US3823161A - Aminothiophene derivatives - Google Patents

Aminothiophene derivatives Download PDF

Info

Publication number
US3823161A
US3823161A US3558770A US3823161A US 3823161 A US3823161 A US 3823161A US 3558770 A US3558770 A US 3558770A US 3823161 A US3823161 A US 3823161A
Authority
US
United States
Prior art keywords
compound
carbomethoxy
preparation
compositions
methyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
J Lesser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Technology and Engineering Co
Original Assignee
Exxon Research and Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Research and Engineering Co filed Critical Exxon Research and Engineering Co
Priority to US3558770 priority Critical patent/US3823161A/en
Priority to DE19712122636 priority patent/DE2122636A1/en
Priority to DD15494571A priority patent/DD101537A5/xx
Priority to NL7106324A priority patent/NL7106324A/xx
Priority to FR7116570A priority patent/FR2091344A5/fr
Application granted granted Critical
Publication of US3823161A publication Critical patent/US3823161A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/26Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D333/38Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals

Definitions

  • R1 is selected from the group consisting of hy- 15 Ne'gmelhY-N 3'@cafbomethlxyesphenytmeuyl) drogen, C1 through C3 alkyl;
  • R2 is one selected from the 1e N-anyi-N'-3-(iearbometiioxy-.i-phenyithienyi) urea. group consisting of C1 through C6 alkyl (optionally sub g stituted by chlorine, brornine, or cyano), C1-C8 alkoxy, 25 1912""21 161,N-aiiig's-(zarboioigphegpnemg) un?.
  • Q-Ca cycloalkyl; R3 can be C1 to C10 alkoxy, C1 to C10 24 N ruimethyi-N'a-ta-earbomeuioxyss-phenyithienyi) 1011168.
  • R4 and R5 can be the same or different and are 26 Nbnatath N I (2 b th D ime y- -car ome oxy ieny urea. selected from the group consisting of hydrogen, C1 to CB N O dimethy1 N,3 (2mm)omethoxy 5 pheny1th1enyl) alkyl, phenyl, chlorine and bromine; X is either O or S.
  • Nulrlea h NQS (2 bo th ythi D me -Cl IIlB 0X e lllea. These compounds have been found to possess pesticidal 29 N N dimeth1 N, 3 (z carbomethoxy 5 phny1thieny1) activity and, in particular, postand pre-emergence 30 s ureta N 3 (2 6 bo hoxythi D hic bam e -..-1718 -aIIle elly C 3. herbicidal activity as well as fungicidal activity. 31 s methgi N.3-(2.carbomeniyiihienyi) dithiocarbamate.
  • This invention relates to derivatives of aminothio- S'Iclga?”(Harbomethoxy ⁇ 5 ⁇ pheny1thenyl) dthio phenes and their use as pesticides.
  • this in- 40 vention relates to derivatives of substituted 3- and 2- aminothiophenes and their use as herbicides.
  • this invention relates to derivatives of substituted 3- and Z-aminothiophenes and their use as fungicides.
  • the compounds of the subject invention are characterized by the following structural formula
  • the foregoing compounds can be readily prepared by the following synthetic method.
  • the starting aminothiophene can be prepared according to the procedure outlined in British Pat. 837,086 and its preparation does not form a part of this invention.
  • R1 X Reaction I wherein R1 is selected from the group consisting of hy- B drogen, C1 through C8 alkyl; R2 is one selected from the group consisting of C1 through C6 alkyl (optionally sub- 60 R.
  • R3 can be C1 to C10 alkoxy, C1 to C10 65 monoalkylamino, C2-C10 dialkylamino, phenoxy, and Reaction IH anilido;
  • R1 and R5 can be the same or different and are o selected from the group consisting of hydrogen, C1 to C1, :Ri-NC O IMSLM Reaction II alkyl, phenyl, chlorine and bromine;
  • X is either O or S.
  • Herbicidal and fungicidal compositions of the invention are prepared by admixing one or more of the active ingredients defined heretofore, in herbicidally or fungicidally effective amounts with a conditioning agent of the kind used and referred to in the art as a pest control adjuvant or modifier to provide formulations adapted for ready and efficient application to soil, foliage or weeds (i.e., unwanted plants) using conventional applicator equipment.
  • a conditioning agent of the kind used and referred to in the art as a pest control adjuvant or modifier to provide formulations adapted for ready and efficient application to soil, foliage or weeds (i.e., unwanted plants) using conventional applicator equipment.
  • the herbicidal and fungicidal compositions or formulations are prepared in the form of solids or liquids.
  • Solid compositions are preferably in the form of granulats or dusts.
  • compositions can be compounded to give homogeneous free-flowing dusts by admixing the active compound or compounds with finely divided solids preferably talc, natural clays, pyrophyllite, diatomaceous earth, or ilours such as walnut shell, wheat, redwood, soya bean, and cottonseed flours.
  • finely divided solids preferably talc, natural clays, pyrophyllite, diatomaceous earth, or ilours such as walnut shell, wheat, redwood, soya bean, and cottonseed flours.
  • Other inert solid conditioning agents or carriers of the kind conventionally employed in preparing pest control compositions in powdered form can be used.
  • Granulars can be compounded by absorbing the compound in liquid form onto a preformed granular diluent.
  • diluents as natural clays, pyrophyllite, diatomaceous earth, floors such as walnut shell, as well as granular sand can be employed.
  • granulars can also be compounded by admixing the active ingredient with one of the powdered diluents described hereinabove, followed by the step of either pelleting or extruding the mixture.
  • Liquid compositions of the invention are prepared in the usual way by admixing one or more of the active ingredient with a suitable liquid diluent medium. In the cases where the compounds are liquids, they may be sprayed in ultra low volume as such. With certain solvents, such as alkylated naphthalene or other aromatic petroleum solvents, dimethyl formamide, cycloketone, relatively high up to about 50% by Weight or more concentration of the active ingredient can be obtained in solution.
  • solvents such as alkylated naphthalene or other aromatic petroleum solvents, dimethyl formamide, cycloketone
  • compositions of the invention whether in the form of dusts or liquids, preferably also include a surface-active agent sometimes referred to in the art as a wetting, dispersing, or emulsifying agent.
  • a surface-active agent sometimes referred to in the art as a wetting, dispersing, or emulsifying agent.
  • These agents which will be referred to hereinafter more simply as surface-active dispersing agents, cause the compositions to be easily dispersed in water to give aqueous sprays which, for the most part, constitute a desirable composition for application.
  • the surface-active dispersing agents employed can be of the anionic, cationic, or nonionic type and include, for example, sodium and potassium oleate, the amine salts of oleic acid, such as morpholine and dimethylamine oleates, the sulfonated animal and vegetable oils, such as sulfonated fish and castor oils, sulfonated petroleum oils, sulfonated acyclic hydrocarbons, sodium salt of lignin sulfonic acid (goulac), alkylnaphthalene sodium sulfonate, sodium salts of sulfonated condensation products of naphthalene and formaldehyde, sodium lauryl sulfate, disodium monolauryl phosphate, sorbitol laurate, pentaerythritol monostearate, glycerol monostearatc, diglycol oleate, polyethylene oxides, ethylene oxide condensation products with stearyl
  • the herbicidal and fungicidal compositions are applied either as a spray, granular or a dust to the locus or area to be treated for fungus infection or protected from undesirable plant growth, commonly called weeds, i.e., plants growing where they are not wanted.
  • weeds i.e., plants growing where they are not wanted.
  • Such application can be made directly upon the locus or area of infection or the weeds thereon during the period of weed or fungus infestation in order to destroy the weeds, but preferably, the application is made in advance of an anticipated weed infestation to prevent such infestation.
  • the compositions can be applied as aqueous foliar sprays but can also be applied as sprays directly to the surface of the soil.
  • the dry powdered compositions can be dusted directly on the plants or on the soil.
  • the compositions are preferably applied after planting of the crop seeds but before emergence of the seedlings.
  • the applications are of the pre-emergence type.
  • the active compound is, of course, applied in an amount sufficient to exert the desired herbicidal and fungicidal action.
  • the amount of the active compound present in the compositions as actually applied for destroying or preventing weeds will vary with the manner of application, the particular weeds for which control is sought, the purpose for which the application is being made, and like variables.
  • the herbicidal and fungicidal compositions as applied in the form of a spray, dust or granular will contain from about 0.1% to 100% by weight of the active compound.
  • Fertilizer materials other herbicidal and fungicidal agents, and other pest control agents such as insecticides and fungicides can be included in the herbicidal compositions of the invention if desired.
  • carrier or diluent means a material, which can be inorganic or organic and synthetic or of natural origin, with which the active ingredient is mixed or formulated to facilitate its storage, transport, and handling and application to the plants to be treated.
  • the carrier is preferably biologically and chemically inert and, as used, can be a solid or fluid.
  • solid carriers are preferably particulate, granular, or pelleted; however, other shapes and sizes of solid carrier can be employed as well.
  • Such preferable solid carriers can be natural occurring minerals-although subsequently subjected to grinding, sieving, purification and/ or other treatments-including, for example, gypsum; tripolite; diatomaceous earth; mineral silicates such as mica, vermiculite, talc, and pyrophyllite; clays of the montmorillonite, kaolinite, or attapulgite groups; calcium or magnesium limes, or calcite and dolomite; etc.
  • Carriers produced synthetically, as for example, synthetic hydrated silica oxides and synthetic calcium silicates can also be used, and many proprietary products of this type are available commercially.
  • the carrier can also be an elemental substance such as sulfur or carbon, preferably an activated carbon.
  • the carrier possesses intrinsic catalytic activity such that it would decompose the active ingredient, it is advantageous to incorporate a stabilizing agent, as for example, polyglycols such as diethylene glycol, to neutralize this activity and thereby prevent possible decomposition of the derivatives of the present nitrated aryl compounds.
  • a stabilizing agent as for example, polyglycols such as diethylene glycol
  • a resinous or waxy carrier can be used, preferably one which is solvent soluble or thermoplastic, including fusible materials.
  • examples of such carriers are natural or synthetic resins such as a coumarone resin, rosin, copal, shellac, dammar, polyvinyl chloride, styrene polymers and copolymers, a solid grade of polychlorophenol such as is available under the registered trademark Aroclor, a bitumen, an asphaltite, a wax for example, beeswax or a mineral wax such as paraflin wax or montan wax, or a chlorinated mineral wax, or a microcrystalline wax such as those available under the registered trademark Mikrovan Wax.
  • Compositions comprising such resinous or waxy carriers are preferably in granular or pelleted form.
  • Fluid carriers can be liquids, as for example, water, or an organic iiuid, including a liquefied normally vaporous or gaseous material, or a vaporous or gaseous material, and can be solvents or nonsolvents for the active material.
  • the horicultural petroleum spray oils boiling in the range of from about 275 to about 575 F., or boiling in the range of about 575 to about 1000" F. and having an unsulfonatable residue of at least about 75% and preferably of at least about 90%, or mixtures of these two types of oil, are particularly suitable liquid carriers.
  • the carrier can be mixed or formulated with the active material during its manufacture or at any stage subsequently.
  • the carrier can be mixed or formulated with the active material in any proportion depending on the nature of the carrier.
  • One or more carriers moreover, can be used in combination.
  • compositions of this invention can be concentrates, suitable for storage or transport and containing, for example, from about 5 to about 90% by weight of the active ingredient, preferably from about 20 to about 80 wt. percent. These concentrates can be diluted with the same or different carrier to a concentration suitable for application.
  • the compositions of this invention may also be dilute compositions suitable for application. In general, concentrations of about 0.1 to about 10% by weight, of active material based on the total weight of the composition are satisfactory, although lower and higher concentrations can be applied if necessary.
  • compositions of this invention can also be formulated as dusts.
  • dusts comprise an intimate admixture of the active ingredient and a lfinely powdered solid carrier such as aforedescribed.
  • the powdered carriers can be oil-treated to improve adhesion to the surface to which they are applied.
  • These dusts can be concentrates, in which case a highly sorptive carrier is preferably used. These require dilution with the same or a different finely powdered carrier, which can be of lower sorptive capacity, to a concentration suitable for application.
  • compositions of the invention can be formulated as wettable powders comprising a major proportion of the active ingredient mixed with a dispersing, i.e., deocculating or suspending agent, and if desired, a tinely divided solid carrier and/or a wetting agent.
  • the active ingredient can be in particulate form or adsorbed on the carrier and preferably constitutes at least about 10%, more preferably at least about 25%, by weight of the composition.
  • concentration of the dispersing agent should in general be between about 0.5 and about 5% by weight of the total composition, although larger or smaller amounts can be used if desired.
  • the dispersing agent used in the composition of this invention can be any substance having denite dispersing, i.e. deocculating or suspending, properties as distinct from wetting properties, although these substances can also possess wetting properties as well.
  • the dispersant or dispersing agent used can beprctective colloids such as gelatin, glue, casein, gums, or a synthetic polymeric material such as polyvinyl alcohol and methyl cellulose.
  • the dispersants or dispersing agents used are sodium or calcium salts of high molecular weight sulfonic acids, as for example, the sodium or calcium salts of lignin sulfonic acids derived from sulte cellulose waste liquors.
  • the calcium or sodium salts of condensed aryl sulfonic acid for example, the products known as Tamol 731, are also suitable.
  • the wetting agents used can be nonionic type surfactants, as for example, the condensation products of fatty acids containing at least l2, preferably 16 to 20, carbon atoms in the molecule, or abietic acid or naphthenic acid obtained in the refining of petroleum lubricating oil fractions with alkylcne oxides such as ethylene oxide or propylene oxide, or with both ethylene oxide and propylene oxide, as for example, the condensation product of oleic acid and ethylene oxide containing about 6 to 15 ethylene oxide units in the molecule.
  • Other nonionic wetting agents like polyalkylene oxide polymers, commercially known as Pluronics can be used. Partial esters of the above acids with polyhydric alcohols such as glycerol, polyglycerol, sorbitol, or mannitol can also be used.
  • Suitable anionic wetting agents include the alklai metal salts, preferably sodium salts, of sulfuric acid esters or sulfonic acids containing at least 10 carbon atoms in a molecule, for example, the sodium secondary alkyl sulfates, dialkyl sodium sulfosuccinate available under the registered trademark Teepol, sodium salts of sulfonated castor oil, sodium dodecyl benzene sulfonate.
  • Granulated or pelleted compositions comprising a suitable carrier having the active ingredient incorporated therein are also included in this invention. These can be prepared by impregnating a granular carrier with a solution of the inert ingredient or by granulating a mixture of a 'finely divided solid carrier and the active ingredient.
  • the carrier used can consist of or contain a fertilizer or fertilizer mixture, as for example, a superphosphate.
  • compositions of this invention can also be formulated as solutions of the active ingredient in an organic solvent or mixture of solvents, such as for example, alcohols; ketones, especially acetone; ethers; hydrocarbons; etc.
  • the toxicant itself is a liquid these materials can be sprayed on soil, crops or insects without further dilution.
  • Petroleum hydrocarbon fractions used as solvents should preferably have a flash point above 73 F., an example of this being a refined aromatic extract of kerosene.
  • Auxiliary solvents such as alcohols, ketones, and polyalkylene glycol ethers and esters can be used in conjunction with these petroleum solvents.
  • compositions of the present invention can also be formulated as emulsiable concentrates which are concentrated solutions or dispersion of the active ingredient in an organic liquid, preferably a water-insoluble organic liquid, containing an added emulsifying agent.
  • organic liquids include, e.g., the above petroleum hydrocarbon fractions previously described.
  • the emulsifying agent can be of the type producing water-in-oil type emulsions which are suitable for application by low volume spraying, or an emulsiiier of the type producing oil-in-water emulsions can be used, producing concentrations which can be diluted with relatively large volumes of water for application by high volume spraying or relatively small volumes of water for low volume spraying.
  • the active ingredient is preferably in a nonaqueous phase.
  • EXAMPLE 6 Preparation of O-Methyl-N-S-(Z-Carbomethoxythienyl) Carbamate
  • EXAMPLE 7 Preparation of O-Isopropyl N-3- 2-Carbomethoxythienyl) Carbamate This compound was prepared according to the procedure in Example 6 except that isopropanol was used in the preparation of the isopropyl carbamates.
  • EXAMPLE 11 This compound was prepared according to the procedue of Example 6 except that isopropanol was used in the preparation of the isopropyl carbamates. The structure was confirmed by IR and NMR.
  • EXAMPLE 14 This compound was prepared according to the procedure of Example 6 The structure was confirmed by IR and NMR.
  • test chemicals were sprayed as acetone solutions or very small particle acetone suspensions onto the test plants. Sprayers were calibrated to deliver a certain volume of liquid and the calculated amount of active ingredient which would give a rate corresponding to the indicated lbs./acre. The flats were then held in the greenhouse and a response rated after 12 days to 16 days. Response was rated by a scale of 0-10.
  • Soil Fungicide Tests Separate lots of sterilized soil are inoculated with Sclerotum rolfsi. The inoculated soil is placed in fourounce Dixie cups and two cups for each organism are drenched with 30 ml. of a formulation containing sufficient chemical to give dosage rates enumerated in Table VII.
  • the treated cups are incubated for two days at 70 F. The.
  • a compound of the formula 4 A compound according to claim 1, O-methyl N-3- (2-carbomethoxy-5-methylthienyl) carbamate.
  • a compound according to claim 1 O-isopropyl N- 3-(2carbomethoxy-S-methylthienyl) carbamate.
  • a compound according to claim 1 O-isopropyl N-3- 25324 (2-carbomethoxy-4-methy1thicny1) carbamate.
  • a compound according to claim 1 O-isopropyl N-3- (2-carbomethoxy-S-phenylthienyl) carbamate.
  • I HENRY R' HLES Pnmary EXanner C. M. S. I AISLE, Assistant Examlner References Cited 10 UNITED STATES PATENTS U-S- Cl- X-R.

Abstract

THE COMPOUNDS OF THE SUBJECT INVENTION ARE REPRESENTED BY THE FOLLOWING FORMULA

2-R5,3-R4,(R2-C(=X)-N(-R1)-),(R3-CO-)-THIOPHENE

WHEREIN R1 IS SELECTED FROM THE GROUP CONSISTING OF HYDROGEN, C1 THROUGH C8 ALKYL; R2 IS ONE SELECTED FROM THE GROUP CONSISTING OF C1 THROUGH C6 ALKYL (OPTIONALLY SUBSTITUTED BY CHLORINE, BROMINE, OR CYANO), C1-C6 ALKOXY, C1 TO C6 ALKYLTHIO, C1-C6 MONOALKYLAMINO, C2-C6 DIALKYLAMINO, PHENYL (OPTIONALLY SUBSTITUTED BY CHLORINE, NITRO, OR TRIFLUOROMETHYL), C3-C8 ALKENYL, C3-C6 ALKYNYL, C3-C8 CYCLOALKYL; R3 CAN BE C1 TO C10 ALKOXY, C1 TO C10 MONOALKYLAMINO, C2-C10 DIALKYLAMINO, PHENOXY, AND ANILIDO; R4 AND R5 CAN BE THE SAME OR DIFFERENT AND ARE SELECTED FROM THE GROUP CONSISTING OF HYDROGEN, C1 TO C6 ALKYL, PHENYL, CHLORINE AND BROMINE; X IS EITHER O OR S, THESE COMPOUNDS HAVE BEEN FOUND TO PROCESS PESTICIDAL ACTIVITY AND, IN PARTICULAR, POST- AND PRE-EMERGENCE HERBICIDAL ACTIVITY AS WELL AS FUNGICIDAL ACTIVITY.

Description

United States Patent Oiiiee Patente, L
Exemplary of compounds which are encompassed by 3,823,161 this invention are the following:
AMINOTHIOPHEN DERIVATIVES Joseph H. Lesser, Woodside, N.Y., assignor to Esso Research and Engineering Company No Drawing. Filed May 7, 1970, Ser. No. 35,587 5 COmPund Int. Cl. C07d 63/16 um er: Us. Cl. 26o-332.2 C 9 Claims l O-methyl N-3-(2-carbomethoxythenyl) carbamate.
2 O-metthyl N-3-(Z-carbomethoxy-5-pheny1thienyl) carbam. e.
O-isopropyl N-3-(2-earbomethoxythienyl) carbamate. ABSTRACT F THE DISCLOSURE 10 O- i soprpy1 N-3-(2carbomethoxy-phenylthienyl) cara e. T l 1e golmpounds of the subject invention are represented 5 gmalggyg.gfcariomegoxyhiegyi) Rrhg 6 -me y -car ome oxy -p eny emT urea. yt e o lowing formula 7 O-megthyl N-3-(2-earbomethoxy--methylthienyl) carbama e. 8 O-methyl N-3(2-carbomethoxy4,5dimethy1thlenyl) car- Rl X bamate. Rr* l 15 9 O- rnethfl-N-S-(Z-carbomethoxy4,5dichlorothienyl) car- 31118. 6. N R 10.. Nmethy1-N2(S-carboethoxy4,5dmethylthienyl) urea. R5 CORi 11 O i neth y1 N- (3-carboethoxy-4,li-dimethylthienyl) caram 6. 12 O-isotpropyl N2(3earboethoxy--ethylthienyl) carbama B. 13 O-mezhyl N- (-carboethoxy--phenylthenyl) carba- 14-- N-methyl-N3(2;earbanalido-5-phenylthlenyD urea.
wherein R1 is selected from the group consisting of hy- 15 Ne'gmelhY-N 3'@cafbomethlxyesphenytmeuyl) drogen, C1 through C3 alkyl; R2 is one selected from the 1e N-anyi-N'-3-(iearbometiioxy-.i-phenyithienyi) urea. group consisting of C1 through C6 alkyl (optionally sub g stituted by chlorine, brornine, or cyano), C1-C8 alkoxy, 25 1912""21 161,N-aiiig's-(zarboioigphegpnemg) un?.
20.- -me y -car ome ox eriy ocar ama e. C1 to )6 alkylthlo C1 ,C6 monoalklammo C2-C8dl 2i.- o-meuiyiN-a-(afarbomeihoxy-s-piienyithienyi)miocaralkylamino, phenyl (optionally substituted by chlorine, 22 Nbanitel. Nus@ b h yth. D hi -me y' -eal Ome 0X leIlY Dlll'ea. nitro or tnuoromethyn C15-C8 alkenyl C3 C6 alkynyl 23 N,Ndimethyl-N3(2-carbomethoxythienyl) thiourea. Q-Ca cycloalkyl; R3 can be C1 to C10 alkoxy, C1 to C10 24 N ruimethyi-N'a-ta-earbomeuioxyss-phenyithienyi) 1011168. mrioalkylammo CTCN dlalkylammo .Phenoxy and 25 O-methyl N-3-(2-carbopropoxy4,5dibromothienyl) caianilido; R4 and R5 can be the same or different and are 26 Nbnatath N I (2 b th D ime y- -car ome oxy ieny urea. selected from the group consisting of hydrogen, C1 to CB N O dimethy1 N,3 (2mm)omethoxy 5 pheny1th1enyl) alkyl, phenyl, chlorine and bromine; X is either O or S. 28 Nulrlea h NQS (2 bo th ythi D me -Cl IIlB 0X e lllea. These compounds have been found to possess pesticidal 29 N N dimeth1 N, 3 (z carbomethoxy 5 phny1thieny1) activity and, in particular, postand pre-emergence 30 s ureta N 3 (2 6 bo hoxythi D hic bam e -..-1718 -aIIle elly C 3. herbicidal activity as well as fungicidal activity. 31 s methgi N.3-(2.carbomeniyiihienyi) dithiocarbamate.
O- nethtyl N-3-(2-carbomethoXy--phenylthenyl) thioearama B. This invention relates to derivatives of aminothio- S'Iclga?"(Harbomethoxy`5`pheny1thenyl) dthio phenes and their use as pesticides. In one aspect, this in- 40 vention relates to derivatives of substituted 3- and 2- aminothiophenes and their use as herbicides. In another aspect, this invention relates to derivatives of substituted 3- and Z-aminothiophenes and their use as fungicides.
The compounds of the subject invention are characterized by the following structural formula The foregoing compounds can be readily prepared by the following synthetic method.
The starting aminothiophene can be prepared according to the procedure outlined in British Pat. 837,086 and its preparation does not form a part of this invention.
The reactions of the aminothiophenes are set forth schematically as follows:
R1 X Reaction I wherein R1 is selected from the group consisting of hy- B drogen, C1 through C8 alkyl; R2 is one selected from the group consisting of C1 through C6 alkyl (optionally sub- 60 R. m stituted by chlorine, bromine, or cyano), C1-C6 alkoxy, ,NH2 1 Cock .NCO C1 to' C6 alkylthio, C1-C6 monoalkylamino, C2-C8 di- R5 CURS R5 COR: alkylamino, phenyl (optionally substituted by chlorine, S s/ nitro, or triurmethyl), Ca-Ca alkenyl, C11-C6 alkynyl, A G D CS-Cg cycloalkyl; R3 can be C1 to C10 alkoxy, C1 to C10 65 monoalkylamino, C2-C10 dialkylamino, phenoxy, and Reaction IH anilido; R1 and R5 can be the same or different and are o selected from the group consisting of hydrogen, C1 to C1, :Ri-NC O IMSLM Reaction II alkyl, phenyl, chlorine and bromine; X is either O or S. COR
These compounds have been found to possess pesticidal R5 3 activity and, in particular, postand pre-emergence herbicidal activity as well as fungicidal activity.
TABLE L REACTION I Concentration of reactants, Temperature mole ratio Solvent of reaction A/B Benzene 20-250" 1:1 to 1:3 Chloroform Preferred Toluene 25-125 Ether Preferred Hexane 1 1.1 Dimethylformamlde Tetrahydrofuran Preferred Benzene Tetrahydrofuran Neat TABLE IL-REACTION II Mole ratio Solvent Temperature A/ G Benzene -25 to +250 1:1 to 1:25 Toluene Preferred Preferred -20 to +150 Toluene Preferred i TABLE IIL-REACTION III Mole ratio Temperature Solvent D/E 25-250" Neat 1:1 to 1:50 Preferred Benzene 25-125" Toluene Tetrahydrofuran Preferred Dlmethylormamide 1:1.5 Ether Preferred The compounds of the invention have general herbicidal and/ or fungicidal properties. They are especially useful in certain types of weed control such as, for example, in application to crop lands to give control of the common weeds, without harming the crop plants; and for the control for crabgrass in lawns.
Herbicidal and fungicidal compositions of the invention are prepared by admixing one or more of the active ingredients defined heretofore, in herbicidally or fungicidally effective amounts with a conditioning agent of the kind used and referred to in the art as a pest control adjuvant or modifier to provide formulations adapted for ready and efficient application to soil, foliage or weeds (i.e., unwanted plants) using conventional applicator equipment.
Thus, the herbicidal and fungicidal compositions or formulations are prepared in the form of solids or liquids. Solid compositions are preferably in the form of granulats or dusts.
The compositions can be compounded to give homogeneous free-flowing dusts by admixing the active compound or compounds with finely divided solids preferably talc, natural clays, pyrophyllite, diatomaceous earth, or ilours such as walnut shell, wheat, redwood, soya bean, and cottonseed flours. Other inert solid conditioning agents or carriers of the kind conventionally employed in preparing pest control compositions in powdered form can be used.
Granulars can be compounded by absorbing the compound in liquid form onto a preformed granular diluent. Such diluents as natural clays, pyrophyllite, diatomaceous earth, floors such as walnut shell, as well as granular sand can be employed.
In addition, granulars can also be compounded by admixing the active ingredient with one of the powdered diluents described hereinabove, followed by the step of either pelleting or extruding the mixture.
Liquid compositions of the invention are prepared in the usual way by admixing one or more of the active ingredient with a suitable liquid diluent medium. In the cases where the compounds are liquids, they may be sprayed in ultra low volume as such. With certain solvents, such as alkylated naphthalene or other aromatic petroleum solvents, dimethyl formamide, cycloketone, relatively high up to about 50% by Weight or more concentration of the active ingredient can be obtained in solution.
The herbicidal and fungicidal compositions of the invention whether in the form of dusts or liquids, preferably also include a surface-active agent sometimes referred to in the art as a wetting, dispersing, or emulsifying agent. These agents, which will be referred to hereinafter more simply as surface-active dispersing agents, cause the compositions to be easily dispersed in water to give aqueous sprays which, for the most part, constitute a desirable composition for application.
The surface-active dispersing agents employed can be of the anionic, cationic, or nonionic type and include, for example, sodium and potassium oleate, the amine salts of oleic acid, such as morpholine and dimethylamine oleates, the sulfonated animal and vegetable oils, such as sulfonated fish and castor oils, sulfonated petroleum oils, sulfonated acyclic hydrocarbons, sodium salt of lignin sulfonic acid (goulac), alkylnaphthalene sodium sulfonate, sodium salts of sulfonated condensation products of naphthalene and formaldehyde, sodium lauryl sulfate, disodium monolauryl phosphate, sorbitol laurate, pentaerythritol monostearate, glycerol monostearatc, diglycol oleate, polyethylene oxides, ethylene oxide condensation products with stearyl alcohol and al'kylphenol, polyvinyl alcohols, salts, such as the acetate of polyamnes from reductive amination of ethylene/carbon monoxide polymers, laurylamine hydrochloride, laurylpyridinium bromide, stearyl trimethylammonium bromide, cetyldimethylbenzyl ammonium chloride, lauryldimethylamine oxide, and the like. Generally, the surface-active agent will not comprise more than about 5 to 15% by weight of the composition, and in certain compositions the percentage will be 1% or less. Usually, the minimum lower concentration will be 0.1%.
The herbicidal and fungicidal compositions are applied either as a spray, granular or a dust to the locus or area to be treated for fungus infection or protected from undesirable plant growth, commonly called weeds, i.e., plants growing where they are not wanted. Such application can be made directly upon the locus or area of infection or the weeds thereon during the period of weed or fungus infestation in order to destroy the weeds, but preferably, the application is made in advance of an anticipated weed infestation to prevent such infestation. Thus, the compositions can be applied as aqueous foliar sprays but can also be applied as sprays directly to the surface of the soil. Alternatively, the dry powdered compositions can be dusted directly on the plants or on the soil.
In applying the herbicidal and fungicidal compositions of the invention for selective weed control as in the control of weeds in cotton or corn fields, the compositions are preferably applied after planting of the crop seeds but before emergence of the seedlings. In other words, the applications are of the pre-emergence type.
The active compound is, of course, applied in an amount sufficient to exert the desired herbicidal and fungicidal action. The amount of the active compound present in the compositions as actually applied for destroying or preventing weeds will vary with the manner of application, the particular weeds for which control is sought, the purpose for which the application is being made, and like variables. In general, the herbicidal and fungicidal compositions as applied in the form of a spray, dust or granular, will contain from about 0.1% to 100% by weight of the active compound.
Fertilizer materials, other herbicidal and fungicidal agents, and other pest control agents such as insecticides and fungicides can be included in the herbicidal compositions of the invention if desired.
The term carrier or diluent as used herein means a material, which can be inorganic or organic and synthetic or of natural origin, with which the active ingredient is mixed or formulated to facilitate its storage, transport, and handling and application to the plants to be treated. The carrier is preferably biologically and chemically inert and, as used, can be a solid or fluid. When solid carriers are used, they are preferably particulate, granular, or pelleted; however, other shapes and sizes of solid carrier can be employed as well. Such preferable solid carriers can be natural occurring minerals-although subsequently subjected to grinding, sieving, purification and/ or other treatments-including, for example, gypsum; tripolite; diatomaceous earth; mineral silicates such as mica, vermiculite, talc, and pyrophyllite; clays of the montmorillonite, kaolinite, or attapulgite groups; calcium or magnesium limes, or calcite and dolomite; etc. Carriers produced synthetically, as for example, synthetic hydrated silica oxides and synthetic calcium silicates can also be used, and many proprietary products of this type are available commercially. The carrier can also be an elemental substance such as sulfur or carbon, preferably an activated carbon. If the carrier possesses intrinsic catalytic activity such that it would decompose the active ingredient, it is advantageous to incorporate a stabilizing agent, as for example, polyglycols such as diethylene glycol, to neutralize this activity and thereby prevent possible decomposition of the derivatives of the present nitrated aryl compounds.
For some purposes, a resinous or waxy carrier can be used, preferably one which is solvent soluble or thermoplastic, including fusible materials. Examples of such carriers are natural or synthetic resins such as a coumarone resin, rosin, copal, shellac, dammar, polyvinyl chloride, styrene polymers and copolymers, a solid grade of polychlorophenol such as is available under the registered trademark Aroclor, a bitumen, an asphaltite, a wax for example, beeswax or a mineral wax such as paraflin wax or montan wax, or a chlorinated mineral wax, or a microcrystalline wax such as those available under the registered trademark Mikrovan Wax. Compositions comprising such resinous or waxy carriers are preferably in granular or pelleted form.
Fluid carriers can be liquids, as for example, water, or an organic iiuid, including a liquefied normally vaporous or gaseous material, or a vaporous or gaseous material, and can be solvents or nonsolvents for the active material. For example, the horicultural petroleum spray oils boiling in the range of from about 275 to about 575 F., or boiling in the range of about 575 to about 1000" F. and having an unsulfonatable residue of at least about 75% and preferably of at least about 90%, or mixtures of these two types of oil, are particularly suitable liquid carriers.
The carrier can be mixed or formulated with the active material during its manufacture or at any stage subsequently. The carrier can be mixed or formulated with the active material in any proportion depending on the nature of the carrier. One or more carriers, moreover, can be used in combination.
The compositions of this invention can be concentrates, suitable for storage or transport and containing, for example, from about 5 to about 90% by weight of the active ingredient, preferably from about 20 to about 80 wt. percent. These concentrates can be diluted with the same or different carrier to a concentration suitable for application. The compositions of this invention may also be dilute compositions suitable for application. In general, concentrations of about 0.1 to about 10% by weight, of active material based on the total weight of the composition are satisfactory, although lower and higher concentrations can be applied if necessary.
The compositions of this invention can also be formulated as dusts. These comprise an intimate admixture of the active ingredient and a lfinely powdered solid carrier such as aforedescribed. The powdered carriers can be oil-treated to improve adhesion to the surface to which they are applied. These dusts can be concentrates, in which case a highly sorptive carrier is preferably used. These require dilution with the same or a different finely powdered carrier, which can be of lower sorptive capacity, to a concentration suitable for application.
The compositions of the invention can be formulated as wettable powders comprising a major proportion of the active ingredient mixed with a dispersing, i.e., deocculating or suspending agent, and if desired, a tinely divided solid carrier and/or a wetting agent. The active ingredient can be in particulate form or adsorbed on the carrier and preferably constitutes at least about 10%, more preferably at least about 25%, by weight of the composition. The concentration of the dispersing agent should in general be between about 0.5 and about 5% by weight of the total composition, although larger or smaller amounts can be used if desired.
The dispersing agent used in the composition of this invention can be any substance having denite dispersing, i.e. deocculating or suspending, properties as distinct from wetting properties, although these substances can also possess wetting properties as well.
The dispersant or dispersing agent used can beprctective colloids such as gelatin, glue, casein, gums, or a synthetic polymeric material such as polyvinyl alcohol and methyl cellulose. Preferably, however, the dispersants or dispersing agents used are sodium or calcium salts of high molecular weight sulfonic acids, as for example, the sodium or calcium salts of lignin sulfonic acids derived from sulte cellulose waste liquors. The calcium or sodium salts of condensed aryl sulfonic acid, for example, the products known as Tamol 731, are also suitable.
The wetting agents used can be nonionic type surfactants, as for example, the condensation products of fatty acids containing at least l2, preferably 16 to 20, carbon atoms in the molecule, or abietic acid or naphthenic acid obtained in the refining of petroleum lubricating oil fractions with alkylcne oxides such as ethylene oxide or propylene oxide, or with both ethylene oxide and propylene oxide, as for example, the condensation product of oleic acid and ethylene oxide containing about 6 to 15 ethylene oxide units in the molecule. Other nonionic wetting agents like polyalkylene oxide polymers, commercially known as Pluronics can be used. Partial esters of the above acids with polyhydric alcohols such as glycerol, polyglycerol, sorbitol, or mannitol can also be used.
Suitable anionic wetting agents include the alklai metal salts, preferably sodium salts, of sulfuric acid esters or sulfonic acids containing at least 10 carbon atoms in a molecule, for example, the sodium secondary alkyl sulfates, dialkyl sodium sulfosuccinate available under the registered trademark Teepol, sodium salts of sulfonated castor oil, sodium dodecyl benzene sulfonate.
Granulated or pelleted compositions comprising a suitable carrier having the active ingredient incorporated therein are also included in this invention. These can be prepared by impregnating a granular carrier with a solution of the inert ingredient or by granulating a mixture of a 'finely divided solid carrier and the active ingredient. The carrier used can consist of or contain a fertilizer or fertilizer mixture, as for example, a superphosphate.
The compositions of this invention can also be formulated as solutions of the active ingredient in an organic solvent or mixture of solvents, such as for example, alcohols; ketones, especially acetone; ethers; hydrocarbons; etc.
Where the toxicant itself is a liquid these materials can be sprayed on soil, crops or insects without further dilution.
Petroleum hydrocarbon fractions used as solvents should preferably have a flash point above 73 F., an example of this being a refined aromatic extract of kerosene. Auxiliary solvents such as alcohols, ketones, and polyalkylene glycol ethers and esters can be used in conjunction with these petroleum solvents.
Compositions of the present invention can also be formulated as emulsiable concentrates which are concentrated solutions or dispersion of the active ingredient in an organic liquid, preferably a water-insoluble organic liquid, containing an added emulsifying agent. These concentrates can also contain a proportion of water, for example, up to about 50% by volume, based on the total composition, to facilitate subsequent dilution with water. Suitable organic liquids include, e.g., the above petroleum hydrocarbon fractions previously described.
The emulsifying agent can be of the type producing water-in-oil type emulsions which are suitable for application by low volume spraying, or an emulsiiier of the type producing oil-in-water emulsions can be used, producing concentrations which can be diluted with relatively large volumes of water for application by high volume spraying or relatively small volumes of water for low volume spraying. In such emulsions, the active ingredient is preferably in a nonaqueous phase.
The present invention is further illustrated in greater detail by the following examples, but it is to be understood that the present invention in its broadest aspects, is not necessarily limited in terms of the reactants, or specific temperatures, residence times, separation techniques and other process conditions, etc.; or dosage level, exposure times, test plants used, etc. by which the compounds and/ or compositions described and claimed are prepared and/ or used.
EXAMPLE 1 Preparation of 2-Carbomethoxy-3-Isocyanato Thiophene To a 2-liter 4necked flask equipped with an air strrer, gas inlet tube, thermometer, addition funnel and condenser was added the 3-amino-2-carboxymethyl thiophene,
47 g. (0.3 m.), and 500 cc. of toluene. The reaction mixture was cooled to 20 and then 1.1 equivalents of phosgene gas were added over one hour through the gas inlet tube with stirring. The reaction mixture was then heated slowly to reilux and refluxed for three hours. Then the cooled reaction mixture was placed on a rotary evaporator and the volatiles removed under reduced pressure. The residue was a brown solid, m.p. 45-54. The infrared spectra of the solid showed a strong N=C=O band at 2250 cm.-1 and no N-E bands indicating that the desired product was formed.
EXAMPLE 2 Preparation of 2-Carbomethoxy-3-isocyanato- S-Phenyl Thiophene This compound was prepared according to the procedure outlined in Example l. Its identity was confirmed by infrared spectroscopy.
EXAMPLE 3 Preparation of 2-Carbomethoxy-3-Isocyanato- 5-Methy1 Thiophene This compound was prepared according to the procedure outlined in Example 1. Its identity was conrmed by infrared spectroscopy.
8 EXAMPLE 4 Preparation of 2-Carbomethoxy-3-Isocyanato- 4-Methyl Thiophene This compound was prepared according to the procedure outlined in Example 1. Its identity was confirmed by infrared spectroscopy.
EXAMPLE 5 Preparation of Z-Carbomethoxy-3Isocyanato4 Methyl Thiophene This compound was prepared according to the procedure outlined in Example 1. Its identity was confirmed by infrared spectroscopy.
EXAMPLE 6 Preparation of O-Methyl-N-S-(Z-Carbomethoxythienyl) Carbamate EXAMPLE 7 Preparation of O-Isopropyl N-3- 2-Carbomethoxythienyl) Carbamate This compound was prepared according to the procedure in Example 6 except that isopropanol was used in the preparation of the isopropyl carbamates.
Analysz's.-Calculated: C, 53.92; H, 4.90; N, 5.24. Found: C, 49.56; H, 5.40; N, 5.67.
EXAMPLE 8 Preparation of O-Methyl N-3-(2-Carbomethoxy-5- Methylthienyl) Carbamate This compound was prepared according to the procedure of Example 6.
AnaZyss.-Calculated: C, 47.14; H, 4.83; N, 61.10. Found: C, 47. 44; H, 5.03; N, 6.29.
EXAMPLE 9 Preparation of O-Isopropyl N-3-(2-Carbomethoxy-5- Methylthienyl) Carbamate This compound was prepared according to the procedure of Example 6 except that isopropanol was used in the preparation of the isopropyl carbamates. The structure was conrmed by IR and NMR.
EXAMPLE 10 Preparation of O-Methyl N-3-(2-Carbomethoxy-4- Methylthienyl) Carbamate This compound was prepared according to the procedure of Example 6.
EXAMPLE 11 This compound was prepared according to the procedue of Example 6 except that isopropanol was used in the preparation of the isopropyl carbamates. The structure was confirmed by IR and NMR.
EXAMPLE l2 Preparation of O-Methyl N-3-(2-Carbomethoxy-5- Phenylthienyl) Carbamate This compound was prepared according to the procedure of Example 6. The structure was confirmed by IR and NMR.
9 EXAMPLE 13 Preparation of O-Isopropyl N-3-(2-Carbomethoxy- 5Phenylthienyl) Carbamate This compound was prepared according to the procedure of Example 6 except that isopropanol was used in the preparation of the isopropyl carbamates.
Analyss.-Calculated: C, 60.16; H, 5.36; N, 4.38. Found: C, 59.86; H, 5.21; N, 5.62.
EXAMPLE 14 This compound was prepared according to the procedure of Example 6 The structure was confirmed by IR and NMR.
EXAMPLE 15 Preparation of O-Methyl N-3-(2-Carbomethoxy-5- Ethylthienyl) Carbamate This compound was prepared according to the procedure of Example 6 except that isopropanol was used in the preparation of the isopropyl carbamates. The structure was confirmed by IR and NMR.
EXAMPLE 16 Preparation of N,NDimethyl-N3(Z-Carbomethoxythienyl) Urea an air stirrer, thermometer, gas inlet tube, and condenser was added 14.0 g. (10.075 m.) of 1carbomethoxy2iso cyanato thiophene and 125 cc. of benzene. An excess of dimethylamine gas was then bubbled into the reaction solution. After nitrogen sparging the volatiles were removed under reduced pressure leaving 15.1 g. of brown solid product which was recrystallized from ether, m.p. 1295-1315".
Analysis.-Calculated: C, 47.35; H, 5.30; N, 12.27. Found: C, 47.65; H, 5.19; N, 12.14.
EXAMPLE 17 Preparation of N,NDimethyl-N'(2-Carbomethoxy-5- Methylthienyl) Urea The compound was prepared according to the procedure outlined in Example 16. The structure was confirmed by IR and NMR.
EXAMPLE 18 Preparation of N,NDimethy1-N(2-Carbomethoxy- 4-Methylthieny1) Urea The compound was prepared according to the procedure outlined in Example 16. The structure was confirmed by IR and NMR.
EXAMPLE 19 Preparation of N,N-Dimethyl-N-3-(Z-Carbomethoxy- S-Phenylthienyl) Urea This compound was prepared according to the procedure outlined in Example 16. The structure was confirmed by IR and NMR.
EXAMPLE 20 Preparation of N,N-DimethylN-3(Z-Carbomethoxy- S-Ethylthienyl) Urea The compound was prepared according to the procedure outlined in Example 16. The structure was confirmed by IR and NMR.
EXAMPLE 21 Preparation of N-MethylN-3(Z-Carbomethoxythienyl) Urea To 5.8 g. (0.04 m.) of 3-amino-2-carbomethoxy thiophene dissolved in 50 cc. of benzene was added 2.9 g. (0.04 m.) of methyl isocyanate. The reaction solution was reuxed for 1 hour and then all volatiles were removed EXAMPLE 22 Preparation of N-Methyl-N3(2-Carbometl1oxy-5- Methylthienyl) Urea The compound was prepared according to the procedure outlined in Example 21.
Analysis.-Calculated: C, 47.34; H, 5.30; N, 12.27. Found: C, 46.95; H, 4.70; N, 12.08.
EXAMPLE 23 Preparation of N-Methyl-N'-3(2Carbomethoxy4- Methylthienyl) Urea The compound was prepared according to the procedure outlined in Example 21.
Analysis.-Calculated: C, 47.34; H, 5.30; N, 12.27. Found: C, 47.43; H, 5.35; N, 12.44. l
EXAMPLE 24 Preparation of N-Methyl-3-(2-Carbomethoxy-5-Phenylthienyl) Urea The compound was prepared according to the procedure outlined in Example 21. The structure was confirmed by IR and NMR.
EXAMPLE 25 Preparation of N,NDimethyl-N3(2-Carbomethoxy- 4,5-Dichlorothienyl) Urea To a vigorously strring mixture of 6.0 g. (0.026 rn.) of 2-carbomethoxy-3-(N,Ndimethylureido) thiophene in 25 cc. of chloroform was added 7.0 g. (0.05 m.) of sulfuryl chloride. The addition required 1.5 hours and then the reaction mixture was allowed to stir for one hour. At the end of this time all volatiles were removed under aspirator vacuum and the residue taken up in 50 cc. CHC13. The chloroform solution was washed with 20 cc. H2O and 20 cc. 5% aqueous bicarbonate. The chloroform solution was then dried over sodium sulfate, filtered and all volatiles removed under reduced pressure. The residue, a yellow solid, wt. 6.2 g., was crystallized from ether, m.p. 160-163".
Analysis-Calculated: C, 36.37; H, 3.39; N, 9.42. Found: C, 36.58; H, 3.29; N, 9.70.
Y EXAMPLE 26 (Pre-Emergence) Representative amino thiophene derivatives from those prepared in the previous examples were evaluated for preemergence herbicidal activity in this example. The test procedure employed was as follows:
Two ats seeded with six crops (cotton, soybean, alfalfa, corn, rice and oats) and six weeds (mustard, morning glory, crabgrass, foxtail, barnyard grass and zinnia) were sprayed with a formulation containing the test chemical at the rate given in Table IV. The test chemicals were sprayed as acetone solutions or very small particle acetone suspensions onto the test plants. Sprayers were calibrated to deliver a certain volume of liquid and the calculated amount of active ingredient which would give a rate corresponding to the indicated lbs./acre. The flats were then held in the greenhouse and a response rated after 12 days to 16 days. Response was rated by a scale of 0-10. The 0-10 scale is defined as: O=no injury; 13=slight injury; 4-6=moderate injury, plants may die; 7-9=severe injury, plants will probably die; 10=all plants dead (complete kill). Results of this test are shown below in Table IV and it is indicative that many of these compounds show a high degree of herbicidal activity against certain weed species, yet remain highly tolerant of desirable crop species.
TABLE IV.-PREEMERGENCE HERBIOIDAL DATA Barn- Morn- Rate, yard Crab Fox- Musing Cot- Soy- Al- Name oi compound lbs./a. grass grass tail Zinnia tard glory ton bean -falfa Corn Rice Oats Nmethy1-N'3(2carbo1nethoxythienyl) urea- 5 8 8 8 5 4 3 0 0 2 0 0 0 O-methyl N- (2earbomethoxy-5 methylthienyl) oarbamate 1 1 1 S 7 6 0 0 0 0 0 0 EXAMPLE 27 10 TABLE VII Post-Emergence) In this example representative derivatives of the compounds of this invention were evaluated for post-emergence activity. The test procedure was as follows:
Flats were seeded, as described in the previous example, and held until the rst true leaves had appeared on Effectiveness of Several Aminothiophene Derivatives Against a Soil Fungus Rate-100 lbs./a.
vs. Sclerotium Name of compound: Rating 1 all plants, which were then sprayed in the same fashion N-methyl-N-3-(2-carbomethoxythienyl) urea 9 as in the preceding example at the rate in lbs./ acre given O-isopropyl N-3-(2-carbomethoxythienyl) carin Table V. The plant responses were rated 12-16 days 20 bamate 5 after treatment on the same scales as described previously. O-methyl-N 3 (2-carbomethoxythienyl) car- The test results are shown in Table V. bamate TABLE V.-PoST-EMERGENCE HE RBICIDAL DATA Barn- Mom- Rate, yard Crab Fox- Musing Cot- Soy- Al- Name of compound lbs/a. grass grass tail Zinnia tard glory ton bean falfa Corn Rice Oats N-methyl-N- (carbomethoxythienyl) urea..- 2.5 10 10 10 10 10 3 2 3 9 1 2 3 N,Ndimethyl-N3(2-carbomethoxythienyl) urea 8 10 8 10 10 9 3 9 9 3 4 4 O-methyl N-3-(2-carbomethoxythienyl) carbamate 10 2 3 3 8 10 7 0 0 1 0 0 0 THIOPHENE DERIVATIVES AGAINST BEAN MILDEW EXAMPLE 29 In this example, representative compounds of this invention were evaluated for soil fungicidal activity. The test procedure was as follows:
Soil Fungicide Tests Separate lots of sterilized soil are inoculated with Sclerotum rolfsi. The inoculated soil is placed in fourounce Dixie cups and two cups for each organism are drenched with 30 ml. of a formulation containing sufficient chemical to give dosage rates enumerated in Table VII.
The treated cups are incubated for two days at 70 F. The.
amount of mycelial growth on the soil surface is then rated. The test results are shown in Table VII.
test spores.
What is claimed is: 1. A compound of the formula 4. A compound according to claim 1, O-methyl N-3- (2-carbomethoxy-5-methylthienyl) carbamate.
5. A compound according to claim 1, O-isopropyl N- 3-(2carbomethoxy-S-methylthienyl) carbamate.
13 14 6. A compound according to claim 1, O-methyl N3 OTHER REFERENCES (ZCarbomethoxy'4'methylthlenyl) carbamate' Takaya et a1.: Bull. Chem. Soc., Japan, 1968, 41(10),
7. A compound according to claim 1, O-isopropyl N-3- 25324 (2-carbomethoxy-4-methy1thicny1) carbamate.
8. A compound according to claim 1, O-methyl N-3- 5 zglya et al" Bull Chem' Soc" Japan 1968 41(9) (Z-carbomethoxy-S-phenylthienyl) carbamate.
9. A compound according to claim 1, O-isopropyl N-3- (2-carbomethoxy-S-phenylthienyl) carbamate. I HENRY R' HLES Pnmary EXanner C. M. S. I AISLE, Assistant Examlner References Cited 10 UNITED STATES PATENTS U-S- Cl- X-R.
3,393,224 7/ 1968 Brookes et al. 260-471 71-3 90 3,515,744 6/ 1970 Steinbrunn etal 260-471
US3558770 1970-05-07 1970-05-07 Aminothiophene derivatives Expired - Lifetime US3823161A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US3558770 US3823161A (en) 1970-05-07 1970-05-07 Aminothiophene derivatives
DE19712122636 DE2122636A1 (en) 1970-05-07 1971-05-07 Aminothiophene derivatives and their use as pesticides
DD15494571A DD101537A5 (en) 1970-05-07 1971-05-07
NL7106324A NL7106324A (en) 1970-05-07 1971-05-07
FR7116570A FR2091344A5 (en) 1970-05-07 1971-05-07

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US3558770 US3823161A (en) 1970-05-07 1970-05-07 Aminothiophene derivatives

Publications (1)

Publication Number Publication Date
US3823161A true US3823161A (en) 1974-07-09

Family

ID=21883597

Family Applications (1)

Application Number Title Priority Date Filing Date
US3558770 Expired - Lifetime US3823161A (en) 1970-05-07 1970-05-07 Aminothiophene derivatives

Country Status (5)

Country Link
US (1) US3823161A (en)
DD (1) DD101537A5 (en)
DE (1) DE2122636A1 (en)
FR (1) FR2091344A5 (en)
NL (1) NL7106324A (en)

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3989505A (en) * 1975-06-23 1976-11-02 Hawaiian Sugar Planters' Association Use of polycyclic thiophene compounds as ripeners for sugarcane
US4299968A (en) * 1973-12-03 1981-11-10 Hoffmann-La Roche Inc. Novel thiophene compounds
US4317915A (en) * 1976-08-23 1982-03-02 Hoffmann-La Roche Inc. Novel thiophene derivatives
US4349686A (en) * 1981-11-12 1982-09-14 A. Nattermann & Cie Gmbh 5-(N-Alkyl-N-acyl-amino)-thiophen-2-carboxylic acid derivatives
US4360681A (en) * 1973-12-03 1982-11-23 Hoffmann-La Roche Inc. Novel thiophene compounds
US4382143A (en) * 1979-07-23 1983-05-03 American Cyanamid Company Hypolipidemic and antiatherosclerotic novel (monosubstituted-amino)heteroaryl carboxylic acids and analogs
US4416683A (en) * 1980-09-16 1983-11-22 Eli Lilly And Company Benzamides, compositions and agricultural method
US4428963A (en) 1976-08-23 1984-01-31 Hoffmann-La Roche Inc. Novel thiophene derivatives
US4437878A (en) 1982-03-31 1984-03-20 Basf Aktiengesellschaft Dihydrothiophenecarboxylates and their use for controlling undersirable plant growth
US4472425A (en) * 1982-09-13 1984-09-18 Sandoz Ltd. Thiophene derivatives
US4643758A (en) * 1982-09-30 1987-02-17 Eli Lilly And Company Herbicidal furyl-, thienyl- and pyrrolyl-2-pyrrolidinones
US4666502A (en) * 1982-02-09 1987-05-19 Sandoz Ltd. Herbicidal N-thienyl-chloroacetamides
US4692461A (en) * 1985-11-26 1987-09-08 Bayer Aktiengesellschaft Fungicidal thienylurea derivatives
US4737515A (en) * 1985-11-26 1988-04-12 Bayer Aktiengesellschaft Use of tetrahydrobenzothienylurea derivatives as fungicides
US4740520A (en) * 1985-11-26 1988-04-26 Bayer Aktiengesellschaft Use of thienylurea derivatives as selective fungicides
US4770806A (en) * 1983-06-09 1988-09-13 Monsanto Company Deodorized compositions
US4943634A (en) * 1980-09-16 1990-07-24 Eli Lilly And Company N-heterocyclic benzamides
US5086184A (en) * 1980-09-16 1992-02-04 Dowelanco N-heterocyclic benzamides
US5747518A (en) * 1995-04-11 1998-05-05 Mitsui Toatsu Chemicals, Inc. Substituted thiophene derivative and agricultural and horticultural fungicide containing the same as active ingredient
US6136984A (en) * 1996-04-22 2000-10-24 Novo Nordisk A/S Solid phase and combinatorial synthesis of substituted thiophenes and of arrays of substituted thiophenes
US6187799B1 (en) 1997-05-23 2001-02-13 Onyx Pharmaceuticals Inhibition of raf kinase activity using aryl ureas
US6235790B1 (en) * 1994-01-28 2001-05-22 Bayer Aktiengesellschaft Hydroxamic-acid derivatives, method of preparing them and their use as fungicides
US6344476B1 (en) 1997-05-23 2002-02-05 Bayer Corporation Inhibition of p38 kinase activity by aryl ureas
WO2003028731A1 (en) * 2001-10-04 2003-04-10 Smithkline Beecham Corporation Chk1 kinase inhibitors
US20030216396A1 (en) * 2002-02-11 2003-11-20 Bayer Corporation Pyridine, quinoline, and isoquinoline N-oxides as kinase inhibitors
US20030216446A1 (en) * 2002-02-11 2003-11-20 Bayer Corporation Aryl ureas as kinase inhibitors
US20040023961A1 (en) * 2002-02-11 2004-02-05 Bayer Corporation Aryl ureas with raf kinase and angiogenisis inhibiting activity
WO2005044008A2 (en) * 2003-10-22 2005-05-19 Syngenta Participations Ag 2 -aminothiophene compounds as fungicides
US20060019990A1 (en) * 2001-04-20 2006-01-26 Jacques Dumas Inhibition of RAF kinase using quinolyl, isoquinolyl or pyridyl ureas
US20060142347A1 (en) * 2001-06-11 2006-06-29 Laval Chan Chun Kong Compounds and methods for the treatment or prevention of Flavivirus infections
US20060247186A1 (en) * 2001-12-03 2006-11-02 Carter Christopher A Aryl urea compounds in combination with other cytostatic or cytotoxic agents for treating human cancers
US20070020704A1 (en) * 2003-05-20 2007-01-25 Scott Wilhelm Diaryl ureas with kinase inhibiting activity
US7235576B1 (en) 2001-01-12 2007-06-26 Bayer Pharmaceuticals Corporation Omega-carboxyaryl substituted diphenyl ureas as raf kinase inhibitors
US20080009527A1 (en) * 1997-12-22 2008-01-10 Jacques Dumas Inhibition of raf kinase using aryl and heteroaryl substituted heterocyclic ureas
US7351834B1 (en) 1999-01-13 2008-04-01 Bayer Pharmaceuticals Corporation ω-Carboxyaryl substituted diphenyl ureas as raf kinase inhibitors
US20080269265A1 (en) * 1998-12-22 2008-10-30 Scott Miller Inhibition Of Raf Kinase Using Symmetrical And Unsymmetrical Substituted Diphenyl Ureas
US20080300281A1 (en) * 1997-12-22 2008-12-04 Jacques Dumas Inhibition of p38 Kinase Activity Using Aryl and Heteroaryl Substituted Heterocyclic Ureas
US20090093526A1 (en) * 1997-12-22 2009-04-09 Scott Miller Inhibition of p38 kinase using symmetrical and unsymmetrical diphenyl ureas
US7528255B2 (en) 1999-01-13 2009-05-05 Bayer Pharmaceuticals Corporation Hydroxy, ω-carboxyaryl substituted diphenyl ureas and dirivatives thereof as raf kinase inhibitors
US7838541B2 (en) 2002-02-11 2010-11-23 Bayer Healthcare, Llc Aryl ureas with angiogenesis inhibiting activity
US7897623B2 (en) 1999-01-13 2011-03-01 Bayer Healthcare Llc ω-carboxyl aryl substituted diphenyl ureas as p38 kinase inhibitors
US7928239B2 (en) 1999-01-13 2011-04-19 Bayer Healthcare Llc Inhibition of RAF kinase using quinolyl, isoquinolyl or pyridyl ureas
US20110136809A1 (en) * 2004-04-30 2011-06-09 Bayer Pharmaceuticals Corporation Substituted Pyrazolyl Urea Derivatives Useful In The Treatment Of Cancer
US20110200553A1 (en) * 2001-06-11 2011-08-18 Vertex Pharmaceuticals Incorporated Compounds and methods for the treatment or prevention of flavivirus infections
US8076488B2 (en) 2003-02-28 2011-12-13 Bayer Healthcare Llc Bicyclic urea derivatives useful in the treatment of cancer and other disorders
US8124630B2 (en) 1999-01-13 2012-02-28 Bayer Healthcare Llc ω-carboxyaryl substituted diphenyl ureas as raf kinase inhibitors
US8637553B2 (en) 2003-07-23 2014-01-28 Bayer Healthcare Llc Fluoro substituted omega-carboxyaryl diphenyl urea for the treatment and prevention of diseases and conditions

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3305866A1 (en) * 1983-02-19 1984-08-23 Basf Ag, 6700 Ludwigshafen THIOPHEN-CARBONESTER, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE FOR CONTROLLING UNWANTED PLANT GROWTH
DE3541629A1 (en) * 1985-11-26 1987-05-27 Bayer Ag SELECTIVE FUNGICIDAL USE OF 1- (3-ETHOXYCARBONYL-4-ETHYL-5-METHYL-2-THIENYL) -3-METHYL URINE

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4299968A (en) * 1973-12-03 1981-11-10 Hoffmann-La Roche Inc. Novel thiophene compounds
US4360681A (en) * 1973-12-03 1982-11-23 Hoffmann-La Roche Inc. Novel thiophene compounds
US3989505A (en) * 1975-06-23 1976-11-02 Hawaiian Sugar Planters' Association Use of polycyclic thiophene compounds as ripeners for sugarcane
US4317915A (en) * 1976-08-23 1982-03-02 Hoffmann-La Roche Inc. Novel thiophene derivatives
US4428963A (en) 1976-08-23 1984-01-31 Hoffmann-La Roche Inc. Novel thiophene derivatives
US4382143A (en) * 1979-07-23 1983-05-03 American Cyanamid Company Hypolipidemic and antiatherosclerotic novel (monosubstituted-amino)heteroaryl carboxylic acids and analogs
US4416683A (en) * 1980-09-16 1983-11-22 Eli Lilly And Company Benzamides, compositions and agricultural method
US5086184A (en) * 1980-09-16 1992-02-04 Dowelanco N-heterocyclic benzamides
US4943634A (en) * 1980-09-16 1990-07-24 Eli Lilly And Company N-heterocyclic benzamides
US4349686A (en) * 1981-11-12 1982-09-14 A. Nattermann & Cie Gmbh 5-(N-Alkyl-N-acyl-amino)-thiophen-2-carboxylic acid derivatives
US4666502A (en) * 1982-02-09 1987-05-19 Sandoz Ltd. Herbicidal N-thienyl-chloroacetamides
US4437878A (en) 1982-03-31 1984-03-20 Basf Aktiengesellschaft Dihydrothiophenecarboxylates and their use for controlling undersirable plant growth
US4472425A (en) * 1982-09-13 1984-09-18 Sandoz Ltd. Thiophene derivatives
US4643758A (en) * 1982-09-30 1987-02-17 Eli Lilly And Company Herbicidal furyl-, thienyl- and pyrrolyl-2-pyrrolidinones
US4770806A (en) * 1983-06-09 1988-09-13 Monsanto Company Deodorized compositions
US4737515A (en) * 1985-11-26 1988-04-12 Bayer Aktiengesellschaft Use of tetrahydrobenzothienylurea derivatives as fungicides
US4740520A (en) * 1985-11-26 1988-04-26 Bayer Aktiengesellschaft Use of thienylurea derivatives as selective fungicides
US4692461A (en) * 1985-11-26 1987-09-08 Bayer Aktiengesellschaft Fungicidal thienylurea derivatives
US6235790B1 (en) * 1994-01-28 2001-05-22 Bayer Aktiengesellschaft Hydroxamic-acid derivatives, method of preparing them and their use as fungicides
US5747518A (en) * 1995-04-11 1998-05-05 Mitsui Toatsu Chemicals, Inc. Substituted thiophene derivative and agricultural and horticultural fungicide containing the same as active ingredient
US6136984A (en) * 1996-04-22 2000-10-24 Novo Nordisk A/S Solid phase and combinatorial synthesis of substituted thiophenes and of arrays of substituted thiophenes
US6344476B1 (en) 1997-05-23 2002-02-05 Bayer Corporation Inhibition of p38 kinase activity by aryl ureas
US6187799B1 (en) 1997-05-23 2001-02-13 Onyx Pharmaceuticals Inhibition of raf kinase activity using aryl ureas
US20100160371A1 (en) * 1997-05-23 2010-06-24 Gerald Ranges Inhibition of p38 kinase activity by aryl ureas
US20100063088A1 (en) * 1997-05-23 2010-03-11 Wood Jill E Raf Kinase Inhibitors
US20050256174A1 (en) * 1997-05-23 2005-11-17 Wood Jill E Raf kinase inhibitors
US20080009527A1 (en) * 1997-12-22 2008-01-10 Jacques Dumas Inhibition of raf kinase using aryl and heteroaryl substituted heterocyclic ureas
US7625915B2 (en) 1997-12-22 2009-12-01 Bayer Healthcare Llc Inhibition of RAF kinase using aryl and heteroaryl substituted heterocyclic ureas
US7517880B2 (en) 1997-12-22 2009-04-14 Bayer Pharmaceuticals Corporation Inhibition of p38 kinase using symmetrical and unsymmetrical diphenyl ureas
US20090093526A1 (en) * 1997-12-22 2009-04-09 Scott Miller Inhibition of p38 kinase using symmetrical and unsymmetrical diphenyl ureas
US20080300281A1 (en) * 1997-12-22 2008-12-04 Jacques Dumas Inhibition of p38 Kinase Activity Using Aryl and Heteroaryl Substituted Heterocyclic Ureas
US7329670B1 (en) 1997-12-22 2008-02-12 Bayer Pharmaceuticals Corporation Inhibition of RAF kinase using aryl and heteroaryl substituted heterocyclic ureas
US20080269265A1 (en) * 1998-12-22 2008-10-30 Scott Miller Inhibition Of Raf Kinase Using Symmetrical And Unsymmetrical Substituted Diphenyl Ureas
US7928239B2 (en) 1999-01-13 2011-04-19 Bayer Healthcare Llc Inhibition of RAF kinase using quinolyl, isoquinolyl or pyridyl ureas
US7897623B2 (en) 1999-01-13 2011-03-01 Bayer Healthcare Llc ω-carboxyl aryl substituted diphenyl ureas as p38 kinase inhibitors
US8841330B2 (en) 1999-01-13 2014-09-23 Bayer Healthcare Llc Omega-carboxyaryl substituted diphenyl ureas as raf kinase inhibitors
US7351834B1 (en) 1999-01-13 2008-04-01 Bayer Pharmaceuticals Corporation ω-Carboxyaryl substituted diphenyl ureas as raf kinase inhibitors
US20080153823A1 (en) * 1999-01-13 2008-06-26 Bernd Riedl Omega-Carboxyaryl Substituted Diphenyl Ureas As Raf Kinase Inhibitors
US8124630B2 (en) 1999-01-13 2012-02-28 Bayer Healthcare Llc ω-carboxyaryl substituted diphenyl ureas as raf kinase inhibitors
US7528255B2 (en) 1999-01-13 2009-05-05 Bayer Pharmaceuticals Corporation Hydroxy, ω-carboxyaryl substituted diphenyl ureas and dirivatives thereof as raf kinase inhibitors
US7235576B1 (en) 2001-01-12 2007-06-26 Bayer Pharmaceuticals Corporation Omega-carboxyaryl substituted diphenyl ureas as raf kinase inhibitors
US7371763B2 (en) 2001-04-20 2008-05-13 Bayer Pharmaceuticals Corporation Inhibition of raf kinase using quinolyl, isoquinolyl or pyridyl ureas
US20060019990A1 (en) * 2001-04-20 2006-01-26 Jacques Dumas Inhibition of RAF kinase using quinolyl, isoquinolyl or pyridyl ureas
US8329924B2 (en) 2001-06-11 2012-12-11 Vertex Pharmaceuticals (Canada) Incorporated Compounds and methods for the treatment or prevention of Flavivirus infections
US20060142347A1 (en) * 2001-06-11 2006-06-29 Laval Chan Chun Kong Compounds and methods for the treatment or prevention of Flavivirus infections
US20110200553A1 (en) * 2001-06-11 2011-08-18 Vertex Pharmaceuticals Incorporated Compounds and methods for the treatment or prevention of flavivirus infections
US7985769B2 (en) 2001-06-11 2011-07-26 Vertex Pharmaceuticals Incorporated Compounds and methods for the treatment or prevention of Flavivirus infections
WO2003028731A1 (en) * 2001-10-04 2003-04-10 Smithkline Beecham Corporation Chk1 kinase inhibitors
US20060247186A1 (en) * 2001-12-03 2006-11-02 Carter Christopher A Aryl urea compounds in combination with other cytostatic or cytotoxic agents for treating human cancers
US7838541B2 (en) 2002-02-11 2010-11-23 Bayer Healthcare, Llc Aryl ureas with angiogenesis inhibiting activity
US8110587B2 (en) 2002-02-11 2012-02-07 Bayer Healthcare Llc Aryl ureas as kinase inhibitors
US20030216396A1 (en) * 2002-02-11 2003-11-20 Bayer Corporation Pyridine, quinoline, and isoquinoline N-oxides as kinase inhibitors
US20100152251A1 (en) * 2002-02-11 2010-06-17 Jacques Dumas Pyridine, quinoline, and isoquinoline n-oxides as kinase inhibitors
US9181188B2 (en) 2002-02-11 2015-11-10 Bayer Healthcare Llc Aryl ureas as kinase inhibitors
US7678811B2 (en) 2002-02-11 2010-03-16 Bayer Healthcare Llc Pyridine, quinoline, and isoquinoline N-oxides as kinase inhibitors
US20030216446A1 (en) * 2002-02-11 2003-11-20 Bayer Corporation Aryl ureas as kinase inhibitors
US8071616B2 (en) 2002-02-11 2011-12-06 Bayer Healthcare Llc Pyridine, quinoline, and isoquinoline N-oxides as kinase inhibitors
US8618141B2 (en) 2002-02-11 2013-12-31 Bayer Healthcare Llc Aryl ureas with angiogenesis inhibiting activity
US8242147B2 (en) 2002-02-11 2012-08-14 Bayer Healthcare Llc Aryl ureas with angiogenisis inhibiting activity
US20040023961A1 (en) * 2002-02-11 2004-02-05 Bayer Corporation Aryl ureas with raf kinase and angiogenisis inhibiting activity
US8076488B2 (en) 2003-02-28 2011-12-13 Bayer Healthcare Llc Bicyclic urea derivatives useful in the treatment of cancer and other disorders
US8796250B2 (en) 2003-05-20 2014-08-05 Bayer Healthcare Llc Diaryl ureas for diseases mediated by PDGFR
US20070020704A1 (en) * 2003-05-20 2007-01-25 Scott Wilhelm Diaryl ureas with kinase inhibiting activity
US8637553B2 (en) 2003-07-23 2014-01-28 Bayer Healthcare Llc Fluoro substituted omega-carboxyaryl diphenyl urea for the treatment and prevention of diseases and conditions
WO2005044008A3 (en) * 2003-10-22 2008-01-03 Syngenta Participations Ag 2 -aminothiophene compounds as fungicides
WO2005044008A2 (en) * 2003-10-22 2005-05-19 Syngenta Participations Ag 2 -aminothiophene compounds as fungicides
US8207166B2 (en) 2004-04-30 2012-06-26 Bayer Healthcare Llc Substituted pyrazolyl urea derivatives useful in the treatment of cancer
US20110136809A1 (en) * 2004-04-30 2011-06-09 Bayer Pharmaceuticals Corporation Substituted Pyrazolyl Urea Derivatives Useful In The Treatment Of Cancer

Also Published As

Publication number Publication date
FR2091344A5 (en) 1972-01-14
NL7106324A (en) 1971-11-09
DE2122636A1 (en) 1971-12-02
DD101537A5 (en) 1973-11-12

Similar Documents

Publication Publication Date Title
US3823161A (en) Aminothiophene derivatives
US3576834A (en) Substituted o-carbamylhydroxamates
US3234255A (en) Alpha-substituted benzaldoximes
US3743498A (en) Method of selectively controlling undesirable vegetation
US3780051A (en) Certain 2-(thiazol-2-yl)-3,5-dioxo-4-methyl-1,2,4-thiadiazolidines
US3694482A (en) Malononitrile oxime derivatives
US3705155A (en) 1-thiadiazolyl-hexahydro-1,3,5-triazine-2-ones
US3717690A (en) N,n-dialkylamidoxime phosphates
US3686230A (en) Herbicidal n-tetrahydrofurfuryl substituted 2,6-dinitroanilines
NO813906L (en) NEW ARYLSULPHONY LUREA CONNECTIONS AND USE THEREOF
US4160037A (en) Compounds, compositions and methods of combatting pest employing thioureas
US3776936A (en) Thiocarbamic acid ester pesticides
US3780085A (en) Malononitrile oxime derivatives
US3780046A (en) Herbicidal n-(2-picolyl) substituted 2,6-dinitroanilines
US3728386A (en) N-cycloalkylalkyl and n-cycloalkyl substituted phenyl ureas and halo acetamides
US3784574A (en) Herbicidal n-furfuryl substituted 2,6-dinitroanilines
US3856860A (en) N-cyclopropylmethyl halo-acetamides
DE2824126A1 (en) TETRAHYDRO-1,3,5-THIADIAZINE-4-ONE COMPOUNDS
EP0062254A1 (en) Substituted acetanilides, process for their preparation and their use as herbicides
US3783143A (en) N-cyclopropylmethyl-phenylureas
US3089765A (en) Herbicidal method
KR840000131B1 (en) N-cyanoalkyl halocetamides herbicidal antidotes
US3512955A (en) Method of protecting plant growth
US3691237A (en) N-halo-n-phenyl-n'n'dimethyl formamidinium halides
US3780056A (en) Acyl hydantoin phosphorothioates