydroxy has the opposite configuration, i.e., beta (R or epi). In all of these compounds, the carbon-carbon double bond in the side chain is in trans configuration and that side chain is attached to the cyclopentane ring in beta configuration, both as shown in those formulas.
With regard to the novel PGE -type, PGF -type, PGF -type, and PGA -type analogs of formulas VIII to XVI, examples of alkyl of one to 8 carbon atoms, inclusive, are methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, and isomeric forms thereof, e.g., isopropyl, isobutyl, sec-butyl, tert-butyl, isopentyl, Z-methylpentyl, '5- methylhexyl, Z-ethylhexyl, 4,4-dimethylpentyl, and the like. Examples of cycloalkyl of 3 to 10 carbon atoms, inclusive, which includes alkyl-substituted cycloalkyl, are cyclopropyl, Z-rnethylcyclopropyl, 2,2-dimethylcyclopropyl, 2,3 diethylcyclopropyl, 2 butylcyclopropyl, cyclobu-tyl, 2-methylcyclobutyl, 3-propylcyclobutyl, 2,3,4-triethylcyclobutyl, cyclopentyl, 2,2-dimethylcyclopentyl, 3- pentylcyclopentyl, 3 tert-butylcyclopentyl, cyclohexyl, 4- tert-butylcyclohexyl, 3-isopropylcyclohexyl, 2,2-dimethylcyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, and cyclodecyl. Examples of aralkyl 0f 7 to 12 carbon atoms, inclusive, are benzyl, phenethyl, l-phenylethyl, Z-phenylpropyl, 4-phenylbutyl, 3-phenylbutyl, 2-( l-naphthylethyl), and I-(Z-naphthylmethyl). Examples of phenyl substituted by one to 3 chloro or alkyl of one to 4 carbon atoms, inclusive, are p-chlorophenyl, m-chlorophenyl, o-
chlorophenyl, 2,4-dichlorophenyl, 2,4,6 trichlorophenyl, p-tolyl, m-tolyl, o-tolyl, p-ethylphenyl, ptert-butylphenyl, 2,5-dimethylphenyl, 4-chloro-2-rnethylphenyl, and 2,4-dichloro-S-methylphenyl.
PGE PGFIM PGF and PGA and their esters and pharmacologically acceptable salts, are extremely potent in causing various biological responses. For that reason, these compounds are useful for pharmacological purposes. See, for example, Bergstrom et al., Pharmacol. Rev. 20, 1 (1968), and references cited therein. A few of those biological responses are systemic arterial blood pressure lowering in the case of PGE PGF and PGA; as measured, for example, in anesthetized (pentobarbital soduim) pentolinium-treated rats with indwelling aortic and right heart cannulas; pressor activity, similarly measured, for PGF stimulation of smooth muscle as shown,
for example, by tests on strips of guinea pig ileum, rabbit duodenum, or gerbil colon; potentiation of other smooth muscle stimulants; antilipolytic activity as shown by antagonism of epinephrine-induced mobilization of free fatty acids or inhibition of the spontaneous release of glycerol from isolated rat fat pads; inhibition of gastric secretion in the case of PGE and PGA as shown in dogs with secretion stimulated by food or histamine infusion; activity on the central nervous system; decrease of blood platelet adhesiveness as shown by platelet-toglass adhesiveness, and inhibition of blood platelet aggregation and thrombus formation induced by various physical stimuli, e.g., arterial injury, and various biochemical stimuli, e.g., ADP, ATP, serotonin, thrombin, and collagen.
Because of these biological responses, these known prostaglandins are useful to study, prevent, control, or alleviate a wide variety of diseases and undesirable physiological conditions in birds and mammals, including humans, useful domestic animals, pets, and zoological specimens, and in laboratory animals, for example, mice, rats, rabbits, and monkeys.
For example, these compounds, and especially PGE are useful in mammals, including man, as nasal decongestants. For this purpose, the compounds are used in a dosage range of about g. to about 10 mg. per ml. of a pharmacologically suitable liquid vehicle or as an aerosol spray, both for topical application.
PGE and PGA are useful in mammals, including man and certain useful animals, e.g., dogs and pigs, to reduce and control excessive gastric secretion, thereby reducing or avoiding gastrointestinal ulcer formation, and accelerating the healing of such ulcers already present in the gastrointestinal tract. For this purpose, the compounds are injected or infused intravenously, subcutaneously, or intramuscularly in an infusion dose range about 0.1 g. to about 500 g. per kg. of body weight per minute, or in a total daily dose by injection or infusion in the range about 0.1 to about 20 mg. per kg. of body weight per day, the exact dose depending on the age, weight, and condition of the patient or animal, and on the frequency and route of administration.
PGE PGA PGFia, and PGF are useful whenever it is desired to inhibit platelet aggregation, to reduce the adhesive character of platelets, and to remove or prevent the formation of thrombi in mammals, including man, rabbits, and rats. For example, these compounds are useful in the treatment and prevention of myocardial infarcts, to treat and prevent post-operative thrombosis, to promote potency of vascular grafts following surgery, and to treat conditions such as atherosclerosis, arteriosclerosis, blood clotting defects due to lipemia, and other clinical conditions in which the underlying etiology is associated with lipid imbalance or hyperlipide-mia. For these purposes, these compounds are administered systemically, e.g., intravenously, subcutaneously, intramuscularly, and in the form of sterile implants for prolonged action. For rapid response, especially in emergency situations, the intravenous route of administration is preferred. Doses in the range about 0.004 to about 20 mg. per kg. of body weight per day are used, the exact dose depending on the age, weight, and condition of the patient or animal, and on the frequency and route of administration.
PGE PGA PGF1., and PGF are especially useful as additives to blood, blood products, blood substitutes, and other fluids which are used in artificial extracorporeal circulation and perfusion of isolated body portions, e.g., limbs and organs, whether attached to the original body, detached and being preserved or'preparcd for transplant, or attached to a new body. During these circulations and perfusions, aggregated platelets tend to block the blood vessels and portions of the circulation apparatus. This blocking is avoided by the presence of these compounds. For this purpose, the compound is added gradually or in single or multiple portions to the circulating blood, to the blood of the donor animal, to the perfused body portion, attached or detached, to the recipient, or to two or all of those at a total steady state dose of about .001 to 10 mg. per liter of circulating fluid. It is especially useful to use these compounds in laboratory animals, e.g., cats, dogs, rabbits, monkeys, and rats, for these purposes in order to develop new methods and techniques for organ and limb transplants.
PGE is extremely potent in causing stimulation of smooth muscle, and is also highly active in potentiating other known smooth muscle stimulators, for example, oxytocic agents, e.g., oxytocin, and the various ergot alkaloids including derivatives and analogs thereof. Therefore PGE is useful in place of or in combination with less than usual amounts of these known smooth muscle stimulators, for example, to relieve the symptoms of paralytic ileus, or to control or prevent atonic uterine bleeding after abortion or delivery, to aid in expulsion of the placenta, and during the puerperium. For the latter purpose, PGE is administered by intravenous infusion immediately after abortion or delivery at a dose in the range about 0.01 to about 50 pg. per kg. of body weight per minute until the desired effect is obtained. Subsequent doses are given by intravenous. subcutaneous. or intramuscular injection or infusion during puerperium in the range 0.01 to 2 mg. per kg. of body weight per day, the exact dose depending on the a e, Weight, and condition of the patient or animal.
PGE PGA and PGF are useful as hypotensive agents to reduce blood pressure in mammals, including man. For this purpose, the compounds are administered by intravenous infusion at the rate about 0.01 to about 50' pg. per kg. of body weight per minute or in single or multiple doses of about 25 to 500 g. per kg. of body weight total per day.
As mentioned above, PGE is a potent antagonist of epinephrine-induced mobilization of free fatty acids. For this reason, this compound is useful in experimental medicine for both in vitro and in vivo studies in mammals, including man, rabbits, and rats, intended to lead to the understanding, prevention, symptom alleviation, and cure of diseases involving abnormal lipid mobilization and high free fatty acid levels, e.g., diabetes mellitus, vascular diseases. and hyperthyroidism.
The PGE PGFM, and PGA compounds are useful in the treatment of asthma. For example, these compounds are useful as bronchodilators or as inhibitors of mediators, such as SRS-A, and histamine which are released from cells activated by an antigen-antibody complex. Thus, these compounds control spasm and facilitate breathing in conditions such as bronchial asthma, bronchitis, bronchiectasis, pneumonia and emphysema. For these purposes, these compounds are administered in a variety of dosage forms, e.g., orally in the form of tablets, capsules, or liquids; rectally in the form of suppositories; parenterally, subcutaneously, or intramuscularly, with intravenous administration being preferred in emergency situations; by inhalation in the form of aerosols or solutions for nebulizers; or by insufflation in the form of powder. Doses in the range of about 0.01 to 5 mg. per kg. of body weight are used 1 to 4 times a day, the extact dose depending on the age, weight, and condition of the patient and on the frequency and route of administration. For the above use these prostaglandins can be combined advantageously with other anti-asthmatic agents. such as sympathomimetics (isoproterenol, phenylephrine, ephedrine, etc.); xanthine derivatives (theophylline and aminophyllin); and corticosteroids (ACTH and precinisolone). Regarding use of these compounds, see South African Pat. No. 681,055.
The PGE1, PGA and PGF compounds also increase the flow of blood in the mammalian kidney, thereby increasing volume and electrolyte content of the urine. Therefore, these compounds are useful in managing cases of renal disfunction, especially those involving blockage of the renal vascular bed. Illustratively, the compounds are useful to alleviate and correct cases of edema resulting, for example, from massive surface burns, and in the management of shock. For these purposes, the compounds are preferably first administered by intravenous injection at a dose in the range 10 to 1000 g. per kg. of body weight or by intravenous infusion at a dose in the range 0.1 to 20 g. per kg. of body weight per minute until the desired effect is obtained. Subsequent doses are given by intravenous, intramuscular, or subcutaneous injection or infusion in the range 0.05 to 2 mg. per kg. of body weight per day.
The PGFM PGF PGE and PGA compounds are useful for controlling the reproductive cycle in ovulating female mammals, including humans and animals such as monkeys, rats, rabbits, dogs, cattle, and the like. For that purpose, PGF for example, is administered systemically at a dose level in the range 0.01 mg. to about 20 mg. per kg. of body weight of the female mammal, advantageously during a span of time starting approximately at the time of ovulation and ending approximately at the time of menses or just prior to menses. Additionally, expulsion of an embryo or a fetus is accomplished by similar administration of the compound during the first third of the normal mammalian gestation period.
The novel compounds of this invention encompassed by formulas VIII to XVI each cause the same biological responses described above for the known prostaglandins. Each of these compounds is accordingly useful for the above-described pharmacological uses, and is used for those purposes as described above. However, it is preferred not to use the compounds of formulas VIII to XVI wherein R is ethyl substituted in the fl-position with chloro, bromo, or iodo for these pharmacological purposes. Those compounds are more useful for other purposes as will be described hereinafter.
The natural prostaglandins, PGE PGF and PGA and the PGE reduction product PGF are all potent in causing multiple biological responses even at low doses. For example, PGE is extremely potent in causing vasodepression and smooth muscle stimulation, and also is potent as an antilipolytic agent. In striking contrast, the novel formulas VII to XVI compounds are substantially more specific with regard to potency in causing prostaglandin-like biological responses. Therefore, each of the formula VIII to XVI compounds is surprisingly and unexpectedly more useful than one of the corresponding known prostaglandins for at least one of the pharmacological purposes indicated for the latter, and is surprisingly and unexpectedly more useful for that purpose because it has a different and narrower spectrum of activity than the natural prostaglandin, and therefore is more specific in its activity and causes smaller and fewer undesired side effects than when the natural prostaglandin is used for the same purpose. Moreover, some of these novel prostaglandin analogs have greater potency in causing one or more of the above-described biological responses than the corresponding natural compound.
Further, these novel formula VIII to XVI prostaglandin analogs are especially useful because they have a substantially longer duration of activity than the corresponding known compounds, and because they can be administered orally, sublingually, intravaginally, or rectally, as well as by the usual intravenous, intramuscular, or subcutaneous injection or infusion as indicated above for the uses of the known prostaglandins. These qualities are advantageous because they facilitate maintaining uniform levels of these compounds in the body with fewer, shorter, or smaller doses, and make possible self-administration by the patient.
Especially preferred compounds for the above-described pharmacological purposes are those within the scope of formulas VIII to XVI wherein n is 6, i.e., wherein --(CH represents hexamethylene. With regard to formulas XI, XII, and XIII, another preference is that a be 2 or 3. With regard to formulas XIV, XV, and XVI, another preference is that a be one or 2. Two other preferences regarding formulas VIII to XVI are that the (CH ),,COOR side chain be attached to the ring in alpha configuration and that the side-chain hydroxy have the same configuration as in PGE, (formula I), i.e., the alpha configuration.
The novel prostaglandin analogs of formulas VIII to XVI, including the preferred compounds defined above, are used for the above-described pharmacological purposes in the free acid form, i.e., when R is hydrogen, in the ester form, or in pharmacologically acceptable salt form. When the ester form is used, the ester can be any of those within the above definition of R except that as mentioned above, use of the compounds wherein R is ethyl substituted in the 8-p0siti0n with chloro, bromo, or iodo for these purposes is not preferred. Among the various esters, alkyl of one to four carbon atoms, inclusive, are preferred. Of those alkyl, methyl and ethyl are especially preferred for optimum absorption of the compound by the body or experimental animal system.
Pharmacologically acceptable salts of these formula VIII to XVI compounds are those with cations which are quaternary ammonium ions, or the cationic form of a metal, ammonia, or an amine.
Especially preferred metal cations are those derived from the alkali metals, e.g., lithium, sodium, and potassium, and from the alkaline earth metals, e.g., magnesium and calcium, although cationic forms of other metals, e.g., aluminum, zinc, and ion, are Within the scope of this invention.
Pharmacologically acceptable amine cations within the scope R are those derived from primary, secondary, or tertiary amines. Examples of suitable amines are methylamine, dimethylamine, trimethylamine, ethylamine, dibutylamine, triisopropylamine, N methylhexylamine, decylamine, dodecylamine, allylamine, crotylamine, cyclopentylamine, dicyclohexylamine, benzylamine, dibenzylamine, a-phenylethylamine fi-phenylethylamine, ethylenediamine, diethylenetriamine, and like aliphatic, cycloaliphatic, and araliphatic amines containing up to and including about 18 carbon atoms, as well as heterocyclic amines, e.g., piperidine, morpholine, pyrrolidine, piperazine, and loWer-alkyl derivatives thereof, e.g., l-methylpiperidine, 4-ethylmorpholine, l-isopropylpyrrolidine, 2- methylpyrrolidine, 1,4 dimethylpiperazine, 2 methylpiperidine, and the like, as well as amines containing water-solubilizing or hydrophilic groups, e.g., mono-, di-, and triethanolarnine, ethyldiethanolamine, N butylethanolamine, 2 amino l butanol, 2 amine 2 ethyll,3 propanediol, 2 amino 2 methyl 1 propanol, tris(hydroxyrnethyl)aminoethane, N phenylethanolamine, N (p tert amylphenyl)diethanolamine, gelactamine, N methylglucamine, N methylglucosamine, ipihedrine, phenylephrine, epinephrine, procaine, and the Examples of suitable pharmacologically acceptable quaternary ammonium cations within the scope of R are tetramethylammonium, tetraethylammonium, benzyltrimethylammonium, phenyltriethylammonium, and the like.
As discussed above, the compounds of formulas VIII to XVI are administered in various ways for various purposes; e.g., intravenously, intramuscularly, subcutaneously, orally, intravaginally, rectally, sublingually, topically, and in the form of sterile implants for prolonged action. For intravenous injection or infusion, sterile aqueous isotonic solutions are preferred. For that purpose, it is preferred because of increased water solubility that R be hydrogen or a pharmacologically acceptable cation. For subcutaneous or intramuscular injection, sterile solutions or suspensions of the acid, salt, or ester form in aqueous or non-aqueous media are used. Tablets, capsules, and liquid preparations such as syrups, elixirs, and simple compounds of formulas IX, XII, and XV, and PGA -type solutions, with the usual pharmaceutical carriers are used for oral or sublingual administration. For rectal or vaginal administration, suppositories prepared as known in the art are used. For tissue implants, a sterile tablet or silicone rubber capsule or other object containing or impregnated with the substance is used.
As mentioned above, the PGE -type compounds of for mulas VIII, )6, and XIV are used as intermediates to prepare the corresponding PGF -type, and PGF ,,-type compounds of formulas IX, XII, and XV, and PGA -type compounds of formulas X, XIII, and XVI.
The PGF -type and PGF ,,-type compounds are prepared by carbonyl reduction of the corresponding PGE type compounds. .For example, carbonyl reduction of a formula VIII PGE -type compound gives a mixture of the corresponding formula IX PGF -type and PGF -type compounds. Similarly, carbonyl reduction of a formula XI PGE -type compound gives a mixture of the corresponding formula XII PGiF -type and PGF -type compounds, and carbonyl reduction of a formula XIV PGE type compound gives a mixture of the corresponding formula XV PGF -type and PGF -type compounds.
These ring carbonyl reductions are carried out by methods known in the art for ring carbonyl reductions of known prostanoic acid derivatives. See, for example, Bergstrom et al., Arkiv Kemi 19, 563 (1963), Acta Chem. Scand. 16, 969 (1962), and British Specification No.
1,097,533. Any reducing agent is used which does not react with carbon-carbon double bonds or ester groups. Preferred reagents are lithium(tri-tert-butoxy)aluminum hydride, the metal borohydrides, especially sodium, potassium and zinc borohydrides, the metal trialkoxy borohydrides, e.g., sodium trimethoxyborohydride. The mixtures of alpha and beta hydroxy reduction products are separated into the individual alpha and beta isomers by methods known in the art for the separation of analogous pairs of known isomeric prostanoic acid derivatives. See, for example, Bergstrom et al., cited above, Granstrom et al., J. Biol. Chem. 240, 457 (1965), and Gren et al., J. Lipid Research 5, 117 (1964). Especially preferred as separation methods are partition chromatographic procedures, both normal and reversed phase, preparative thin layer chromatography, and countercurrent distribution procedures.
The PGA -type compounds are prepared by acidic dehydration of the corresponding PGE -type compounds. For example, acidic dehydration of a formula VIII PGE type compound gives the corresponding formula X PGA type compound. Similarly, acidic dehydration of a formula XI PGE -type compound gives the corresponding formula XIII PGA -type compound and acidic dehydration of a formula XIV PGE -type compound gives the corresponding formula XVI PGAflype compound.
These acidic dehydrations are carried out by methods known in the art for acidic dehydrations of known prostanoic acid derivatives. See, for example, Pike et al., Proc. Nobel Symposium II, Stockholm (1966), Interscience H cam-000R! VIII (CH h-COOR:
IXB
products. Similar processes are used for transformation of formula XI and XIV PGE -type reactants to be corresponding PGF -type, -PGF ,-type, and PGA -type products. In Chart A, R Y, n, a, and are as defined above.
The PGE -type esters encompassed by formula VIII are prepared by the sequence of reactions shown in Chart B. Similar reaction sequences are used to prepare the PGE -type esters of formulas XI and XIV. In Chart B, a and Y are as defined above, and R; has the same definition as R except that hydrogen is not included in the definition of R R is alkyl of one to 5 carbon atoms, inclusive, and indicates alpha or beta attachment of to the cyclopentane ring and exo or endo configuration with respect to the group attached to the cyclopropane ring. The PGE -type acids of formula VIII (R is hydrogen) are not prepared by this Chart B sequence, but rather from certain of the formula VIIIA esters by methods described below.
Exo-bicyclo[3.1.0]hexane olefins of formula XVII have the formula:
These olefins are known in the art or are prepared by methods known in the art. See, for example, Belgian Pat. No. 702,477; reprinted in Farmdoc Complete Specifications, Book 714, No. 30,905, page 313, Mar. 12, 1968. See also Just et al., J. Am. Chem. Soc. 91, 5364 (1969).
'In that Belgian patent, the reaction sequence leading to exoolefin XVIIA is as follows: The hydroxy of 3-cyclopentenol is protected, for example, with a tetrahydropyranyl CHART B XVII XVIII (CH2) n-CO O R;
-(CHa) 11-0 O R;
VIIIA This moiety is in exo configuration relative to the bicycle ring structure. Next, the protective group is removed to regenerate the 3-hydroxy which is then oxidized, for example, by the Jones reagent, to give an intermediate of the formula:
12 Finally, this formula XX intermediate is alkylated with an to iodo or w-bromo ester of the formula or Br(CH COO'R to give a mixture of the alpha and beta isomers of the formula XVIIA olefin. These alpha and beta isomers are separated by chromatography as described in said Belgian patent.
Endo-bicyclo[3.1.0]hexane olefins of formula XVII have the formula:
H XVIIB These are prepared by reacting endo-bicyclo[3.1.0]hex-2- ene-G-carboxylic acid methyl ester with diborane in a mixture of tetrahydrofuran and diethyl ether to give a mixture of the methyl esters of endo-bicyclo[3.1.0]hexan- 3-ol-6-carboxylic acid and endo-bicyclo[3.1.0]hexan-2-ol- 6-carboxylic acid. This mixture is reacted with dihydropyran to give the corresponding mixture of tetrahydropyranyl ethers. The carboxylate group at 6 in this mixture of ethers is then transformed to an aldehyde group which in turn is transformed by the Wittig reaction to a moiety of the formula CH=CH-(CH --Y. This moiety is in endo configuration relative to the bicyclo ring structure. Next, the tetrahydropyranyl group is removed, and the resulting hydroxy group is oxidized, for example, by the Jones reagent, to give an intermediate of the formula:
H XXI Mixed with this formula XXI intermediate is some of the corresponding Z-keto isomer. These are separated by silica gel chromatography, and the formula XXI compound is alkylated with a compound of the formula The resulting alpha and beta isomers of formula XVIIB are then separated as described above for the formula XV-I-IA exo olefins.
Four stereoisomers are possible for each of the exo and endo olefins encompassed by formulas XVIIA and XVIIB. The -CH=CH- moiety can exist in cis or trans form, and the (CH COOR chain can be attached to the cyclopentane ring in alpha or beta configuration.
The Wittig reaction leading to the intermediates of formulas XX and XXJ produces mixtures of cis and trans isomers, with the cis isomer usually predominant. These isomers can be separated, for example, by silica gel chromatography, and alkylated separately to give cis and trans forms of the formula XVIIA and XVIIB olefins. However, these cis and trans olefins are equally useful as intermediates in the processes of Chart B, and there is usually no need to carry out this separation.
The alkylation reactions leading from exo intermediate XX to exo olefin XVIIA and from endo intermediate XXI to endo olefin XVIIB produce mixtures of alpha and beta isomers. The processes of Chart B usually do not change this alpha or beta configuration of the (CH ,,COOR
CHgBI' sired, it is necessary to separate alpha and beta isomers at some stage, i.e., olefin XVII, glycol XVIII, bis-sulfonate XIX, or product VIIIA. Separation of alpha and beta isomers of olefin XV-II is preferred. This separation is carried out by silica gel chromatography as described in said Belgian patent and exemplified below.
With regard to the Wittig reagents necessary to prepare the intermediates of formulas XX and XXI, these are triphenylphosphonium bromides prepared as known in the art from the corresponding alkyl or fluoroalkyl bromides, all of which are known in the art or can be prepared by methods known in the art. To illustrate, the necessary alkyl bromides have the formulas (CH3 CH BI and (CH C(CH CH Br, wherein a is zero to 4. For the compounds wherein a is zero, the alcohols CH CHCH CH OH and (CH CCH OH are known, and the corresponding bromides are prepared by reacting said alcohols with phosphorous tribromide. The bromides wherein a is one to 4 are prepared by extending the chains of the above two bromides by reacting them with sodium cyanide, hydrolyzing the resulting nitriles to the corresponding carboxylic acids, reducing those acids to primary alcohols, and reacting the alcohols with phosphorous tribromide. This reaction sequence is repeated as often as necessary to prepare all of the required alkyl bromides.
The necessary fiuoroalkyl bromides have the formulas wherein a is zero to 4. The bromides of the first group are prepared from ketocarboxylic acids CH COCH CH CH COOH all of which are known. The methyl esters of those acids are prepared and reacted with sulfur tetrafluoride to give CH CF CH CH (CH COOCH which are reduced with lithium aluminum hydride to give primary alcohols, which in turn are reacted with phosphorous tribromide to give the desired bromides. The second group of fiuoroalkyl bromides are prepared from the known carboxylic acids HOOCCH CH CH (CH ),COOH. These are esterified to dimethyl esters and then half saponified with barium hydroxide. The free carboxyl group is changed by known methods to a carboxaldehyde group, and the resulting aldehyde is reacted with sulfur tetrafluoride to give CHF CH CH CH (CH COOCH Successive treatment of that with lithium aluminum hydride and phosphorous tribromide gives the desired fluoroalkyl bromide. The third group of fluoroalkvl bromides is prepared from aldehydes OCHCH CH CH (CH COOCH prepared as above. Successive reaction of those with sodium borohydride and phosphorus tribromide gives BrCH CH CH CI-I (CH COOCH Saponification of that ester and reaction of the acid with sulfur tetrafluoride gives the desired third group of fluoroalkyl bromides. The fourth and fifth groups of fluoroalkyl bromides are prepared starting with the known alcohols CHFgCFgCHgOH and CF 'CF CH OH. Those are transformed to bromides by reaction with phosphorous tribromide. Then the carbon chain of those bromides is extended one methylene at a time until the desired fluoroalkyl bromide is obtained. This chain extension is accomplished as above by replacement of bromine with CN, hydrolysis of CN to COOH, reduction of COOH to -CH OH, and transformation of CH OH to CH Br.
The esters of the various w-iOdO or w-bromo alkanoic acids necessary for the alkylation of exo and endo intermediates XX and XXI are also known in the art or are prepared by methods known in the art.
Referring again to Chart B, the glycol intermediates of formula XVIII are prepared by hydroxylation of olefins XVII. Hydroxylation reagents and procedures for this purpose are known in the art. See, for example, Gunstone, Advances in Organic Chemistry, Vol. 1, pp- 103147 (1960), Interscience Publishers, New York, NY. Especially useful hydroxylation reagents for this purpose are osmium tetroxide and performic acid (formic acid plus hydrogen peroxide). Various mixtures of glycols isomeric with respect to the CH(OH)CH(OH) moiety are obtained by these olefin hydroxylations depending on the nature of the hydroxylation reagent and the cis and trans content of the formula XVI I olefin. These glycol isomers can be separated by silica gel chromatography. However, these separations are usually not necessary since all isomers of a particular glycol are equally useful as intermediates to produce the desired formula VIIIA product.
Referring again to Chart B, the glycol intermediates of formula XVIII are transformed to bis-alkanesulfonates of formula XIX by reaction of the glycol with an alkanesulfonyl chloride or bromide, the alkane portion of which contains one to 5 carbon atoms, inclusive. The reaction is carried out in the presence of a base to neutralize the by-product acid. Especially suitable bases are tertiary amines, e.g., dimethylaniline or pyridine. It is usually sufficient merely to mix the two reactants and the base, and maintain the mixture in the range 0 to 25 C. for several hours. The formula XIX bis-sulfonic acid esters are then isolated by procedures known to the art and exemplified below. vIt is usually not necessary to purify the bissulfonic acid esters prior to transformations to the desired PGE -type esters.
Referring again to Chart B, the bis-sulfonic acid esters of formula XIX are transformed to the desired PGE type esters of Formula VIIA by reacting the bis-sulfonic acid ester with water. This reaction is carried out by mixing the bis-sulfonic acid ester with water in the range about 0 to about 60 C. In making dl-19-methyl-PGE methyl ester, 25 C. is a suitable reaction temperature, the reaction then proceeding to completion in about 20 hours. It is advantageous to have a homogenous reaction mixture. This is accomplished by adding sufficient amounts of a water-soluble organic diluent which does not enter into the reaction. Acetone is a suitable diluent. The desired product is isolated by evaporation of excess water and diluent if one is used. The residue contains a mixture of formula VIIIA isomers which differ in the configuration of the side chain hydroxy, being either at (S) or {3 (R). These are separated "from byproducts and from each other by silica gel chromatography.
For this transformation of a formula XIX bis-sulfonate to a formula VIIIA PGE -type product, it is preferred, to use the bis-mesyl esters, i.e., compounds of formula XIX wherein both R are methyl.
As mentioned above, the processes of Chart B lead to esters of PGE -type compounds. For some of the pharmacological uses described above, it is preferred that the PGE -type compound be in free acid form, or in salt form which requires the free acid as starting material. Moreover, for some of the pharmacological uses described above, formula IX, XII, or XV PGF -type compounds or formula X, XIII, or XVI PGA -type compounds in free acid form or salt form are preferred. Formula IX, XII, and XV PGF -type esters are easily saponified to free acids by procedures known in the art. However, it is diflicult to hydrolyze or saponify the PGE -type esters or the PGA -type esters to free acids without unwanted structural changes in the desired acids. When a formula VIII, XI, or XIV PGE -type free acid (R is hydrogen) is desired, an ester wherein R (R is ethyl substituted in the beta-position with 3 chloro, 2 or 3 bromo, or one, 2, or 3 iodo is used as a starting material. Such esters, for example, wherein R (R is -CH CCl are transformed to free acids by treatment with zinc metal and an alkanoic acid of 2 to 6 carbon atoms, preferably acetic acid. Zinc dust is preferred as the physical form of the zinc. Mixing the halo ester with the zinc dust at about 25 C. for several hours in the presence of the alkanoic acid causes replacement of the haloethyl moiety with hydrogen. The free acid is then isolated from the reaction mixture by procedures known in the art and exemplified below. For preparation of the free acids of formulas VIII, XI, and XIV in this manner, the fi,,8,;8-trichloroethyl esters are preferred. This same procedure is also used to prepare PGF PGF and PGA type free acids (R is hydrogen), starting with the corresponding haloethyl ester. However, as mentioned above, this procedure is not necessary to prepare PGF type acids.
5 These formula VIII, XI, and XIV haloethyl esters, i.e., wherein R is ethyl substituted in the beta-position with 3 chloro, 2 or 3 bromo, or one, 2, or 3 iodo, are prepared in'several ways. Some of these are outlined in Chart C. The haloethyl esters are also prepared by alkylation of a formula XX exo intermediate or a formula XXI endo intermediate with the haloethyl esters of the w-bromo or w-iOdO alkanoic acid.
Chart C described the transformation of a formula XVII olefin ester other than a haloethyl ester to haloethyl estesr of a formula XVIII glycol. Thus, Chart C relates only to PGE -type products of formula VIII, as does Chart B. However, as for Chart B, similar reactions are available leading to the PGE -type products of formulas XI and XIV. In Chart C, formula XVIIA is the same as formula XVII (Chart B) except that haloethyl esters are not included in XVIIA. In other words, R, has
CHART C (CH1) --C O 0 R4 (CH2) -C O 0 R \/K CH=CHA CH=CHA XVIIA. XXII II I (011;) C O O H (CH2) nCOOhaloethyI the same definition as R except that R, does not include ethyl substituted in the beta-position with 3-chloro, 2 or 3 iodo, or one, 2, or 3 iodo. Also in Chart C, and n are as defined above, and A is (CH --Y wherein a and Y are as defined above.
To make the desired formula XVIIIA haloester, it is necessary at some stage to saponify the COOR moiety to -COOH and then esterify that with the appropriate haloethanol, e.g., CCl CH OH. Formula XVIIA olefin esters and formula XVIII glycol esters each have a ring carbonyl ggroup adjacent to the point of attachment of (CH ),,COO'R., to the ring. Saponification of such a keto ester is likely to lead to isomerization such that an alpha-attached chain will change partly to a beta-attached chain, and a beta partly to an alpha. Therefore, keto ester XVIIA is reduced, for example, with sodium borohydride according to known procedures described above and exemplified below, to hydroxy ester XXII. This hydroxy ester is then saponified to hydroxy acid XXIII, also by known procedures.
Three reactions are necessary to transform hydroxy acid XXIII to keto glycol haloester XVIIIA. The ring hydroxy is oxidized back to a ring carbonyl, the carboxyl is esterified with a haloethanol, and the --CH'=CI-I is hydroxylated to -CH(OH)CH(OI-I). As shown in Chart C, these three reactions are carried out in any of three sequences, i.e., XXIII to XXIV to XXV to XVIIIA, XXIII to XXIV to XXV to XVIIIA, and XXIII to XXVI to XXVII to XVIIIA. Of these, the last is preferred.
For the oxidation of XXIII to XXVI or XXIV to XXV, an especially useful reagent is the I ones reagent, i.e., acidic chromic acid. See J. Chem. Soc. 39 (1946). Acetone is a suitable diluent for this purpose, and a slight excess of oxidant and temperatures at least as low as about 0 C., preferably about -10 to about 2() C. should be used. The oxidation proceeds rapidly and is usually complete in about 5 to about 30 minutes. Excess oxidant is destroyed, for example, by addition of a lower alkanol, advantageously isopropyl alcohol, and the aldehyde is isolated by conventional methods, for example, by extraction with a suitable solvent, e.g., diethyl ether. Other oxidizing agents can also be used. Examples are mixtures of chromium trioxide and pyridine or mixtures of dicyclohexylcarbodiimide and dimethyl sulfoxide. See, for example, J. Am. Chem. Soc. 87, 5661 (1965).
For the esterification to haloethyl esters XXIV, XXV, or XVIIIA, the acid is reacted with the appropriate haloethanol, e.g., fl,,8,fl-trichloroethanol, in the presence of a carbodiimide, e.g., dicyclohexylcarbodiimide, and a base, e.g., pyridine, preferably in the presence of an inert liquid diluent, e.g., dichloromethane, for several hours at about 25 C.
The PGE PGF PGF and PGA type free acids of formulas VIII to XVI are transformed to pharmacologically acceptable salts by neutralization with appropriate amounts of the corresponding inorganic or organic base, examples of which correspond to the cations and amines listed above. These transformations are carried out by a variety of procedures known in the art to be generally useful for the preparation of inorganic, i.e., metal or ammonium, salts, amine acid addition salts, and quaternary ammonium salts. The choice of procedure depends in part upon the solubility characteristics of the particular salt to be prepared. In the case of the inorganic salts, it is usually suitable to dissolve the acid in water containing the stoichiometric amount of a hydroxide, carbonate, or bicarbonate corresponding to the inorganic salt desired. For example, such use of sodium hydroxide, sodium carbonate, or sodium bicarbonate gives a solution of the sodium salt. Evaporation of the water or addition of a water-miscible solvent of moderate polarity, for example, a lower alkanol or a lower alkanone, gives the solid inorganic salt if that form is desired.
To produce an amine salt, the acid is dissolved in a suitable solvent of either moderate or low polarity. Examples of the former are ethanol, acetone, and ethyl acetate. Examples of the latter are diethyl ether and benzene.
At least a stoichiometric amount of the amine corresponding to the desired cation is then added to that solution. If the resulting salt does not precipitate, it is usually obtained in solid form by addition of a miscible diluent of low polarity or by evaporation. If the amine is relatively volatile, any excess can easily be removed by evaporation. It is preferred to use stoichiometric amounts of the less volatile amines.
Salts wherein the cation is quaternary ammonium are produced by mixing the acid with the stoichiometric amount of the corresponding quaternary ammonium hydroxide in water solution, followed by evaporation of the water.
Molecules of each of the compounds encompassed by formulas I to IV, VI to XIX, and XXII to XXVII each have at least one center of asymmetry, and each can exist in racemic form and in either enantiomeric form, i.e., d and l. A formula accurately defining the d form would be the mirror image of the formula which defined the 1 form. Both formulas are necessary to define accurately the corresponding racemic form. For convenience, the various formulas herein and in the claims are to be construed as including racemic (dl), d, and 1 compounds. However, for the above-described pharmacological purposes, preferred compounds are the racemic compounds of formulas VIII to XVI and the optically active enantiomers of those compounds with the same absolute configuration as the PGE obtained from certain mammalian tissues, for example; sheep vesicular glands and human seminal plasma, or compounds obtained by carbonyl reduction or acid dehydration of a compound so obtained. The specific compounds shown in formulas I, H, III, and IV are intended to represent that absolute configuration. See Nature 212, 38 (1966).
Hereinafter, names of specific final products of formulas VIII to XVI will be based on relationship to the optically active compound of formula I, i.e., PGE Substituents and structural variations will be based on the numbering of formula V, i.e., prostanoic acid; thus, 19- methyl-PGE or l9,19-difluoro-PGA An alpha or S configuration of the hydroxy at C-15 will be assumed unless 15 3 appears before the name. An alpha configuration at C-8 will also be assumed unless 85 appears before the name. An optically active compound with the same absolute configuration of PGE will be assumed unless all (racemic) or cut (optically active unnatural configuration) appear before the name.
When an optically active ((1 or 1) final compound is desired, that is made by resolution of the racemic compound or by resolution of one of the asymmetric racemic intermediates. These resolutions are carried out by procedures known in the art. For example, when a final compound or an asymmetric intermediate is a free acid, the d1 form thereof is resolved into the d and 1 forms by reacting said free acid by known general procedures with an optically active base, e.g., brucine or strychnine, to give a mixture of two diastereoisomers which are separated by known general procedures, e.g., fractional crystallization, to give the separate diastereoisomeric salts. The optically active acid is then obtained by treatment of the salt with an acid by known general procedures.
Alternatively, exo or endo bicyclo[3.1.0]hexane olefin reactants XVII or XXVI are transformed to ketals with an optically active 1,2-glycol, e.g., D(-) 2,3-butanediol, by reaction of said 1,2-glycol with the olefin in the presence of a strong acid, e.g., p-toluenesulfonic acid. The resulting ketal is a mixture of diastereoisomers which is separated into the d and l diastereoisomers, each of which is then hydrolyzed with an acid, e.g., oxalic acid, to the original keto compound, now in optically active form. These reactions involving optically active glycols and ketals for resolution purposes are generally known in the art. See, for example, Chem. Ind. 1664 (1961) and I. Am. Chem. Soc. 84, 2938 (1962). Dithiols may be used instead of glycols.
The invention can be more fully understood by the following examples and preparations.
All temperatures are in degrees centigrade.
The collection of chromatographic eluate fractions starts when the eluant front reaches the bottom of the column.
PREPARATION 1 Endo-Bicyclo[3.1.0-]Hexan-3-ol-6-Carboxylic Acid Methyl Ester A mixture of endo-bicyclo[3.1.0]hex-2-ene-6-carboxylic acid methyl ester (103 g.) and anhydrous diethyl ether (650 m1.) is stirred under nitrogen and cooled to 5 C. A one molar solution (284 ml.) of diborane in tetrahydrofuran is added dropwise during 30 minutes while keeping the temperature below 0 C. The resulting mixture is then stirred and allowed to warm to 25 C. during 3 hours. Evaporation under reduced pressure gives a residue which is dissolved in 650 ml. of anhydrous diethyl ether. The solution is cooled to 0 C., and 3 normal aqueous sodium hydroxide solution (172 ml.) is added dropwise under nitrogen and with vigorous stirring during 15 minutes, keeping the temperature at 0 to 5 C. Next, 30% aqueous hydrogen peroxide (94 ml.) is added dropwise with stirring during 30 minutes at 0 to 5 C. The resulting mixture is stirred an hour while warming to 25 C. Then, 500 ml. of saturated aqueous sodium chloride solution is added, and the diethyl ether layer is separated. The aqueous layer is washed with four 200-ml. portions of ethyl acetate, the washings being added to the diethyl ether layer, which is then washed with saturated aqueous sodium chloride solution, dried, and evaporated to give g. of a residue. This residue is distilled under reduced pressure to give 69 g. of a mixture of the methyl esters of endo-bicyclo[3.1.0] hexan-3-ol-6-carboxylic acid and endobicyclo[3.1.0]hexan-2-ol-6-carboxylic acid; b.p. 8695 C. at 0.5 mm.
PREPARATION 2 Endo-Bicyclo[3.1.0]Hexan-3-ol-6-Carboxylic Acid Methyl Ester Tetrahydropyranyl Ether The 2-ol and 3-ol mixture (66 g.) obtained according to Preparation 1 in 66 ml. of dihydropyran is stirred and cooled at 15-20 C. during addition of 3 ml. of anhydrous diethyl ether saturated with hydrogen chloride. The temperature of the mixture is then kept in the range 20 to 30 C. for one hour with cooling, and is then kept at 25 for 15 hours. Evaporation gives a residue which is distilled under reduced pressure to give 66 g. of a mixture of the methyl esters-tetrahydropyranyl ethers of endo-bicyclo[3.1.0]hexan-3-ol-6-carboxylic acid and endo-bieyclo[3.1.0]hexan-2-ol-6-carboxylic acid; b.p. 96104 C. at 0.1 mm.
PREPARATION 3 Endo-6-Hydroxymethylbicyclo[ 3 1 .0]=Hexan- 3-Ol 3-Tetrahydropyranyl Ether A solution of the mixture (66 g.) of products obtained according to Preparation 2 in 300 ml. of anhydrous diethyl ether is added dropwise during 45 minutes to a stirred and cooled mixture of lithium aluminum hydride (21 g.) in 1300 ml. of anhydrous diethyl ether under nitrogen. The resulting mixture is stirred 2 hours at 25 C., and is then cooled to 0 C. Ethyl acetate (71 ml.) is added, and the mixture is stirred 15 minutes. Water (235 ml.) is then added, and the diethyl ether layer is separated. The water layer is washed twice with diethyl ether and twice with ethyl acetate. A solution of Rochelle salts is added to the aqueous layer, which is then saturated with sodium chloride and extracted twice with ethyl acetate. All diethyl ether and ethyl acetate solutions are combined, washed 13 with saturated aqueous sodium chloride solution, dried, and evaporated to give 61 g. of a mixture of the 3-tetrahydropyranyl ethers of endo-6hydroxymethylbicyclo- [3.1.0]hexan 3 01 and endo 6 hydroxymethylbicyclo- [3.1 .0jhexan-2-ol.
PREPARATION 4 Endo-Bicyclo [3 1 .OJHexan-3-Ol-6-Carboxaldehyde 3-Tetrahydropyranyl Ether A solution of the mixture (34 g.) of products obtained according to Preparation 3 in 1000 ml. of acetone is cooled to l C. Jones reagent (75 ml. of a solution of 21 g. of chromic anhydride, 60 ml. of water, and 17 ml. of cencentrated sulfuric acid), precooled to 0 C., is added dropwise with stirring during 10 minutes at -10 C. After 10 minutes of additional stirring at 10 0, isopropyl alcohol (35 ml.) is added during 5 minutes, and stirring is continued for minutes. The reaction mixture is then poured into 8 l. of an ice and water mixture. The resulting mixture is extracted 6 times with dichloromethane. The combined extracts are washed with aqueous sodium bicarbonate solution, dried, and evaporated to give 27 g. of a mixture of the tetrahydropyranyl ethers of endo bicyclo[3.1.0]hexan 3 ol 6-carboxaldehyde and endo-bicyclo [3 .1.0]hexan-Z-ol-6-carboxaldehyde.
EXAMPLE 1 d1 20,20-Dimethyl-PGE Methyl Ester and d1 /320,20-Dimethyl-PGE Methyl Ester A. A solution of 6-methyl-1-bromoheptane (131 g.) and triphenylphosphine (180 g.) in 350 ml. of toluene is heated at reflux for 16 hours under nitrogen. The mixture is cooled, and the solid product is removed by filtration, washed with toluene, and dried to give 220 g. of (6- methyl-heptyl)triphenylphosphonium bromide.
B. A suspension of (6-methylheptyl)-triphenylphosphonium bromide (305 g.) in 3.1 of benzene is mixed gradually with 400 ml. of 15% butyllithium in hexane during 15 minutes. The mixture is stirred one hour at 35 C., and then cooled to C. To this mixture is added a solution of a mixture of aldehydes (100 g.) obtained according to Preparation 4 in 200 ml. of benzene. This mixture is heated at 70 C. for 2.5 hours, and then cooled and filtered. The filtrate is washed with water, dried with sodium sulfate, and evaporated to give an olefin mixture.
C. The olefin mixture (340 g.) is dissolved in 4 l. of methanol containing 8.4 g. of oxalic acid. This solution is heated at reflux for 1.5 hours. The methanol is then removed under reduced pressure, and the residue is mixed with water and extracted repeatedly with dichloromethane. The dichloromethane extracts are combined, Washed successively with aqueous sodium bicarbonate and brine, dried with sodium sulfate, and evaporated. The residue (120 g.) is chromatographed on 1.5 kg. of silica gel. Elution with 10-15 ethyl acetate in Skellysolve B (a mixture of isomeric hexanes) gives 75.5 g. of a mixture of alcohols; infrared absorption at 3300, 1460, 1440, 1180, 1120, 745, 725, and 697 cm.-
D. Jones reagent (133 ml.; see Preparation 4) is added dropwise to a solution of the above-described alcohol mixture (75.5 g.) in 2 l. of acetone at 10 C. After 10 minutes at l0 C., 75 ml. of isopropyl alcohol is added, and the mixture is poured into '8 l. of water. This mixture is extracted repeatedly with dichloromethane. The combined extracts are Washed successively with dilute hydrochloric acid, aqueous sodium bicarbonate, and brine, and then dried with sodium sulfate. Evaporation under reduced-pressure gives 65 g. of a residue which is chromatographed on 2.5 kg. of silica gel. Elution with 2.5% ethyl acetate in Skellysolve B gives 30.3 g. of 6-endo-(7-methyl- 1-octeny1)-3-oxobicyc1o[3.1.0]hexan-2-one; infrared absorption at 1750, 1460, 1400, 1260, 1145, and 770 cmr E. A solution of potassium tert-butoxide (23.2 g.) and dicyclohexyl-l8-crown-6 (23.2 g.; see I. Am. Chem. Soc.
89, 7017 (1967)) in 1300 ml. of tetrahydrofuran is added gradually with stirring during 50 minutes to a solution of 6-endo- (I-methyl 1-octenyl) 3 oxobicyclo [3 l .0] hexan-Z- one (19.5 g.) and methyl 7-iodoheptanoate (110.4r g.) in 660 ml. of tetrahydrofuran. Then, ml. of 2.5 M hydrochloric acid is added to the mixture, and that mixture is poured into brine and extracted repeatedly with diethyl ether. The combined extracts are washed successively with aqueous sodium thiosulfate, aqueous sodium bicarbonate, and brine, dried with sodium sulfate, and evaporated under reduced pressure. The residue (150 g.) is chromatographed on 5 kg. of silica gel. After eluting with 2.5-5% ethyl acetate in Skellysolve B to remove unreacted starting materials, elution with additional 5% ethyl acetate in Skellysolve B gives 19.5 g. of methyl 6 endo-(7-methyl-1-octenyl)-3-oxobicyclo[3.1.0]hexane- Zrx-heptanoate; infrared absorption at 1740, 1460, 1430, 1360, 1200, and 1160 cm. Further elution with 5-10% ethyl acetate in Skellysolve B gives methyl 6-endo-(7- methyl 1 octenyl) 3 oxobicyclo[3.1.0]hexane 2,6- heptanoate.
F. A solution of 1.0 g. of methyl 6-endo-(7-methyl-loctenyl)3-oxobicyclo[3.1.0]hexane-2a-heptanoate in 13.5 ml. of tetrahydrofuran is warmed to 50 C., and a Warm solution of 530 mg. of potassium chlorate and 35 mg. of osmium tetroxide in 6.5 ml. of water is added with stirring. The mixture is stirred for 5 hours at 50 C. then it is concentrated under reduced pressure to remove the tetrahydrofuran. The mixture is diluted with water and extracted with 3 portions of dichloromethane. The dichloromethane extracts are combined, washed with water, dried over sodium sulfate, and evaporated under reduced pressure to give 1.0 g. of oil. The oil is chromatographed over g. of silica gel. The column is eluated with 500 ml. of 10%, 1000 ml. of 25%, 1000 ml. of 35%, 1000 ml. of 45%, 1000 ml. of 50%, and 1000 ml. of 60% ethyl acetate in Skellysolve B. The 35% ethyl acetate eluate is concentrated to give 255 mg. of the less polar form of methyl 6-endo-(7 methyl-1,2-dihydroxyoctyl) 3-oxobicyc1o-[3.1.OJheXane-Za-he tanOate. The only 50% ethyl acetate eluate is concentrated to give 248 mg. of the more polar form.
G. A solution of 0.255 g. of methyl 6-endo-(7-methyl- 1,2-dihydroxyoctyl) 3 oxobicyclo[3.1.0]hexane-2-hep tanoate (less polar glycol, obtained as above) in 7 ml. of pyridine is stirred under nitrogen while cooling in an ice bath, and 0.7 ml. of methanesulfonyl chloride is added. Stirring is continued for 2.5 hours. The solution is diluted with 30 ml. of ice and water, and stirred for 10 minutes; then it is transferred to a separatory funnel containing crushed ice and extracted with 3 100-ml. portions of ethyl acetate. The ethyl acetate extracts are combined, washed with cold 10% sulfuric acid, cold 10% sodium carbonate, and ice water, then dried over sodium sulfate, and evaporated to give 338 mg. of dimesylate as an oil. This oil is dissolved in 8 ml. of acetone, diluted with 4 ml. of water, and allowed to stand at 25 C. for about 20 hours. The reaction mixture is then diluted with 25 ml. of water and concentrated under reduced pressure to remove acetone; then 50 ml. of water is added and the mixture is extracted three times with ethyl acetate. The ethyl acetate extracts are combined, washed with saturated aqueous sodium bicarbonate and saturated aqueous sodium chloride, dried over sodium sulfate, and evaporated to give 258 mg. of an oil.
Following the above procedure, but starting with the more polar glycol (248 mg., obtained as above), there is obtained 270 mg. of an oil identical by thin layer chromatographic analysis to the oil obtained above from the less polar glycol. These two oils are combined (528 mg.) and chromatographed over 70 g. of silica gel. The column is eluted with 0.6 l. of 20%, 1 l. of 35%, 1 l. of 40%, 1 l. of 50%, and 3 l. of 75% ethyl acetate in Skellysolve B, then with 1 l. of ethyl acetate, and 1 l. of 5% MeOH in ethyl acetate, taking 75-ml. fractions. Eluate fractions 21 67 to 73 are evaporated and combined to give 64 mg. of d1 1.5fi-20,20-dimethyl-PGE methyl ester; infrared absorption at 3430, 1740, 1250, 1200, 1165, 1075 and 970 cmf Eluate fractions 88 to 104 are evaporated and combined to give 111 mg. of d1 20,20-dimethyl-PGE methyl ester. This is crystallized from a mixture of ether and Skellysolve B to give dl 20,20-dimehyl-PGE m.p. 75-76 C.; mass spectral peaks at 378, 360, 347, 297, 279 and 218; infrared absorption mull at 3310, 1735, 1325, 1310, 1290, 1275, 1260, 1225, 1195, 1150, 1105, 1065 and 975 Cm.
EXAMPLE 2 d1 8B-20,20-Dimethyl-PGE Methyl Ester and dl 813,15,B-20,20-Dimethyl-PGE Methyl Ester Following the procedures of Example 1, parts F and G, methyl 6-endo-(7-methyl-1-octenyl) 3 oxobicyclo- [3.1.0]hexane-2f3-heptanoate from Example 1, part B is transformed to dl 8B-20,20-dimethyl-PGE methyl ester; mass spectral peaks at 396, 378, 360, 347, 297, 279, and 2186; R, 0.47 on TLC with the A-IX solvent system; and dl 8,8,15B-20,20-dimethyl-PGE methyl ester; mass spectral peaks at 396, 378, 360, 347, 297, 279, and 215; R 0.36 on TLC with the A-IX solvent system.
EXAMPLE 3 dl 19,19-Dimethyl-PGE Methyl Ester and dl 15fi-20,20-Dimethyl-PGE Methyl Ester A. Following the procedures of Example 1, parts A, B, C, D, and E, but starting with 5,5 dimethyl-l-bromohexane rather than 6-methyl-l-bromoheptane, there are obtained methyl 6-endo-(6,6-dimethyl-1-heptenyl)-3-oxobicyclo [3.1.0]hexane-2u-heptanoate; infrared absorption at 1750, 1470, 1445, 1370, 1250, and 1700 cmf and the more polar methyl 6 endo-(6,6-dimethyl-1-heptenyl)-3- oxobicyclo [3 1 .0] hexane-Zfl-heptanoate.
B. A solution of 12.0 g. of methyl 6-endo-(6,6-dimethyll-heptenyl) -3-oxobicyclo [3 .1 .0]hexane-2u-heptanoate, as above, in 150 ml. of tetrahydrofuran is warmed to 50 C. and stirred under nitrogen; then 1 g. of solid osmium tetroxide is added to the solution followed immediately by a warm solution of 6.5 g. of potassium chlorate in 76 ml. of water, added in one portion. The reaction mixture is stirred for hours at 50 C. under nitrogen; then it is concentrated under reduced pressure to remove the tetrahydrofuran. The mixture is diluted with water and extracted three times with dichloromethane. The dichloromethane extracts are combined, washed with water, dried over sodium sulfate, and evaporated under reduced pressure to give 14.0 g. of an oil. The oil is chromatographed over 2 kg. of silica gel. The column is eluted with 8 l. of 15%, 12l.of25%, 161. of 35%, 16 l. of 45% and 8 l. of 60% ethyl acetate in Skellysolve B, taking 600 ml. fractions. Fractions 22 to 66 are evaporated and combined to give 9.0 g. of methyl 6-endo-(6,6-dimethyl-1,2-d1hydroxyheptyl) -3-oxobicyclo [3 1.0] hexane-2 ot-heptanoate.
C. A solution of 9.0 g. of methyl 6-endo-(6,6-dimethyl- 1,2-dihydroxyheptyl) 3 oxobicyclo[3.1.0]hexane-20 heptanoate, obtained as above, in 110 ml. of pyridrneis stirred under nitrogen and cooled in an ice bath while 10.7 ml. of methanesulfonyl chloride is added dropwise over a period of 15 minutes. The mixture is stirred for 2.5 hours at 0 C., then is cooled to to C. with a Dry Ice-acetone bath and 10 ml. of ice and water is added slowly, with good stirring, while keeping the temperature below 0 C. The mixture is poured into 500 ml. of ice and Water. Then 200 ml. of cold 1:3 dichloromethane-ether mixture and 440 ml. of cold 3 N hydrochloric acid are added, and the mixture is separated rapidly. The mixture is extracted three more times with 200-ml. portions of cold 1:3 dichloromethane-diethyl ether mixture. The dichloromethane-diethyl ether extracts are combined, washed with cold 2% sulfuric acid, cold 10% aqueous sodium carbonate, and cold saturated aqueous sodium chloride, then dried over sodium sulfate and potassium carbonate and evaporated to give 14.0 g. of oil. This oil is dissolved in 450 ml. of 2:1 acetone-Water and allowed to stand at about 25 C. for about 20 hours. The reaction mixture is diluted with 200 ml. of water and concentrated under reduced pressure to remove acetone. Then, 100 ml. of water is added and the mixture is extracted 4 times with ethyl acetate. The ethyl acetate extracts are washed with aqueous sodium bicarbonate and aqueous sodium chloride, dried over sodium sulfate, and evaporated to give 9.5 g. of oil. This oil is chromatographed over 1.6 kg. of silica gel. The column is eluted with 4 l. of 20%, 8 l. of 30%, 8 l. of 40%, 20 l. of 60%; and 20 l. of ethyl acetate in Skellysolve B, then 20 l. of ethyl acetate and 4 l. of 5% methanol in ethyl acetate, taking 600-ml. fractions. Eluate fractions 66 to 72 are evaporated and combined to give 1.253 g. of dl 15[3-19,l9-dimethyl-PGE methyl ester; infrared absorption at 3420, 1740, 1245, 1200, 1165, 1075, 1020, and 970 cm.
Eluate fractions 96-111 are evaporated and combined to give 1.228 g. of d1 19,19-dimethyl-PGE methyl ester. This is crystallized from a mixture of ether and Skellysolve B to give 19,19-dimethylprostaglandin E methyl ester, m.p. 5355 C.; infrared absorption (mull) at 3450, 3390, 3280, 1740, 1675 (weak), 1310, 1290, 1275, 1235, 1195, 1165, 1105, 1090, 1065, 1020 and 985 cmf mass spectrum spectral peaks at 390, 386, 378, 372, 358 and 343.
EXAMPLE 4 dl 85,19,19-Dimethyl-PGE Methyl Ester and d1 8,8,155-19,19-Dimethyl-PGE Methyl Ester Following the procedure of Example 3, parts B and C, methyl 6-endo-(6, 6-dimethyl-l-heptenyl) 3 oxobicyclo- [3.1.0]hexane-2/3-heptanoate from Example 3, part A is transformed to dl 8B-19,19-dimethyl-PGE methyl ester and dl 8,6,15,B-19,19-dimethyl-PGE methyl ester.
EXAMPLE 5 dl 19-Methyl-PGE Methyl Ester and d1 15fl-19-Methyl-PGE Methyl Ester A. Following the procedure of Example 1, parts A, B, C, D, and E, but starting with S-methyl-l-bromohexane rather than 6-methyl-1-bromoheptane, there are obtained methyl 6-endo-(6 methyl 1 heptenyl)-3-oxobicyclo- [3.1.0]hexane 20c heptanoate and methyl 6 endo-(6- methyl-l-heptenyl) 3 oxobicyclo[3.1.0]hexane-2fl-heptanoate.
B. Following the procedure of Example 1, parts F and G, but using methyl 6-endo-(6-methyl-1-heptenyl)-3-oxobicyclo[3.1.0]hexane-2ot-heptanoate as a reactant in part F, there are obtained dl 19-methyl-PGE methyl ester; m.p. 52-53" C., infrared absorption at 3430, 3290, 1740, 1675, 1300, 1275, 1225, 1200, 1170, 1065, and 990 cm. and d1 15fi-19-methyl-PGE methyl ester; infrared absorption at 3420, 1740, 1250, 1200, 1165, 1075 and 1035 cmr' EXAMPLE 6 dl 8B-l9-Methyl-PGE Methyl Ester and dl 8B,l5B-19-Methyl-PGE Methyl Ester Following the procedure of Example 1, parts F and G, but using methyl 6-endo(6-methyl-1-heptenyl)-3-oxobicyclo[3.1.0]hexane-Zfl-heptanoate (Example 5, part A) as a reactant, there are obtained dl 8,8-19-rnethyl-PGE methyl ester and dl 8,3,15,8-19-methyl-PGE methyl ester.
EXAMPLE 7 d1 l9,l9,20,2O,20-Pentaflu0rO-PGE Methyl Ester and d1 15p,19,19,20,20,20-Pentafiuoro-PGE Methyl Ester A. Following the procedure of Example 1, parts A, B, C, D, and E, but starting with 1,l,1,2,2-pentafluoro-6- iodohexane rather than 6-methyl-1-bromohexane, there are obtained methyl 6-endo( 6,6,7,7,7-pentafluoro-l-heptenyl) 3 oxobicyclo[3.l.0]hexane-2a-heptanoic acid and methyl 6-endo-(6,6,7,7,7 pentafiuoro-1-heptenyl)-3-0xobicyclo [3 .1.0-]hexane-25-heptanoic acid.
B. Following the procedure of Example 1, parts F and G, but using methyl 6-endo-(6,6,7,7,7-pentafluoro-l-heptenyl)-3-oxobicyclo[3.1.0]hexane-2a-heptanoate as a re actant, there are obtained dl 19,19,20,20,20-pentafluoro- PGE; methyl ester; infrared absorption at 3400, 2920, 2860, 1735, 1195, 1110, 1075, 1010, 980 and 970 cmf and d1 155-19,19,20,20,20-pentafluoro-PGE methyl ester; infrared absorption at 3430, 1735, 1435, 1345, 1320, 1270, 1195, 1125, 1110, 1070, 1005, 975, and 715 cm.-
EXAMPLE 8 d1 813-19,l9,20,20,20-Pentafluoro-PGE Methyl Ester and d1 8,8,155-19,l9,20,20,20-Pentafluoro-PGE Methyl Ester Following the procedures of Example 1, parts F and G, but using methyl 6-end0-(6',6,7,7,7-pentafluOro-1-heptenyl)-3-oxobicyclo[3.1.0]hexane-2fl-heptanoate as a reactant, there are obtained dl 8B-19,19,20,20,20-pentafluoro-PGE methyl ester and d1 8,8,15p-19,19,20,20,20-pentafluoro-PGE methyl ester.
Following the procedures of Examples 1-8 but using exo reactants rather than endo reactants, the same PGE type methyl esters are obtained.
Also following the procedures of Examples 1-8 but using separately as reactants the ethyl, 2-ethylhexyl, phenyl, benzyl, cyclohexyl, and 18,5,5-trichloroethyl esters of 7-iodo-heptanoic acid in place of methyl 7-iod0-heptanoate, there are obtained the Set-15a, Set-155, 3345a, and 85-1513 forms of the corresponding esters of dl 20,20- dimethyl-PGE dl 19,19-dimethy1-PGE d1 19-methy1- PGE and dl 19,19,20,20,20-pentafiuoro-PGE Also following the procedures of Examples 1-8 but using separately as reactants both optically active enantiomers of the methyl, ethyl, Z-ethylhexyl, phenyl, benzyl, cyclohexyl, and 5,5,;3-trichloroethyl esters of the various 6-endo-(substituted 1 alkenyl)-3-oxobicyclo [3.1.0]hexane-Z-heptanoic acid reactants defined in those examples, there are obtained the Set-15a, SOL-15B, 8545a, and 85-158 forms of the corresponding esters of 20,20-dimethyl-PGE ent 20,20-dimethylPGE 19,19-dimethyl-PGE ent 19, 19-dimethyl-PGE 19-methyl-PGE ent 19-methyl-PGE 19,19,20,20,20-pentafluoro-PGE and cut 19,l9,20,20,20- pentafluoro-PGE Also following the procedures of Example 1 but using as pairs of reactants in place of the fi-methyl-l-bromoheptane and the methyl 7-iodo-heptanoate, the following pairs of alkyl bromide or fluoroalkyl bromide and wiodo-alkanoate ester, the corresponding PGE -type esters are produced:
wherein R is methyl, ethyl, Z-ethylhexyl, phenyl, benzyl, cyclohexyl, or fi,fl,B-trichloroethyl.
EXAMPLE 9 d1 20,20-Dimethyl-PGE A solution of the 13,5,fl-trichloro-ethyl ester of di 20,20- dimethyl-PGE, (50 mg.) in 5 ml. of 90% acetic acid is stirred with 400 mg. of zinc dust for 2 hours at 25 C.
Ethyl acetate (40 ml.) is added, and the mixture is decanted from the unused zinc, washed four times with water and then with brine, dried with sodium sulfate, and evaporated. The residue is chromatographed on silica gel, eluting with a 50100% gradient of ethyl acetate in Skellysolve B, and then with 5% methanol in ethyl acetate. The fractions which show TLC like lPGE; are combined to give dl 20,20-dimethyl-PGE Following the procedure of Example 9, d1 -8,B-20,20- dimethyl-PGE dl 15fi-20,20-dimethyl-PGE dl 85,15,8- 20,20-dimethyl-PGE 20,20-dime-thyl-PGE 8 8-2030- dimethyI-PGE 1SB-ZOJO-dimethyI-PGE 8/3,15;3-20,20 dimethyl-PGE and the corresponding ent compounds are each obtained from the corresponding ,B,fi,fi-trich'loroethyl esters.
Also following the procedure of Example 9, the Sm-15a, Set-15,8, Sfi-lSa, and 8 8-1513 forms of d1 and both optically active forms of 19,19-dimethyl-PGE 19-methyl-PGE and 19,19,20,20,20-penta.fiuoro-PG'E are obtained from the corresponding p,,6,fl-trichloroethyl esters.
Also following the procedure of Example 9, each of the other PGE -type fl,B,;3-trichloroethyl esters described after Example 8, above, is transformed to the corresponding PGE -type acid.
EXAMPLE 10 d1 l9-Methyl-PGA Methyl Ester A solution of 200 mg. of dl 19-methyl-PGE methyl ester in a mixture of 2 ml. of tetrahydrofuran and 2 ml. of 0.5 N hydrochloric acid is stirred under nitrogen at 25 C. for 5 days. The reaction mixture is then diluted with saturated aqueous sodium chloride and extracted with ethyl acetate. The ethyl acetate extract is washed with saturated aqueous sodium chloride, dried over sodium sulfate, and evaporated to give 159 mg. of an oil. The oil is chromatographed over 25 g. of silica gel and eluted with 350 ml. of 20%, 400 ml. of 30%, 500 ml. of 40%, 1000 ml. of 50%, and 500 ml. of 60% ethyl acetate in Skellysolve -B, then with 500 ml. of ethyl acetate, taking 25 ml. fractions. Eluate fractions 17-22 are concentrated and combined to give 45 mg. of dl 19-methyl-PGA methyl ester; ultraviolet absorption maximum (ethanol) at 217 mg, with shoulder at 204 mu.
Following the procedure of Example 10, (11 1519-19- methyl-PGA methyl ester, dl 8,8-19-me-thyl-P GA methyl ester, dl 85,15,8-19-methyl-PGA methyl ester, and both optically active forms of each of those are obtained from the corresponding PGE type ester.
Also following the procedure of Example 10, the ethyl, Z-ethylhexyl, phenyl, benzyl, and cyclohexyl esters of the Set-15a, Sat-15p, 83-15, and 8/3-155 forms of the racemic and both optically active forms of 19-methyl-PGA are obtained from the corresponding PGE -type compounds.
Also following the procedure of 'Example 10, the methyl, ethyl, 2-ethylhexyl, phenyl, benzyl, and cyclohexyl esters of the 8oc-l5oc, Soc-15B, 85-1541, and 85-1513 forms of the racem-ic and both optically active forms of 19,19- dimethyl-PGA '20,20-dimethyl-PGA and 19,19,20,20, 2O-pentafluoro-PGA are obtained from the corresponding PGE -type compounds.
Also following the procedure of Example 10, the 81:- 15a, Soc-1518, 85-1505, and 86,155 forms of the racemic and both optically active forms of 19-methyl-PGA 19,19- dimethyI-PGA 20,20-dimethyl-PGA and 19,l9,20,20, 20-pentafluoro-PGA are obtained from the corresponding PGE -type acids.
Also following the procedure of Example 10, each of the =PGE -type esters described after Example 8 and each oi the PGE -type acids described latter Example 9 is dehydrated to the corresponding PGA -type ester and acid.
EXAMPLE 11 dl 19,19-Dimethyl-PGF- and d1 19,19-Di-methyl- PGF and Their Methyl Esters A solution of dl 19,19-dime-thyl-PGE methyl ester (500 mg.) in 25 ml. of isopropyl alcohol is stirred at C. under nitrogen, and a cold solution of 250 mg. of sodium borohydr'ide in ml. of water is added. The mixture is stirred at 0 C. for 2.5 hours, then 1 ml. of acetone is added and the mixture is stirred for minutes at 0 C. The mixture is made slightly acidic (pH 5-6) with acetic acid, and is then concentrated under reduced pressure to remove the acetone and isopropyl alcohol. This mixture is poured into saturated aqueous sodium chloride and extracted 3 times with ethyl acetate. The ethyl acetate extracts are combined, washed with saturated aqueous sodium chloride, dried over sodium sulfate, and evaporated to give 507 mg. of a mixture of dl 19,19-dimethyl- PG F methyl ester and d1 19,19-dimethyl-PG'F methyl ester as a white solid. This mixture (503 mg.) is dissolved in ml. of methanol, cooled to about 5 C. and stirred under nitrogen while 2 ml. of 50% aqueous potassium hydroxide is added. The mixture is then stirred, under nitrogen, for 4 hours at 25 C. The mixture is diluted with 100 ml. of water and extracted once with ethyl acetate. The aqueous phase is acidified with dilute hydrochloric acid and extracted 4 times with ethyl acetate. The ethyl acetate extracts are combined, Washed 3 times with water and once with saturated aqueous sodium chloride, dried over sodium sulfate, and evaporated to give 506 mg. of white crystalline material. This crystalline material is chromatographed over 150 g. of silica gel. The column is eluted with 500 ml. of 50% and 500 ml. of 75% ethyl acetate in cyclohexane, then with 4000 ml. of ethyl acetate followed by 500 ml. of 10% and 500 ml. of 25% methanol in ethyl acetate. The ethyl acetate-cyclohex-ane eluates are discarded, then 50 ml. eluate fractions are taken beginning with the ethyl acetate eluate. Fractions 16 to 35 are evaporated and combined to give 135 mg. of residue which is recrystallized from a mixture of ethyl acetate and Skellysolve B to give dl l9,l9-dimethyl-PG-F mp. 107-109" C.; infrared absorption at '3320, 2700, 1710, 1325, 1305, 1290, 1275, 1240, 1210, 1200, 1095, 1050, 1020, 985, 975 and 945 cmf mass spectrum spectral peaks at 384, 366, 348 and 294.
Fractions 46 to 84 are evaporated and combined to give 211 mg. of residue which is recrystallized from a mixture of ethyl acetate and Skellysolve B to give d1 19,19- dirnethyl PGF mp. 145-146" C.; infrared absorption at 3360, 2700, 1710, 1305, 1290, 1220, 1080, 1015, 995, 970 and 950 cmr The above procedure is repeated but the mixture of d1 19,19-dimethy1-PGF methyl ester and dl 19,19-dimethyl-PGF methyl ester is separated by chromatography on neutral silica gel, eluting with a gradient of 100% ethyl acetate in Skellysolve B, to give the separate alpha and beta isomers of these esters.
Following the procedure of Example 11, dl 15B-19,19- dimethyl-PGE methyl ester, dl 8B-19,19-dimethyl-PGE methyl ester, dl 8 8,15B-19,19-dimethyl-PGE methyl ester, and both optically active forms of each of those are each transformed to the corresponding PGF -type and PGF -type acids and esters.
Also following the procedure of Example 11, the ethyl, 2-ethylhexyl, phenyl, benzyl, and cyclohexyl esters of the Sat-15a, Set-1513, 813-150, and 8 9-155 forms of the racemic and both optically active forms of 19,19-dimethyl-PGF and 19,19-dimethyl-PGF are obtained from the corresponding PGE -type compounds.
Also following the procedure of Example 11, and the methyl, ethyl, Z-ethylhexyl, phenyl, benzyl, and cyclohexyl esters of the sot-15oz, 8a-15B, S ft-15a, and 85-155 forms of the racemic and both optically active forms of 19-methyl-PGE 20,20-dimethyl-PGE and 19,19,20,20, 20-pentafluoro-PGE are each transformed to the corresponding PGF ,-type and PGF -type acids and esters.
Also following the procedure of Example 11, each of the PGE -type esters described after Example 8 and each of the PGE -type acids described after Example 9 is re- 26 duced to the corresponding PGF -type and PGF -type ester and acid.
What is claimed is: 1. An optically active compound of the absolute configuration of natural PGE, or a racemic compound of the formula:
VI o
(CH2) ..0 O 0 R1 H6 C=C\ H/ CHOH-(CHz) .-z
VIII 11( ormro o 0 R1 \l E0: 0:0
11 CHOH(CHz),-Z
wherein n is 4 to 8 and a is zero to 4; wherein R is hydrogen, alkyl of one to 8 carbon atoms, inclusive, cycloalkyl of 3 to 10 carbon atoms, inclusive, aralkyl of 7 to 12 carbon atoms, inclusive, phenyl, phenyl substituted with one to 3 chloro or alkyl of one to 4 carbon atoms, inclusive, or ethyl substituted in the tit-position with 3 chloro, 2 or 3 bromo, or one, 2 or 3 iodo; wherein Z is 3,3-difluorobutyl, 4,4-difluorobutyl, 4,4,4-trifluorobutyl, 3,3,4,4- tetrafiuorobutyl, or 3,3,4,4,4-pentafluorobutyl; and wherein indicates attachment of the group to the ring in alpha or beta configuration, and pharmacologically acceptable salts thereof when R, is hydrogen.
2. A compound according to claim 1 wherein R is hydrogen or alkyl of one to 4 carbon atoms, inclusive, and pharmacologically acceptable salts thereof when R is hydrogen.
3. A compound according to claim 2 wherein the formula is VI.
4. A compound according to claim 3 wherein the (CH ),,COOR moiety is attached in alpha configuration.
5. A compound according to claim 4 wherein the sidechain hydroxy is in alpha configuration.
6. A compound according to claim 4 wherein the sidechain hydroxy is in beta configuration.
7. A compound according to claim 5 wherein n is 6.
8. A compound according to claim 6 wherein n is 6.
9. A compound according to claim 7 wherein Z is 3,3, 4,4,4-pentafluorobutyl, and a is 1.
10. A compound according to claim 8 where Z is 3,3, 4,4,4-pentafluorobuty1, and a is 1.
11. A compound according to claim 2 wherein the formula is V.
12. A compound according to claim 11 wherein the CH ),,-COOR moiety it attached in alpha configuratlon.
13. A compound according to claim 12 wherein the ring hydroxy adjacent the (CH ),,COOR moiety is in alpha configuration.
14. A compound according to claim 12 wherein the ring hydroxy adjacent the (CH ),,COOR moiety is in beta configuration.
15. A compound according to claim 13 wherein the side-chain hydroxy is in alpha configuration.
16. A compound according to claim 14 wherein the side-chain hydroxy is in alpha configuration.
17. A compound according to claim 15 wherein n is 6.
18. A compound according to claim 16 wherein n is 6.
19. A compound according to claim 17 wherein'Z is 3,3,4,4,4-pentafiuorobutyl, and a is 1.
20. A compound according to claim 18 wherein Z is 3,3,4,4,4-pentafiuorobutyl, and a is 1.
21. A compound according to claim 2 wherein the formula is D(.
22. A compound according to claim 21 wherein the (CH ),,-COOR moiety is attached in alpha configuration.
23. A compound according to claim 22 wherein the side-chain hydroxy is in alpha configuration.
24. A compound according to claim 22 wherein the side-chain hydroxy is in beta configuration.
25. A compound according to claim 23 wherein his 6.
26. A compound according to claim 24 wherein n is 6.
27. A compound according to claim 25 wherein Z is 3,3,4,4,4-pentafluorobutyl, and a is l.
28. A compound according to claim 26 wherein Z is 3,3,4,4,4-pentafluorobutyl, and a is 1.
References Cited UNITED STATES PATENTS ROBERT GERS'IL, Primary Examiner US. Cl. X.R.
260211 B, 247.2 R, 868 R, 243.15, 326.3, 408, 410.5, 410.9, 413, 429.9, 439 R, 448, 456 R, 468 G, 501.1, 501.15, 501.16, 501.17, 501.2, 514 D, 514 G; 424- 305, 317
UNITED sTATEs PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION PATENT NO. 5,8316% DATED September 5, 1974 |NVENTOR(S) John E. Pi ke it is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below;
Column 2, l ines ll, Formula V, that portion of the formula reading l I. 3 2k should read x1e Column 2, line @"'and PGA is S" should read and PGA is S Column 5, l ine 55, "potency" should read patency Column 8, lines 39-40, "gelactamine," should read galactamine, l ines 60-62, '5 imple compounds of f0 rmulas IX, Xl l and XV, and PGA -type solutions," should read simple solutions Column 11, l ine 54, "carbonyl should read ca rboxyl Column 12, l ines 74-75 and Column 15, l ine 1, "product is de- CH (CH Br s i red, should read product is des i red Column 19, line 57, "in 3.1 of benzene" should read in 5 l. of
benzene Column 20, l ine ll, "The onl y 50% ethyl acetate" should read The 50% ethyl acetate Column 21, l ine 25, "and 21 6 should read and 218 6;
Signed and Scaled this Thirteenth D8) 0f September 1977 [SEAL] Attest:
RUTH C. MASON LUTRELLE F. PARKER Attesting Officer Acting Commissioner of Patents and Trademarks
US00169071A 1968-07-29 1971-08-04 Prostaglandin e1,f1,and a1 analogs Expired - Lifetime US3833640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00169071A US3833640A (en) 1968-07-29 1971-08-04 Prostaglandin e1,f1,and a1 analogs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US74815868A 1968-07-29 1968-07-29
US00169071A US3833640A (en) 1968-07-29 1971-08-04 Prostaglandin e1,f1,and a1 analogs

Publications (1)

Publication Number Publication Date
US3833640A true US3833640A (en) 1974-09-03

Family

ID=26864729

Family Applications (1)

Application Number Title Priority Date Filing Date
US00169071A Expired - Lifetime US3833640A (en) 1968-07-29 1971-08-04 Prostaglandin e1,f1,and a1 analogs

Country Status (1)

Country Link
US (1) US3833640A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3997588A (en) * 1975-05-15 1976-12-14 G. D. Searle & Co. 3,5-Bisoxygenated 2-(ω-halo-3-oxygenated-1-alkenyl)-cyclopentane-1-heptanoic acids and derivatives thereof
US5807895A (en) * 1994-11-29 1998-09-15 Schwarz Pharma, Inc. Use of prostaglandin E1, E2 or analogs to prevent renal failure induced by medical tests that utilize contrast media agents

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3997588A (en) * 1975-05-15 1976-12-14 G. D. Searle & Co. 3,5-Bisoxygenated 2-(ω-halo-3-oxygenated-1-alkenyl)-cyclopentane-1-heptanoic acids and derivatives thereof
US5807895A (en) * 1994-11-29 1998-09-15 Schwarz Pharma, Inc. Use of prostaglandin E1, E2 or analogs to prevent renal failure induced by medical tests that utilize contrast media agents

Similar Documents

Publication Publication Date Title
US4116988A (en) 16-Phenoxy prostaglandin E1 analogs
US3919285A (en) PGE{HD 3 {B analogs
US3914282A (en) Prostaglandin E{HD 1{B , F{HD 1{B , and A{HD 1 {B analogs
US3962293A (en) 13,14-Dihydro-16-fluoro prostaglandin F1
US3767695A (en) Prostaglandin e1, f1, and a1 analogs
US3931289A (en) 3-Oxa phenyl-substituted PGE compounds
US3987087A (en) Phenyl-substituted prostaglandin-f type analogs
US3759978A (en) 5,6-trans pge{11
US3833640A (en) Prostaglandin e1,f1,and a1 analogs
JPS5938235B2 (en) Process for producing intermediate compounds
US3922297A (en) Prostaglandin E{HD 1{B , F{HD 1{B , and A{HD 1 {B analogs
US3980694A (en) 4-Oxa phenyl-substituted PGA compounds
US3847966A (en) Prostaglandin e1,f1,and a1 analogs
US3923861A (en) 3-Oxa prostaglandin F{331 -type compounds
US3892795A (en) 16-Methyl and 16,16 dimethyl PGA{HD 2 {B compounds
US3772350A (en) Silylated derivatives of prostanoic acid and prostaglandins
US3843712A (en) Endo-bicyclo(3.1.0)-hexane glycol intermediates for preparing prostaglandins e1,a1,and analogs thereof
US3969381A (en) 13,14-Dihydro-16-fluoro prostaglandin B1 analogs
US3969376A (en) 13,14-Dihydro-16-fluoro prostaglandin E1 analogs
US3969379A (en) 13,14-Dihydro-16-fluoro prostaglandin A1 analogs
US3923862A (en) 4-Oxa prostaglandin {62 -type compounds
US3929861A (en) 16- AND 16,16-METHYL AND ETHYL SUBSTITUTED PGF{HD 1{B -type compounds
US3813433A (en) 16-methyl and ethyl pge1 and 16,16-dimethyl and diethyl pge1
US3969377A (en) 16-Fluoro prostaglandin E1 analogs
US3969380A (en) 16-Fluoro prostaglandin F2 analogs