US3823868A - Sludge ejecting centrifuge - Google Patents
Sludge ejecting centrifuge Download PDFInfo
- Publication number
- US3823868A US3823868A US00332330A US33233073A US3823868A US 3823868 A US3823868 A US 3823868A US 00332330 A US00332330 A US 00332330A US 33233073 A US33233073 A US 33233073A US 3823868 A US3823868 A US 3823868A
- Authority
- US
- United States
- Prior art keywords
- rotor
- piston
- centrifuge
- chamber
- sludge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B04—CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
- B04B—CENTRIFUGES
- B04B1/00—Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles
- B04B1/10—Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles with discharging outlets in the plane of the maximum diameter of the bowl
- B04B1/14—Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles with discharging outlets in the plane of the maximum diameter of the bowl with periodical discharge
- B04B1/16—Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles with discharging outlets in the plane of the maximum diameter of the bowl with periodical discharge with discharging outlets controlled by the rotational speed of the bowl
- B04B1/18—Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles with discharging outlets in the plane of the maximum diameter of the bowl with periodical discharge with discharging outlets controlled by the rotational speed of the bowl controlled by the centrifugal force of an auxiliary liquid
Definitions
- a known configuration of this type includes an annular sealing piston which is movably situated between an inner vessel including the centrifugation chamber, and an outer vessel containing springs, fluid channels, fluid chambers and the connection with a drive shaft which all together represent one half, in most cases the'lower half, of a vertically rotating rotor, which furthermore includes an upper half, wherebetween are located a number of peripheral sludge ejection openings.
- the purpose of the invention is to create a new centrifuge without the indicated drawbacks and with hitherto unknown advantages. 7
- the invention comprises 'a centrifuge having only one vessel to form the centrifugation chamber and has no drilled channels or inner spaces to house the individual springs or the control fluid.
- the annular spring and relatively thin sheet piston cause no special balancing problems and lopsided pressures cannot occur.
- piston may be thin because it is stressed only lengthwise by spring and control fluid while the centrifugally induced cross stresses exclusively are determined by the ratio of specific weight to material strength in the piston.
- the piston may be made of uncomplicated and cheaply passed sheet material.
- the gasket is exchangeable being fastened to an exchangeable ring which, for constructional reasons is fastened to the upper rim of the piston after the piston with inserted spring has been placed around the lower partof the rotor and before the upper part of the rotor is installed.
- the invention may also have the spring helically coiled or comprising a number of disc-shaped elements.
- springs are easy to handle and cheap because they are obtainable from stock. These springs can be used very well if the centrifuge is meant to work at a specific speed because in that case it is possible to calculate the hydraulic pressure inside the. cen-' trifuge and the fluid chamber and to define the springs inrelation to vary speeds which will be attained by a spring having non-compressible elastic rings between stiff wedge shaped rings which will be deformed progressivelywith increased speed and force the stiff rings away from each other.
- the sealing member may comprise a sleeve formed part which extends into the centrifugation spaceand is fastened there.
- the piston is situated in a certain distan ce from the rotor vessel which distance may vary a little and thus it is necessary to make a sealing bridge, which must be elastical, across the gap between pistons upper rim and the rotor.
- the piston preferably consists of plastic reinforced material such as epoxy compounds with glass fiber reinforcements which has great physical and chemical resistance in relation to its specific weight which, among other advantages, reduces balancing problems and the need to treat the surface of this part.
- the spring chamber is preferably provided with at least one relief nozzle the importance'of which is that the gap between the lower shoulder of the rotor vessel and the inner surface of the piston at 'thatpoint near the controlfluid chamber does not need to-be specially water tight as long as the leakage has a lower through flow capacity than the relief nozzle.
- FIG. 2 shows a detail of the same with a special bridge sealing gasket, I
- FIGS. 3 and 4 show another detail with a new spring type.
- FIG. 5 shows another detail with a disc type annular spring, such as the type manufactured by .Schnorr of West Germany.
- the centrifuge'rotor consists of an upper l and a lower 2 half with therebetween situated peripheral sludge ejection slit 3, all mounted on an axle 4 which, not shown, continues upwardly beyond the upper half 1 to facilitate the fixation and tightening of halves l and 2 in relation toeach other.
- a thin annular piston 5 furnished with an upper flange 6 and a lower chamber plate 7. Parts 5, 6 and 7 may be made in one piece.
- a spring chamber 8 Between the piston 5 and rotor part 2 is a spring chamber 8 and in it ananspring.
- Between chamber plate 7 and the bottom of part 2 is an annular fluid chamber-l0 which receives a control fluid from a stationary pipe 11.
- Fluid chamber 10 may be furnished with a number of relief nozzles 12.
- Spring chamber 8 may also be furnished with a number of relief nozzles l3 to eject whatever control fluid that may have entered chamber 8 from chamber 10.
- the flange 6 carries a separate reinforced ring 14 with attached rubber sealing gasket 15,
- the helical or disc spring keeps the centrifuge closed with a. predetermined pressure force independently of the rotational speed of the centrifuge-Fluid chamber 10 is dimensioned in such a way that the fluid injected into chamher generates a greater force than the spring force at a certain speed which opens the ejection slit 3.
- the gasket has a sleeve 16 which forms an elastic bridge over the gap between the ring 14 and rotor part 2 and which is fastened inside the centrifugating space in a known manner.
- FIGS. 3 and 4 show an entirely new spring which consists of wedge shaped stiff rings 17 and interposed rings 18 of non-compressible elastic material.
- the elastic rings 18 ar slightly pressed between rings 17 which means that the centrifuge is slightly sealed when it stands still and at low speed.
- the centrifuge is closed stronger as the elastic rings 18'force themselves more and more between rings 17 The higher the speed the stronger the sealing of the centrifuge.
- Rings 17 are forced progressively away from each other, as shown in FIG. 4.
- Fluid chamber 10 is dimensioned so that injected fluid generates a hydrostatic pressure which forces the elastic rings 18 along the wedge shaped surfaces of rings 17 back into their former position so that the centrifuge is opened. It is also possible to combine these special rings with an ordinary helical or disc spring arrangement.
- a sludge centrifuge for the separation of fluids from sludge comprising a rotor having an upper half and a lower half, said rotor including at least one slit therein for ejecting sludge therethrough, said centrifuge further comprising an annular piston mounted coaxially with said rotor and surrounding at least a portion thereof, said piston having an upper flange reinforcement and forming an annular chamber between said piston and said rotor, at least one annular movable springmeans positioned in said chamber in surrounding relationship with said rotor lower half, and spring means having an upper end pressing against the underside of said flange, said rotor further having a shoulder portion, said spring means further having a lower end pressing against said rotor shoulder portion, said piston having a lower end, said piston lower end including a chamber plate extending outside of and parallel with the bottom of said rotor lower half and forming together therewith a chamber for a control fluid, said control fluid chamber having at least one relief nozzle therein for said control fluid
- a sludge centrifuge for the separation of fluids from sludge comprising a rotor having an upper half and a lower half, said rotor including at least one slit 1 therein for ejecting sludge therethrough, said centrifuge further comprising an annular piston mounted coaxially with said rotor and surrounding at least a portion thereof, said piston having an upper flange reinforcement and forming an annular chamber between said piston and said rotor, at least one annular movable spring means positioned in said chamber in surrounding relationship with said rotor lower half, said spring means having an upper end pressing against the underside of said flange, said rotor further having a shoulder portion, said spring means further having a lower end pressing against said rotor shoulder portion and comprising a number of wedge formed stiff rings placed on top of each other and of a suitable number of noncompressible elastic rings spaced between them, said piston having a lower end, said piston lower end including a chamber plate extending outside of and parallel with the bottom of said rotor
- a centrifuge as in claim 1 further comprising a sealing member secured to said upper flange reinforcement, said sealing member having a sleeve formed part which extends into a centrifugation space and is fastened thereto.
- a centrifuge in accordance with claim 8 wherein said sealing member is held in a position for closing said slit by said annular spring and is changed to a position for opening said slit by centrifugally generated hydrostatic pressure of said control fluid injected into said fluid chamber.
Landscapes
- Centrifugal Separators (AREA)
- Springs (AREA)
Abstract
A sludge ejecting centrifuge with an unbroken 360* ejection slit which is opened and closed by an annular sealing device which is held in closed position by an annular spring arrangement that surrounds the rotor and which is held in open position by centrifugally generated hydrostatic pressure of injected control fluid.
Description
United States Patent Baram 3,823, 68 July 16, 1974 [54] SLUDGE EJECTING CENTRIFUGE 3,593,915 7/1971 Steinacker........................ 233/20 A [761 Invent FOREIGN PATENTS OR APPLICATIONS 887,232 8/1943 France..............................233/20A Martin Baram, 2660 Brondby Strand, l3 Svanholmvej, Denmark Feb. 14, 1973 [22] Filed:
Primary Examiner-Geo [21] App]. No.: 332,330
Agent, or FirmHubbell, Cohen & Stiefel [30] Foreign Application Priority Data Mar. 1, 1972 Denmark 935/72 ge with an unbroken 360 t which is opened and closed by an annular 233/20 A Sludge ejecting n rifn 130 1] e ection slI i D 233/20 R 20 A, 19 R 19 A, sealing dev ce WhlCh 18 held In closed position by an 23 R 46 annular spring arrangement that surrounds the rotor and which-is held in open position by centrifugally [52] US. [51] Int. [58] Field of Search...
m n 0 c d m c .m f 0 m u w m D. .m m M m. y n d e t m. m eu, fl S. T. m T A ."P. S E m mT ms m T l N U l 6 5 3,079,069 2/1963 Thylefors 233/20 R 9 Claims, SDrawing Figures PATENTED JUL 1 6 1974 F 1G. I.
1 SLUDGE EJECTING CENTRIFUGE .with an unbroken 360 ejection slit which is opened and closed by an annuluar sealing device. It is known in the art to construct each centrifuges in such a manner that the sludge ejection slit is closed by means of spring pressure and opened with the help of the centrifugally induced pressure of a control fluid injected into the rotor. A known configuration of this type includes an annular sealing piston which is movably situated between an inner vessel including the centrifugation chamber, and an outer vessel containing springs, fluid channels, fluid chambers and the connection with a drive shaft which all together represent one half, in most cases the'lower half, of a vertically rotating rotor, which furthermore includes an upper half, wherebetween are located a number of peripheral sludge ejection openings.
The drawbacks of this kind of construction are that relativelyheavy vessels are needed which have to be fixed carefully in relation to'each other in order to attain the necessary balance, that the ves'sels' have to be drilled through to make long channels, that the annular piston between the vessels has to be sealed on both surfaces, that the individual springs cannot be replaced without dismantling the entire rotor which then has to be balanced again, that the springs may exert unequal pressures resulting in lopsided movements of the piston, that piston and springs are hard to get at, and that the upper edge of the piston is of metal'which seals against a pliable gasket in the edge of the opposite half of the rotor. The latter arrangement has among others the weakness that the gasket must be placed in a groove which may catch sludge or fluid behind the gasket which then is pressed out of the groove and torn by the centrifugal stress. Further, there is not known any centrifuge of this type with an unbroken 360 slit for the ejection of the sludge.
The purpose of the invention is to create a new centrifuge without the indicated drawbacks and with hitherto unknown advantages. 7
Thus, the invention comprises 'a centrifuge having only one vessel to form the centrifugation chamber and has no drilled channels or inner spaces to house the individual springs or the control fluid. The annular spring and relatively thin sheet piston cause no special balancing problems and lopsided pressures cannot occur. The
piston may be thin because it is stressed only lengthwise by spring and control fluid while the centrifugally induced cross stresses exclusively are determined by the ratio of specific weight to material strength in the piston. Thus, the piston may be made of uncomplicated and cheaply passed sheet material. The gasket is exchangeable being fastened to an exchangeable ring which, for constructional reasons is fastened to the upper rim of the piston after the piston with inserted spring has been placed around the lower partof the rotor and before the upper part of the rotor is installed.
The invention may also have the spring helically coiled or comprising a number of disc-shaped elements.
The indicated types of springs are easy to handle and cheap because they are obtainable from stock. These springs can be used very well if the centrifuge is meant to work at a specific speed because in that case it is possible to calculate the hydraulic pressure inside the. cen-' trifuge and the fluid chamber and to define the springs inrelation to vary speeds which will be attained by a spring having non-compressible elastic rings between stiff wedge shaped rings which will be deformed progressivelywith increased speed and force the stiff rings away from each other.
The sealing member may comprise a sleeve formed part which extends into the centrifugation spaceand is fastened there. The piston is situated in a certain distan ce from the rotor vessel which distance may vary a little and thus it is necessary to make a sealing bridge, which must be elastical, across the gap between pistons upper rim and the rotor.
The piston preferably consists of plastic reinforced material such as epoxy compounds with glass fiber reinforcements which has great physical and chemical resistance in relation to its specific weight which, among other advantages, reduces balancing problems and the need to treat the surface of this part.
The spring chamber is preferably provided with at least one relief nozzle the importance'of which is that the gap between the lower shoulder of the rotor vessel and the inner surface of the piston at 'thatpoint near the controlfluid chamber does not need to-be specially water tight as long as the leakage has a lower through flow capacity than the relief nozzle.
In the following the invention will be described in def FIG. 2 shows a detail of the same with a special bridge sealing gasket, I
FIGS. 3 and 4 show another detail with a new spring type.
FIG. 5 shows another detail with a disc type annular spring, such as the type manufactured by .Schnorr of West Germany.
The centrifuge'rotor consists of an upper l and a lower 2 half with therebetween situated peripheral sludge ejection slit 3, all mounted on an axle 4 which, not shown, continues upwardly beyond the upper half 1 to facilitate the fixation and tightening of halves l and 2 in relation toeach other. Around part 2 is in concentric relation a thin annular piston 5 furnished with an upper flange 6 and a lower chamber plate 7. Parts 5, 6 and 7 may be made in one piece. Between the piston 5 and rotor part 2 is a spring chamber 8 and in it ananspring. Between chamber plate 7 and the bottom of part 2 is an annular fluid chamber-l0 which receives a control fluid from a stationary pipe 11. Fluid chamber 10 may be furnished with a number of relief nozzles 12. Spring chamber 8 may also be furnished with a number of relief nozzles l3 to eject whatever control fluid that may have entered chamber 8 from chamber 10. The flange 6 carries a separate reinforced ring 14 with attached rubber sealing gasket 15, The helical or disc spring keeps the centrifuge closed with a. predetermined pressure force independently of the rotational speed of the centrifuge-Fluid chamber 10 is dimensioned in such a way that the fluid injected into chamher generates a greater force than the spring force at a certain speed which opens the ejection slit 3.
In FIG. 2 the gasket has a sleeve 16 which forms an elastic bridge over the gap between the ring 14 and rotor part 2 and which is fastened inside the centrifugating space in a known manner. g
. FIGS. 3 and 4 show an entirely new spring which consists of wedge shaped stiff rings 17 and interposed rings 18 of non-compressible elastic material. In FIG. 3 the elastic rings 18 ar slightly pressed between rings 17 which means that the centrifuge is slightly sealed when it stands still and at low speed. When a certainspeed is attained the centrifuge is closed stronger as the elastic rings 18'force themselves more and more between rings 17 The higher the speed the stronger the sealing of the centrifuge. Rings 17 are forced progressively away from each other, as shown in FIG. 4. Fluid chamber 10 is dimensioned so that injected fluid generates a hydrostatic pressure which forces the elastic rings 18 along the wedge shaped surfaces of rings 17 back into their former position so that the centrifuge is opened. It is also possible to combine these special rings with an ordinary helical or disc spring arrangement.
What I claim:
1. A sludge centrifuge for the separation of fluids from sludge comprising a rotor having an upper half and a lower half, said rotor including at least one slit therein for ejecting sludge therethrough, said centrifuge further comprising an annular piston mounted coaxially with said rotor and surrounding at least a portion thereof, said piston having an upper flange reinforcement and forming an annular chamber between said piston and said rotor, at least one annular movable springmeans positioned in said chamber in surrounding relationship with said rotor lower half, and spring means having an upper end pressing against the underside of said flange, said rotor further having a shoulder portion, said spring means further having a lower end pressing against said rotor shoulder portion, said piston having a lower end, said piston lower end including a chamber plate extending outside of and parallel with the bottom of said rotor lower half and forming together therewith a chamber for a control fluid, said control fluid chamber having at least one relief nozzle therein for said control fluid, said rotorsludge ejection slit being opened and closed by the cooperative action ofsaid movable annular spring and said fluid controlled piston.
2. A centrifuge as in claim 1, characterized in that the spring is helically coiled.
3. A centrifuge as in claim 1, characterized in that the spring consists of a number of'disc shaped elements.
4. A centrifuge as in claim 1, characterized in that the piston consists of reinforced plastic material such as epoxy compounds with glass fiber reinforcements.
5. A centrifuge as in claim 1, characterized in that the spring chamber is furnished with at least one relief nozzle.
6. A- centrifuge in accordance with claim 1 wherein said sludge ejection slit is an unbroken 360 slit in said rotor.
7. A sludge centrifuge for the separation of fluids from sludge comprising a rotor having an upper half and a lower half, said rotor including at least one slit 1 therein for ejecting sludge therethrough, said centrifuge further comprising an annular piston mounted coaxially with said rotor and surrounding at least a portion thereof, said piston having an upper flange reinforcement and forming an annular chamber between said piston and said rotor, at least one annular movable spring means positioned in said chamber in surrounding relationship with said rotor lower half, said spring means having an upper end pressing against the underside of said flange, said rotor further having a shoulder portion, said spring means further having a lower end pressing against said rotor shoulder portion and comprising a number of wedge formed stiff rings placed on top of each other and of a suitable number of noncompressible elastic rings spaced between them, said piston having a lower end, said piston lower end including a chamber plate extending outside of and parallel with the bottom of said rotor lower half and forming together therewith a chamber for a control fluid,-said control fluid chamber having at least one relief nozzle therein for said control fluid, said rotor sludge ejection slit being opened and closed by the cooperative action of said movable annular spring and said fluid controlled piston.
8. A centrifuge as in claim 1 further comprising a sealing member secured to said upper flange reinforcement, said sealing member having a sleeve formed part which extends into a centrifugation space and is fastened thereto.
9. A centrifuge in accordance with claim 8 wherein said sealing member is held in a position for closing said slit by said annular spring and is changed to a position for opening said slit by centrifugally generated hydrostatic pressure of said control fluid injected into said fluid chamber.
Claims (9)
1. A sludge centrifuge for the separation of fluids from sludge comprising a rotor having an upper half and a lower half, said rotor including at least one slit therein for ejecting sludge therethrough, said centrifuge further comprising an annular piston mounted coaxially with said rotor and surrounding at least a portion thereof, said piston having an upper flange reinforcement and forming an annular chamber between said piston and said rotor, at least one annular movable spring means positioned in said chamber in surrounding relationship with said rotor lower half, and spring means having an upper end pressing against the underside of said flange, said rotor further having a shoulder portion, said spring means further having a lower end pressing against said rotor shoulder portion, said piston having a lower end, said piston lower end including a chamber plate extending outside of and parallel with the bottom of said rotor lower half and forming together therewith a chamber for a control fluid, said control fluid chamber having at least one relief nozzle therein for said control fluid, said rotor sludge ejection slit being opened and closed by the cooperative action of said movable annular spring and said fluid controlled piston.
2. A centrifuge as in claim 1, characterized in that the spring is helically coiled.
3. A centrifuge as in claim 1, characterized in that the spring consists of a number of disc shaped elements.
4. A centrifuge as in claim 1, characterized in that the piston consists of reinforced plastic material such as epoxy compounds with glass fiber reinforcements.
5. A centrifuge as in claim 1, characterized in that the spring chamber is furnished with at least one relief nozzle.
6. A centrifuge in accordance with claim 1 wherein said sludge ejection slit is an unbroken 360* slit in said rotor.
7. A sludge centrifuge for the separation of fluids from sludge comprising a rotor having an upper half and a lower half, said rotor including at least one slit therein for ejecting sludge therethrough, said centrifuge further comprising an annular piston mounted coaxially with said rotor and surrounding at least a portion thereof, said piston having an upper flange reinforcement and forming an annular chamber between said piston and said rotor, at least one annular movable spring means positioned in said chamber in surrounding relationship with said rotor lower half, said spring means having an upper end pressing against the underside of said flange, said rotor further having a shoulder portion, said spring means further having a lower end pressing against said rotor shoulder portion and comprising a number of wedge formed stiff rings placed on top of each other and of a suitable number of non-compressible elastic rings spaced between them, said piston having a lower end, said piston lower end including a chamber plate extending outside of and parallel with the bottom of said rotor lower half and forming together therewith a chamber for a control fluid, said control fluid chamber having at least one relief nozzle therein for said control fluid, said rotor sludge ejection slit being opened and closed by the cooperative action of said movable annular spring and said fluid controlled piston.
8. A centrifuge as in claim 1 further comprising a Sealing member secured to said upper flange reinforcement, said sealing member having a sleeve formed part which extends into a centrifugation space and is fastened thereto.
9. A centrifuge in accordance with claim 8 wherein said sealing member is held in a position for closing said slit by said annular spring and is changed to a position for opening said slit by centrifugally generated hydrostatic pressure of said control fluid injected into said fluid chamber.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DK93572AA DK127041B (en) | 1972-03-01 | 1972-03-01 | Sludge centrifuge. |
Publications (1)
Publication Number | Publication Date |
---|---|
US3823868A true US3823868A (en) | 1974-07-16 |
Family
ID=8099179
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00332330A Expired - Lifetime US3823868A (en) | 1972-03-01 | 1973-02-14 | Sludge ejecting centrifuge |
Country Status (7)
Country | Link |
---|---|
US (1) | US3823868A (en) |
JP (1) | JPS541050B2 (en) |
DE (1) | DE2309951A1 (en) |
DK (1) | DK127041B (en) |
GB (1) | GB1378122A (en) |
IT (1) | IT982864B (en) |
SE (1) | SE378194B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2852628A1 (en) * | 1978-12-06 | 1980-06-19 | Kloeckner Humboldt Deutz Ag | SEPARATOR |
US4211361A (en) * | 1977-10-14 | 1980-07-08 | Martin Baram | Annular seal for self-cleaning sludge centrifuges |
DE3009669A1 (en) * | 1980-03-13 | 1981-09-24 | Klöckner-Humboldt-Deutz AG, 5000 Köln | SELF-EMPTYING FULL-COATED CENTRIFUGE |
US4347971A (en) * | 1977-03-03 | 1982-09-07 | Joy Manufacturing Company | Centrifuge apparatus |
US4392846A (en) * | 1981-05-18 | 1983-07-12 | Joy Manufacturing Company | Centrifuge apparatus |
US4432748A (en) * | 1976-09-03 | 1984-02-21 | Joy Manufacturing Company | Centrifuge apparatus and method of operating a centrifuge |
US20040023783A1 (en) * | 2001-01-19 | 2004-02-05 | Willi Niemerg | Centrifuge |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52155476A (en) * | 1976-06-18 | 1977-12-23 | Kogyo Kaihatsu Kenkyusho Kk | Centrifugal saparator |
DE3308505C1 (en) * | 1983-03-10 | 1984-11-15 | Westfalia Separator Ag, 4740 Oelde | Self-draining centrifugal drum |
DE10143411B4 (en) * | 2001-09-05 | 2004-02-19 | Westfalia Separator Ag | centrifuge |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR887232A (en) * | 1941-11-10 | 1943-11-08 | Improvements to centrifugal scrubbers | |
US3079069A (en) * | 1958-05-16 | 1963-02-26 | Separator Ab | Self-opening sludge centrifuge |
US3593915A (en) * | 1968-09-25 | 1971-07-20 | Westphalia Separator Ag | Controlled desludging of centrifugal separators |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE594461C (en) * | 1928-06-04 | 1934-03-17 | Aage Nyrop | Sludge centrifugal machine, in which the centrifugal drum consists of two drum parts and is provided with a closing slide for the sludge gap |
DE625067C (en) * | 1934-10-14 | 1936-02-03 | Friedrich Kinscher | Centrifugal drum with a sludge collection chamber arranged outside the separation space |
DE878479C (en) * | 1947-09-26 | 1953-04-16 | Int Harvester Co | Separators, in particular milk centrifuges |
US2674254A (en) * | 1947-09-26 | 1954-04-06 | Vernay Laboratories | Centrifugally operable valve ring for power washing cream separators |
-
1972
- 1972-03-01 DK DK93572AA patent/DK127041B/en unknown
-
1973
- 1973-02-14 US US00332330A patent/US3823868A/en not_active Expired - Lifetime
- 1973-02-26 GB GB925973A patent/GB1378122A/en not_active Expired
- 1973-02-28 SE SE7302791A patent/SE378194B/xx unknown
- 1973-02-28 IT IT48520/73A patent/IT982864B/en active
- 1973-02-28 DE DE19732309951 patent/DE2309951A1/en not_active Withdrawn
- 1973-03-01 JP JP2380773A patent/JPS541050B2/ja not_active Expired
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR887232A (en) * | 1941-11-10 | 1943-11-08 | Improvements to centrifugal scrubbers | |
US3079069A (en) * | 1958-05-16 | 1963-02-26 | Separator Ab | Self-opening sludge centrifuge |
US3593915A (en) * | 1968-09-25 | 1971-07-20 | Westphalia Separator Ag | Controlled desludging of centrifugal separators |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4432748A (en) * | 1976-09-03 | 1984-02-21 | Joy Manufacturing Company | Centrifuge apparatus and method of operating a centrifuge |
US4347971A (en) * | 1977-03-03 | 1982-09-07 | Joy Manufacturing Company | Centrifuge apparatus |
US4211361A (en) * | 1977-10-14 | 1980-07-08 | Martin Baram | Annular seal for self-cleaning sludge centrifuges |
DE2852628A1 (en) * | 1978-12-06 | 1980-06-19 | Kloeckner Humboldt Deutz Ag | SEPARATOR |
US4288029A (en) * | 1978-12-06 | 1981-09-08 | Klockner-Humboldt-Deutz Ag | Separator with pressure-responsive discharge |
DE3009669A1 (en) * | 1980-03-13 | 1981-09-24 | Klöckner-Humboldt-Deutz AG, 5000 Köln | SELF-EMPTYING FULL-COATED CENTRIFUGE |
US4392846A (en) * | 1981-05-18 | 1983-07-12 | Joy Manufacturing Company | Centrifuge apparatus |
US20040023783A1 (en) * | 2001-01-19 | 2004-02-05 | Willi Niemerg | Centrifuge |
US6827680B2 (en) * | 2001-01-19 | 2004-12-07 | Westfalia Separator Ag | Centrifuge |
Also Published As
Publication number | Publication date |
---|---|
DK127041B (en) | 1973-09-17 |
IT982864B (en) | 1974-10-21 |
JPS541050B2 (en) | 1979-01-19 |
GB1378122A (en) | 1974-12-18 |
JPS4899762A (en) | 1973-12-17 |
DE2309951A1 (en) | 1973-09-06 |
SE378194B (en) | 1975-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3823868A (en) | Sludge ejecting centrifuge | |
GB1381019A (en) | Apparatus and method for the separation of blood | |
US4304357A (en) | Blood processing centrifuge | |
US3408000A (en) | Determination of sludge level in sludge centrifuge | |
EP0332639B1 (en) | Operating system for centrifugal separator | |
US3825177A (en) | Self-dumping drum centrifuge for the clarification of liquids,equipped with a paring disk for removing the clarified liquid under pressure | |
NO164730B (en) | The annular preventer. | |
US3791575A (en) | Centrifugal separator discharge control system | |
US3765599A (en) | Self cleaning centrifuge drum with stepwise variable closing pressure | |
NO309757B1 (en) | Centrifugal rotor and slide seat for such a rotor | |
US2873910A (en) | Sludge-discharging centrifugal separators | |
SE458748B (en) | Centrifuge with self-contained centrifugal drum | |
SE8305674L (en) | Centrifuge with a self-emptying centrifuge drum | |
DE2521838A1 (en) | SELF-CLEANING CENTRIFUGAL DRUM WITH THE MAIN PISTON VALVE ON ONE SIDE BORDERING THE DRY CHAMBER, CONNECTED TO AT LEAST ONE AUXILIARY PISTON VALVE | |
SE446155B (en) | Piston Slider to a Self-Emptying Centrifuge Drum | |
US3494546A (en) | Centrifuge with variable discharge | |
DK155423B (en) | SEPARATOR | |
JPS61257255A (en) | Centrifugal separator with automatic discharge type centrifugal separation drum | |
US3462076A (en) | Self-cleaning centrifugal separator drum having an external piston valve | |
US3765601A (en) | Centrifuge | |
US3281068A (en) | Means to eject sludge from centrifugal separators | |
US3532265A (en) | Fluid controlled membrane valve for centrifuges | |
US4643708A (en) | Centrifuge operating system | |
US3648926A (en) | Liquid-solid separator | |
JPS62204870A (en) | Centrifugal drum of centrifugal separator for clarifying andseparating liquid mixture |