US3823456A - Method of manufacturing a roller - Google Patents
Method of manufacturing a roller Download PDFInfo
- Publication number
- US3823456A US3823456A US00375850A US37585073A US3823456A US 3823456 A US3823456 A US 3823456A US 00375850 A US00375850 A US 00375850A US 37585073 A US37585073 A US 37585073A US 3823456 A US3823456 A US 3823456A
- Authority
- US
- United States
- Prior art keywords
- inserts
- coat
- tube
- core
- roller
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D99/00—Subject matter not provided for in other groups of this subclass
- B29D99/0032—Producing rolling bodies, e.g. rollers, wheels, pulleys or pinions
- B29D99/0035—Producing rolling bodies, e.g. rollers, wheels, pulleys or pinions rollers or cylinders having an axial length of several times the diameter, e.g. for embossing, pressing, or printing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C13/00—Rolls, drums, discs, or the like; Bearings or mountings therefor
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03D—APPARATUS FOR PROCESSING EXPOSED PHOTOGRAPHIC MATERIALS; ACCESSORIES THEREFOR
- G03D3/00—Liquid processing apparatus involving immersion; Washing apparatus involving immersion
- G03D3/08—Liquid processing apparatus involving immersion; Washing apparatus involving immersion having progressive mechanical movement of exposed material
- G03D3/13—Liquid processing apparatus involving immersion; Washing apparatus involving immersion having progressive mechanical movement of exposed material for long films or prints in the shape of strips, e.g. fed by roller assembly
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/32—Wheels, pinions, pulleys, castors or rollers, Rims
- B29L2031/324—Rollers or cylinders having an axial length of several times the diameter, e.g. embossing, pressing or printing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49544—Roller making
- Y10T29/4956—Fabricating and shaping roller work contacting surface element
- Y10T29/49563—Fabricating and shaping roller work contacting surface element with coating or casting about a core
Definitions
- the present invention relates to rollers, especially to rollers whose length greatly exceeds their diameter, which can be used in apparatus for wet treatment of strip material, such as photographic roll film or prints.
- the invention also relates to a method of making such rollers.
- rollers In many types of apparatus for wet treatment of photographic films or the like, a web or sheet is transported along one or more straight and/or U-shaped paths by means of a conveyor system employing a number of rollers whose ends are provided with shafts or analogous mounting or coupling means for convenient installation in the frame.
- the rollers are disposed singly or in pairs andare normally provided with smooth external surfaces to reduce the likelihood of damage to the photosensitive emulsion.
- the surface-finish and the material of the rollers depend on the nature of fluids which act upon the rollers during treatment of the processed material.
- rollers which are presently used in developing tanks for photographic material comprise cores consisting of high-quality steel and coats of rubber. Other materials are used for thoserollers which transport the film in a fixing or rinsing tank.
- the rollers at the drying station normally comprise a stainless core surrounded bya coating of phenolic resin. In many instances, the entire roller consistsof high-quality steel.
- a concomitant object of the present invention is to provide a roller whose surface quality and chemical resistivity satisfy the requirements imposed on rollers in various stages of development of photographic materials.
- roller which comprises a tubular metallic core provided with an external coat of chemically resistant ther moplastic material, and two inserts, portions of which 2 are received in the end portions of the metallic core and which are provided with shafts or analogous coupling or mounting means to facilitate the mounting of the roller in a frame or the like.
- thermoplastic material of the coat is chosen so as'to assure permanent bonding between the external surface of the metallic core and the coat applied thereto.
- a roller produced in this manner is superior to conventional rollers because the metallic core offers the necessary rigidity and resistance to external forces, even under most unfavorable conditions, while the coat which contacts the maappended claims.
- the improved roller itself however,
- FIG. 1 is a partlyelevational and partly axial sectional view of a roller which embodies one form of the invention
- FIG. 2 is a fragmentary schematic partly elevational and partly sectional viewof a portion of anapparatus for the making of rollers of the type shown inyFIG. 1;
- FIG. 3 is a partly elevational and partly axial sectional view of a second roller.
- FIG. 4 is a sectional view as seen in the direction of arrows from the line IV-IV of FIG. 3.
- FIG. 1 A roller which embodies one form of the invention is shown in FIG. 1.
- This roller comprises a tubular metallic core 1 which is permanently bonded to a cylindrical sleeve or coat 2 of thermoplastic material.
- the metallic core 1 is made of aluminum; however, it is equally possible to use other materials whichare relatively inexpensive and are not highly resistant to corrosion, e.g., when subjected to the action of chemically active media used in the wet treatment of photographic materials.
- the currently preferred materials for the making of the thermoplastic coat 2 are hard polyvinyl chloride, crystalline polyamide, polypropylene, polyethylene or their combinatrons.
- the thickness of the coat 2 preferably exceeds 2 millimeters. The reasons for such rather pronounced thickness will be discussed later in connection with the description of steps following the application of the coat 2 to the core 1.
- FIG. 2 This method is an extrusion process according to which a continuous aluminum tube 1 is rotated about its axis and is moved lengthwise by a carriage, not shown, in the direction indicated by an arrow so as to advance along an extruder nozzle 3 forming part of an extruding apparatus of conventional design.
- this relative movement can also be effected in any other known manner, such as moving the extruder nozzle 3 longitudinally of the tube 1' while the tube rotates but is held against axial movement.
- Plasticized thermoplastic material which is being extruded from the nozzle 3 forms a strip as a result of rotation of the tube 1' and contacts the external surface of the tube to become attached thereto in the form of contiguous helical convolutions merging with each other as a result of the material of the strip being in a plasticized state, so as to form a continuous coat 2'.
- a support roller is located substantially opposite the extruder nozzle 3 to hold the tube against deflection thus keeping constant the distance between the orifice of the extruder nozzle and the tube to be coated and the thickness of the coat. While this method has been described as being used for coating continuous tubes, it is to be understood that it can also be used for coating of tubes of finite length.
- the tube 1 with the thermoplastic coat 2' applied thereto is subdivided into tubular sections each including a metallic core 1 whose external surface is surrounded by a portion or sleeve 2 of the coat 2'.
- the length of the cores 1 equals or approximates the desired length of rollers.
- the thus obtained semi-finished product is then clamped at its outer surface, i.e., at the outer surface of the sleeve 2, and the end portions la of the core 1 are counterbored so that their internal diameters exceed the diameters of two cylindrical inserts 4.
- each of the inserts 4 is provided with a shaft 5 of stainless steel; however, any other supporting and coupling means, such as sockets for accommodation of trunnions external to the roller may be used.
- the material of the inserts 4 corresponds to the material of the sleeve 2.
- the end portions of the sleeve 2 may extend beyond the end faces lb of the core 1 so that the latter need not contact the flanges 4a.
- These flanges are bonded to the sleeve 2 by means of a suitable adhesive, by welding or in any other suitable way which insures that the sleeve 2 and flanges 4a form a fluidtight and corrosion-resistant envelope around the metallic core 1.
- the inserts 4 are provided with axial bores 4b which receive splined or toothed end portions of the respective shafts 5.
- the shafts 5 are permanently attached to the respective inserts 4 by an adhesive, by injection of the material of the inserts into a mold into which the splined portions of the shaft extend, or by sonic welding.
- the latter procedure consists in subjecting a shaft 5, while being forced into the respective insert 4, to vibrations at least in the sonic range, with resulting development of heat in the regions immediately bordering and contacting the shaft 5, caused by the friction between the surfaces of the shaft and the insert with attendant partial melting of the insert.
- Such partial melting facilitates the introduction of the shaft'into the insert and insures the formation of a permanent bond when the molten material of the insert is caused or allowed to set.
- the metallic tube 1 is first provided with a coat 2 having a sufficient thickness so as to allow for subsequent finishing operations, and then cut or otherwise subdivided into sections each of which includes a metallic core 1 provided with a sleeve 2 and having a length corresponding to the desired length of the cylindrical part of the roller. Subsequently thereto, the thus obtained semi-finished product is clamped at the inner surface of the core 1, and the external surface of the sleeve 2 is coarsely machined by turning or other material-removing operation so as to provide the sleeve with an external surface whichis coaxial with the intemal surface of the core 1.
- the semi-finished product is clampedat the thus coarsely machined external surface, and the end portions 1a of the core are counterbored by turning or a similar material-removing operation along a length at least matching the length of those portions of the inserts 4 which are to be insertedinto the core 1.
- the internal surfaces of the end portions la are coaxial to the outer surface of the coat 2 and to the remaining, nonmachined central portion of the inner surface of the core.
- the inner diameters of theend portions 1a are preferably slightly larger than the outer diameters of the main portions of the inserts so as to facilitate the introduction of inserts into the respective end portions 1a.
- the metallic core 1 is provided with the outwardly flaring end faces lb which are preferably recessed in respect to the'end portions of the sleeve 2.
- the next step consists in introduction of the inserts 4, which are assumed to be provided with the shafts 5, into the respective end portions la of the core 1 with simultaneous establishment of a permanent bond between the flanges 4a of the inserts 4 and the sleeve 2, e.g., by glueing or any other procedure insuring a permanent seal and a chemically resistant bond between the inserts 4 and the sleeve.
- One of the alternative methods of bonding com prises thermal welding of the flanges 4a to the sleeve 2.
- the thus obtained roller is supported on the shafts 5 which are coaxial with the core 1 and hence with the outer surface of the sleeve 2, and the outer surface is machined to eliminate surface roughness in a shaving-or chip-removing operation such as, for instance, turning or grinding.
- a shaving-or chip-removing operation such as, for instance, turning or grinding.
- rollers While this surface quality is sufficient for most applications of the roller, it can be further improved by subsequent chemicalsmoothing operations, such as application of a solvent to the surface to be smoothed, or thermal smoothing operations, such as utilizing frictional heat between the smoothing tool and the surface to be smoothed, blowing hot air or other gas against the surface, or smoothing by radiated heat.
- chemicalsmoothing operations such as application of a solvent to the surface to be smoothed
- thermal smoothing operations such as utilizing frictional heat between the smoothing tool and the surface to be smoothed, blowing hot air or other gas against the surface, or smoothing by radiated heat.
- the counterboring of the cores 1 can be dispensed with if the tube 1 consists of accurately calibrated tubular metallic stock having a constant wall thickness.
- FIGS. 3 and 4 show a second embodiment of the improved roller.
- a metallic tube preferably consisting of aluminum, is cut or otherwise subdivided intocores 6 of predetermined length.
- inserts 7 with shafts 8 bonded thereto are introduced into the end portions of the core 6, and centered therein axially with respect to the core by moving the flanges 7a of the inserts 7 into abutment with the respective end faces of the core.
- the outer surfaces 7b of the inserts abut against the inner surface of the core 6, thus making the inserts 7 and their shafts 8 coaxial with the core 6.
- the material of the inserts 7 is preferably identical with that of a thermoplastic sleeve 9 for the core 6.
- Each shaft 8 is held in the respective insert 7 by four internal ribs 70 which allows for some deformation of the insertif the inner diameter of the core 6 is too small to receive the insert without deformation. If inserts of such a configuration are used, the machining of the inner surface of the core 6 can be avoided in most cases.
- the thus obtained semi-finished product i.e., the core 6 with the inserts 7 and shafts 8 is then introduced into an injection mold of conventional design, which is well known and thus not illustrated.
- a thermoplastic material preferably the same as the material of the inserts, is then injected into the mold so as to provide, in a single operation, a coat or envelope 9 around the exposed surfaces of the semi-finished roller and fillthe voids between the ribs 7c.
- the injected material is preferably hard polyvinyl chloride, but any other suitable material may be used as well.
- the mold consists of two mirror-symmetrical parts which have sockets for the shafts 8 and whose inner dimensions exceed the outer dimensions of the exposed surface of theroller by the intended thickness of the coat, and the injection openings are located so as to face the end faces of the roller and thus the inserts.
- the latter expedient facilitates the penetration of plasticized material into the voids between the ribs 7c. Since the'thus formed coat surrounds all the exposed surfaces, i.e., the external surface of the core and the exposed external surfaces of the inserts, these parts are automatically sealingly bonded to each other.
- the roller is supported by the shafts 8 and the external surface of the coat 9 is machined, for instance turned, in one ormore stages, to obtain the final quality of the surface of the roller.
- this roller is even less than that of the roller shown in FIG. 1; however, the requirements for the quality of the injection molding process are high, since only minute quantity of gaseous inclusions in the material being injected into the mold to form the coat around the metallic core is permitted. Larger quantity of such inclusions or bubbles would result in porousness of the coat 9 and, in addition to impairing the quality of the surface of the roller, these in-' clusions might result in loss of protective quality of the coat 9 so that the chemically active medium may reach the core and thus corrosion thereof mayoccur. Therefore, it is highly desirable that the quantity of entrapped gas be kept to a minimum, advantageously by fevacuation of the material to be injection molded.
- the semi-finished coated rollers are machined for improvement of the surface quality of the rollers.
- the coat of the rollers has to have sufficient thickness to allow for removal of a portion thereof during the machining operations.
- the core may be allowed to deviate from the ideal cylindrical shape to a certain degree without substantiallyimpairing the lifetime or performance of the roller.
- the substantial thickness increases the lifespan of the roller by providing a larger quantity of material which canbe worn off before the metallic core is exposed.
- the thus manufactured roller which has asurface of high quality, is superior to heretofore used rubber or resulting from the action of leading edges of webs of photographic material upon the surfaces of the rollers.
- a method of producing chemically resistant rollers of the type having a tubular metallic core comprising the steps of rotating an elongated! metallic tube about its axis; feeding against the external surface of the rotating tube a strip of chemically resistant thermoplastic material in plasticized state; efiecting a relative movement between said strip and said tube in the axial direction of said tube so that the strip forms around the tube a series of contiguous convolutions which together constitute a continuous cylindrical coat around said surface of said tube; subdividing the thus coated tube into tubular sections of predetermined length; introducing a portion of an insert into each end portion of each tubular section; and sealingly bonding said inserts to the coats of the respective sections.
- each of said coupling means is a shaft and each insert is provided with a central hole, said introducing step comprising inserting said shafts into the respective holes and glueing said shafts to the respective inserts.
- each of said coupling means is a shaft and said introducing step comprises subjecting said shafts to vibration at least in the sonic range simultaneously with lengthwise movement of said shafts into the respective inserts so as to efi'ect partial melting of the material of the inserts.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Rolls And Other Rotary Bodies (AREA)
- Lining Or Joining Of Plastics Or The Like (AREA)
- Photographic Processing Devices Using Wet Methods (AREA)
Abstract
A method of making a roller which is to be used in apparatus for wet treatment of photographic material and which comprises a hollow metallic core and two inserts with coupling shafts provided therein. A coat of chemically resistant thermoplastic material is applied around and sealingly surrounds the core to protect it from the corrosive action of media used in the wet treatment process. The outer surface of the thus coated roller is thereupon machined to a high-quality finish.
Description
United States Patent [191 Schneider et al;
[ July 16, 1974 METHOD OF MANUFACTURING A ROLLER Inventors: Siegfried Schneider, Durrnhaar;
' Kurt Thate, Munich; Erwin Geyken, Munich; Horst Kempe, Munich; Stephen Macher, Munich, all of Germany Agfa-Gevaert AG, Leverkusen, Germany Filed: July 2, 1973 Appl. No.: 375,850
Assignee:
[30] Foreign Application Priority Data July 1, 1972 Germany 2232424 U.S. Cl .Q 29/l48.4 D Int. Cl B2lh 1/14 Field of Search ..29/148.4 D, 148.4 R,
u I! II [56] References Cited UNITED STATES PATENTS 1,943,215 1/1934 Dunlap 29/l48.4 D 3,007,23l ll/l96l Garver 29/l48.4 D
Primary Examiner-Thomas l-l. Eager Attorney, Agent, or Firm-Michael S. Striker [5 7 ABSTRACT coated roller is thereupon machined to a high-quality finish.
11 Claims, 4 Drawing Figures PATENIEU JUL 1 61974 sum 1 m 2 him BACKGROUND OF THE INVENTION The present invention relates to rollers, especially to rollers whose length greatly exceeds their diameter, which can be used in apparatus for wet treatment of strip material, such as photographic roll film or prints. The invention also relates to a method of making such rollers.
In many types of apparatus for wet treatment of photographic films or the like, a web or sheet is transported along one or more straight and/or U-shaped paths by means of a conveyor system employing a number of rollers whose ends are provided with shafts or analogous mounting or coupling means for convenient installation in the frame. The rollers are disposed singly or in pairs andare normally provided with smooth external surfaces to reduce the likelihood of damage to the photosensitive emulsion. The surface-finish and the material of the rollers depend on the nature of fluids which act upon the rollers during treatment of the processed material. For example, rollers which are presently used in developing tanks for photographic material comprise cores consisting of high-quality steel and coats of rubber. Other materials are used for thoserollers which transport the film in a fixing or rinsing tank. The rollers at the drying station normally comprise a stainless core surrounded bya coating of phenolic resin. In many instances, the entire roller consistsof high-quality steel.
The manufacturing cost of such a large variety of rollers for use in a combined developing, fixing, rinsing and drying apparatus is extremely high, especially since the rollers must be produced in small numbers. Moreover. an unskilled workman is likely to confuse the rollers during assembly so that a roller which can stand the action of media in a fixing tank but is installed in the developing tank, or vice versa, is likely to be destroyed after a relatively short period of use. This can lead to prolonged interruptions in operation and substantial losses in output.
SUMMARY OF THE INVENTION It is an object of the present invention to provide a versatile and chemically resistant roller which may be mass-produced in large numbers at a low cost.
It is an other object of the invention to provide a roller which maybe used in all stages of treatment of pho tographic material, regardless of the nature of fluids which come in contact therewith in various portions of the developing apparatus. I
It is a further object of the present invention to pro vide light-weight, rugged, reliable andlong lasting rollers which can be used interchangeably with similar rollers at any one of a plurality of processing stations in a photographic developing or like apparatus.
A concomitant object of the present invention is to provide a roller whose surface quality and chemical resistivity satisfy the requirements imposed on rollers in various stages of development of photographic materials.
It is a further object of the invention to provide a novel method of manufacturing chemically resistant rollers.
One feature of the invention resides in the provision of a roller which comprises a tubular metallic core provided with an external coat of chemically resistant ther moplastic material, and two inserts, portions of which 2 are received in the end portions of the metallic core and which are provided with shafts or analogous coupling or mounting means to facilitate the mounting of the roller in a frame or the like.
The thermoplastic material of the coat is chosen so as'to assure permanent bonding between the external surface of the metallic core and the coat applied thereto. Experience has shown that a roller produced in this manner is superior to conventional rollers because the metallic core offers the necessary rigidity and resistance to external forces, even under most unfavorable conditions, while the coat which contacts the maappended claims. The improved roller itself, however,
both as to its construction and its mode of operation, together .with additional features and advantages thereof, will be best understood upon perusal of the following detailed description of certain specific embodiments with reference to the accompanying drawing.
BRIEF DESCRIPTION, OF THE DRAWING FIG. 1 is a partlyelevational and partly axial sectional view of a roller which embodies one form of the invention;
FIG. 2 is a fragmentary schematic partly elevational and partly sectional viewof a portion of anapparatus for the making of rollers of the type shown inyFIG. 1;
FIG. 3 is a partly elevational and partly axial sectional view of a second roller; and
FIG. 4 is a sectional view as seen in the direction of arrows from the line IV-IV of FIG. 3.
DESCRIPTION OF THE PREFERRED EMBODIMENTS A roller which embodies one form of the invention is shown in FIG. 1. This roller comprises a tubular metallic core 1 which is permanently bonded to a cylindrical sleeve or coat 2 of thermoplastic material. In the currently preferred embodiment, the metallic core 1 is made of aluminum; however, it is equally possible to use other materials whichare relatively inexpensive and are not highly resistant to corrosion, e.g., when subjected to the action of chemically active media used in the wet treatment of photographic materials. The only. important requirement the material of the core 1 has to satisfy, in addition to resistance. to external forces acting upon the roller, is to enter into a permanent bond with the material of the coat 2. The currently preferred materials for the making of the thermoplastic coat 2 are hard polyvinyl chloride, crystalline polyamide, polypropylene, polyethylene or their combinatrons.
The thickness of the coat 2 preferably exceeds 2 millimeters. The reasons for such rather pronounced thickness will be discussed later in connection with the description of steps following the application of the coat 2 to the core 1. Even though there is a wide variety of methods of applying'such a relatively thick coat of thermoplastic material to a cylindrical core, the cur rently preferred method is illustrated in FIG. 2. This method is an extrusion process according to which a continuous aluminum tube 1 is rotated about its axis and is moved lengthwise by a carriage, not shown, in the direction indicated by an arrow so as to advance along an extruder nozzle 3 forming part of an extruding apparatus of conventional design. However, it is to be understood that this relative movement can also be effected in any other known manner, such as moving the extruder nozzle 3 longitudinally of the tube 1' while the tube rotates but is held against axial movement.
Plasticized thermoplastic material which is being extruded from the nozzle 3 forms a strip as a result of rotation of the tube 1' and contacts the external surface of the tube to become attached thereto in the form of contiguous helical convolutions merging with each other as a result of the material of the strip being in a plasticized state, so as to form a continuous coat 2'. A support roller is located substantially opposite the extruder nozzle 3 to hold the tube against deflection thus keeping constant the distance between the orifice of the extruder nozzle and the tube to be coated and the thickness of the coat. While this method has been described as being used for coating continuous tubes, it is to be understood that it can also be used for coating of tubes of finite length.
Upon completion of the coating operation, the tube 1 with the thermoplastic coat 2' applied thereto is subdivided into tubular sections each including a metallic core 1 whose external surface is surrounded by a portion or sleeve 2 of the coat 2'. The length of the cores 1 equals or approximates the desired length of rollers. The thus obtained semi-finished product is then clamped at its outer surface, i.e., at the outer surface of the sleeve 2, and the end portions la of the core 1 are counterbored so that their internal diameters exceed the diameters of two cylindrical inserts 4. The end faces lb of the core 1 are bevelled so that they flare radially outwardly and may but need not abut against complementary surfaces on the flanges 4a of the respective inserts 4. The inserts 4 preferably consist of synthetic plastic material which can be bonded to the material of the sleeve 2. In the illustrated embodiment, each of the inserts 4 is provided with a shaft 5 of stainless steel; however, any other supporting and coupling means, such as sockets for accommodation of trunnions external to the roller may be used.
In the presently preferred embodiment, the material of the inserts 4 corresponds to the material of the sleeve 2. The end portions of the sleeve 2 may extend beyond the end faces lb of the core 1 so that the latter need not contact the flanges 4a. These flanges are bonded to the sleeve 2 by means of a suitable adhesive, by welding or in any other suitable way which insures that the sleeve 2 and flanges 4a form a fluidtight and corrosion-resistant envelope around the metallic core 1. t
The inserts 4 are provided with axial bores 4b which receive splined or toothed end portions of the respective shafts 5. The shafts 5 are permanently attached to the respective inserts 4 by an adhesive, by injection of the material of the inserts into a mold into which the splined portions of the shaft extend, or by sonic welding. The latter procedure consists in subjecting a shaft 5, while being forced into the respective insert 4, to vibrations at least in the sonic range, with resulting development of heat in the regions immediately bordering and contacting the shaft 5, caused by the friction between the surfaces of the shaft and the insert with attendant partial melting of the insert. Such partial melting facilitates the introduction of the shaft'into the insert and insures the formation of a permanent bond when the molten material of the insert is caused or allowed to set.
The currently preferred method of manufacturing the roller illustrated in FIG. 1 will now be described. As already explained above, the metallic tube 1 is first provided with a coat 2 having a sufficient thickness so as to allow for subsequent finishing operations, and then cut or otherwise subdivided into sections each of which includes a metallic core 1 provided with a sleeve 2 and having a length corresponding to the desired length of the cylindrical part of the roller. Subsequently thereto, the thus obtained semi-finished product is clamped at the inner surface of the core 1, and the external surface of the sleeve 2 is coarsely machined by turning or other material-removing operation so as to provide the sleeve with an external surface whichis coaxial with the intemal surface of the core 1. Subsequentlythereto, the semi-finished product is clampedat the thus coarsely machined external surface, and the end portions 1a of the core are counterbored by turning or a similar material-removing operation along a length at least matching the length of those portions of the inserts 4 which are to be insertedinto the core 1. The internal surfaces of the end portions la are coaxial to the outer surface of the coat 2 and to the remaining, nonmachined central portion of the inner surface of the core. The inner diameters of theend portions 1a are preferably slightly larger than the outer diameters of the main portions of the inserts so as to facilitate the introduction of inserts into the respective end portions 1a. Simultaneously therewith, or subsequently thereto, the metallic core 1 is provided with the outwardly flaring end faces lb which are preferably recessed in respect to the'end portions of the sleeve 2. The next step consists in introduction of the inserts 4, which are assumed to be provided with the shafts 5, into the respective end portions la of the core 1 with simultaneous establishment of a permanent bond between the flanges 4a of the inserts 4 and the sleeve 2, e.g., by glueing or any other procedure insuring a permanent seal and a chemically resistant bond between the inserts 4 and the sleeve. One of the alternative methods of bonding com prises thermal welding of the flanges 4a to the sleeve 2. Subsequently thereto, the thus obtained roller is supported on the shafts 5 which are coaxial with the core 1 and hence with the outer surface of the sleeve 2, and the outer surface is machined to eliminate surface roughness in a shaving-or chip-removing operation such as, for instance, turning or grinding. Experience has shown that best results are obtained if the surface is turned using a diamond cutting tool, the obtainable peak-to-valley height amounting to approximately 4 pm. While this surface quality is sufficient for most applications of the roller, it can be further improved by subsequent chemicalsmoothing operations, such as application of a solvent to the surface to be smoothed, or thermal smoothing operations, such as utilizing frictional heat between the smoothing tool and the surface to be smoothed, blowing hot air or other gas against the surface, or smoothing by radiated heat. Experience gained in prolonged tests has shown that the thus obtained rollers satisfy all criteria required from them if they are to be utilized in a developing apparatus for photographic strip or sheet materials, i.e., that they are sufficiently rigid so as not to buckle in actual use while the chemical resistivity afforded to them by the coat is sufficient for their utilization in all stages of the process.
The counterboring of the cores 1 can be dispensed with if the tube 1 consists of accurately calibrated tubular metallic stock having a constant wall thickness.
FIGS. 3 and 4 show a second embodiment of the improved roller. A metallic tube, preferably consisting of aluminum, is cut or otherwise subdivided intocores 6 of predetermined length. Subsequently thereto, inserts 7 with shafts 8 bonded thereto are introduced into the end portions of the core 6, and centered therein axially with respect to the core by moving the flanges 7a of the inserts 7 into abutment with the respective end faces of the core. The outer surfaces 7b of the inserts abut against the inner surface of the core 6, thus making the inserts 7 and their shafts 8 coaxial with the core 6. The material of the inserts 7 is preferably identical with that of a thermoplastic sleeve 9 for the core 6. Each shaft 8 is held in the respective insert 7 by four internal ribs 70 which allows for some deformation of the insertif the inner diameter of the core 6 is too small to receive the insert without deformation. If inserts of such a configuration are used, the machining of the inner surface of the core 6 can be avoided in most cases.
The thus obtained semi-finished product, i.e., the core 6 with the inserts 7 and shafts 8, is then introduced into an injection mold of conventional design, which is well known and thus not illustrated. A thermoplastic material, preferably the same as the material of the inserts, is then injected into the mold so as to provide, in a single operation, a coat or envelope 9 around the exposed surfaces of the semi-finished roller and fillthe voids between the ribs 7c. The injected material is preferably hard polyvinyl chloride, but any other suitable material may be used as well. According to a presently preferred embodiment, the mold consists of two mirror-symmetrical parts which have sockets for the shafts 8 and whose inner dimensions exceed the outer dimensions of the exposed surface of theroller by the intended thickness of the coat, and the injection openings are located so as to face the end faces of the roller and thus the inserts. The latter expedient facilitates the penetration of plasticized material into the voids between the ribs 7c. Since the'thus formed coat surrounds all the exposed surfaces, i.e., the external surface of the core and the exposed external surfaces of the inserts, these parts are automatically sealingly bonded to each other.
After the core has been coated, the roller is supported by the shafts 8 and the external surface of the coat 9 is machined, for instance turned, in one ormore stages, to obtain the final quality of the surface of the roller.
The manufacturing cost of this roller is even less than that of the roller shown in FIG. 1; however, the requirements for the quality of the injection molding process are high, since only minute quantity of gaseous inclusions in the material being injected into the mold to form the coat around the metallic core is permitted. Larger quantity of such inclusions or bubbles would result in porousness of the coat 9 and, in addition to impairing the quality of the surface of the roller, these in-' clusions might result in loss of protective quality of the coat 9 so that the chemically active medium may reach the core and thus corrosion thereof mayoccur. Therefore, it is highly desirable that the quantity of entrapped gas be kept to a minimum, advantageously by fevacuation of the material to be injection molded.
It has been disclosed above in connection with both embodiments of the rollers, that the semi-finished coated rollers are machined for improvement of the surface quality of the rollers. Thus, it is evident, that the coat of the rollers has to have sufficient thickness to allow for removal of a portion thereof during the machining operations. As already mentioned above, it is desirable that the coat be at least 2 millimeters thick. The additional advantages gained by providing such relatively thick coating are that evenif the core is not completely rotationally symmetrical, the materialremoving operations will not remove all of the chemically'resistant coating in some regions of the roller, so
that the core may be allowed to deviate from the ideal cylindrical shape to a certain degree without substantiallyimpairing the lifetime or performance of the roller. In addition thereto, the substantial thickness increases the lifespan of the roller by providing a larger quantity of material which canbe worn off before the metallic core is exposed.
The thus manufactured roller, which has asurface of high quality, is superior to heretofore used rubber or resulting from the action of leading edges of webs of photographic material upon the surfaces of the rollers.
ltxwill be understood that each of the rollers described above, or two or more together, may also find a useful application in other types of apparatus differing from the type described above. 7
While the invention has been illustrated and described as embodied in apparatus for'wet treatment of photographic materials, it is not intended to be limited to the details shown, since various modifications and structural changes maybe made without departing in any way from the spirit of the present invention.
Withoutfurther analysis, the foregoing will so fully reveal the gist of the present invention that others can, by applying current knowledge, readily adapt it for various applications without omitting features that, from the standpoint of prior art, fairly constitute essential characteristics of the generic or specific aspects of our contribution to the art and, therefore, such adaptations should and are intended to be comprehended within the meaning and range of equivalence of the claims.
What is claimed as new and desired to be protected by letters Patent is set forth-in the appended claims:
1. A method of producing chemically resistant rollers of the type having a tubular metallic core, comprising the steps of rotating an elongated! metallic tube about its axis; feeding against the external surface of the rotating tube a strip of chemically resistant thermoplastic material in plasticized state; efiecting a relative movement between said strip and said tube in the axial direction of said tube so that the strip forms around the tube a series of contiguous convolutions which together constitute a continuous cylindrical coat around said surface of said tube; subdividing the thus coated tube into tubular sections of predetermined length; introducing a portion of an insert into each end portion of each tubular section; and sealingly bonding said inserts to the coats of the respective sections.
2. A method as defined in claim 1, further comprising the steps of machining the inner surfaces of said end portions to a diameter substantially corresponding to the diameter of said portions of the respective inserts and shortening both ends of said core prior to said introducing step so as to insure positive contact between said inserts and the coat of the respective section.
3. A method as defined in claim 1, further comprising the step of machining the cylindrical surface of the coat of each section subsequent to said bonding step.
4. A method as defined in claim 1, further comprising the step of chemically smoothing the cylindrical surface of said coat by applying a solvent thereto.
5. A method as defined in claim 1, further comprising the step of thermally smoothing the cylindrical surface of said coat.
6. A method as defined in claim 1, further comprising the step of thermally smoothing the cylindrical surface of said coat by directing a stream of heated gaseous medium against said surface.
7. A method as defined in claim 1, further comprising the step of thermally smoothing the cylindrical surface of said coat by radiated heat.
8. A method as defined in claim 1, further comprising the step of introducing coupling means into said inserts so as to establish a permanent bond between the former and the latter.
9. A method as defined in claim 8, wherein each of said coupling means is a shaft and each insert is provided with a central hole, said introducing step comprising inserting said shafts into the respective holes and glueing said shafts to the respective inserts.
10. A method as defined in claim 8, wherein each of said coupling means is a shaft and said introducing step comprises subjecting said shafts to vibration at least in the sonic range simultaneously with lengthwise movement of said shafts into the respective inserts so as to efi'ect partial melting of the material of the inserts.
11. A method as defined in claim 1, further comprising the step of injection molding of the insert around a coaxial shaft prior to insertion of said inserts into said end portions of the respective cores.
Claims (11)
1. A method of producing chemically resistant rollers of the type having a tubular metallic core, comprising the steps of rotating an elongated metallic tube about its axis; feeding against the external surface of the rotating tube a strip of chemically resistant thermoplastic material in plasticized state; effecting a relative movement between said strip and said tube in the axial direction of said tube so that the strip forms around the tube a series of contiguous convolutions which together constitute a continuous cylindrical coat around said surface of said tube; subdividing the thus coated tube into tubular sections of predetermined length; introducing a portion of an insert into each end portion of each tubular section; and sealingly bonding said inserts to the coats of the respective sections.
2. A method as defined in claim 1, further comprising the steps of machining the inner surfaces of said end portions to a diameter substantially corresponding to the diameter of said portions of the respective inserts and shortening both ends of said core prior to said introducing step so as to insure positive contact between said inserts and the coat of the respective section.
3. A method as defined in claim 1, further comprising the step of machining the cylindrical surface of the coat of each section subsequent to said bonding step.
4. A method as defined in claim 1, further comprising the step of chemically smoothing the cylindrical surface of said coat by applying a solvent thereto.
5. A method as defined in claim 1, further comprising the step of thermally smoothing the cylindrical surface of said coat.
6. A method as defined in claim 1, further comprising the step of thermally smoothing the cylindrical surface of said coat by directing a stream of heated gaseous medium against said surface.
7. A method as defined in claim 1, further comprising the step of thermally smoothing the cylindrical surface of said coat by radiated heat.
8. A method as defined in claim 1, further comprising the step of introducing coupling means into said inserts so as to establish a permanent bond between the former and the latter.
9. A method as defined in claim 8, wherein each of said coupling means is a shaft and each insert is provided with a central hole, said introducing step comprising inserting said shafts into the respective holes and glueing said shafts to the respective inserts.
10. A method as defined in claim 8, wherein each of said coupling means Is a shaft and said introducing step comprises subjecting said shafts to vibration at least in the sonic range simultaneously with lengthwise movement of said shafts into the respective inserts so as to effect partial melting of the material of the inserts.
11. A method as defined in claim 1, further comprising the step of injection molding of the insert around a coaxial shaft prior to insertion of said inserts into said end portions of the respective cores.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US05/446,923 US3971115A (en) | 1972-07-01 | 1974-02-28 | Method of making roller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19722232424 DE2232424C3 (en) | 1972-07-01 | roller |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US05/446,923 Division US3971115A (en) | 1972-07-01 | 1974-02-28 | Method of making roller |
Publications (1)
Publication Number | Publication Date |
---|---|
US3823456A true US3823456A (en) | 1974-07-16 |
Family
ID=5849442
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00375850A Expired - Lifetime US3823456A (en) | 1972-07-01 | 1973-07-02 | Method of manufacturing a roller |
Country Status (6)
Country | Link |
---|---|
US (1) | US3823456A (en) |
CH (2) | CH563603A5 (en) |
FR (1) | FR2191648A5 (en) |
GB (1) | GB1435552A (en) |
HK (1) | HK1677A (en) |
IT (1) | IT998176B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5138766A (en) * | 1990-04-26 | 1992-08-18 | Fuji Photo Equipment Co., Ltd. | Roller for transporting sheet-like material and method for manufacturing the same |
US5412870A (en) * | 1993-02-11 | 1995-05-09 | Valmet Paper Machinery, Inc. | Method for coating a roll |
US5493777A (en) * | 1994-09-09 | 1996-02-27 | Jason Incorporated | Idler roller and method of making |
US20060021226A1 (en) * | 2004-07-30 | 2006-02-02 | Eastman Kodak Company | Method for producing a metallic core for use in cylinder sleeves for an electrophotographic process |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE8322639U1 (en) * | 1983-08-05 | 1983-12-01 | Uranit GmbH, 5170 Jülich | Guide rollers for paper, foil finishing and printing machines |
FR2670066A1 (en) * | 1990-11-29 | 1992-06-05 | Alcatel Business Systems | Shaft for the mechanism of office-type equipment |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1943215A (en) * | 1932-10-13 | 1934-01-09 | Sonoco Products Co | Textile roll and method of making the same |
US3007231A (en) * | 1960-01-18 | 1961-11-07 | Alloy Hardfacing Co | Method of producing metal rollers |
-
1973
- 1973-06-27 CH CH941173A patent/CH563603A5/xx not_active IP Right Cessation
- 1973-06-27 IT IT25912/73A patent/IT998176B/en active
- 1973-06-27 CH CH371975A patent/CH598626A5/xx not_active IP Right Cessation
- 1973-06-28 FR FR7323690A patent/FR2191648A5/fr not_active Expired
- 1973-07-02 GB GB3141173A patent/GB1435552A/en not_active Expired
- 1973-07-02 US US00375850A patent/US3823456A/en not_active Expired - Lifetime
-
1977
- 1977-01-06 HK HK16/77A patent/HK1677A/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1943215A (en) * | 1932-10-13 | 1934-01-09 | Sonoco Products Co | Textile roll and method of making the same |
US3007231A (en) * | 1960-01-18 | 1961-11-07 | Alloy Hardfacing Co | Method of producing metal rollers |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5138766A (en) * | 1990-04-26 | 1992-08-18 | Fuji Photo Equipment Co., Ltd. | Roller for transporting sheet-like material and method for manufacturing the same |
US5412870A (en) * | 1993-02-11 | 1995-05-09 | Valmet Paper Machinery, Inc. | Method for coating a roll |
US5582568A (en) * | 1993-02-11 | 1996-12-10 | Valmet Corporation | Method for coating a roll and a coated roll for a paper machine |
US5493777A (en) * | 1994-09-09 | 1996-02-27 | Jason Incorporated | Idler roller and method of making |
US5542900A (en) * | 1994-09-09 | 1996-08-06 | Jason Incorporated | Idler roller and method of making |
US20060021226A1 (en) * | 2004-07-30 | 2006-02-02 | Eastman Kodak Company | Method for producing a metallic core for use in cylinder sleeves for an electrophotographic process |
US7353605B2 (en) * | 2004-07-30 | 2008-04-08 | Eastman Kodak Company | Method for producing a metallic core for use in cylinder sleeves for an electrophotographic process |
US20080112728A1 (en) * | 2004-07-30 | 2008-05-15 | Cormier Steven O | Method for producing a metallic core for use in cylinder sleeves for an electrophotographic process |
Also Published As
Publication number | Publication date |
---|---|
CH563603A5 (en) | 1975-06-30 |
CH598626A5 (en) | 1978-05-12 |
IT998176B (en) | 1976-01-20 |
FR2191648A5 (en) | 1974-02-01 |
DE2232424A1 (en) | 1974-01-10 |
DE2232424B2 (en) | 1977-02-24 |
HK1677A (en) | 1977-01-14 |
GB1435552A (en) | 1976-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3971115A (en) | Method of making roller | |
US2721601A (en) | Method of forming printing roller cores | |
US3446689A (en) | Apparatus for the manufacture of plastic pipes | |
US3646652A (en) | Roller structure | |
US3823456A (en) | Method of manufacturing a roller | |
US5138766A (en) | Roller for transporting sheet-like material and method for manufacturing the same | |
US3526692A (en) | Manufacture of wire reinforced plastic pipe | |
US4038731A (en) | Forming integrated roller from core, telescoping sleeve and filler adhesive | |
US4392177A (en) | Transporting roller for webs of photosensitive material or the like | |
US4055879A (en) | Roller | |
US5358580A (en) | Process for manufacturing hose having reinforcement incorporated therein and apparatus therefor | |
US3219738A (en) | Method of making wire-reinforced hose | |
JPH0857931A (en) | Method and device for applying plastic finishing layer to surface of composite item as well as coated composite item | |
US7334336B2 (en) | Method for producing a sleeved polymer member, an image cylinder or a blanket cylinder | |
US4449278A (en) | Roller for supporting material sensitive to radiation and, method of making the same | |
JP2009045850A (en) | Manufacturing method of pipe with heat insulating material | |
JP2959829B2 (en) | Manufacturing method of rubber roller coated with fluororesin tube | |
US3239588A (en) | Method for tubular biaxial orientation | |
JPH08190186A (en) | Roller structure | |
US5827468A (en) | Turning calibration apparatus and process | |
US20050137071A1 (en) | Plastic sleeve for an image cylinder and a method for producing the plastic sleeve | |
FI84449B (en) | FOERFARANDE FOER BELAEGGNING AV ETT STAOLROER GENOM EXTRUSION. | |
JP2991340B2 (en) | Manufacturing method of multilayer structure roller | |
JP3103140B2 (en) | Roller manufacturing method | |
JPH05186119A (en) | Resin coated metallic tube, resin coated metallic roller and manufacture thereof |