US3820118A - Antenna and interface structure for use with radomes - Google Patents

Antenna and interface structure for use with radomes Download PDF

Info

Publication number
US3820118A
US3820118A US00313286A US31328672A US3820118A US 3820118 A US3820118 A US 3820118A US 00313286 A US00313286 A US 00313286A US 31328672 A US31328672 A US 31328672A US 3820118 A US3820118 A US 3820118A
Authority
US
United States
Prior art keywords
radome
antenna
antenna structure
substrate
compressible material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00313286A
Inventor
R Hall
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bendix Corp
Original Assignee
Bendix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bendix Corp filed Critical Bendix Corp
Priority to US00313286A priority Critical patent/US3820118A/en
Priority to IT2942873A priority patent/IT993441B/en
Application granted granted Critical
Publication of US3820118A publication Critical patent/US3820118A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome

Definitions

  • ABSTRACT Where a planar microwave antenna is installed inside a curved radome, there is usually space between the surface of the antenna and the inside of the radome which forms a discontinuity adversely affecting performance.
  • the antenna element can be formed over a domed substrate which takes up much of this space, but the curvature of the substrate and that of the radome seldom match so that a significant space still exists.
  • a sheet of flexible, compressible material having a dielectric constant and dissipation factor substantially the same as that of the radome is interposed between the antenna and the radome to take up any space so that no significant discontinuity exists between the face of the antenna and the outside face of the radome.
  • FIG. 1 is a view, partially in section, of a typical radome structure to which is attached a cavity-backed microwave spiral antenna.
  • FIG. 2 shows an exploded view, partially in section, of the microwave antenna, the interposed dielectric layer, and a portion of the radome structure.
  • FIG. 3 is a plan view of the microwave antenna struc- 0 ture as shown in FIGS. 1 and 2.
  • a curved radome 10 is shown partially broken awayto show its interior surface 12.
  • Such radomes are typically formed of glass epoxy resin having a dielectric constant of approximately 4.5 or 5.0.
  • Formed as part of interior surface 12 are bosses l4 and 16.
  • An antena structure 18 has a pair of mounting lugs 22 and 23 which are attached to the bosses 14 and 16 by means of screws 24 and 26.
  • the usual antenna conductor may be attached to the antenna by means of the threaded member 28.
  • the antenna 18 includes adome-shaped substrate 30 upon which is formed a printed circuit spiral antenna pattern, and this is attached to the housing structure 32 which contains one or more microwave cavities which cooperate with the spiral pattern.
  • a similar antenna is described in US. Pat. No.
  • 3,441,937 (common assignee) except that it shows a flat substrate.
  • a sheet of flexible, compressible material such as silicon rubber which has a dielectric characteristic very similar to that of the radome. Since this material is flexible, it fills all of the space between .the radome and the antenna surface, thereby effectively eliminating air spaces which would otherwise adversely affect performance of the antenna.
  • FIG. 2 shows the working parts of FIG. 1 in an exploded-view.
  • the antenna structure 18 is shown disassembled from the radome 10 with the antenna surface 30 spacedaway from'the inside surface 12 of the radome and the flexible dielectric member 34.
  • the areaand thickness of member 34 may be tailored to the configuration of surfaces 30 and 12, although any member 34 of substantial thickness will be effective to deal with a number of variations not only in tolerances of parts but even of parts designed to have cured surfaces somewhat different from each other.
  • FIG. 3 is a plan view showing the surface of the dome-shaped substrate 30 and a portion of the mounting lugs 22 and 23.
  • An antenna structure comprising a radome having curved inside and outside surfaces, a generally circular, cavity-backed planar microwave antenna having a spiral antenna element pattern fastened to the: inside surface of said radome, characterized in that said spiral antenna element pattern is formed on a dome-shaped substrate, and a layer of flexible compressible material having a dielectric constant and dissipation factor essentially like that of the radome material is interposed between said dome-shaped substrate and the inside surface of said radome whereby any space between said substrate and said inside surface is filled with said compressible material.
  • a planar element antenna structure adapted to be attached to the inside surface of said radome, said antenna structure being formed on a substrate having a convex curved surface and being mounted on a housing containing at least one microwave cavity,
  • said housing including means for fastening said antenna structure to said radome and thereby compressing said flexible compressible material between said convex curved surface and the inside surface of said radome.
  • a method of eliminating losses due to discontinuities in a planar antenna structure mounted within a curved radome comprising the steps of:
  • a method of eliminating losses due to discontinuities in a planar antenna structure as set forth in claim 4 including the further step of attaching said antenna structure on a dome-shaped substrate.

Landscapes

  • Details Of Aerials (AREA)

Abstract

Where a planar microwave antenna is installed inside a curved radome, there is usually space between the surface of the antenna and the inside of the radome which forms a discontinuity adversely affecting performance. The antenna element can be formed over a domed substrate which takes up much of this space, but the curvature of the substrate and that of the radome seldom match so that a significant space still exists. A sheet of flexible, compressible material having a dielectric constant and dissipation factor substantially the same as that of the radome is interposed between the antenna and the radome to take up any space so that no significant discontinuity exists between the face of the antenna and the outside face of the radome.

Description

[111 3,820,118 June 25, 1974 ANTENNA AND INTERFACE STRUCTURE FOR USE WITH RADOMES [75] Inventor: Roger D. Hall, Encino, Calif.
[73] Assignee: The Bendix Corporation, North Hollywood, Calif.
OTHER PUBLICATIONS Henry, V. F., Re-Entry Radomes, OSU-Wadd Symposium on E. M. Windows, Columbus, Ohio, 1960, Proc. Vol. 1, pp. 512-516, 526-517.
Radiating Systems, Advertising Booklet, IEE Convention 3-25-63, pp. C-l08-l.
Primary Examiner-James W. Lawrence Assistant Examiner-Wm. H. Punter Attorney, Agent, or Firm-Robert C. Smith 5 7] ABSTRACT Where a planar microwave antenna is installed inside a curved radome, there is usually space between the surface of the antenna and the inside of the radome which forms a discontinuity adversely affecting performance. The antenna element can be formed over a domed substrate which takes up much of this space, but the curvature of the substrate and that of the radome seldom match so that a significant space still exists. A sheet of flexible, compressible material having a dielectric constant and dissipation factor substantially the same as that of the radome is interposed between the antenna and the radome to take up any space so that no significant discontinuity exists between the face of the antenna and the outside face of the radome.
5 Claims, 3 Drawing Figures ANTENNA INTERFACE STRUCTURE FOR USE WITH RADOMES BACKGROUND OF THE INVENTION Many applications for which small planar spiral element microwave antennas are useful involve installation on aircraft and require mounting the antenna structure on the inside surface of a radome. In such installations, the physical configuration of the radome is usually chosen for its aerodynamic properties rather than its electromagnetic propagation properties. A typical small planar spiral microwave antenna consists of a printed circuit pattern attached to a plastic or glass epoxy substrate and is mounted on a housing such that it is backed with a microwave cavity. When such an antenna is fastened to the inside surface of a curved radome, a space usually remains between the surface of DESCRIPTION OF THE DRAWINGS FIG. 1 is a view, partially in section, of a typical radome structure to which is attached a cavity-backed microwave spiral antenna.
FIG. 2 shows an exploded view, partially in section, of the microwave antenna, the interposed dielectric layer, and a portion of the radome structure.
FIG. 3 is a plan view of the microwave antenna struc- 0 ture as shown in FIGS. 1 and 2.
the antenna itself and the interior surface ofthe ra- 2O dome. Since this is an air space, it-becomes a discontinuity of substantial proportion at the microwave frequencies for which such-antennas are usually" employed. Such discontinuities affect performance of the antenna adversely, both as to loss of signaland as to pattern distortion, and it is highly desirable that they be eliminated or minimized. Recent requirements for extending operating frequencies with existing systems and radomes have resulted in air gap discontinuities which have been shown to be prohibitive.
SUMMARY It has been found that the electrical characteristics of a typical microwave spiral antenna are not significantly affected if the substrate is formed in a somewhat domed configuration rather than perfectly flat. The curvature resulting from the dome-shaped substrate effectively removes a substantial portion of the space between the antenna surface and the inside surface of the radome, thus significantly reducing the electromagnetic propagation discontinuity referred to "above and the resulting power dissipation. .A curvature might be chosen such as to match a symmetrical mean dimension of the associated radome. Because of the many configurations of radomes and the numerous applications for the cavity-backed spiral antennas and because of manufacturing tolerances, it is not often practical to attempt to tailor the configuration of either the radome or the domed substrate to match the other. Consequently there remains, in most instances, a significant air space because of the differences in curvature between these adjoining parts. Even this limited space may constitute a significant percentage of one wave langth at the frequencies employed and thereby constitute a discontinuity degrading performance of the antenna. This discontinuity may be effectively removed by interposing between the domed surface of the antenna and the inside surface of the radome a layer of flexible, compressible material having essentially the same dielectric constant and dissipation factor as the material used in the radome such that it may be compressed between these curved surfaces to eliminate any space having the dielectric characteristics of air (unity)- I DESCRIPTION OF TI-IE PREFERRED EMBODIMENT Referring now to FIG. 1, a curved radome 10 is shown partially broken awayto show its interior surface 12. Such radomes are typically formed of glass epoxy resin having a dielectric constant of approximately 4.5 or 5.0. Formed as part of interior surface 12 are bosses l4 and 16. An antena structure 18 has a pair of mounting lugs 22 and 23 which are attached to the bosses 14 and 16 by means of screws 24 and 26. The usual antenna conductor may be attached to the antenna by means of the threaded member 28. The antenna 18 includes adome-shaped substrate 30 upon which is formed a printed circuit spiral antenna pattern, and this is attached to the housing structure 32 which contains one or more microwave cavities which cooperate with the spiral pattern. A similar antenna is described in US. Pat. No. 3,441,937 (common assignee) except that it shows a flat substrate. Compressed between the inside surface 12 of the radome and the domed surface 30 of the antenna structure is a sheet of flexible, compressible material such as silicon rubber which has a dielectric characteristic very similar to that of the radome. Since this material is flexible, it fills all of the space between .the radome and the antenna surface, thereby effectively eliminating air spaces which would otherwise adversely affect performance of the antenna.
FIG. 2 shows the working parts of FIG. 1 in an exploded-view. In this view, the antenna structure 18 is shown disassembled from the radome 10 with the antenna surface 30 spacedaway from'the inside surface 12 of the radome and the flexible dielectric member 34. It will be appreciated that the areaand thickness of member 34 may be tailored to the configuration of surfaces 30 and 12, although any member 34 of substantial thickness will be effective to deal with a number of variations not only in tolerances of parts but even of parts designed to have cured surfaces somewhat different from each other. FIG. 3 is a plan view showing the surface of the dome-shaped substrate 30 and a portion of the mounting lugs 22 and 23.
While only a single embodiment has been shown and described herein, those skilled in the art will recognize that the teachings herein are applicable to many different configurations of parts and, particularly, to many different contours of radome structure. Obviously there may be some situations in which the radome is sufficiently large that its curvature may be relatively slight even as compared with a flat antenna member, and the resulting space may be easily taken up by the flexible dielectric member. And while the above specification describes a spiral circular antenna, the teachings of the present disclosure are applicable to other antenna element shapes such as elliptical, dipoles in combination with circular or elliptical antennas, or
even rectangular elements, so long as they are designed to operate at frequencies for which the air gap creates a substantial discontinuity adversely affecting propagation.
I claim:
1. An antenna structure comprising a radome having curved inside and outside surfaces, a generally circular, cavity-backed planar microwave antenna having a spiral antenna element pattern fastened to the: inside surface of said radome, characterized in that said spiral antenna element pattern is formed on a dome-shaped substrate, and a layer of flexible compressible material having a dielectric constant and dissipation factor essentially like that of the radome material is interposed between said dome-shaped substrate and the inside surface of said radome whereby any space between said substrate and said inside surface is filled with said compressible material.
2. For use with a radome having inside and outside surfaces, a planar element antenna structure adapted to be attached to the inside surface of said radome, said antenna structure being formed on a substrate having a convex curved surface and being mounted on a housing containing at least one microwave cavity,
a layer of flexible compressible material having a dielectric constant essentially like that of the radome material interposed between said antenna structure and the inside surface of said radome, and
said housing including means for fastening said antenna structure to said radome and thereby compressing said flexible compressible material between said convex curved surface and the inside surface of said radome.
3. A planar element antenna structure as set forth in claim 2 wherein the dissipation factors of said flexible compressible material and said radome are substantially the same.
4. A method of eliminating losses due to discontinuities in a planar antenna structure mounted within a curved radome comprising the steps of:
a. forming a spacer member of a compressible material having a dielectric and dissipation factor approximately the same as that of said radome; and
b. interposing said spacer member between said antenna structure and said radome and fastening said antenna structure to the inside of said radome such that said spacer member takes up any space between said antenna structure and said radome.
5. A method of eliminating losses due to discontinuities in a planar antenna structure as set forth in claim 4 including the further step of attaching said antenna structure on a dome-shaped substrate.

Claims (5)

1. An antenna structure comprising a radome having curved inside and outside surfaces, a generally circular, cavity-backed planar microwave antenna having a spiral antenna element pattern fastened to the inside surface of said radome, characterized in that said spiral antenna element pattern is formed on a domeshaped substrate, and a layer of flexible compressible material having a dielectric constant and dissipation factor essentially like that of the radome material is interposed between said domeshaped substrate and the inside surface of said radome whereby any space between said substrate and said inside surface is filled with said compressible material.
2. For use with a radome having inside and outside surfaces, a planar element antenna structure adapted to be attached to the inside surface of said radome, said antenna structure being formed on a substrate having a convex curved surface and being mounted on a housing containing at least one microwave cavity, a layer of flexible compressible material having a dielectric constant essentially like that of the radome material interposed between said antenna structure and the inside surface of said radome, and said housing including means for fastening said antenna structure to said radome and thereby compressing said flexible compressible material between said convex curved surface and the inside surface of said radome.
3. A planar element antenna structure as set forth in claim 2 wherein the dissipation factors of said flexible compressible material and said radome are substantially the same.
4. A method of eliminating losses due to discontinuities in a planar antenna structure mounted within a curved radome comprising the steps of: a. forming a spacer member of a compressible material having a dielectric and dissipation factor approximately the same as that of said radome; and b. interposing said spacer member between said antenna structure and said radome and fastening said antenna structure to the inside of said radome such that said spacer member takes up any space between said antenna structure and said radome.
5. A method of eliminating losses due to discontinuities in a planar antenna structure as set forth in claim 4 including the further step of attaching said antenna structure on a dome-shaped substrate.
US00313286A 1972-12-08 1972-12-08 Antenna and interface structure for use with radomes Expired - Lifetime US3820118A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US00313286A US3820118A (en) 1972-12-08 1972-12-08 Antenna and interface structure for use with radomes
IT2942873A IT993441B (en) 1972-12-08 1973-09-26 THERMOSEN SIBLE SAFETY DEVICE FOR GATE VALVES

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00313286A US3820118A (en) 1972-12-08 1972-12-08 Antenna and interface structure for use with radomes

Publications (1)

Publication Number Publication Date
US3820118A true US3820118A (en) 1974-06-25

Family

ID=23215120

Family Applications (1)

Application Number Title Priority Date Filing Date
US00313286A Expired - Lifetime US3820118A (en) 1972-12-08 1972-12-08 Antenna and interface structure for use with radomes

Country Status (1)

Country Link
US (1) US3820118A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3907565A (en) * 1973-12-26 1975-09-23 Bendix Corp Process for manufacturing domed spiral antennas
US3918065A (en) * 1974-04-19 1975-11-04 Bell Telephone Labor Inc Windshielding structure for an antenna
US4319248A (en) * 1980-01-14 1982-03-09 American Electronic Laboratories, Inc. Integrated spiral antenna-detector device
US4348677A (en) * 1979-06-25 1982-09-07 General Dynamics, Pomona Division Common aperture dual mode seeker antenna
US4494117A (en) * 1982-07-19 1985-01-15 The United States Of America As Represented By The Secretary Of The Navy Dual sense, circularly polarized helical antenna
US4833485A (en) * 1985-05-17 1989-05-23 The Marconi Company Limited Radar antenna array
US5793332A (en) * 1991-12-10 1998-08-11 Raytheon Ti Systems, Inc. Wide field-of-view fixed body conformal antenna direction finding array
US20070164420A1 (en) * 2006-01-19 2007-07-19 Chen Zhi N Apparatus and methods for packaging dielectric resonator antennas with integrated circuit chips
US20070228211A1 (en) * 2006-03-31 2007-10-04 Facciano Andrew B Composite missile nose cone
US8870860B2 (en) 2011-08-09 2014-10-28 Covidien Lp Microwave antenna having a coaxial cable with an adjustable outer conductor configuration
US20220163619A1 (en) * 2019-09-11 2022-05-26 Hella Saturnus Slovenija d.o.o. Device for attachment to an opening of a vehicle and for covering an emitter and/or a receiver

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3907565A (en) * 1973-12-26 1975-09-23 Bendix Corp Process for manufacturing domed spiral antennas
US3918065A (en) * 1974-04-19 1975-11-04 Bell Telephone Labor Inc Windshielding structure for an antenna
US4348677A (en) * 1979-06-25 1982-09-07 General Dynamics, Pomona Division Common aperture dual mode seeker antenna
US4319248A (en) * 1980-01-14 1982-03-09 American Electronic Laboratories, Inc. Integrated spiral antenna-detector device
US4494117A (en) * 1982-07-19 1985-01-15 The United States Of America As Represented By The Secretary Of The Navy Dual sense, circularly polarized helical antenna
US4833485A (en) * 1985-05-17 1989-05-23 The Marconi Company Limited Radar antenna array
US5793332A (en) * 1991-12-10 1998-08-11 Raytheon Ti Systems, Inc. Wide field-of-view fixed body conformal antenna direction finding array
US20070164420A1 (en) * 2006-01-19 2007-07-19 Chen Zhi N Apparatus and methods for packaging dielectric resonator antennas with integrated circuit chips
US7504721B2 (en) * 2006-01-19 2009-03-17 International Business Machines Corporation Apparatus and methods for packaging dielectric resonator antennas with integrated circuit chips
US20070228211A1 (en) * 2006-03-31 2007-10-04 Facciano Andrew B Composite missile nose cone
US7681834B2 (en) * 2006-03-31 2010-03-23 Raytheon Company Composite missile nose cone
US8870860B2 (en) 2011-08-09 2014-10-28 Covidien Lp Microwave antenna having a coaxial cable with an adjustable outer conductor configuration
US9724158B2 (en) 2011-08-09 2017-08-08 Covidien Lp Microwave antenna having a coaxial cable with an adjustable outer conductor configuration
US10675091B2 (en) 2011-08-09 2020-06-09 Covidien Lp Microwave antenna having a coaxial cable with an adjustable outer conductor configuration
US20220163619A1 (en) * 2019-09-11 2022-05-26 Hella Saturnus Slovenija d.o.o. Device for attachment to an opening of a vehicle and for covering an emitter and/or a receiver

Similar Documents

Publication Publication Date Title
US3820118A (en) Antenna and interface structure for use with radomes
US3811127A (en) Antenna for airborne satellite communications
US6489931B2 (en) Diagonal dual-polarized broadband horn antenna
US3820117A (en) Frequency extension of circularly polarized antenna
US4287518A (en) Cavity-backed, micro-strip dipole antenna array
US5208603A (en) Frequency selective surface (FSS)
CA1089982A (en) Rotationally-symmetrical antenna systems
US6160522A (en) Cavity-backed slot antenna
EP0420137A2 (en) Two layer matching dielectrics for radomes and lenses for wide angles of incidence
EP1575128A1 (en) Antenna assembly for aircraft window opening
US6653980B2 (en) Antenna for transmission / reception of radio frequency waves and an aircraft using such an antenna
US3864690A (en) Multifrequency operating radome
US3823404A (en) Thin sandwich telemetry antenna
US5543815A (en) Shielding screen for integration of multiple antennas
WO2023226541A1 (en) Signal transmitting apparatus and antenna system
US2700104A (en) Antenna feed system
Xi et al. A novel 77 GHz circular polarization slot antenna using ridge gap waveguide technology
US3569971A (en) Dual band cavity backed antenna for radio navigation
US2971172A (en) Waveguide window
US3732390A (en) Keyswitch
El-Sewedy et al. High directive fabry-pérot cavity antenna by using reflecting metasurface for 5G applications
US2659003A (en) Antenna mountable in small spaces
US3550141A (en) Cavity slot antenna
CN107994337B (en) Filtering antenna housing
US3806945A (en) Stripline antenna