US3824043A - Hydraulic pump and valve unit - Google Patents

Hydraulic pump and valve unit Download PDF

Info

Publication number
US3824043A
US3824043A US00367713A US36771373A US3824043A US 3824043 A US3824043 A US 3824043A US 00367713 A US00367713 A US 00367713A US 36771373 A US36771373 A US 36771373A US 3824043 A US3824043 A US 3824043A
Authority
US
United States
Prior art keywords
valve
pump
flow
flow passage
reservoir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00367713A
Inventor
R Nordell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TIME COMMERCIAL FINANCING CORP
Original Assignee
TIME COMMERCIAL FINANCING CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TIME COMMERCIAL FINANCING CORP filed Critical TIME COMMERCIAL FINANCING CORP
Priority to US00367713A priority Critical patent/US3824043A/en
Priority to US46946274 priority patent/US3910313A/en
Priority to DE19742425472 priority patent/DE2425472A1/en
Priority to AU69670/74A priority patent/AU484921B2/en
Priority to CA201,693A priority patent/CA1014418A/en
Priority to IT23631/74A priority patent/IT1014791B/en
Priority to JP49063848A priority patent/JPS513A/ja
Priority to GB2523474A priority patent/GB1470319A/en
Priority to FR7419519A priority patent/FR2232691B3/fr
Application granted granted Critical
Publication of US3824043A publication Critical patent/US3824043A/en
Priority to CA276,588A priority patent/CA1026198A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F3/00Devices, e.g. jacks, adapted for uninterrupted lifting of loads
    • B66F3/24Devices, e.g. jacks, adapted for uninterrupted lifting of loads fluid-pressure operated
    • B66F3/25Constructional features
    • B66F3/42Constructional features with self-contained pumps, e.g. actuated by hand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • F04B53/102Disc valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • F04B53/109Valves; Arrangement of valves inlet and outlet valve forming one unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B7/00Piston machines or pumps characterised by having positively-driven valving

Definitions

  • a hydraulic pump and valve unit for operating a hydraulically powered device such as a hydraulic power cylinder for raising and lowering the cab of an automotive truck, includes a pump portion closely coupled to a valve portion, the latter having a cylindrical valve spool with an axial bore adapted to receive hydraulic fluid from the pump portion of the unit.
  • the valve spool is rotatably mounted and arranged so as to supply inflowing hydraulic fluidunder pressure to one port of the hydraulically powered device and to receive return fluid from another port of such device when in one position, and to reverse said supply and return in a rotated position.
  • the pump is located between a hydraulic fluid reservoir and the valve, and the supply of hydraulic fluid from the former to the latter by the pump is through check-valved passage means providing a substantially direct and free flow path for the fluid.
  • the invention is in the field of pump and valve systems for causing and controlling forward and reverse flows of hydraulic fluid to and from a hydraulically powered device, such as a lift cylinder commonly employed in a truckcab-raising and lowering system.
  • the pump and valve are closely coupled portions of a unitary device and the feed from pump reservoir to the pump proper and from pump proper to valve is through the same flow passage, thereby mi imizing flow distance.
  • Pressurized hydraulic fluid from the pump portion of the unit is supplied directly to an axial bore in the valve spool of the valve portion of the unit. Back-flow is prevented by a check valve advantageously located in such bore, thereby providing for containment of pressure within the valve.
  • Ports may be and preferably are spaced 120 apart. This makes for improved sealing characteristics.
  • a particularly advantageous feature in connection with use of the device in a track-cab-raising and lowering system is the provision for cushioning of free fall of the truck cab substantially immediately upon the commencement of free fall. This is accomplished by the arrangement for direct and relatively free flow of hydraulic fluid from the pump portion of the unit to the valve portion thereof.
  • the flow passage through which the pump is supplied with hydraulic fluid from the pump reservoir on its intake stroke and through which the control valve is supplied with pressurized hydraulic fluid on the pressure stroke of the pump is provided with a check valve between pump and pump reservoir, permitting inflow from reservoir to pump on the latters intake stroke and preventing back-flow into the reservoir on the pressure stroke.
  • the other check valve aforementioned being of reverse type, prevents the pulling of hydraulic fluid from the system on the intake stroke of the pump during supply thereto of fluid from the reservoir.
  • FIG. 1 represents a view in front elevation of a hydraulic pump and valve unit conforming to the invention
  • FIG. 2 a top plan view of the same
  • FIG. 3 a view in vertical section taken on the line 3-3 of FIG. 2, and showing various hidden parts in broken lines;
  • FIG. 4 a view in vertical section taken on the line 4-4 of FIGS;
  • FIG. 5 a detail view in transverse vertical section of the valve portion of the unit taken on the. line 5-5 of FIG. 4, showing one position of the valve spool for the supply and return of hydraulic fluid to a hydraulicallyoperated device, such as a lift cylinder for raising and lowering the cab of an automotive truck;
  • a hydraulicallyoperated device such as a lift cylinder for raising and lowering the cab of an automotive truck;
  • FIG. 6 a similar view taken after the valve spool has been rotated to a reverse position
  • FIG. 7 a fragmentary view in longitudinal vertical section taken on the line 77 of FIG. 5, showing the valve spool in elevation;
  • FIG. 8 a fragmentary view in longitudinal horizontal section taken on the line 88 of FIG. 6;
  • FIG. 9 a view in transverse vertical section taken on the line 99 of FIG. 8.
  • the unit comprises a valve portion 10, FIG. 1, closely coupled to a pump portion 11.
  • a valve body 12, FIGS. 2 and 4 is connected to a pump housing 13, which is attached to a reservoir 14, FIG. 3, for holding a supply of hydraulic fluid.
  • a cylindrical valve spool 15 is rotatably received by and extends through the valve body, and is rotated by means of a handle 16.
  • a pump cylinder 17 having a piston 18 adapted for manual reciprocation by means of a pump handle 19.
  • the handle is secured at one end in a socket piece 20, which is pivotally attached to a mounting post 21, FIGS. 1 and 3, extending from and attached to the pump housing, and which is also pivotally attached to the upper end of piston 18.
  • a socket piece 20 which is pivotally attached to a mounting post 21, FIGS. 1 and 3, extending from and attached to the pump housing, and which is also pivotally attached to the upper end of piston 18.
  • Valve spool 15 is provided with an axial bore 15a extending thereinto from one end. Such bore communicates directly with a preferably rectilinear flow pas- A check valve in flow passage 22 between reservoir 14 and pump cylinder port 24 is provided by a bail 25 normally held against seat 26a of an adaptor sleeve 26 by spring 27. A second, reverse-acting check valve, conveniently located in bore 15a of valve spool 15, is provided by a ball 28 normally held against seat 29 of a sleeve '29 by spring 30.
  • Passage 31 opens into flow passage 22, and thereby communicates with pump cylinder 17 through port 24.
  • Passage 32 communicates with reservoir l4'through a pressure relief valve 33.
  • a pressure relief valve 34 FIGS. 1, 2 and 3, leading to atmosphere, is also provided in the top wall of reservoir 14.
  • Hydraulic fluid is supplied to reservoir 14 through a fitting 35, FIG. 3, which is normally closed by a plug
  • a longitudinal groove 38 is provided on the surface of the spool 120 from each of the flow passages 36 and '37 and extending from circumferential alignment therewith to a circumferential groove 39, FIGS-7, 8 and 9, provided around the surface of the spool at a location spaced axially along the spool.
  • a oair of passages 40 and 41, FIGS. 5 and 6, are provided in valve body 12 for selective registry with either the groove 38 and passage 37, respectively, of the valve spool, as in FIG. 5, or with the passage 36 and groove 38, respectively, as in FIG. 6.
  • one of the passages of the valve body is in communication with one of the divergent passages of the valve spool and the other in communication with the longitudinal groove of such valve spool in each of the two working positions of the valve. This can be seen by comparing FIGS. 5 and 6.
  • longitudinal groove 38 of the valve spool communicates with circumferential groove 39 thereof in both of the two working positions of such spool.
  • a third passage 42, FIG. 7, within valve body 12 has a radial portion 42a positioned to register with circumferential groove 39 of valve spool 15 and a longitudinal portion 42b that communicates with a fluid-return passage 43 in pump housing 13 through a restricted orifice 44 of adjustable type.
  • Passage 43 (shown only fragmentarily) leads back to reservoir 14.
  • valve spool With the valve spool placed in the position shown in FIG. 6, movement of the pump handle up and down forces hydraulic fluid under pressure into and through axial flow passage 36 thereof, and into and through passage 40 of valve body 12 from where it flows through a line 45 into one end of the lift cylinder (not shown) of the overall system. This raises the cab of the truck in well known manner.
  • the fluid in the-opposite end of the lift cylinder flows back'into valve 10 through a line 46 attached to passage 41, which is in communication with longitudinal groove 38.
  • the return fluid flows into circumferential groove 39, into passage 42, through orifice 44, into passage 43, and thence into the reservoir 14.
  • valve spool 15 may be rotated slightly so that passage 41 of valve body 12 is in only partial communication with groove 38, thereby further restricting fluid flow from the lift cylinder. If the valve spool is' rotated enough so that there is no communication between passage 41 and groove 38, the truck cab will remain stationary.
  • valve spool 12 To operate the power cylinder in the opposite direction for returning the truck cab to its original closed condition, valve spool 12 is rotated clockwise from its position in FIG. 6 to the position shown in FIG. 5.
  • the pump is now connected through axial flow passage 22a and flow passage 37 of the valve spool and through passage 41 of the valve body to the opposite end of the lift cylinder of the overall system.
  • Pressure fluid now forces the piston in the power cylinder in the opposite direction, and return fluid from the lift cylinder flows into and through passage 40 of the valve body into and through longitudinal groove 38, circumferential groove 39, passage 42, orifice 44, and passage 43 back to reservoir l4.
  • pumping is continued until the center of gravity of the truck cab reaches its high point, at which time it continues its travel by free fall in a manner similar to that explained above.
  • valve spool 15 The two working positions of valve are reached easily by providing stops for handle 16 at appropriate locations determining the limits of its back and forth movements, which bring selective registry of certain ports in valve spool with certain ports in valve body 12, all as shown in FIGS. 5 and 6, respectively.
  • terminal end portion 15b of valve spool 15 is of reduced diameter and passes through a hollow cap member 12a of valve body 12 before receiving control handle 16.
  • a pin 47 extends radially into chamber 48 of valve body cap member 12a, between a pair of limit stops, from securement in valve spool end portion 15b.
  • the limit stops are provided by set screws 49, FIG. 1, accessible from the exterior of the valve body.
  • one such passage extending from the axial flow passage to the surface of the spool could be provided, together with two longitudinal grooves (like 38) connecting to a circumferential groove (like 39), with the said one passage being located an equal angular distance from both of the longitudinal grooves and within either the larger or smaller sector between such grooves.
  • circumferential groove 39 is illustrated as extending completely around the valve spool, and this is presently preferred because of manufacturing techniques, it should be realized that this groove need only extend a distance equal to the distance between one of the divergent flow passages and longitudinal groove 38.
  • a hydraulic pump and valve unit comprising a pump portion and a valve portion closely coupled in fluid flow communication with each other through a flow passage extending therebetween, the pump portion being a reservoir for hydraulic fluid and the valve portion comprising a valve body anda valve spool rotatably mounted in the valve body and having an axial bore therein in direct fluid flow communication with said flow passage, said flow passage extending from said reservoir to said axial bore; a pump cylinder and piston in said pump portion of the unit, the cylinder having a port opening into said flow passage between the reservoir and the valve for intake and discharge of hydraulic fluid on the suction and pressure strokes, respectively, of said piston; check valve means between said port and said reservoir for permitting fluid to flow from the reservoir to the pump cylinder on the suction stroke of the piston but preventing backflow into said reservoir on the pressure stroke of the piston; check valve means between said port and said valve for permitting fluid to flow from the pump cylinder into the valve on the pressure stroke of the piston by way of said flow passage and said axial bore but preventing backflow into said cylinder
  • the sets of cooperative flow passages comprise a pair of divergent flow passages extending radially through the valve spool at a location in common along the length thereof and in communication with the axial bore thereof and opening into the exterior circumferential surface of the valve spool; a pair of flow passages extending transversely through the valve body in circumferential alignment with said divergent flow passages; a circumferential groove formed in the said exterior surface of the valve spool spaced longitudinally thereof from said divergent flow passages; a longitudinal groove formed in the said exterior circumferential surface of the valve spool and extending from communication with said circumferential groove to a location on said exterior circumferential surface of the valve spool that lies between the port openings thereinto of said divergent flow passages; and a flow passage in the valve body in registry with said circumferential groove and in flow communication with the return flow passage means.

Abstract

A hydraulic pump and valve unit for operating a hydraulically powered device, such as a hydraulic power cylinder for raising and lowering the cab of an automotive truck, includes a pump portion closely coupled to a valve portion, the latter having a cylindrical valve spool with an axial bore adapted to receive hydraulic fluid from the pump portion of the unit. The valve spool is rotatably mounted and arranged so as to supply inflowing hydraulic fluid under pressure to one port of the hydraulically powered device and to receive return fluid from another port of such device when in one position, and to reverse said supply and return in a rotated position. The pump is located between a hydraulic fluid reservoir and the valve, and the supply of hydraulic fluid from the former to the latter by the pump is through check-valved passage means providing a substantially direct and free flow path for the fluid.

Description

[ July 16, 1974 HYDRAULIC PUMP AND VALVE UNIT Inventor: Randy J. Nordell, Salt Lake City,
Utah
Assignee: Time Commercial Financing Corporation, Salt Lake City, Utah Filed: June 7, 1973 Appl. No.: 367,713
US. Cl. 417/440, 417/568 Int. Cl. F04b 21/02, Fl7d 3/00 Field of Search l37/625.23, 625.43;
[56] References Cited UNITED STATES PATENTS Primary ExaminerWilliam l. Freeh Assistant Examiner-Arnold F. Ward Attorney, Agent, or Firm-Phillip A. Mallinckrodt Mallinckrodt & Mallinckrodt [5 7] ABSTRACT A hydraulic pump and valve unit for operating a hydraulically powered device, such as a hydraulic power cylinder for raising and lowering the cab of an automotive truck, includes a pump portion closely coupled to a valve portion, the latter having a cylindrical valve spool with an axial bore adapted to receive hydraulic fluid from the pump portion of the unit. The valve spool is rotatably mounted and arranged so as to supply inflowing hydraulic fluidunder pressure to one port of the hydraulically powered device and to receive return fluid from another port of such device when in one position, and to reverse said supply and return in a rotated position. The pump is located between a hydraulic fluid reservoir and the valve, and the supply of hydraulic fluid from the former to the latter by the pump is through check-valved passage means providing a substantially direct and free flow path for the fluid.
7 Claims, 9 Drawing Figures PATENTEUJuu 61974 SHEET 1 (IF 2 1 HYDRAULIC PUMP AND VALVE UNIT BACKGROUND OF THE INVENTION Field of the Invention The invention is in the field of pump and valve systems for causing and controlling forward and reverse flows of hydraulic fluid to and from a hydraulically powered device, such as a lift cylinder commonly employed in a truckcab-raising and lowering system.
State of the Art A number of different four-way valves have been developed heretofore, some specifically for use in hydraulic systems designed to raise and lower the cab of a tractor-trailer type of automotive truck, see for example US. Pat. Nos. 3,430,653 and 3,610,283, the latter disclosing an elongate valve spool having an axial bore and radial passages extending from such bore to selective communication with ports in a valve body in which the valve spool is installed. In all of these, however, the hydraulic fluid is supplied through one or another of the ports of the valve body and is directed in one way or another by means of the valve spool. Moreover, the pump is usually remotely located relative to the control valve. As a result, various problems are encountered.
SUMMARY OF THE INVENTION In accordance with the invention, advantages are obtained in the minimizing of machining time on the valve body by reason of decreasing the usual number of ports and passages; in the minimizing of flow distances for the hydraulic fluid between pump and valve; in the provision for pressures to be contained by and within the valve itself, rather than to react on the pump during the intake stroke thereof; and in improved sealing characteristics.
The pump and valve are closely coupled portions of a unitary device and the feed from pump reservoir to the pump proper and from pump proper to valve is through the same flow passage, thereby mi imizing flow distance. Pressurized hydraulic fluid from the pump portion of the unit is supplied directly to an axial bore in the valve spool of the valve portion of the unit. Back-flow is prevented by a check valve advantageously located in such bore, thereby providing for containment of pressure within the valve. Ports may be and preferably are spaced 120 apart. This makes for improved sealing characteristics.
A particularly advantageous feature in connection with use of the device in a track-cab-raising and lowering system is the provision for cushioning of free fall of the truck cab substantially immediately upon the commencement of free fall. This is accomplished by the arrangement for direct and relatively free flow of hydraulic fluid from the pump portion of the unit to the valve portion thereof.
The flow passage through which the pump is supplied with hydraulic fluid from the pump reservoir on its intake stroke and through which the control valve is supplied with pressurized hydraulic fluid on the pressure stroke of the pump is provided with a check valve between pump and pump reservoir, permitting inflow from reservoir to pump on the latters intake stroke and preventing back-flow into the reservoir on the pressure stroke. The other check valve aforementioned, being of reverse type, prevents the pulling of hydraulic fluid from the system on the intake stroke of the pump during supply thereto of fluid from the reservoir.
THE DRAWINGS An embodiment representing the best mode presently contemplate of carrying out, the novel concepts of the invention in actual practice is illustrated in the accompanying drawings, in which:
FIG. 1 represents a view in front elevation of a hydraulic pump and valve unit conforming to the invention;
FIG. 2, a top plan view of the same;
FIG. 3, a view in vertical section taken on the line 3-3 of FIG. 2, and showing various hidden parts in broken lines;
FIG. 4, a view in vertical section taken on the line 4-4 of FIGS;
FIG. 5, a detail view in transverse vertical section of the valve portion of the unit taken on the. line 5-5 of FIG. 4, showing one position of the valve spool for the supply and return of hydraulic fluid to a hydraulicallyoperated device, such as a lift cylinder for raising and lowering the cab of an automotive truck;
FIG. 6, a similar view taken after the valve spool has been rotated to a reverse position;
FIG. 7, a fragmentary view in longitudinal vertical section taken on the line 77 of FIG. 5, showing the valve spool in elevation;
FIG. 8, a fragmentary view in longitudinal horizontal section taken on the line 88 of FIG. 6; and
FIG. 9, a view in transverse vertical section taken on the line 99 of FIG. 8.
DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENT In the form illustrated, the unit comprises a valve portion 10, FIG. 1, closely coupled to a pump portion 11. A valve body 12, FIGS. 2 and 4, is connected to a pump housing 13, which is attached to a reservoir 14, FIG. 3, for holding a supply of hydraulic fluid. A cylindrical valve spool 15 is rotatably received by and extends through the valve body, and is rotated by means of a handle 16.
Provided within pump housing 13 is a pump cylinder 17 having a piston 18 adapted for manual reciprocation by means of a pump handle 19. The handle is secured at one end in a socket piece 20, which is pivotally attached to a mounting post 21, FIGS. 1 and 3, extending from and attached to the pump housing, and which is also pivotally attached to the upper end of piston 18. Thus, upon moving pump handle 19 up and down, piston l8 is.moved up and down within cylinder 17.
Valve spool 15 is provided with an axial bore 15a extending thereinto from one end. Such bore communicates directly with a preferably rectilinear flow pas- A check valve in flow passage 22 between reservoir 14 and pump cylinder port 24 is provided by a bail 25 normally held against seat 26a of an adaptor sleeve 26 by spring 27. A second, reverse-acting check valve, conveniently located in bore 15a of valve spool 15, is provided by a ball 28 normally held against seat 29 of a sleeve '29 by spring 30.
In operation, when pump handle 19 is raised, thereby raising piston 18 in cylinder 17, hydraulic fluid is drawn from reservoir 14 through flow passage 22 and past ball 25 through port 24 into the cylinder, ball 28 seating to prevent back flow of hydraulic fluid from the external system (not shown) through valve 10. When pump handle 19 is pushed down, thereby forcing piston 18 to descend in cylinder 17, the hydraulic fluid in the cylinder is forced out of port 24 under pressure. It, in turn, forces ball 25 against its seat 26, forces ball 28 to unseat against the nominal holding pressure of spring 30, and flows under pressure into and through valve to activate the hydraulically powered device in the external system. If excessive pressure is built up within pump cylinder 17, some fluid is released directly to reservoir 14. For this purpose, intercommunicating passages 31 and 32 are provided'in pump housing 13. Passage 31 opens into flow passage 22, and thereby communicates with pump cylinder 17 through port 24. Passage 32 communicates with reservoir l4'through a pressure relief valve 33. A pressure relief valve 34, FIGS. 1, 2 and 3, leading to atmosphere, is also provided in the top wall of reservoir 14.
Hydraulic fluid is supplied to reservoir 14 through a fitting 35, FIG. 3, which is normally closed by a plug There are two divergent flow passages 36 and 37, FIGS. 5 and 6, extending radially from axial flow passage a within valve spool 15 to the surface of the spool. These passages are preferably positioned 120 apart along the circumference of the spool as indicated in FIG. 6, to provide most effectively for fluid sealing. A longitudinal groove 38 is provided on the surface of the spool 120 from each of the flow passages 36 and '37 and extending from circumferential alignment therewith to a circumferential groove 39, FIGS-7, 8 and 9, provided around the surface of the spool at a location spaced axially along the spool.
A oair of passages 40 and 41, FIGS. 5 and 6, are provided in valve body 12 for selective registry with either the groove 38 and passage 37, respectively, of the valve spool, as in FIG. 5, or with the passage 36 and groove 38, respectively, as in FIG. 6. Thus, one of the passages of the valve body is in communication with one of the divergent passages of the valve spool and the other in communication with the longitudinal groove of such valve spool in each of the two working positions of the valve. This can be seen by comparing FIGS. 5 and 6.
As shown in FIGS. 7 and 8, longitudinal groove 38 of the valve spool communicates with circumferential groove 39 thereof in both of the two working positions of such spool.
A third passage 42, FIG. 7, within valve body 12 has a radial portion 42a positioned to register with circumferential groove 39 of valve spool 15 and a longitudinal portion 42b that communicates with a fluid-return passage 43 in pump housing 13 through a restricted orifice 44 of adjustable type. Passage 43 (shown only fragmentarily) leads back to reservoir 14. Orifice 44 controls 'is particularly designed for use with tilt cabs in the truck industry. In such application, it is necessary to lift a truck cab until its center of gravity reaches a high point, from where it will free-fall for the remainder of its travel.
With the valve spool placed in the position shown in FIG. 6, movement of the pump handle up and down forces hydraulic fluid under pressure into and through axial flow passage 36 thereof, and into and through passage 40 of valve body 12 from where it flows through a line 45 into one end of the lift cylinder (not shown) of the overall system. This raises the cab of the truck in well known manner. The fluid in the-opposite end of the lift cylinder flows back'into valve 10 through a line 46 attached to passage 41, which is in communication with longitudinal groove 38. The return fluid flows into circumferential groove 39, into passage 42, through orifice 44, into passage 43, and thence into the reservoir 14. Pumping is continued until the center of gravity of the truck cab has reached a high point, at which time the cab will start free fall to its final open rest position. During free fall, pumping is no longer necessary. This is because the weight of the cab is now acting on the cylinder in the same direction as the pump had been. Fluid flow in the system continues in the same flow path as described above, except that the weight of the cab acting on the power cylinder is the driving force for fluid flow, rather than the pump. Fluid is forced out of the lift cylinder and follows the path described above. Orifice 44 regulates the rate of flow of fluid and thus controls the rate of free fall of the cab. Because of the direct and substantially free flow of fluid into and through flow passage 22a of the valve, check of free fall of the truck cab is immediate. If a still slower rate of free fall than that provided by orifice 44 is desired, valve spool 15 may be rotated slightly so that passage 41 of valve body 12 is in only partial communication with groove 38, thereby further restricting fluid flow from the lift cylinder. If the valve spool is' rotated enough so that there is no communication between passage 41 and groove 38, the truck cab will remain stationary.
To operate the power cylinder in the opposite direction for returning the truck cab to its original closed condition, valve spool 12 is rotated clockwise from its position in FIG. 6 to the position shown in FIG. 5. The pump is now connected through axial flow passage 22a and flow passage 37 of the valve spool and through passage 41 of the valve body to the opposite end of the lift cylinder of the overall system. Pressure fluid now forces the piston in the power cylinder in the opposite direction, and return fluid from the lift cylinder flows into and through passage 40 of the valve body into and through longitudinal groove 38, circumferential groove 39, passage 42, orifice 44, and passage 43 back to reservoir l4. Again pumping is continued until the center of gravity of the truck cab reaches its high point, at which time it continues its travel by free fall in a manner similar to that explained above.
While the 120 spacing of the divergent flow passages is presently preferred, because, during pumping operation, an equal force is exerted against the spool by each of the flow passages in turn, thereby producing a resultant force exerted in the direction of the longitudinal groove, and thus helping to form a tight seal between the groove and the valve body, it should be realized that any angle between the divergent passages could be utilized as long as the longitudinal groove is maintained an equal angular distance from each of the passages, such groove being located within either the larger or smaller angle between the passages.
The two working positions of valve are reached easily by providing stops for handle 16 at appropriate locations determining the limits of its back and forth movements, which bring selective registry of certain ports in valve spool with certain ports in valve body 12, all as shown in FIGS. 5 and 6, respectively. In the form illustrated, see FIGS. 1 and 4, terminal end portion 15b of valve spool 15 is of reduced diameter and passes through a hollow cap member 12a of valve body 12 before receiving control handle 16.
A pin 47 extends radially into chamber 48 of valve body cap member 12a, between a pair of limit stops, from securement in valve spool end portion 15b. The limit stops are provided by set screws 49, FIG. 1, accessible from the exterior of the valve body.
Instead of providing two divergent passages in the valve spool, one such passage extending from the axial flow passage to the surface of the spool could be provided, together with two longitudinal grooves (like 38) connecting to a circumferential groove (like 39), with the said one passage being located an equal angular distance from both of the longitudinal grooves and within either the larger or smaller sector between such grooves.
While the circumferential groove 39, is illustrated as extending completely around the valve spool, and this is presently preferred because of manufacturing techniques, it should be realized that this groove need only extend a distance equal to the distance between one of the divergent flow passages and longitudinal groove 38.
Whereas this invention is specifically illustrated and described with respect to a presentlypreferred embodiment thereof, it should be understood that other embodiments can be constructed from the teachings hereof without departing from the inventive concepts defined by the claims.
I claim:
1. A hydraulic pump and valve unit, comprising a pump portion and a valve portion closely coupled in fluid flow communication with each other through a flow passage extending therebetween, the pump portion being a reservoir for hydraulic fluid and the valve portion comprising a valve body anda valve spool rotatably mounted in the valve body and having an axial bore therein in direct fluid flow communication with said flow passage, said flow passage extending from said reservoir to said axial bore; a pump cylinder and piston in said pump portion of the unit, the cylinder having a port opening into said flow passage between the reservoir and the valve for intake and discharge of hydraulic fluid on the suction and pressure strokes, respectively, of said piston; check valve means between said port and said reservoir for permitting fluid to flow from the reservoir to the pump cylinder on the suction stroke of the piston but preventing backflow into said reservoir on the pressure stroke of the piston; check valve means between said port and said valve for permitting fluid to flow from the pump cylinder into the valve on the pressure stroke of the piston by way of said flow passage and said axial bore but preventing backflow into said cylinder on the suction stroke of the piston; sets of cooperative flow passages in said valve spool and said valve body for selective register by rotation of the valve spool to control outflow and return flow of hydraulic fluid from and to the unit; return flow passage means extending from the valve body through the pump portion into communication with said reservoir; means for operating the pump piston; and means for rotating the valve spool.
2. A hydraulic pump and valve unit as defined in claim 1, wherein the second-named check valve means is located within the axial bore of the valve spool.
3. A hydraulic pump and valve unit as defined in claim 1, wherein flow passage means lead from the flow passage between pump portion and valve portion of the unit to the reservoir; and wherein a pressure relief valve is positioned to control flow through said flow passage means.
4. A hydraulic pump and valve unit as defined in claim 1, wherein the sets of cooperative flow passages comprise a pair of divergent flow passages extending radially through the valve spool at a location in common along the length thereof and in communication with the axial bore thereof and opening into the exterior circumferential surface of the valve spool; a pair of flow passages extending transversely through the valve body in circumferential alignment with said divergent flow passages; a circumferential groove formed in the said exterior surface of the valve spool spaced longitudinally thereof from said divergent flow passages; a longitudinal groove formed in the said exterior circumferential surface of the valve spool and extending from communication with said circumferential groove to a location on said exterior circumferential surface of the valve spool that lies between the port openings thereinto of said divergent flow passages; and a flow passage in the valve body in registry with said circumferential groove and in flow communication with the return flow passage means.
5. A hydraulic pump and valve unit as defined in claim 4, wherein the port openings of the divergent flow passages are separated by and the portion of the longitudinal groove that lies therebetween is separated from each .of said port openings by 120.
6. A hydraulic pump and valve unit as defined in claim 4, wherein a flow restriction is placed with re spect to the return flow passage means and valve body flow passage in registry therewith so as to restrict return flow therethrough.
7. A hydraulic pump and valve unit as defined by claim 1, wherein the axial bore of the valve spool and the flow passage extending between pump portion and valve portion are rectilinearly aligned.

Claims (7)

1. A hydraulic pump and valve unit, comprising a pump portion and a valve portion closely coupled in fluid flow communication with each other through a flow passage extending therebetween, the pump portion being a reservoir for hydraulic fluid and the valve portion comprising a valve body and a valve spool rotatably mounted in the valve body and having an axial bore therein in direct fluid flow communication with said flow passage, said flow passage extending from said reservoir to said axial bore; a pump cylinder and piston in said pump portion of the unit, the cylinder having a port opening into said flow passage between the reservoir and the valve for intake and discharge of hydraulic fluid on the suction and pressure strokes, respectively, of said piston; check valve means between said port and said reservoir for permitting fluid to flow from the reservoir to the pump cylinder on the suction stroke of the piston but preventing backflow into said reservoir on the pressure stroke of the piston; check valve means between said port and said valve for permitting fluid to flow from the pump cylinder into the valve on the pressure stroke of the piston by way of said flow passage and said axial bore but preventing backflow into said cylinder on the suction stroke of the piston; sets of cooperative flow passages in said valve spool and said valve body for selective register by rotation of the valve spool to control outflow and return flow of hydraulic fluid from and to the unit; return flow passage means extending from the valve body through the pump portion into communication with said reservoir; means for operating the pump piston; and means for rotating the valve spool.
2. A hydraulic pump and valve unit as defined in claim 1, wherein the second-named check valve means is located within the axial bore of the valve spool.
3. A hydraulic pump and valve unit as defined in claim 1, wherein flow passage means lead from the flow passage between pump portion and valve portion of the unit to the reservoir; and wherein a pressure relief valve is positioned to control flow through said flow passage means.
4. A hydraulic pump and valve unit as defined in claim 1, wherein the sets of cooperative flow passages comprise a pair of divergent flow passages extending radially through the valve spool at a location in common along the length thereof and in communication with the axial bore thereof and opening into the exterior circumferential surface of the valve spool; a pair of flow passages extending transversely through the valve body in circumferential alignment with said divergent flow passages; a circumferential groove formed in the said exterior surface of the valve spool spaced longitudinally thereof from said dIvergent flow passages; a longitudinal groove formed in the said exterior circumferential surface of the valve spool and extending from communication with said circumferential groove to a location on said exterior circumferential surface of the valve spool that lies between the port openings thereinto of said divergent flow passages; and a flow passage in the valve body in registry with said circumferential groove and in flow communication with the return flow passage means.
5. A hydraulic pump and valve unit as defined in claim 4, wherein the port openings of the divergent flow passages are separated by 120* and the portion of the longitudinal groove that lies therebetween is separated from each of said port openings by 120*.
6. A hydraulic pump and valve unit as defined in claim 4, wherein a flow restriction is placed with respect to the return flow passage means and valve body flow passage in registry therewith so as to restrict return flow therethrough.
7. A hydraulic pump and valve unit as defined by claim 1, wherein the axial bore of the valve spool and the flow passage extending between pump portion and valve portion are rectilinearly aligned.
US00367713A 1973-06-06 1973-06-06 Hydraulic pump and valve unit Expired - Lifetime US3824043A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US00367713A US3824043A (en) 1973-06-06 1973-06-06 Hydraulic pump and valve unit
US46946274 US3910313A (en) 1973-06-06 1974-05-13 Hydraulic valve unit
DE19742425472 DE2425472A1 (en) 1973-06-06 1974-05-27 HYDRAULIC PUMP VALVE DEVICE
AU69670/74A AU484921B2 (en) 1973-06-07 1974-05-31 Hydraulic pump and valve unit
CA201,693A CA1014418A (en) 1973-06-06 1974-06-05 Hydraulic pump and valve unit
IT23631/74A IT1014791B (en) 1973-06-06 1974-06-05 STRUCTURE OF HYDRAULIC UNIT WITH PUMP AND VALVE
JP49063848A JPS513A (en) 1973-06-06 1974-06-05
GB2523474A GB1470319A (en) 1973-06-06 1974-06-06 Hydraulic pump and valve unit
FR7419519A FR2232691B3 (en) 1973-06-06 1974-06-06
CA276,588A CA1026198A (en) 1973-06-06 1977-04-20 Hydraulic pump and valve unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00367713A US3824043A (en) 1973-06-06 1973-06-06 Hydraulic pump and valve unit

Publications (1)

Publication Number Publication Date
US3824043A true US3824043A (en) 1974-07-16

Family

ID=23448311

Family Applications (1)

Application Number Title Priority Date Filing Date
US00367713A Expired - Lifetime US3824043A (en) 1973-06-06 1973-06-06 Hydraulic pump and valve unit

Country Status (7)

Country Link
US (1) US3824043A (en)
JP (1) JPS513A (en)
CA (1) CA1014418A (en)
DE (1) DE2425472A1 (en)
FR (1) FR2232691B3 (en)
GB (1) GB1470319A (en)
IT (1) IT1014791B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4285641A (en) * 1979-07-27 1981-08-25 Brimhall Randall L Hydraulic pump and valve
US4775302A (en) * 1984-12-20 1988-10-04 Neward Theodore C Hand-held vacuum and pressure pump
US6116868A (en) * 1999-03-01 2000-09-12 Lu; Chung-Tai Multi-faceted valve head for hydraulic pump
US6499385B2 (en) 2001-03-01 2002-12-31 Innova Electronics Corporation Hand vacuum pump with linear piston actuation
AT510169B1 (en) * 2010-10-22 2012-02-15 Vae Eisenbahnsysteme Gmbh HAND PUMP FOR HYDRAULIC OPERATION OF A SOILING DEVICE
US20120080633A1 (en) * 2010-09-30 2012-04-05 Hon Hai Precision Industry Co., Ltd. Control valve

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0055485B1 (en) * 1980-12-29 1986-03-12 Matsushita Electric Industrial Co., Ltd. Information signal regenerating stylus and manufacturing method thereof
US4488887A (en) * 1983-10-17 1984-12-18 R. J. Reynolds Tobacco Company Cold trap
SE459270B (en) * 1985-02-26 1989-06-19 Bahco Hydrauto Ab VALVE ARRANGEMENTS FOR CONTROL OF PRESSURE FLUID THROUGH A PRESSURE CIRCUIT
US11111119B2 (en) 2018-08-13 2021-09-07 Snap-On Incorporated Hydraulic power unit for jack with internally adjustable safety relief valve

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1177476A (en) * 1915-06-07 1916-03-28 Emile Bresse Combined tire-pump and jack.
US1213693A (en) * 1916-05-13 1917-01-23 Marcus B Schmeltz Primer for explosive-engines.
US2917206A (en) * 1959-12-15 Machine for coloring paints
US2961003A (en) * 1956-04-24 1960-11-22 Shafer Valve Co Single-acting piston pump and valve unit
US3129644A (en) * 1958-11-05 1964-04-21 Maine Steel Corp Valves for hydraulic systems
US3217744A (en) * 1963-12-16 1965-11-16 Cie Hydrolic Vincent Inc Rotary valve
US3610283A (en) * 1969-04-03 1971-10-05 Brimco Mfg Co Four-way hydraulic valve

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2917206A (en) * 1959-12-15 Machine for coloring paints
US1177476A (en) * 1915-06-07 1916-03-28 Emile Bresse Combined tire-pump and jack.
US1213693A (en) * 1916-05-13 1917-01-23 Marcus B Schmeltz Primer for explosive-engines.
US2961003A (en) * 1956-04-24 1960-11-22 Shafer Valve Co Single-acting piston pump and valve unit
US3129644A (en) * 1958-11-05 1964-04-21 Maine Steel Corp Valves for hydraulic systems
US3217744A (en) * 1963-12-16 1965-11-16 Cie Hydrolic Vincent Inc Rotary valve
US3610283A (en) * 1969-04-03 1971-10-05 Brimco Mfg Co Four-way hydraulic valve

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4285641A (en) * 1979-07-27 1981-08-25 Brimhall Randall L Hydraulic pump and valve
US4775302A (en) * 1984-12-20 1988-10-04 Neward Theodore C Hand-held vacuum and pressure pump
US6116868A (en) * 1999-03-01 2000-09-12 Lu; Chung-Tai Multi-faceted valve head for hydraulic pump
US6499385B2 (en) 2001-03-01 2002-12-31 Innova Electronics Corporation Hand vacuum pump with linear piston actuation
US20120080633A1 (en) * 2010-09-30 2012-04-05 Hon Hai Precision Industry Co., Ltd. Control valve
AT510169B1 (en) * 2010-10-22 2012-02-15 Vae Eisenbahnsysteme Gmbh HAND PUMP FOR HYDRAULIC OPERATION OF A SOILING DEVICE

Also Published As

Publication number Publication date
IT1014791B (en) 1977-04-30
FR2232691B3 (en) 1977-04-08
AU6967074A (en) 1975-12-04
GB1470319A (en) 1977-04-14
FR2232691A1 (en) 1975-01-03
CA1014418A (en) 1977-07-26
JPS513A (en) 1976-01-05
DE2425472A1 (en) 1975-01-02

Similar Documents

Publication Publication Date Title
US4028010A (en) Reversible, variable-displacement piston pump with positioner means for automatic return to zero displacement
US3824043A (en) Hydraulic pump and valve unit
US3985194A (en) Tilt cab power stream and valve control therefor
US3972557A (en) Hydraulic cab-tilting systems
US3787147A (en) Two-stage air-hydraulic booster
CN101925502A (en) Vehicle cab tilting device with telescopic tilting cylinder
US2974490A (en) Bumper jack and fluid system
US3910313A (en) Hydraulic valve unit
US2164911A (en) Valve construction
US3696613A (en) Hydraulic steering system having auxiliary power source
US2640426A (en) Power unit of the pressure fluid type
US20170298963A1 (en) Integral Hydraulic System
US2863285A (en) Hydraulic jack
US3581499A (en) Quick raise adapter
US4551973A (en) Hydraulic power source and valve therefor
GB1412394A (en) Lightweight hydraulic jack
US3782249A (en) Hydraulic control system with locking valve to prevent accidental or unauthorized lowering of a tractor implement
US2255984A (en) Hydraulic pump system
US4285641A (en) Hydraulic pump and valve
US3217731A (en) Hydraulic flow control valve unit
US3066610A (en) Pump
KR20030051853A (en) Hydraulic tilting device for tilting a vehicle cab, and vehicle provided with a tilting device of this type
US4026113A (en) Tilting cab control apparatus
US4293286A (en) Double action pump
US4130991A (en) Hydraulic pumps