US3822680A - Isothermal valve seat for internal combustion engine - Google Patents

Isothermal valve seat for internal combustion engine Download PDF

Info

Publication number
US3822680A
US3822680A US00322762A US32276273A US3822680A US 3822680 A US3822680 A US 3822680A US 00322762 A US00322762 A US 00322762A US 32276273 A US32276273 A US 32276273A US 3822680 A US3822680 A US 3822680A
Authority
US
United States
Prior art keywords
valve seat
valve
heat pipe
passage
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00322762A
Inventor
M Showalter
S Rhine
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Automotive Engine Associates LP
Original Assignee
M Showalter
S Rhine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by M Showalter, S Rhine filed Critical M Showalter
Priority to US00322762A priority Critical patent/US3822680A/en
Application granted granted Critical
Publication of US3822680A publication Critical patent/US3822680A/en
Assigned to AUTOMOTIVE ENGINE ASSOCIATES, 301 S. BLOUNT ST., CITY OF MADISON, reassignment AUTOMOTIVE ENGINE ASSOCIATES, 301 S. BLOUNT ST., CITY OF MADISON, ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: SHOWALTER, MERLE R., RHINE, SAMUEL
Assigned to UNITED BANK AND TRUST OF MADISON, MADISON, WIS., A WIS BANK reassignment UNITED BANK AND TRUST OF MADISON, MADISON, WIS., A WIS BANK SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AUTOMOTIVE ENGINE ASSOCIATES
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/22Valve-seats not provided for in preceding subgroups of this group; Fixing of valve-seats
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49229Prime mover or fluid pump making
    • Y10T29/49298Poppet or I.C. engine valve or valve seat making
    • Y10T29/49306Valve seat making

Definitions

  • the heat pipe passage is a gas tight passage including wicked surfaces to [21] Appl' 322762 assure that the valve seat is uniformly wet and con taining a working fluid which is a liquid with a high [52] US. Cl 123/41.16, 29/l56.7 A, l23/41.2, Vapor Pressure under the Operating liempefamre range 123/4177, 123/4185, 123/188 5, 165/105 of the valve seat. When the valve seat is heated, fluid [51] Int. Cl.
  • F0ll 3/14, F02f 3/18 evaporates from hot portions, absorbing e eat of [58] Field of Search l23/41.l6, 41.85, 41.41, p riz i n, nd the vapor flows hydrodynamically to 123/412, 41,76, 41,77, 188 S; 29/156 7 A of vaporization, cooler portions of the heat pipe surface, where the vapor recondenses at the same tem- References Cited P it 19 @51 YQRQQQEQFLTFE UNITED STATES PATENTS contained in the heat pipe volume is totally or pre- 1 670 965 5/928 Heron 123/4] 16 dominantly the working fluid vapor, so that the heat l7485l8 M930 'g j' "i' pipe always responds to maintain its entire surface 2:369:063 2/1945 McDill..
  • valve seats always have and probably always will distort, and the resulting leakage reduces valve seal life, and valve life, and results in some leakage of raw fuel into the exhaust manifold prior to spark ignition.
  • the problem is made worse by anthing which raises the heat rejection rate to the head and valve (lower compression ratio, slower combustion, higher combustion turbulence).
  • Requirements that engine durability be improved and exhaust emissions be drastically reduced have made this problem particularly pressing at the moment.
  • Engine designs which otherwise seem quite favorable to emission control can result in enough valve seat distortion that they produce unacceptable unburned hydrocarbon emissions and reduced engine life.
  • valve seats It is the purpose of the present invention to eliminate the temperature variation normally found around valve seats to eliminate thermal distortion. This is accomplished by providing valve seats with an encircling heat pipe cooling passage equidistant from the valve seating surface, where said heat pipe passage assures that the temperature at all points of the heat pipe passage surface are equal because the heated parts are cooled by evaporation and the cooling surfaces are heated by condensation at the same temperature (at equal pressures and vapor partial pressures the temperature of evaporation equals the temperature of condensation). In this way valve seat distortion can be very nearly eliminated.
  • FIG. 1 is a sectional view of a heat piped valve seat where the head into which the valve seat is inserted forms part of the sealed heat pipe cooling passage.
  • FIG. 2 is a plan view of a head with inserts installed, showing an example of valve seat heat pipe maintaining uniform temperature where head cooling is not uniform around the valve seat.
  • FIG. 3 is a section view of a heat piped valve seat where heat piped passage is inside a ring shaped tube cast into the valve seat.
  • FIG. 3A is a section view of a heat piped valve seat where the seat is shrink fitted to a ring.
  • FIG. 4 is a schematic view of method of inserting valve seat in head as part of valve installation procedure.
  • FIG. 1 shows valve seat insert 1 which is shrink fit to form a gas tight seal in head casting 5.
  • Ring shaped heat pipe passage 2 in insert 1 is sealed during the shrink fit process and contains wick 3 and working fluid (preferably water) 4.
  • the gas content of sealed passage 2 is totally or predominantly working fluid vapor to eliminate the possibility of noncondensing gas pockets producing uneven cooling on the head surface portion of head pipe passage 2.
  • Wick 3 can be a metal wool, a cotton or other fabric, or a porous plastic foam. Its purpose is to assure that the wicked surfaces are always completely wet by capillary action. The wick can be made to fill the entire volume of passage 2. The flow of vapor is somewhat obstructed in this way, but the temperature differences and heat flow reduction involved is quite small.
  • insert 1 seal passage 2 gas tight manner, since the heat pipe often functions at quite high pressures and since noncondensing gas in passage 2 hinders the operation of the heat pipe.
  • the outside edges of insert 1 can be coated with a sealer (for instance by dipping in molten lead) prior to shrink fitting into head 5 to assure a good gas tight seal between passage 2 and the outside.
  • the amount of working fluid 4 in passage 2 can vary substantially without producing problems, but it should (as a liquid) have much less volume than passage 2 and it must be enough so that some fluid remains in liquid state at the highest temperature passage 2 will ever encounter in normal service. As a liquid, fluid 4 should be between 5 percent and 20 percent of the total volume of passage 2.
  • Heat pipe passage 2 will equalize temperatures very much more efficiently if it is free from noncondensing gases which can stratify to permit hot spots or cold spots. Therefore, assembly I, 2, 3, 4, 5 must either be assembled in a vacuum or the noncondensable gases must be eliminated by some other means, Probably the easiest and cheapest way of doing this, since insert 1 must be installed cold as a shrink fit anyway, is to install insert 1 with passage 2 containing the working fluid (preferably water) as ice and also containing dry ice (solid CO and a small quantity of calcium oxide either in the water ice or in the wick.
  • the working fluid preferably water
  • dry ice solid CO and a small quantity of calcium oxide either in the water ice or in the wick.
  • FIG. 2 shows a cylinder head with heat piped valve seats 7 (exhaust) and 8 (intake) installed.
  • FIG. 2 shows a cylinder head with heat piped valve seats 7 (exhaust) and 8 (intake) installed.
  • the cooling of the portions of the valve seats nearest to gether shown in the drawing as in contact with shaded region 6) are less well cooled than the other areas around the valve seat, with the result that these less cooled areas expand more than average and force the valve seat out of round.
  • the heat piped valve seats installed the temperature of the surface of the heat piped passages in valve seats 7 and 8 are maintained uniformly around each valve seat, so that very different cooling efficiencies around the valve seats do not result in very different valve seat temperatures.
  • Heat piped valve seats can be built where the heat pipe passage is sealed prior to insertion into an engine head. This is advantageous from the point of view of installation in the head but reduces the cooling efficiency of the valve seat since heat piped seats such as shown in FIG. I employ the head as part of the cooling surface of passage 2, whereas sealed heat pipe passages mean that heat transfer to the head must occur totally through metal-to-metal contact, and the cooling efficiency of even the best shrink fits or press tits in less than would occur for total molecular contact.
  • FIGS. 3 and 3A show two types of presealed heat piped valve seats.
  • FIG. 3 shows a valve seat 1 with a ring of tubing complete with wick 32 (for instance, of asbestos) cast into the valve seat. After machining, a small hole is drilled from the side to insert working fluid, and then sealed. A heat piped valve seat 1 with the heat pipe sealed prior to installation results.
  • FIG. 3A shows a presealed valve seat 1 constructed in the manner of the seat in FIG. 1, but sealed by shrink fitting into a ring 36 prior to installation in the head.
  • FIG. 4 shows the preferred way of installing a shrink fit valve seat of the type shown in FIG. 1 in production.
  • the valve seat 9 contains water ice and dry ice in its wicked ring shaped passage 15 and is installed at dry ice temperatures into the head 10 as a part of the valve installation procedure.
  • Valve seat 9 will be cold and will have a layer of frost over it so that it will stick (with the water ice frost serving as a glue) to the valve 11 so that it can be installed under tension of spring assembly 12, 13, 14 as part of the valve installation procedure.
  • the valve spring tension will serve to force the seat into centered contact with the bottom surface of the machined cylindrical hole provided for it in the engine head.
  • the working fluid in the heat pipe passage may, of course, be something besides water.
  • Methanol, ethonal, heptane, hexane and some other liquids will work in the temperature range required.
  • the technique will work with any liquid which is on the high vapor pressure portion of its evaporation curve at. the working temperatures of the valve seat.
  • a valve seat having no thermal distortion of the valve sealing surface, said valve seat having a valve sealing surface, a gas tight hollow annular passage radially symmetric with the valve sealing surface, said annular passage containing part of its volume as liquid and part as gas, said liquid having a vapor pressure in excess of atmospheric pressure at normal valve seat operating temperatures, said annular passage being substantially free of non-condensable gas pockets, the surface of said annular passage being covered by a wicking means, the annular passage containing sufficient liquid so that all of the wicking means is maintained wet at the highest operating temperature of the annular passage whereby evaporation and condensation of the liquid in the passage virtually eliminates temperature differences between points on the passage. surface, and therefore produces a more nearly radially symmetric temperature distribution in said valve seat so that unsymmetric thermal stresses cannot occur to cause distortion of the valve sealing surface.
  • a method of assembling a heat pipe valve seat having an encircling groove therein into the head of an internal combustion engine by shrink fit comprising the steps of A. cooling the heat pipe valve seat to a temperature below the freezing point of the heat pipe working fluid,
  • a method of assembling a heat pipe valve seat having an encircling groove therein and its associated valve into the head of an internal combustion enging of shrink fit comprising the steps of A. cooling the heat pipe valve seat to a temperature below the freezing point of the heat pipe working fluid,
  • valve seat-valve assembly into a cylinder head wherein said valve-valve seat assembly is placed under compression by installation of the valve spring on said valve, where the shrink fit contact between said valve seat and said head forms a gas tight seal.
  • valve seat to the valve head is by freezing a liquid between said valve head and said valve seat to hold said valve head and valve seat together.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Lift Valve (AREA)

Abstract

A valve seat for internal combustion engines including a heat pipe passage around the seat to assure that the valve seat is uniformly the same temperature all around even if the cooling of the valve seat from the engine head is not even all around. The heat pipe passage is a gas tight passage including wicked surfaces to assure that the valve seat is uniformly wet and containing a working fluid which is a liquid with a high vapor pressure under the operating temperature range of the valve seat. When the valve seat is heated, fluid evaporates from hot portions, absorbing the heat of vaporization, and the vapor flows hydrodynamically to of vaporization, cooler portions of the heat pipe surface, where the vapor recondenses at the same temperature, giving up its heat of vaporization. The gas contained in the heat pipe volume is totally or predominantly the working fluid vapor, so that the heat pipe always responds to maintain its entire surface area at an even temperature (this temperature will vary from time to time, but at any given time the entire surface of the heat pipe passage will be isothermal). Uniform valve seat temperatures produce uniform expansion so valve seats stay in round, leak less unburned hydrocarbon, and last longer.

Description

Primary ExaminerManuel A. Antonakas Assistant ExaminerDaniel J. OConnor Attorney, Agent, or Firm-Witherspoon and Lane United States Patent 1 1 1111 3,822,680 Showalter et al. July 9, 1974 ISOTHERMAL VALVE SEAT FOR lNTERNAL COMBUSTION ENGINE [57 ABSTRACT [76] Inventors: Merle Robert 'i 4733 A valve seat for internal combustion engines including Shoremead Richmond a heat pipe passage around the seat to assure that the 23234; Samuel Rhme 13426 229th valve seat is uniformly the same temperature all Queens 11 143 around even if the cooling of the valve seat from the [22] Filed: Jan. 11, 1973 engine head is not even all around. The heat pipe passage is a gas tight passage including wicked surfaces to [21] Appl' 322762 assure that the valve seat is uniformly wet and con taining a working fluid which is a liquid with a high [52] US. Cl 123/41.16, 29/l56.7 A, l23/41.2, Vapor Pressure under the Operating liempefamre range 123/4177, 123/4185, 123/188 5, 165/105 of the valve seat. When the valve seat is heated, fluid [51] Int. Cl. F0ll 3/14, F02f 3/18 evaporates from hot portions, absorbing e eat of [58] Field of Search l23/41.l6, 41.85, 41.41, p riz i n, nd the vapor flows hydrodynamically to 123/412, 41,76, 41,77, 188 S; 29/156 7 A of vaporization, cooler portions of the heat pipe surface, where the vapor recondenses at the same tem- References Cited P it 19 @51 YQRQQQEQFLTFE UNITED STATES PATENTS contained in the heat pipe volume is totally or pre- 1 670 965 5/928 Heron 123/4] 16 dominantly the working fluid vapor, so that the heat l7485l8 M930 'g j' "i' pipe always responds to maintain its entire surface 2:369:063 2/1945 McDill.. 111111.... 123/4116 area at an even tamperature temperature 2,467,060 4/1949 Twitchell l23/41.16 vary from time to time, but at y given time the 3,0s1,754 3/1963 Georges 1. 123/4135 x tire Surface of the heat P p Passage Will be isother- 3,701,342 [0/1972 Owsley et al. 123/4116 mal). Uniform valve seat temperatures produce uniform expansion so valve seats stay in round, leak less unburned hydrocarbon, and last longer.
8 Claims, 5 Drawing Figures ISOTHERMAL VALVE SEAT FOR INTERNAL COMBUSTION ENGINE SUMMARY OF THE INVENTION Ever since the beginning of poppet valve internal combustion engines, valve seats have been distorted out of round in service by uneven cooling and the uneven expansion resulting from uneven valve seat temperatures. In engine service the resulting leakage is never eliminated, but may vary over a substantial range. Minimizing the problems'of valve seat distortion has always been a large part of the job of developing head castings. The problem is made worse in practice because the thickness of castings between the coolant and the combustion chamber varies randomly in production, so that thinner sections are cooler and thicker sections are hotter than they were designed to be. As a result, valve seats always have and probably always will distort, and the resulting leakage reduces valve seal life, and valve life, and results in some leakage of raw fuel into the exhaust manifold prior to spark ignition. The problem is made worse by anthing which raises the heat rejection rate to the head and valve (lower compression ratio, slower combustion, higher combustion turbulence). Requirements that engine durability be improved and exhaust emissions be drastically reduced have made this problem particularly pressing at the moment. Engine designs which otherwise seem quite favorable to emission control can result in enough valve seat distortion that they produce unacceptable unburned hydrocarbon emissions and reduced engine life.
It is the purpose of the present invention to eliminate the temperature variation normally found around valve seats to eliminate thermal distortion. This is accomplished by providing valve seats with an encircling heat pipe cooling passage equidistant from the valve seating surface, where said heat pipe passage assures that the temperature at all points of the heat pipe passage surface are equal because the heated parts are cooled by evaporation and the cooling surfaces are heated by condensation at the same temperature (at equal pressures and vapor partial pressures the temperature of evaporation equals the temperature of condensation). In this way valve seat distortion can be very nearly eliminated.
It is a further purpose of the present invention to provide an isothermal heat piped valve seat with the well known wear advantages of inserted valve seats, and one which can be produced at a very low cost with automated equipment without disrupting current assembly procedures unacceptably. It is a further purpose of the present invention to provide a valve seat insert which does not result in the increased valve seat temperatures common with other inserted valve seats, but which actually reduce valve seat surface temperatures and therefore results in lower valve temperatures and increased valve life.
DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view of a heat piped valve seat where the head into which the valve seat is inserted forms part of the sealed heat pipe cooling passage.
FIG. 2 is a plan view of a head with inserts installed, showing an example of valve seat heat pipe maintaining uniform temperature where head cooling is not uniform around the valve seat. FIG. 3 is a section view of a heat piped valve seat where heat piped passage is inside a ring shaped tube cast into the valve seat.
FIG. 3A is a section view of a heat piped valve seat where the seat is shrink fitted to a ring.
FIG. 4 is a schematic view of method of inserting valve seat in head as part of valve installation procedure.
DETAILED DESCRIPTION OF THE INVENTION FIG. 1 shows valve seat insert 1 which is shrink fit to form a gas tight seal in head casting 5. Ring shaped heat pipe passage 2 in insert 1 is sealed during the shrink fit process and contains wick 3 and working fluid (preferably water) 4. The gas content of sealed passage 2 is totally or predominantly working fluid vapor to eliminate the possibility of noncondensing gas pockets producing uneven cooling on the head surface portion of head pipe passage 2. Assuming that the only gas in passage 2 is the vapor of working fluid 4 and that fluid 4 is essentially narrow distillation fluid (water as opposed to a wide distillation range oil), total temperature uniformity is ensured over the surface of heat pipe passage 2 since evaporation will move heat very rapidly away from any surface marginally above average while condensation will transport heat rapidly to any surface marginally below average temperature. This equilibrating process is quite fast: the effective thermal diffusivity of passage 2 as a water based heat pipe is several thousand times that of copper. Wick 3 assures that the surface of insert 1 will stay wet the capillary liquid returning action of the wick is necessary to assure temperature equalization, since any dry surface cannot be cooled by evaporation.
Wick 3 can be a metal wool, a cotton or other fabric, or a porous plastic foam. Its purpose is to assure that the wicked surfaces are always completely wet by capillary action. The wick can be made to fill the entire volume of passage 2. The flow of vapor is somewhat obstructed in this way, but the temperature differences and heat flow reduction involved is quite small.
It is vital that the seal between the head 5 and the insert 1 seal passage 2 gas tight manner, since the heat pipe often functions at quite high pressures and since noncondensing gas in passage 2 hinders the operation of the heat pipe. The outside edges of insert 1 can be coated with a sealer (for instance by dipping in molten lead) prior to shrink fitting into head 5 to assure a good gas tight seal between passage 2 and the outside.
The amount of working fluid 4 in passage 2 can vary substantially without producing problems, but it should (as a liquid) have much less volume than passage 2 and it must be enough so that some fluid remains in liquid state at the highest temperature passage 2 will ever encounter in normal service. As a liquid, fluid 4 should be between 5 percent and 20 percent of the total volume of passage 2.
Heat pipe passage 2 will equalize temperatures very much more efficiently if it is free from noncondensing gases which can stratify to permit hot spots or cold spots. Therefore, assembly I, 2, 3, 4, 5 must either be assembled in a vacuum or the noncondensable gases must be eliminated by some other means, Probably the easiest and cheapest way of doing this, since insert 1 must be installed cold as a shrink fit anyway, is to install insert 1 with passage 2 containing the working fluid (preferably water) as ice and also containing dry ice (solid CO and a small quantity of calcium oxide either in the water ice or in the wick. As the insert assem bly warms up the dry ice will sublime, driving off air so that passage 2 is flushed with C The shrink fit should be relatively tight before the water ice melts but when the dry ice is essentially gone. As insert 1 comes to the same temperature as the head 5, it will be a gas tight shrink fit sealing off passage 2. The noncondensable gas in passage 2 will be CO which will quickly react with the CaO aqueous phase to form CaC'O so that the only remaining gas in passage 2 will be water vapor. The small amount of chalk in passage 2 will cause no problems. Using the ice, dry ice and quicklime technique, problems with eliminating noncondensable gases and producing the proper amount of working fluid in passage 2 are eliminated, since the fluids can be handled as solids. Other chemical combinations can also be made to eliminate non-condensable gases from the passage without the requirement that the valve be added in a vacuum.
The operation of the heat pipe passage in the valve seats compensates for uneven cooling of the cylinder head in service. See FIG. 2, which shows a cylinder head with heat piped valve seats 7 (exhaust) and 8 (intake) installed. In service it is generally found that the cooling of the portions of the valve seats nearest to gether (shown in the drawing as in contact with shaded region 6) are less well cooled than the other areas around the valve seat, with the result that these less cooled areas expand more than average and force the valve seat out of round. With the heat piped valve seats installed, the temperature of the surface of the heat piped passages in valve seats 7 and 8 are maintained uniformly around each valve seat, so that very different cooling efficiencies around the valve seats do not result in very different valve seat temperatures. However, it can be seen that the heat piped cooling passages cannot eliminate the effect of different head temperatures around the valve seat entirely, owing to the metal-tometal contact between the head and the valve seat. In the case of the exhaust valve seat, which is always rejecting a great deal of heat, thermal distortion is very much reduced, since the valve seat is maintained nearly isothermal all around, and the cooling load of the portions of the head nearest the valve seat come predominantly from the valve seat.
Heat piped valve seats can be built where the heat pipe passage is sealed prior to insertion into an engine head. This is advantageous from the point of view of installation in the head but reduces the cooling efficiency of the valve seat since heat piped seats such as shown in FIG. I employ the head as part of the cooling surface of passage 2, whereas sealed heat pipe passages mean that heat transfer to the head must occur totally through metal-to-metal contact, and the cooling efficiency of even the best shrink fits or press tits in less than would occur for total molecular contact.
FIGS. 3 and 3A show two types of presealed heat piped valve seats. FIG. 3 shows a valve seat 1 with a ring of tubing complete with wick 32 (for instance, of asbestos) cast into the valve seat. After machining, a small hole is drilled from the side to insert working fluid, and then sealed. A heat piped valve seat 1 with the heat pipe sealed prior to installation results. FIG. 3A shows a presealed valve seat 1 constructed in the manner of the seat in FIG. 1, but sealed by shrink fitting into a ring 36 prior to installation in the head.
FIG. 4 shows the preferred way of installing a shrink fit valve seat of the type shown in FIG. 1 in production. The valve seat 9 contains water ice and dry ice in its wicked ring shaped passage 15 and is installed at dry ice temperatures into the head 10 as a part of the valve installation procedure. Valve seat 9 will be cold and will have a layer of frost over it so that it will stick (with the water ice frost serving as a glue) to the valve 11 so that it can be installed under tension of spring assembly 12, 13, 14 as part of the valve installation procedure. The valve spring tension will serve to force the seat into centered contact with the bottom surface of the machined cylindrical hole provided for it in the engine head. After the valve seats are clamped in place by the valve-valve spring installation, the subliming dry ice in passage 15 will flush this passage free of any gas save CO: and a gas seal will be established after the dry ice has sublimed, but prior to the melting of the water ice. When seat 9 comes to equilibrium with head it] a gas tight seal on passage 15 will be established, and the CaO in passage 15 will react with the CO in the passage so that the only remaining gas in passage 15 will be water vapor. In this way, the installation of the valve seats becomes only a slight complication of the valve installation procedure.
The working fluid in the heat pipe passage may, of course, be something besides water. Methanol, ethonal, heptane, hexane and some other liquids will work in the temperature range required. The technique will work with any liquid which is on the high vapor pressure portion of its evaporation curve at. the working temperatures of the valve seat.
We claim:
l. A valve seat having no thermal distortion of the valve sealing surface, said valve seat having a valve sealing surface, a gas tight hollow annular passage radially symmetric with the valve sealing surface, said annular passage containing part of its volume as liquid and part as gas, said liquid having a vapor pressure in excess of atmospheric pressure at normal valve seat operating temperatures, said annular passage being substantially free of non-condensable gas pockets, the surface of said annular passage being covered by a wicking means, the annular passage containing sufficient liquid so that all of the wicking means is maintained wet at the highest operating temperature of the annular passage whereby evaporation and condensation of the liquid in the passage virtually eliminates temperature differences between points on the passage. surface, and therefore produces a more nearly radially symmetric temperature distribution in said valve seat so that unsymmetric thermal stresses cannot occur to cause distortion of the valve sealing surface.
2. The invention as set forth in claim 1 and wherein a portion of the wicking means is rust formed from the material forming the passage.
3. The invention as set forth in claim 1 and wherein a portion of the wicking means is a chemically formed porous surface formed from the material forming the passage.
4. The invention as set forth in claim 1 and wherein the hollow annular cooling passage radially symmetric with the valve sealing surface of the valve seat structure is formed by the joining of a valve seat insert including an encircling groove with the head structure of an internal combustion engine.
5. A method of assembling a heat pipe valve seat having an encircling groove therein into the head of an internal combustion engine by shrink fit comprising the steps of A. cooling the heat pipe valve seat to a temperature below the freezing point of the heat pipe working fluid,
B. introducing into the encircling groove the followl. flowing the heat pipe working fluid into the encircling groove where it freezes,
2. introducing into the aforesaid groove a solid substance which sublimes to a gas at a temperature below the melting point of said working fluid,
3. introducing a chemical substance which reacts with gas formed by said subliming substance at a temperature above the melting point of said working fluid,
C. inserting said valve seat with a cylinder head where the shrink fit contact between said valve seat and said head forms a gas tight seal.
6. The invention as set forth in claim 5 and wherein the chemical substance which reacts with gas formed by said subliming substance is a part of the structure of said valve seat.
7. A method of assembling a heat pipe valve seat having an encircling groove therein and its associated valve into the head of an internal combustion enging of shrink fit comprising the steps of A. cooling the heat pipe valve seat to a temperature below the freezing point of the heat pipe working fluid,
B. introducing into the encircling groove the follow- 1. flowing the heat pipe working fluid into the encircling groove where it freezes,
2. introducing into the aforesaid groove a solid substance which sublimes to a gas at a temperature below the melting point of said working fluid,
3. introducing a chemical substance which reacts with gas formed by said subliming substance at a temperature above the melting point of said working fluid.
C. attaching the valve seat to the valve head,
D. inserting said valve seat-valve assembly into a cylinder head wherein said valve-valve seat assembly is placed under compression by installation of the valve spring on said valve, where the shrink fit contact between said valve seat and said head forms a gas tight seal.
8. The invention as set forth in claim 7 and wherein the method of attaching the valve seat to the valve head is by freezing a liquid between said valve head and said valve seat to hold said valve head and valve seat together.

Claims (12)

1. A valve seat having no thermal distortion of the valve sealing surface, said valve seat having a valve sealing surface, a gas tight hollow annular passage radially symmetric with the valve sealing surface, said annular passage containing part of its volume as liquid and part as gas, said liquid having a vapor pressure in excess of atmospheric pressure at normal valve seat operating temperatures, said annular passage being substantially free of non-condensable gas pockets, the surface of said annular passage being covered by a wicking means, the annular passage containing sufficient liquid so that all of the wicking means is maintained wet at the highest operating temperature of the annular passage whereby evaporation and condensation of the liquid in the passage virtually eliminates temperature differences between points on the passage surface, and therefore produces a more nearly radially symmetric temperature distribution in said valve seat so that unsymmetric thermal stresses cannot occur to cause distortion of the valve sealing surface.
2. The invention as set forth in claim 1 and wherein a portion of the wicking means is rust formed from the material forming the passage.
2. introducing into the aforesaid groove a solid substance which sublimes to a gas at a temperature below the melting point of said working fluid,
2. introducing into the aforesaid groove a solid substance which sublimes to a gas at a temperature below the melting point of said working fluid,
3. The invention as set forth in claim 1 and wherein a portion of the wicking means is a chemically formed porous surface formed from the material forming the passage.
3. introducing a chemical substance which reacts with gas formed by said subliming substance at a temperature above the melting point of said working fluid, C. inserting said valve seat with a cylinder head where the shrink fit contact between said valve seat and said head forms a gas tight seal.
3. introducing a chemical substance which reacts with gas formed by said subliming substance at a temperature above the melting point of said working fluid. C. attaching the valve seat to the valve head, D. inserting said valve seat-valve assembly into a cylinder head wherein said valve-valve seat assembly is placed under compression by installation of the valve spring on said valve, where the shrink fit contact between said valve seat and said head forms a gas tight seal.
4. The invention as set forth in claim 1 and wherein the hollow annular cooling passage radially symmetric with the valve sealing surface of the valve seat structure is formed by the joining of a valve seat insert including an encircling groove with the head structure of an internal combustion engine.
5. A method of assembling a heat pipe valve seat having an encircling groove therein into the head of an internal combustion engine by shrink fit comprising the steps of A. cooling the heat pipe valve seat to a temperature below the freezing point of the heat pipe working fluid, Pg,12 B. introducing into the encircling groove the following:
6. The invention as set forth in claim 5 and wherein the chemical substance which reacts with gas formed by said subliming substance is a part of the structure of said valve seat.
7. A method of assembling a heat pipe valve seat having an encircling groove therein and its associated valve into the head of an internal combustion enging of shrink fit comprising the steps of A. cooling the heat pipe valve seat to a temperature below the freezing point of the heat pipe working fluid, B. introducing into the encircling groove the following:
8. The invention as set forth in claim 7 and wherein the method of attaching the valve seat to the valve head is by freezing a liquid between said valve head and said valve seat to hold said valve head and valve seat together.
US00322762A 1973-01-11 1973-01-11 Isothermal valve seat for internal combustion engine Expired - Lifetime US3822680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00322762A US3822680A (en) 1973-01-11 1973-01-11 Isothermal valve seat for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00322762A US3822680A (en) 1973-01-11 1973-01-11 Isothermal valve seat for internal combustion engine

Publications (1)

Publication Number Publication Date
US3822680A true US3822680A (en) 1974-07-09

Family

ID=23256298

Family Applications (1)

Application Number Title Priority Date Filing Date
US00322762A Expired - Lifetime US3822680A (en) 1973-01-11 1973-01-11 Isothermal valve seat for internal combustion engine

Country Status (1)

Country Link
US (1) US3822680A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4013047A (en) * 1975-12-12 1977-03-22 General Motors Corporation Engine with combustion wall temperature control means
US4253431A (en) * 1977-07-29 1981-03-03 Klockner-Humboldt-Deutz Aktiengesellschaft Reciprocating piston internal combustion engine with at least one cylinder bushing
US4407242A (en) * 1979-09-08 1983-10-04 Massey-Ferguson-Perkins Limited Valve seats
US4676482A (en) * 1986-04-28 1987-06-30 Rexnord Inc. Valve seat insert
US6431262B1 (en) * 1994-02-22 2002-08-13 Lattice Intellectual Property Ltd. Thermosyphon radiators
US20040182332A1 (en) * 2001-05-10 2004-09-23 Torston Schellhase Liquid-cooled valve seat ring
US20060156981A1 (en) * 2005-01-18 2006-07-20 Kyle Fondurulia Wafer support pin assembly
US20070128877A1 (en) * 2005-12-01 2007-06-07 Asm America, Inc. Polymer coating for vapor deposition tool
US20080116411A1 (en) * 2006-11-16 2008-05-22 Asm America, Inc. Valve with high temperature rating
US20090000578A1 (en) * 2007-06-30 2009-01-01 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method for Making Cooling Channels in the Cylinder Head of an Internal Combustion Engine
DE10314906B4 (en) * 2002-04-04 2013-09-19 Avl List Gmbh Cylinder head of an internal combustion engine
US20150007792A1 (en) * 2013-07-03 2015-01-08 Electro-Motive Diesel Inc. Cylinder head assembly having cooled valve insert
US20160123271A1 (en) * 2013-05-08 2016-05-05 Avl List Gmbh Cylinder Head for an Internal Combustion Engine
WO2022061379A1 (en) 2020-09-28 2022-03-31 Innio Jenbacher Gmbh & Co Og Cylinder head for an internal combustion engine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1670965A (en) * 1923-06-09 1928-05-22 Sam D Heron Cooling of exhaust valves of internal-combustion engines
US1748518A (en) * 1918-01-10 1930-02-25 Delco Light Co Cooling device for valves and the like
US2369063A (en) * 1942-07-13 1945-02-06 Thompson Prod Inc Evacuated coolant containing valve
US2467060A (en) * 1946-09-04 1949-04-12 Fremont G Twitchell Reflex cooled exhaust valve
US3081754A (en) * 1961-02-14 1963-03-19 Georges Raymond Internal combustion engines, in particular of the constant pressure cycle type
US3701342A (en) * 1971-03-08 1972-10-31 Herbert B Owsley Valve member

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1748518A (en) * 1918-01-10 1930-02-25 Delco Light Co Cooling device for valves and the like
US1670965A (en) * 1923-06-09 1928-05-22 Sam D Heron Cooling of exhaust valves of internal-combustion engines
US2369063A (en) * 1942-07-13 1945-02-06 Thompson Prod Inc Evacuated coolant containing valve
US2467060A (en) * 1946-09-04 1949-04-12 Fremont G Twitchell Reflex cooled exhaust valve
US3081754A (en) * 1961-02-14 1963-03-19 Georges Raymond Internal combustion engines, in particular of the constant pressure cycle type
US3701342A (en) * 1971-03-08 1972-10-31 Herbert B Owsley Valve member

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4013047A (en) * 1975-12-12 1977-03-22 General Motors Corporation Engine with combustion wall temperature control means
US4253431A (en) * 1977-07-29 1981-03-03 Klockner-Humboldt-Deutz Aktiengesellschaft Reciprocating piston internal combustion engine with at least one cylinder bushing
US4407242A (en) * 1979-09-08 1983-10-04 Massey-Ferguson-Perkins Limited Valve seats
US4676482A (en) * 1986-04-28 1987-06-30 Rexnord Inc. Valve seat insert
US6431262B1 (en) * 1994-02-22 2002-08-13 Lattice Intellectual Property Ltd. Thermosyphon radiators
US20040182332A1 (en) * 2001-05-10 2004-09-23 Torston Schellhase Liquid-cooled valve seat ring
US7063051B2 (en) 2001-05-10 2006-06-20 Mahle Ventiltrieb Gmbh Liquid-cooled valve seat ring
DE10314906B4 (en) * 2002-04-04 2013-09-19 Avl List Gmbh Cylinder head of an internal combustion engine
US20060156981A1 (en) * 2005-01-18 2006-07-20 Kyle Fondurulia Wafer support pin assembly
US20070128877A1 (en) * 2005-12-01 2007-06-07 Asm America, Inc. Polymer coating for vapor deposition tool
US7571893B2 (en) * 2006-11-16 2009-08-11 Asm America, Inc. Valve with high temperature rating
US20080116411A1 (en) * 2006-11-16 2008-05-22 Asm America, Inc. Valve with high temperature rating
US20090000578A1 (en) * 2007-06-30 2009-01-01 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method for Making Cooling Channels in the Cylinder Head of an Internal Combustion Engine
US8151743B2 (en) * 2007-06-30 2012-04-10 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Cooling channels in the cylinder head of an internal combustion engine
US20160123271A1 (en) * 2013-05-08 2016-05-05 Avl List Gmbh Cylinder Head for an Internal Combustion Engine
US10408162B2 (en) * 2013-05-08 2019-09-10 Avl List Gmbh Cylinder head for an internal combustion engine
US20150007792A1 (en) * 2013-07-03 2015-01-08 Electro-Motive Diesel Inc. Cylinder head assembly having cooled valve insert
US9422886B2 (en) * 2013-07-03 2016-08-23 Electro-Motive Diesel, Inc. Cylinder head assembly having cooled valve insert
WO2022061379A1 (en) 2020-09-28 2022-03-31 Innio Jenbacher Gmbh & Co Og Cylinder head for an internal combustion engine

Similar Documents

Publication Publication Date Title
US3822680A (en) Isothermal valve seat for internal combustion engine
US4348991A (en) Dual coolant engine cooling system
CN101002013B (en) Lightweight piston comprising heat pipes
US3800751A (en) Cylinder liner with centering tabs defining coolant passages there-between
US3983696A (en) Combustion engine having at least one outlet passage
US4201172A (en) Fuel injection nozzle assembly for internal combustion engines
US3871339A (en) Method of making a cooled valve for heat engine and valve obtained thereby
US4123902A (en) Exhaust port liner for multi-cylinder internal combustion engine
US2511823A (en) Klotsch
US3963012A (en) Engine with vapor heat transfer capsule for intake mixture heating
JPS6336403B2 (en)
US6453867B1 (en) Valve for combustion engines
JP2019120246A (en) Packing and attachment structure
US7316386B2 (en) Valve stem seal assembly
CA1281291C (en) Two cycle engine with exhaust bridge lubrication
JPH0117606Y2 (en)
US2090800A (en) Engine valve
JPS5856373Y2 (en) Diesel engine fuel injection valve
CN112628013B (en) Mostly plastic internal combustion engine cylinder head
US2687709A (en) Cylinder construction for internalcombustion engines
JPS5851412Y2 (en) Fuel injection valve device for diesel engine
JPS6047807A (en) Exhaust valve device for internal-combustion engine
JPH0117605Y2 (en)
JPH0332762Y2 (en)
JPS6033282Y2 (en) Water-cooled valve seat device for internal combustion engines

Legal Events

Date Code Title Description
AS Assignment

Owner name: AUTOMOTIVE ENGINE ASSOCIATES, 301 S. BLOUNT ST., C

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:SHOWALTER, MERLE R.;RHINE, SAMUEL;REEL/FRAME:004261/0788;SIGNING DATES FROM 19800131 TO 19800710

Owner name: UNITED BANK AND TRUST OF MADISON, MADISON, WIS., A

Free format text: SECURITY INTEREST;ASSIGNOR:AUTOMOTIVE ENGINE ASSOCIATES;REEL/FRAME:004262/0001

Effective date: 19830503