US3824174A - Bipolar electrode - Google Patents

Bipolar electrode Download PDF

Info

Publication number
US3824174A
US3824174A US00364197A US36419773A US3824174A US 3824174 A US3824174 A US 3824174A US 00364197 A US00364197 A US 00364197A US 36419773 A US36419773 A US 36419773A US 3824174 A US3824174 A US 3824174A
Authority
US
United States
Prior art keywords
valve metal
metal
electrodes
anodic
bipolar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00364197A
Inventor
R Schultz
E Cook
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Occidental Chemical Corp
Original Assignee
Hooker Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hooker Chemical Corp filed Critical Hooker Chemical Corp
Priority to US00364197A priority Critical patent/US3824174A/en
Priority to GB2160174A priority patent/GB1403183A/en
Priority to DE19742424160 priority patent/DE2424160A1/en
Priority to CA200,183A priority patent/CA1009980A/en
Priority to FR7417635A priority patent/FR2230412B1/fr
Priority to JP49058688A priority patent/JPS5223793B2/ja
Priority to NL7406972A priority patent/NL7406972A/xx
Priority to IT2319674A priority patent/IT1012830B/en
Application granted granted Critical
Publication of US3824174A publication Critical patent/US3824174A/en
Assigned to OCCIDENTAL CHEMICAL CORPORATION reassignment OCCIDENTAL CHEMICAL CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). EFFECTIVE APRIL 1, 1982. Assignors: HOOKER CHEMICALS & PLASTICS CORP.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12674Ge- or Si-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12806Refractory [Group IVB, VB, or VIB] metal-base component
    • Y10T428/12812Diverse refractory group metal-base components: alternative to or next to each other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12875Platinum group metal-base component

Definitions

  • This invention relates to electrodes for use in electrolytic cells. More particularly, this invention relates to improved, corrosion-resistant, dimensionally-stable bipolar electrodes for the electrolysis of aqueous solutions of alkali metal chlorides in the production of alkali metal chlorates.
  • Graphite electrodes have been employed in the past in various alkaline chloride electrolysis operations; however, there have been certain disadvantages which have arisen as a result of the use of graphite.
  • One of the most serious of the disadvantages is the constant attrition of the graphite during the electrolysis operation. Attrition results in the increase of the clearance or spacing between the anode and the cathode which in turn causes an increase in the cell voltage drop and a resulting decreasing efiiciency in operation.
  • Graphite anodes have a limited life, generally being on the order of about 1.0 inches thick on installation but at the end of 10-12 months of continuous use may be reduced to about 0.25 inches, with the attendant loss in power and eificiency. Such losses, including economic losses, have resulted in the proposed use of metallic electrodes and the use of bipolar cells.
  • bipolar electrodes are preferentially employed which, when arranged suitably in an electrolytic cell, in a spaced electrical series, serve to function both as the anode and the cathode in the cell.
  • the electrodes are subjected to an electrical potential while immersed in the alkali metal chloride solution and, electrochemically, alkali metal chlorate is produced, either in the cell itself, or outside the cell upon the standing of the solution.
  • Bipolar cells are relatively simpler and more economical to produce than are monopolar cells
  • Bipolar cells allow for the use of minimaldistances between the electrodes which reduces voltage and allows for a reduction of the volume of electrolyte used.
  • Platinum group metal-coated electrolytic valve metals such as titanium have been proposed as substitutes for graphite anodes.
  • the metallic electrodes have offered several potential advantages over conventional graphite electrodes, as for example, lower overvoltage, lower ero- 3,824,174 Patented July 16, 1974 sion rates and the resulting electrolytic production of higher purity products.
  • the economic advantages gained by the use of such electrodes, however, must be sufficiently high to overcome the high cost of these metallic electrodes.
  • bipolar electrodes based on anodic precious metals A problem existant with bipolar electrodes based on anodic precious metals is that the titanium or valve metal support is attacked by hydrogen during the electrolysis on the cathode side, forming hydrides and causing disintegration of the electrode.
  • the present invention provides a bipolar electrode having excellent durability.
  • the electrodes of the present invention are composite bipolar electrodes having a base layer of valve metal, preferably titanium, an anodic material, preferably a platinum group metal or metal oxide, deposited on one side of the valve metal and a barrier layer of a metal silicide on the cathodic side of the valve metal.
  • the silicide has a low hydrogen diffusion rate and prevents the migration of the cathodically produced hydrogen from reaching the valve metal surface.
  • the electrode comprises a central or inner layer of a valve metal of which the oxide is chemically resistant under anodic conditions to the electrolyte employed.
  • valve metal as employed herein is definitive of a metal which can function generally as a cathode in an electrolytic cell, but not generally as an anode, due to the formation, under anodic conditions, of the oxide of the metal, which oxide once developed is highly resistant to the passage therethrough of electrons.
  • valve metal is titanium, although tantalum, zirconium, tungsten or columbium may also be advantageously employed.
  • valve metal layer One face of the central or inner valve metal layer is adhered to a layer of the silicide previously described.
  • the valve metal may be adhered to the silicide by any means readily available to the art, particularly by sputtering the silicide onto the valve metal.
  • the thickness of the layers is not critical, it only being necessary that the thickness be of such extent as to provide a self-supporting structure.
  • the valve metal layer is on the order of from about 0.10 to 0.70 or 0.80 inches in thickness, with the layer of metal silicide on the order of from about 0.05 inch to 0.2 inch in thickness.
  • At least an operable portion of the opposing face or the central or inner layer has bonded thereto a layer of suitable anodic material chemically resistant under anodic conditions to the electrolyte used-
  • suitable anodic material refers to a material which is electrically conductive, resistant to oxidation and substantially insoluble in the electrolyte. Platinum is the preferred anodic material; however, it is also possible to utilize ruthenium, palladium, osmium, iridium, oxides of these materials, alloys of two or more of the metals, or suitable mixtures thereof.
  • the anodic material preferably platinum
  • the metallic resinate may be mixed with an organic solvent or diluent, such as terpenes or aromatics, typically oil of turpentine, xylene or toluene, before being applied to the base member.
  • the electrode is heated to decompose and/ or to volatilize the organic matter and other non-metallic components, leaving on the base member a layer of adherent electroconductive platinum.
  • care should be taken to avoid oxide formation, for example, by limiting the temperatures of heating or by effecting heating in an oxygen-free atmosphere such as in a vacuum or under a nitrogen or argon blanket.
  • Heating may be effected in an air atmosphere; however, temperatures above about 600-650 C. are not recommended due to the possibility of oxidizing the valve metal.
  • anodic oxide coating the temperatures and times of heating are selected that will result in the formation of an oxide, preferably an oxide of a metal of the platinum series of metals, such as ruthenium.
  • the temperature applied may vary dependent upon the particular platinum metal used. Typically, the temperature m-ay be in the range of from about 300 to about 600 C., preferably from about 450 C. to about 550 C., with such temperatures applied for periods on the order of from about minutes to about 2 hours.
  • the heating of the metal is most advantageously conducted in an atmosphere containing elemental oxygen such as air or other oxygen-inert gas mixtures although an atmosphere of pure oxygen could be used.
  • the platinum group metal oxide formed is either crystalline or amorphous depending upon the temperature of heating, with the degree of crystallinity increasing as temperatures and duration of heating are increased. Both crystalline, particularly if the crystals are small in size, and non-crystalline coatings have good electroconductivity. Where the coatings have a low degree of crystallinity, improved adhesion and conductivity are noted.
  • the anodic material be applied in such manner as to completely cover the entire surface of the valve metal central or inner plate.
  • the total anodic side of the central or inner plate should be coated with the anodic material to the extent that the massed portion of the anodic material function effectively as an anode. It is preferred that the anodic side of the inner plate be essentially covered by the anodic material.
  • the anodic layer preferably a platinum group metal or metal oxide, can be deposited to the extent of 0.0001 inch, although the use of lesser or greater thicknesses may be achieved, depending on the methods of deposition, it only being necessary that the anodic material be present on the anodic side of the central or inner plate in an amount sufficient to function effectively as the anode.
  • the anodic material as hereinbefore stated can be deposited on the central or inner layer of valve metal by any suitable method known to the art.
  • the deposition can be effected, for example, by using a bath consisting of 4.5 grams platinic chloride and 22 ml. 37 percent hydrochloric acid dissolved in 2800 ml. water.
  • the temperature is generally maintained between about 70 and 85 C. and the current intensity is such that essentially no hydrogen is evolved at the valve metal panel.
  • a graphite anode is used in the bath and the valve metal is made cathodic.
  • the panel is agitated or moved during the plating operation, and the current is regulated as to preclude hydrogen involvement at the valve metal, with the anodic platinum metal being deposited at a thickness less than about 0.0001 inch.
  • the electrodes of the present invention find particular application in the electrolytic production of alkali metal chlorates.
  • the process may be carried out continuously by passing a solution containing alkali metal chloride through the cell at temperatures generally on the order of up to the boiling point of the electrolyte with the efiluent liquor cooled or concentrated to promote crystallization of the chlorate produced in the cell.
  • a small amount of chromate may be added to the liquor fed to the cell in order to promote chlorate formation, in accordance with methods known in the art.
  • a typical bipolar electrolytic unit which can be used with the novel electrodes of the present invention consists of a housing having spaced-apart end electrodes with the enclosed space defined by the walls and end electrodes divided intermediate at intervals by the bipolar electrodes into substantially isolated unit cells.
  • unit cell referring to one of the chambers or sections into which the apparatus is divided by the bipolar electrodes. Such cell makeup permits a good circulation of the electrolyte between zones.
  • a bipolar electrolytic cell utilizing the bipolar elec trodes described has essentially minimal or no current leakage and voltages on the order of 3.8 to 4.0 volts can be employed of about 4 amps/m What is claimed is:
  • a bipolar electrode consisting of a layer of valve metal, at least a portion of the anodic surface of which is conductively covered by a material selected from the group consisting of platinum, palladium, ruthenium, osmium, iridium, oxides thereof and mixtures thereof and a barrier layer of a silicide on the cathodic side of the valve metal layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

AN IMPROVED DIMENSIONALLY STABLE BIPOLAR ELECTRODE FOR USE IN ELECTROCHEMICAL APPLICATIONS COMPRISING A CENTRAL VALVE METAL LAYER, SUITABLE ANODIC MATERIAL ON THE ANODE SIDE OF THE VALVE METAL AND A BARRIER LAYER OF A METAL SILICIDE ON THE CATHODE SIDE OF THE VALVE METAL LAYER. SUCH ELECTRODES FUNCTION AT LOW HYDROGEN PERMEABILITY RATES DURING USE IN ELECTROLYTIC PROCESSES.

Description

United States Patent 3,824,174 BIPOLAR ELECTRODE Robert F. Schultz, Niagara Falls, and Edward H. Cook, Jr., Lewiston, N.Y., assignors to Hooker Chemical Corporation, Niagara Falls, NY. No Drawing. Filed May 25, 1973, Ser. No. 364,197 Int. Cl. B01]; 1/00, 3/06; C011) 11/26 US. Cl. 204-290 F 7 Claims ABSTRACT OF THE DISCLOSURE An improved dimensionally stable bipolar electrode for use in electrochemical applications comprising a central valve metal layer, suitable anodic material on the anode side of the valve metal and a barrier layer of a metal silicide on the cathode side of the valve metal layer. Such electrodes function at low hydrogen permeability rates during use in electrolytic processes.
This invention relates to electrodes for use in electrolytic cells. More particularly, this invention relates to improved, corrosion-resistant, dimensionally-stable bipolar electrodes for the electrolysis of aqueous solutions of alkali metal chlorides in the production of alkali metal chlorates.
The electrolysis of aqueous solutions of alkali metal chlorides such as sodium chloride and potassium chloride has been conducted commercially on a wide scale.
Graphite electrodes have been employed in the past in various alkaline chloride electrolysis operations; however, there have been certain disadvantages which have arisen as a result of the use of graphite. One of the most serious of the disadvantages is the constant attrition of the graphite during the electrolysis operation. Attrition results in the increase of the clearance or spacing between the anode and the cathode which in turn causes an increase in the cell voltage drop and a resulting decreasing efiiciency in operation.
Graphite anodes have a limited life, generally being on the order of about 1.0 inches thick on installation but at the end of 10-12 months of continuous use may be reduced to about 0.25 inches, with the attendant loss in power and eificiency. Such losses, including economic losses, have resulted in the proposed use of metallic electrodes and the use of bipolar cells.
Generally in the production of alkali metal chlorate, bipolar electrodes are preferentially employed which, when arranged suitably in an electrolytic cell, in a spaced electrical series, serve to function both as the anode and the cathode in the cell. The electrodes are subjected to an electrical potential while immersed in the alkali metal chloride solution and, electrochemically, alkali metal chlorate is produced, either in the cell itself, or outside the cell upon the standing of the solution.
The advantages of the use of the bipolar cells and bipolar electrodes include:
(a) Bipolar cells are relatively simpler and more economical to produce than are monopolar cells;
(b) The electrical contact for supplying current to the electrodes in bipolar cells is applied only through the first and last plates while the current supply to the anodes of monopolar cells must be supplied by electrical contact established with each individual anode;
(c) Bipolar cells allow for the use of minimaldistances between the electrodes which reduces voltage and allows for a reduction of the volume of electrolyte used.
Platinum group metal-coated electrolytic valve metals such as titanium have been proposed as substitutes for graphite anodes. The metallic electrodes have offered several potential advantages over conventional graphite electrodes, as for example, lower overvoltage, lower ero- 3,824,174 Patented July 16, 1974 sion rates and the resulting electrolytic production of higher purity products. The economic advantages gained by the use of such electrodes, however, must be sufficiently high to overcome the high cost of these metallic electrodes.
A problem existant with bipolar electrodes based on anodic precious metals is that the titanium or valve metal support is attacked by hydrogen during the electrolysis on the cathode side, forming hydrides and causing disintegration of the electrode.
The present invention provides a bipolar electrode having excellent durability. The electrodes of the present invention are composite bipolar electrodes having a base layer of valve metal, preferably titanium, an anodic material, preferably a platinum group metal or metal oxide, deposited on one side of the valve metal and a barrier layer of a metal silicide on the cathodic side of the valve metal.
The silicide has a low hydrogen diffusion rate and prevents the migration of the cathodically produced hydrogen from reaching the valve metal surface.
The electrode comprises a central or inner layer of a valve metal of which the oxide is chemically resistant under anodic conditions to the electrolyte employed. The expression valve metal as employed herein is definitive of a metal which can function generally as a cathode in an electrolytic cell, but not generally as an anode, due to the formation, under anodic conditions, of the oxide of the metal, which oxide once developed is highly resistant to the passage therethrough of electrons.
The preferred valve metal is titanium, although tantalum, zirconium, tungsten or columbium may also be advantageously employed.
The expression chemically resistant under anodic conditions hereinbefore employed, as applied to the valve metal, indicates that the oxide is resistant to the corrosive surrounding electrolyte and is not, to an appreciable extent, subject to erosion, deterioration or to electrolyte attack.
One face of the central or inner valve metal layer is adhered to a layer of the silicide previously described. The valve metal may be adhered to the silicide by any means readily available to the art, particularly by sputtering the silicide onto the valve metal. The thickness of the layers is not critical, it only being necessary that the thickness be of such extent as to provide a self-supporting structure. Generally, the valve metal layer is on the order of from about 0.10 to 0.70 or 0.80 inches in thickness, with the layer of metal silicide on the order of from about 0.05 inch to 0.2 inch in thickness.
At least an operable portion of the opposing face or the central or inner layer has bonded thereto a layer of suitable anodic material chemically resistant under anodic conditions to the electrolyte used- The term suitable anodic material as employed herein refers to a material which is electrically conductive, resistant to oxidation and substantially insoluble in the electrolyte. Platinum is the preferred anodic material; however, it is also possible to utilize ruthenium, palladium, osmium, iridium, oxides of these materials, alloys of two or more of the metals, or suitable mixtures thereof.
The anodic material, preferably platinum, can be applied to the anode side of the valve metal as chloroplatinic acid or as a thermally-decomposable organo-metallic compound, such as platinum resina'te, with the adhesion of the platinum increased by reducing the concentration of thev resinate. For example, the metallic resinate may be mixed with an organic solvent or diluent, such as terpenes or aromatics, typically oil of turpentine, xylene or toluene, before being applied to the base member. The electrode is heated to decompose and/ or to volatilize the organic matter and other non-metallic components, leaving on the base member a layer of adherent electroconductive platinum. In producing a metallic anodic coating by such method, care should be taken to avoid oxide formation, for example, by limiting the temperatures of heating or by effecting heating in an oxygen-free atmosphere such as in a vacuum or under a nitrogen or argon blanket.
Heating may be effected in an air atmosphere; however, temperatures above about 600-650 C. are not recommended due to the possibility of oxidizing the valve metal.
The production of an anodic oxide coating, the temperatures and times of heating are selected that will result in the formation of an oxide, preferably an oxide of a metal of the platinum series of metals, such as ruthenium. The temperature applied may vary dependent upon the particular platinum metal used. Typically, the temperature m-ay be in the range of from about 300 to about 600 C., preferably from about 450 C. to about 550 C., with such temperatures applied for periods on the order of from about minutes to about 2 hours. The heating of the metal is most advantageously conducted in an atmosphere containing elemental oxygen such as air or other oxygen-inert gas mixtures although an atmosphere of pure oxygen could be used. The platinum group metal oxide formed is either crystalline or amorphous depending upon the temperature of heating, with the degree of crystallinity increasing as temperatures and duration of heating are increased. Both crystalline, particularly if the crystals are small in size, and non-crystalline coatings have good electroconductivity. Where the coatings have a low degree of crystallinity, improved adhesion and conductivity are noted.
It is not necessary that the anodic material be applied in such manner as to completely cover the entire surface of the valve metal central or inner plate. However, the total anodic side of the central or inner plate should be coated with the anodic material to the extent that the massed portion of the anodic material function effectively as an anode. It is preferred that the anodic side of the inner plate be essentially covered by the anodic material.
The anodic layer, preferably a platinum group metal or metal oxide, can be deposited to the extent of 0.0001 inch, although the use of lesser or greater thicknesses may be achieved, depending on the methods of deposition, it only being necessary that the anodic material be present on the anodic side of the central or inner plate in an amount sufficient to function effectively as the anode.
The anodic material as hereinbefore stated, can be deposited on the central or inner layer of valve metal by any suitable method known to the art. The deposition can be effected, for example, by using a bath consisting of 4.5 grams platinic chloride and 22 ml. 37 percent hydrochloric acid dissolved in 2800 ml. water. The temperature is generally maintained between about 70 and 85 C. and the current intensity is such that essentially no hydrogen is evolved at the valve metal panel. A graphite anode is used in the bath and the valve metal is made cathodic. The panel is agitated or moved during the plating operation, and the current is regulated as to preclude hydrogen involvement at the valve metal, with the anodic platinum metal being deposited at a thickness less than about 0.0001 inch. Minor variations may be effected in the deposition of the precious metal and varying thicknesses may be obtained by suitable modifications in the time consumed in the electroplating operation. Also, simultaneous deposition may be made of more than one component, as for example, by effecting a coating from a solution containing, in addition to platinum, another platinum group metal compound such as ruthenium, such other component being added to the electroplating bath whereby a desired resulting composite coating is obtained by the electrodeposition.
The electrodes of the present invention, as stated, find particular application in the electrolytic production of alkali metal chlorates. In producing chlorates using the electrodes of the present invention, the process may be carried out continuously by passing a solution containing alkali metal chloride through the cell at temperatures generally on the order of up to the boiling point of the electrolyte with the efiluent liquor cooled or concentrated to promote crystallization of the chlorate produced in the cell. Advantageously, a small amount of chromate may be added to the liquor fed to the cell in order to promote chlorate formation, in accordance with methods known in the art.
A typical bipolar electrolytic unit which can be used with the novel electrodes of the present invention consists of a housing having spaced-apart end electrodes with the enclosed space defined by the walls and end electrodes divided intermediate at intervals by the bipolar electrodes into substantially isolated unit cells. For each individual electrolysis zone substantially isolated from the reaction and electrolysis zones of the adjoining unit cells, the term unit cell referring to one of the chambers or sections into which the apparatus is divided by the bipolar electrodes. Such cell makeup permits a good circulation of the electrolyte between zones.
A bipolar electrolytic cell utilizing the bipolar elec trodes described has essentially minimal or no current leakage and voltages on the order of 3.8 to 4.0 volts can be employed of about 4 amps/m What is claimed is:
1. A bipolar electrode consisting of a layer of valve metal, at least a portion of the anodic surface of which is conductively covered by a material selected from the group consisting of platinum, palladium, ruthenium, osmium, iridium, oxides thereof and mixtures thereof and a barrier layer of a silicide on the cathodic side of the valve metal layer.
2. A bipolar electrode as defined by Claim 1 wherein the valve metal is titanium.
3. A bipolar electrode as defined by Claim 1 wherein the material covering the anode side is platinum metal.
4. A bipolar electrode as defined by Claim 1 wherein the silicide is titanium silicide.
5. A bipolar electrode as defined by Claim 1 wherein the material covering the anode side is platinum metal.
6. A bipolar electrode as defined by Claim 5 wherein the valve metal is titanium.
7. A bipolar electrode as defined by Claim 6 wherein the silicide is titanium silicide.
References Cited UNITED STATES PATENTS 2,955,999 10/1960 Tirrell 204- 3,291,714 12/1966 Hall et al. 204-256 3,307,925 3/ 1967 Jacobson 29-195 A 3,380,908 4/ 1968 Ono et al. 204-290F 3,491,014 1/1970 Bianchi et al. 204-242 3,562,008 2/ 1971 Martinsons 117-221 3,671,415 6/1972 King et al. 204-284 3,047,419 7/1962 Yutema et a1. 29-198 X FREDERICK C. EDMUND'SON, Primary Examiner US. Cl. X.R. 29-195 A WPTOEO {5/69} UNITED STATES PATENT OFFICE @ERTIFICATE OF CORRECTION Eaten: No. 3 Q24 174 Dated July 16, 1974 It iE cartified that; error appears in the above-identified patent and that amid Letgers Patent are hereby corrected as shown below:
, I w Golumn 4 line 48 (Claim 5) "platinum metal" should read =-ruthonium oxide---.
Sign ed, and sealed this 5th day of November 1974.
(SEAL Attesfc:
! MCCOY M. GIBSON JR. C. MARSHALL DANN Attesting Officer Commissioner of Patents
US00364197A 1973-05-25 1973-05-25 Bipolar electrode Expired - Lifetime US3824174A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US00364197A US3824174A (en) 1973-05-25 1973-05-25 Bipolar electrode
GB2160174A GB1403183A (en) 1973-05-25 1974-05-15 Bipolar electrodes
CA200,183A CA1009980A (en) 1973-05-25 1974-05-17 Bipolar electrodes
DE19742424160 DE2424160A1 (en) 1973-05-25 1974-05-17 BIPOLAR ELECTRODES
FR7417635A FR2230412B1 (en) 1973-05-25 1974-05-21
JP49058688A JPS5223793B2 (en) 1973-05-25 1974-05-23
NL7406972A NL7406972A (en) 1973-05-25 1974-05-24
IT2319674A IT1012830B (en) 1973-05-25 1974-05-27 ELECTRODES FOR ELECTROLYTIC CELLS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00364197A US3824174A (en) 1973-05-25 1973-05-25 Bipolar electrode

Publications (1)

Publication Number Publication Date
US3824174A true US3824174A (en) 1974-07-16

Family

ID=23433469

Family Applications (1)

Application Number Title Priority Date Filing Date
US00364197A Expired - Lifetime US3824174A (en) 1973-05-25 1973-05-25 Bipolar electrode

Country Status (1)

Country Link
US (1) US3824174A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5265949A (en) * 1989-08-21 1993-11-30 Kassbohrer Karl Fahrzeugwerke Gmbh Steel crosspiece

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5265949A (en) * 1989-08-21 1993-11-30 Kassbohrer Karl Fahrzeugwerke Gmbh Steel crosspiece

Similar Documents

Publication Publication Date Title
US4468416A (en) Electrolytic electrodes having high durability and process for the production of same
US3718551A (en) Ruthenium coated titanium electrode
US3878083A (en) Anode for oxygen evolution
US4288302A (en) Method for electrowinning metal
US4140813A (en) Method of making long-term electrode for electrolytic processes
CA1094981A (en) Bipolar electrodes
US4555317A (en) Cathode for the electrolytic production of hydrogen and its use
US3875043A (en) Electrodes with multicomponent coatings
US3428544A (en) Electrode coated with activated platinum group coatings
US3663414A (en) Electrode coating
US4471006A (en) Process for production of electrolytic electrode having high durability
US3926751A (en) Method of electrowinning metals
FI64954B (en) ELEKTRODER FOER ELEKTROLYTISKA PROCESSER
US3801490A (en) Pyrochlore electrodes
US4180445A (en) Oxygen selective anode
US6231731B1 (en) Electrolyzing electrode and process for the production thereof
US4132620A (en) Electrocatalytic electrodes
EP0046448B1 (en) Electrode with outer coating for effecting an electrolytic process and protective intermediate coating on a conductive base, and method of making same
US3720590A (en) Method of coating an electrode
US3878084A (en) Bipolar electrode
US3254015A (en) Process for treating platinum-coated electrodes
US3826733A (en) Bipolar electrode
EP0063545A1 (en) Electrocatalytic protective coating on lead or lead alloy electrodes
US3329594A (en) Electrolytic production of alkali metal chlorates
US3945907A (en) Electrolytic cell having rhenium coated cathodes

Legal Events

Date Code Title Description
AS Assignment

Owner name: OCCIDENTAL CHEMICAL CORPORATION

Free format text: CHANGE OF NAME;ASSIGNOR:HOOKER CHEMICALS & PLASTICS CORP.;REEL/FRAME:004109/0487

Effective date: 19820330