US3827962A - Apparatus for electrodeposition of metals under the influence of a centrifugal force field - Google Patents

Apparatus for electrodeposition of metals under the influence of a centrifugal force field Download PDF

Info

Publication number
US3827962A
US3827962A US00148947A US14894771A US3827962A US 3827962 A US3827962 A US 3827962A US 00148947 A US00148947 A US 00148947A US 14894771 A US14894771 A US 14894771A US 3827962 A US3827962 A US 3827962A
Authority
US
United States
Prior art keywords
electrodeposition
centrifugal force
cell
influence
cathodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00148947A
Inventor
I Ahmad
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US00148947A priority Critical patent/US3827962A/en
Application granted granted Critical
Publication of US3827962A publication Critical patent/US3827962A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/04Electroplating with moving electrodes

Definitions

  • AHMAD 3,827,962 APPARATUS FOR ELECTRQDEPOSITIUN 0F METALS UNDER Aug. 6, 1974 v THE INFLUENCE OF A CENTRIFUGAL FORCE FIELD Original Filed Jan. 21, 1969 3 Sheets-Sheet 1 TO POWER SOURCE Aug. 6, 1974 l.
  • AHMAD 3,827,962 APPARATUS FOR ELECTRQDEPOSITIUN 0F METALS UNDER Aug. 6, 1974 v THE INFLUENCE OF A CENTRIFUGAL FORCE FIELD Original Filed Jan. 21, 1969 3 Sheets-Sheet 1 TO POWER SOURCE Aug. 6, 1974 l.
  • AHMAD 3,827,962 APPARATUS FOR ELECTRQDEPOSITIUN 0F METALS UNDER Aug. 6, 1974 v THE INFLUENCE OF A CENTRIFUGAL FORCE FIELD Original Filed Jan. 21, 1969 3 Sheets-Sheet 1 TO POWER SOURCE Aug.
  • This invention relates to the electrodeposition of metals and alloys.
  • metals which are formed by electrodeposition such as in the electroplating and electroforming process, have various degrees of microporosity which reduces their properties of density and elastic modulus.
  • the efiiciency of the operation is reduced, oftentimes considerably, due to various polarization efiects.
  • FIG. 1 is a schematic view of an apparatus for forming FIG. 2 is an enlarged view taken along line 2-2 of FIG. 1;
  • FIG. 3 is a view taken along line 33 of FIG. 2 showing the electrolyte subjected to centrifugal force and displaced thereby from its normal level shown in phantom;
  • FIG. 4 is an enlarged, fragmentary view similar to FIG. 3 but of an alternate embodiment in which the cathode and anode are located in the same vertical plane;
  • FIG. 5 is a reduced view similar to FIG. 2 but shows the apparatus adapted for plating the inside surface of a cylinder
  • FIG. 6 is an enlarged view taken along line 66 of FIG. 5.
  • FIGS. 1-3 Shown in FIGS. 1-3 is an apparatus 12 for depositing nickel from a sulphamate bath by electrodeposition under the influence of centrifugal force CF to form the deposited nickel as acruate strips.
  • Apparatus 12 comprises a centrifuge 14 having a cylindrical housing 16 and a cell 18 located therein.
  • Cell 18 is cylindrical in configuration and is adapted to hold an electrolyte 20 which is a sulphamate bath of the following composition:
  • Cell 18 is rotated by a high speed motor 21 to produce centrifugal force CF.
  • the rate of rotation, and therefore the magnitude of centrifugal force CF is controlled by rheostat means 22 which is operationally disposed between motor 21 and a source of power not shown.
  • Disc 26 is formed from copper as it is an excellent conductor of electricity, and is provided with an axial hub 29 having a well 30 extending downwardly thereinto to receive mercury pool 32.
  • Disc 26 carries three nickel anodes 34 which are disposed apart, as shown in FIG. 2, and are mounted, as noted at 36, for adjustable, radial displacement relative to the disc.
  • Each anode 34 includes an arm 38 which supports an arcuate plate 40 at the outer end so that outer face 42 thereof is concentric to vertical wall 44 of cell 18, which is parallel to the extended axis of shaft 24.
  • Mounted to the inside of wall 44 so as to be electrically insulated therefrom are three cathodes 46 which are disposed in radial alignment with anodes 34 and concentric therewith.
  • Each cathode 46 is provided with an inner face 48 which is concentric with outer face 42 of anodes 34.
  • a collector ring 50 is mounted to the inside surface of housing 16 and electrical connection is made between each cathode 46 and such ring by means of a carbon brush 52 which is displaceably mounted in a mount 53 so as to be spring-pressed against the ring.
  • Each cathode 46 is provided with a cylindrical boss 55 which extends through a hole in wall 44 and a mount 53 is threadingly engaged with the boss to provide electrical connection between carbon brush 52 and the cathode and also firmly hold the cathode to the wall.
  • Mounts 53 and bosses 55 are, of course, insulated from wall 44.
  • DC current is supplied to anodes 34 and cathodes 46 from a source of power (not shown) through a regulator 54 which is adapted for adjusting the voltage and amperage output therefrom.
  • Positive lead 56 from regulator 54 terminates in mercury pool 32 so as to apply a positive potential to anodes'34, through disc 26, during rotation of 6 cell 18.
  • -.Negative lead 58 from regulator 54 isconnected to ring 50 so as to apply a negative potential to cathodes 46 through carbon brushes 52.
  • Demineralized water is added to electrolyte from a reservoir 60 at a rate regulated by valve 62 to make up for evaporation loss.
  • FIG. 4 Shown in FIG. 4 is an alternate embodiment of apparatus 12 in which anodes 64, which are counterparts of anodes 34, are mounted to wall 44 in substantially the same vertical plane as cathodes 46.
  • anodes 64 which are counterparts of anodes 34
  • wall 44 in substantially the same vertical plane as cathodes 46.
  • channel 66 extends around each of the anodes 64 to form a pair of vertically spaced inner faces 68 thereon.
  • Cathodes 46 are mounted within channel 66 so as to be insulated from the related anode 64, and boss 70 on each of the cathodes extends through the related anode and through Wall 44 so that it can be threadingly engaged by a mount 53, as with the basic embodiment.
  • Apparatus 12 is prepared for operation by first cleaning anodes 34 and cathodes 46 by known practice and then mounting the cathodes to cell 18 and adjusting the position of the anodes relative to the cathodes to form a space therebetween.
  • This space is determined in large part by the thickness of the nickel strip to be deposited on cathodes and the amount of electrolyte 20 necessary to fill the space when subjected to centrifugal force CF.
  • Electrolyte 20, at approximately 60 temperature is then poured into cell 18 up to normal horizontal level L, shown in phantom in FIG. 3, which is a sufficient amount to cover faces 42 and 48 when the electrolyte is subjected to centrifugal force CF.
  • the sulphamate bath described hereinbefore has been used to good advantage as electrolyte 20 but the invention is not limited to this composition.
  • Motor 21 is then energized by adjustment of rheostat 22 to the desired speed which causes rotation of cell 18, with cathodes 46 attached thereto, and anodes 34.
  • electrolyte 20 under the influence of centrifugal force CF, rises along wall 44, from its normal horizontal position L, to form a hollow cylinder there along covering faces 42 and 48, as shown in FIG. 3.
  • Cur. rent to anodes 34 and cathodes 46 is then turned on at regulator 54 which is adjusted for the desired current density and voltage potential. Experiments to date have been made with regulator 54 set at 40 amperes per sqp/ft.
  • electrolyte 20 is not only subjected to centrifugal force CF and an electrical force field it, together with the depositing ions therein, is moved relative to anodes 34 and cathodes 46.
  • cathodes 46 When the metal deposited on cathodes 46 is of the desired thickness, the current is turned off at regulator 54 and rheostat 22. Cathodes 46 are then removed from cell 18 and the deposited strips of nickel removed therefrom. In these strips the porosity present in deposits produced by conventional methods and apparatus is eliminated and the elastic modulus approaches the optimum value of 30x10 'p .s.i. This is achieved in large part because the gas bubbles and liquid inclusions, which are entrapped in the deposit during the conventional forms of electrodeposition, are
  • cell 18 must be rotated at a rate high enough to create a suflicient centrifugal force CF and movement of electrolyte 20 relative to cathodes 46 to drive the bubbles and inclusions therefrom. A speed of 2500- 3000 rpm. is found to be adequate. When cell 18 is rotated at a higher speed it is expected that considerable changes in the structure of the deposit will take place due to the increased force applied to the depositing ions in electrolyte 29 and the increased rate of movement thereof relative to cathodes 46.
  • FIGS. 5 and 6 Shown in FIGS. 5 and 6 is another embodiment of apparatus 12 wherein cell is adapted for plating the inside surface of cylinder 82.
  • top 84 of cell 80 is threadingly mounted on wall 86 thereof to permit insertion of cylinder 82 into the cell.
  • a gasket 88 having the same diameter as the inside diameter of cell 80 is inserted thereinto and after the cylinder is placed on top thereof another gasket is placed on top of the cylinder.
  • top 84 is installed on wall 86 and tightened a seal is made between cylinder 82 and gaskets 88 and 90 to form a reservoir for electrolyte 20 when poured thereinto through opening 92 in top 84.
  • each mount 53 is a bushing 94, with an external flange 96, which is mounted through a hole in wall 86 so as to be insulated therefrom and so that the flange is located on the inside of the wall.
  • Each bushing 94 is provided with a threaded central bore 98 which is counterbored at 100 to slidingly receive a pad 102.
  • Threaded portion 103 of mount 53 is received by bore 98 so as to act against pad 102, when tightened, to press the pad against the outside of cylinder 82.
  • bushings 94 cooperate, when tightened, to center cylinder 82 in cell 80, hold the cylinder against radial displacement, and provide electrical contact therewith.
  • Anodes 104 are similar to anodes 34 except that plates 106, which are the counterparts of plates 40, extend nearly the full length of cylinder 82. Sufiicient space must be left between the top and bottom of plates 106 and therebetween as shown in FIGS. 5 and 6 to permit flow of electrolyte therethrough when cell 80 is energized for rotation. It is obvious that plates 186 maybe connected to form a continuous cylinder with electrolyte 20, during displacement by centrifugal force field CF, flowing over and under the cylindrical anode. Operation is the same as that described for the basic embodiment.
  • Apparatus for forming a metal deposit by electrodeposition under the influence of centrifugal force comprising a cell mounted for rotation, a wall of said cell being disposed parallel to the axis of rotation of said cell, an anode and a cathode spaced therefrom mounted Within said cell, and being disposed concentrically within approximately a common horizontal plane and in radially spaced relation to each other, said cell being adapted to contain an electrolyte, means for rotating said cell together with 5 said anode and said cathode at a speed sufiicient to displace said electrolyte by centrifugal force thereby to form an electrolyte cylinder along said cell wall between said anode and said cathode, and means for supplying an electric potential at a selected density to said anode and said cathode during rotation of said cell;
  • said anode comprising a plurality of arcuate segments, and including means for mounting each of said segments for radial adjustment relative to said axis of rotation.
  • said means for providing electrical current to said anode and said cathode comprises a collector ring having a negative potential, a carbon brush electrically connected to said cathode and having sliding contact with said collector ring, said rotating means including a shaft having a well axially located in one end thereof, a mercury pool disposed in said well, and a lead having a positive potential terminating in said mercury pool.

Abstract

THIS INVENTION RELATES TO THE ELECTRODEPOSITION OF METALS AND ALLOYS AND PROVIDES PROCESS AND APPARATUS FOR DEPOSITING METALS UNDER THE INFLUENCE OF CENTRIFUGAL FORCE TO INCREASE THE EFFICIENCY OF THE OPERATION AND PRODUCE METAL DEPOSITS OF SUPERIOR QUALITY RESPECTIVE TO DENSITY AND MODULUS OF ELASTICITY.

Description

l. AHMAD 3,827,962 APPARATUS FOR ELECTRQDEPOSITIUN 0F METALS UNDER Aug. 6, 1974 v THE INFLUENCE OF A CENTRIFUGAL FORCE FIELD Original Filed Jan. 21, 1969 3 Sheets-Sheet 1 TO POWER SOURCE Aug. 6, 1974 l. AHMAD 3,827,962
APPARATUS FOR ELECTRODEPOSITION OF METALS UNDER THE INFLUENCE OF A CENTRIFUGAL FORCE FIELD Original Filed Jan. 21, 1969 3 Sheets-Shoot B Iqbal Ahmud ATTORNEYS Aug. 6, 1974 AHMAD APPARATUS FOR ELECTRODEPOSITION OF METALS UNDER I THE INFLUENCE OF A CENTRIFUGAL FORCE FIELD Original Filed Jan. 21, 1969 3 Sheets-Sheet 5 92 86 ii 5 i l 94 5: 5g 98 r04 50 )I Cf B FELE1 Ef 102 4 2m 55 58 HIHL f-f-i m 1 no 6 82 INVENTOR ICU] 111 Ahmtui [W ATTORNEYS United States Patent APPARATUS FOR ELECTRODEPOSITION OF METALS UNDER THE INFLUENCE OF A CENTRIFUGAL FORCE FIELD Iqbal Ahmad, 18 Barney Road, Elnora, N.Y. 12065 Original application Jan. 21, 1969, Ser. No. 792,683. Divided and this application June 1, 1971, Ser. No. 148,947
Int. Cl. C23b /6'8 US. Cl. 204-412 3 Claims ABSTRACT OF THE DISCLOSURE This invention relates to the electrodeposition of metals and alloys and provides process and apparatus for depositing metals under the influence of centrifugal force to increase the efiiciency of the operation and produce metal deposits of superior quality respective to density and modulus of elasticity.
This is a division of application Ser. No. 792,683 filed I an. 21, 1969 and now abandoned.
BACKGROUND OF THE INVENTION The invention described herein may be manufactured, used, and licensed by or for the Government for governmental purposes without the payment to me of any royalty thereon.
This invention relates to the electrodeposition of metals and alloys. In general, metals which are formed by electrodeposition, such as in the electroplating and electroforming process, have various degrees of microporosity which reduces their properties of density and elastic modulus. Also, in the conventional modes of electrodeposition the efiiciency of the operation is reduced, oftentimes considerably, due to various polarization efiects.
SUMMARY OF THE INVENTION It is a principal object of this invention to provide process and apparatus for the electrodeposition of metals and alloys whereby a greater degree of efficiency is achieved than has been realized before and the deposited metal is of a superior quality with respect to density and elastic modulus.
It is a further object of this invention to provide process and apparatus for the electrodeposition of metals which eliminate the adverse polarization eifects that reduce the efliciency of presently known means of electrodeposition.
It is another object of this invention to provide process and apparatus for the electrodeposition of metals which deposit the metals at higher rate than is possible with the prior art.
It is still another object of this invention to provide process and apparatus for the electrodeposition of metals under the influence of centrifugal force to increase the efficiency of the operation and the properties of the deposited metal.
It is another and still further object of this invention to provide process and apparatus for the electrodeposition of nickel from a sulphamate bath which is subjected to centrifugal force during electrodeposition.
Further objects and advantages of the invention will be apparent from the following specification and the accompanying drawings which are for the purpose of illustration only.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view of an apparatus for forming FIG. 2 is an enlarged view taken along line 2-2 of FIG. 1;
FIG. 3 is a view taken along line 33 of FIG. 2 showing the electrolyte subjected to centrifugal force and displaced thereby from its normal level shown in phantom;
FIG. 4 is an enlarged, fragmentary view similar to FIG. 3 but of an alternate embodiment in which the cathode and anode are located in the same vertical plane;
FIG. 5 is a reduced view similar to FIG. 2 but shows the apparatus adapted for plating the inside surface of a cylinder; and
FIG. 6 is an enlarged view taken along line 66 of FIG. 5.
DESCRIPTION OF PREFERRED EMBODIMENTS Shown in FIGS. 1-3 is an apparatus 12 for depositing nickel from a sulphamate bath by electrodeposition under the influence of centrifugal force CF to form the deposited nickel as acruate strips. Apparatus 12 comprises a centrifuge 14 having a cylindrical housing 16 and a cell 18 located therein. Cell 18 is cylindrical in configuration and is adapted to hold an electrolyte 20 which is a sulphamate bath of the following composition:
Oz./gal. Nickel sulphamate 43 Nickel as metal l0 Boric acid Nickel bromide (cone) 7 Diluted with demineralized water to a specific gravity of 29-31 (Baum scale).
Cell 18 is rotated by a high speed motor 21 to produce centrifugal force CF. The rate of rotation, and therefore the magnitude of centrifugal force CF, is controlled by rheostat means 22 which is operationally disposed between motor 21 and a source of power not shown.
Shaft 24 of motor 21, to which cell 18 is mounted for rotation, extends axially into the cell and a disc 26 is mounted to such extending end 27, by means of an insulating connector 28, for simultaneous rotation therewith. Disc 26 is formed from copper as it is an excellent conductor of electricity, and is provided with an axial hub 29 having a well 30 extending downwardly thereinto to receive mercury pool 32.
Disc 26 carries three nickel anodes 34 which are disposed apart, as shown in FIG. 2, and are mounted, as noted at 36, for adjustable, radial displacement relative to the disc. Each anode 34 includes an arm 38 which supports an arcuate plate 40 at the outer end so that outer face 42 thereof is concentric to vertical wall 44 of cell 18, which is parallel to the extended axis of shaft 24. Mounted to the inside of wall 44 so as to be electrically insulated therefrom are three cathodes 46 which are disposed in radial alignment with anodes 34 and concentric therewith. Each cathode 46 is provided with an inner face 48 which is concentric with outer face 42 of anodes 34. A collector ring 50 is mounted to the inside surface of housing 16 and electrical connection is made between each cathode 46 and such ring by means of a carbon brush 52 which is displaceably mounted in a mount 53 so as to be spring-pressed against the ring. Each cathode 46 is provided with a cylindrical boss 55 which extends through a hole in wall 44 and a mount 53 is threadingly engaged with the boss to provide electrical connection between carbon brush 52 and the cathode and also firmly hold the cathode to the wall. Mounts 53 and bosses 55 are, of course, insulated from wall 44.
DC current is supplied to anodes 34 and cathodes 46 from a source of power (not shown) through a regulator 54 which is adapted for adjusting the voltage and amperage output therefrom. Positive lead 56 from regulator 54 terminates in mercury pool 32 so as to apply a positive potential to anodes'34, through disc 26, during rotation of 6 cell 18.-.Negative lead 58 from regulator 54 isconnected to ring 50 so as to apply a negative potential to cathodes 46 through carbon brushes 52.
Demineralized water is added to electrolyte from a reservoir 60 at a rate regulated by valve 62 to make up for evaporation loss.
Shown in FIG. 4 is an alternate embodiment of apparatus 12 in which anodes 64, which are counterparts of anodes 34, are mounted to wall 44 in substantially the same vertical plane as cathodes 46. In this embodiment, a
, channel 66 extends around each of the anodes 64 to form a pair of vertically spaced inner faces 68 thereon. Cathodes 46 are mounted within channel 66 so as to be insulated from the related anode 64, and boss 70 on each of the cathodes extends through the related anode and through Wall 44 so that it can be threadingly engaged by a mount 53, as with the basic embodiment.
Electrical connection is made between positive lead 56 and each of the anodes 64 through the sliding contact of a carbon brush 72 related thereto with collector ring 74 mounted to the inside surface of housing 16. Each carbon brush 72 is displaceably disposed in a mount 76 and is spring-pressed into contact with ring 74 which is connected to positive lead 56 and the mount is threadingly engaged with boss 78 of the related anode 64. Bosses 78 extend through Wall 44 and are, of course, properly insulated therefrom.
Apparatus 12, as illustrated in FIGS. 1-3, is prepared for operation by first cleaning anodes 34 and cathodes 46 by known practice and then mounting the cathodes to cell 18 and adjusting the position of the anodes relative to the cathodes to form a space therebetween. This space is determined in large part by the thickness of the nickel strip to be deposited on cathodes and the amount of electrolyte 20 necessary to fill the space when subjected to centrifugal force CF. Electrolyte 20, at approximately 60 temperature, is then poured into cell 18 up to normal horizontal level L, shown in phantom in FIG. 3, which is a sufficient amount to cover faces 42 and 48 when the electrolyte is subjected to centrifugal force CF. The sulphamate bath described hereinbefore has been used to good advantage as electrolyte 20 but the invention is not limited to this composition.
Motor 21 is then energized by adjustment of rheostat 22 to the desired speed which causes rotation of cell 18, with cathodes 46 attached thereto, and anodes 34. As cell 18 gains speed, electrolyte 20, under the influence of centrifugal force CF, rises along wall 44, from its normal horizontal position L, to form a hollow cylinder there along covering faces 42 and 48, as shown in FIG. 3. Cur. rent to anodes 34 and cathodes 46 is then turned on at regulator 54 which is adjusted for the desired current density and voltage potential. Experiments to date have been made with regulator 54 set at 40 amperes per sqp/ft. and 2.5 volts although, because of the increased efliciency attainable as a result of this invention, deposition at a much higher current density is possible. With the rotation of cell 18, electrolyte 20 is not only subjected to centrifugal force CF and an electrical force field it, together with the depositing ions therein, is moved relative to anodes 34 and cathodes 46.
When the metal deposited on cathodes 46 is of the desired thickness, the current is turned off at regulator 54 and rheostat 22. Cathodes 46 are then removed from cell 18 and the deposited strips of nickel removed therefrom. In these strips the porosity present in deposits produced by conventional methods and apparatus is eliminated and the elastic modulus approaches the optimum value of 30x10 'p .s.i. This is achieved in large part because the gas bubbles and liquid inclusions, which are entrapped in the deposit during the conventional forms of electrodeposition, are
eliminated by the application of centrifugal force CF to electrolyte 20 and the movement thereof along cathodes 46. Consequently, cell 18 must be rotated at a rate high enough to create a suflicient centrifugal force CF and movement of electrolyte 20 relative to cathodes 46 to drive the bubbles and inclusions therefrom. A speed of 2500- 3000 rpm. is found to be adequate. When cell 18 is rotated at a higher speed it is expected that considerable changes in the structure of the deposit will take place due to the increased force applied to the depositing ions in electrolyte 29 and the increased rate of movement thereof relative to cathodes 46. Elimination of the bubbles and inclusions on cathodes 46, and the movement of electrolyte 20 therealong, also eliminates causes of the various polarization effects which, when present, reduce the efliciency of the electrodeposition. It has been found that at a particular current density the rate of deposition of the nickel is three times higher when cell 18 is rotated at 25003000 r.p.m. than when the cell is stationary. The same benefits from the process and apparatus of this invention are achieved when applied to the electrodeposition of other metals and alloys.
Operation of apparatus 12, as illustrated in FIG. 4, is the same as that of the basic embodiment hereinbefore described.
Shown in FIGS. 5 and 6 is another embodiment of apparatus 12 wherein cell is adapted for plating the inside surface of cylinder 82. In this embodiment, top 84 of cell 80 is threadingly mounted on wall 86 thereof to permit insertion of cylinder 82 into the cell. Before cylinder 82 is inserted, a gasket 88 having the same diameter as the inside diameter of cell 80 is inserted thereinto and after the cylinder is placed on top thereof another gasket is placed on top of the cylinder. When top 84 is installed on wall 86 and tightened a seal is made between cylinder 82 and gaskets 88 and 90 to form a reservoir for electrolyte 20 when poured thereinto through opening 92 in top 84.
Electrical connection is made between negative lead 58 and cylinder 82, so that it will be made cathodic when current is applied thereto, by means of ring 50, and at least three carbon brushes 52 and mounts 53 therefor as described in the basic embodiment. In addition, provided for each mount 53 is a bushing 94, with an external flange 96, which is mounted through a hole in wall 86 so as to be insulated therefrom and so that the flange is located on the inside of the wall. Each bushing 94 is provided with a threaded central bore 98 which is counterbored at 100 to slidingly receive a pad 102. Threaded portion 103 of mount 53 is received by bore 98 so as to act against pad 102, when tightened, to press the pad against the outside of cylinder 82. Together, bushings 94 cooperate, when tightened, to center cylinder 82 in cell 80, hold the cylinder against radial displacement, and provide electrical contact therewith.
Anodes 104 are similar to anodes 34 except that plates 106, which are the counterparts of plates 40, extend nearly the full length of cylinder 82. Sufiicient space must be left between the top and bottom of plates 106 and therebetween as shown in FIGS. 5 and 6 to permit flow of electrolyte therethrough when cell 80 is energized for rotation. It is obvious that plates 186 maybe connected to form a continuous cylinder with electrolyte 20, during displacement by centrifugal force field CF, flowing over and under the cylindrical anode. Operation is the same as that described for the basic embodiment.
I claim:
1. Apparatus for forming a metal deposit by electrodeposition under the influence of centrifugal force comprising a cell mounted for rotation, a wall of said cell being disposed parallel to the axis of rotation of said cell, an anode and a cathode spaced therefrom mounted Within said cell, and being disposed concentrically within approximately a common horizontal plane and in radially spaced relation to each other, said cell being adapted to contain an electrolyte, means for rotating said cell together with 5 said anode and said cathode at a speed sufiicient to displace said electrolyte by centrifugal force thereby to form an electrolyte cylinder along said cell wall between said anode and said cathode, and means for supplying an electric potential at a selected density to said anode and said cathode during rotation of said cell;
said anode comprising a plurality of arcuate segments, and including means for mounting each of said segments for radial adjustment relative to said axis of rotation. 2. The apparatus as defined in Claim 1 wherein said means for providing electrical current to said anode and said cathode comprises a collector ring having a negative potential, a carbon brush electrically connected to said cathode and having sliding contact with said collector ring, said rotating means including a shaft having a well axially located in one end thereof, a mercury pool disposed in said well, and a lead having a positive potential terminating in said mercury pool.
3. The apparatus as defined in Claim 1 wherein said cathode is disposed radially outwardly from said anode.
References Cited JOHN H. MACK, Primary Examiner W. I. SOLOMON, Assistant Examiner US. Cl. X.R. 204-218, 281
US00148947A 1969-01-21 1971-06-01 Apparatus for electrodeposition of metals under the influence of a centrifugal force field Expired - Lifetime US3827962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00148947A US3827962A (en) 1969-01-21 1971-06-01 Apparatus for electrodeposition of metals under the influence of a centrifugal force field

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US79268369A 1969-01-21 1969-01-21
US00148947A US3827962A (en) 1969-01-21 1971-06-01 Apparatus for electrodeposition of metals under the influence of a centrifugal force field

Publications (1)

Publication Number Publication Date
US3827962A true US3827962A (en) 1974-08-06

Family

ID=26846330

Family Applications (1)

Application Number Title Priority Date Filing Date
US00148947A Expired - Lifetime US3827962A (en) 1969-01-21 1971-06-01 Apparatus for electrodeposition of metals under the influence of a centrifugal force field

Country Status (1)

Country Link
US (1) US3827962A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3985634A (en) * 1975-01-27 1976-10-12 Larson Kay R Electrolytic silver recovery apparatus
US4077859A (en) * 1976-10-04 1978-03-07 Celanese Corporation Polyunsaturated halogenated monomers for use in ultraviolet coating systems
US4468677A (en) * 1982-08-26 1984-08-28 Sperry Corporation Printing apparatus
EP0183470A1 (en) * 1984-11-19 1986-06-04 Lth Associates Process and apparatus for separating metals from solutions
US4715934A (en) * 1985-11-18 1987-12-29 Lth Associates Process and apparatus for separating metals from solutions
US20140106179A1 (en) * 2012-10-17 2014-04-17 Raytheon Company Plating design and process for improved hermeticity and thermal conductivity of gold-germanium solder joints
CN109082699A (en) * 2018-08-23 2018-12-25 李秀利 A kind of rotatable comprehensive electroplanting device of electronic component

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3985634A (en) * 1975-01-27 1976-10-12 Larson Kay R Electrolytic silver recovery apparatus
US4077859A (en) * 1976-10-04 1978-03-07 Celanese Corporation Polyunsaturated halogenated monomers for use in ultraviolet coating systems
US4468677A (en) * 1982-08-26 1984-08-28 Sperry Corporation Printing apparatus
EP0183470A1 (en) * 1984-11-19 1986-06-04 Lth Associates Process and apparatus for separating metals from solutions
US4715934A (en) * 1985-11-18 1987-12-29 Lth Associates Process and apparatus for separating metals from solutions
US20140106179A1 (en) * 2012-10-17 2014-04-17 Raytheon Company Plating design and process for improved hermeticity and thermal conductivity of gold-germanium solder joints
CN109082699A (en) * 2018-08-23 2018-12-25 李秀利 A kind of rotatable comprehensive electroplanting device of electronic component

Similar Documents

Publication Publication Date Title
US3065153A (en) Electroplating method and apparatus
US3817843A (en) Electrodeposition of iron foil
US3583897A (en) Electroplating cell for recovering silver from photographic solutions
US3827962A (en) Apparatus for electrodeposition of metals under the influence of a centrifugal force field
US3461046A (en) Method and apparatus for producing copper foil by electrodeposition
US3716461A (en) Process for forming composite material by electrodeposition under the influence of a centrifugal force field
US2431949A (en) Apparatus for electroplating the inside of bearing shells and the like
IE913617A1 (en) Method and apparatus for applying surface treatment to metal¹foil
US3783110A (en) Process for electrodeposition of metals under the influence of a centrifugal force field
US4193846A (en) Manufacturing process of a thin metal sheet by electrolytic deposit
US3790464A (en) Electrolyzer including rotatable bipolar electrodes
US1772074A (en) Method of producing galvanic coatings
US4076597A (en) Method of forming iron foil at high current densities
US3850737A (en) Electroplating barrel with internal anode and cathode
US3920526A (en) Process for the electrodeposition of ductile palladium and electroplating bath useful therefor
US3929592A (en) Plating apparatus and method for rotary engine housings
US3696017A (en) Means for electrolytically depositing metal on an object or for anodic oxidation of an object
US2583101A (en) Electrolytic cell
US3278410A (en) Electrolytic anode
US2181490A (en) Electroplating apparatus
US3928167A (en) Improvements in methods of producing electrolytic anode assemblies
US2944954A (en) Electrolytic production of metal sheet
US4720329A (en) Apparatus and method for the electrolytic plating of layers onto computer memory hard discs
US3617449A (en) Electrolytic deposition
US2524912A (en) Process of electrodepositing copper, silver, or brass