US3820105A - Electric signaling device for alarm clocks - Google Patents

Electric signaling device for alarm clocks Download PDF

Info

Publication number
US3820105A
US3820105A US00340739A US34073973A US3820105A US 3820105 A US3820105 A US 3820105A US 00340739 A US00340739 A US 00340739A US 34073973 A US34073973 A US 34073973A US 3820105 A US3820105 A US 3820105A
Authority
US
United States
Prior art keywords
contact
transistor
signal
vibrator
signaling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00340739A
Inventor
H Flaig
D Dietrich
L Hartner
F Assmus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US00340739A priority Critical patent/US3820105A/en
Application granted granted Critical
Publication of US3820105A publication Critical patent/US3820105A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C21/00Producing acoustic time signals by electrical means
    • G04C21/16Producing acoustic time signals by electrical means producing the signals at adjustable fixed times
    • G04C21/20Producing acoustic time signals by electrical means producing the signals at adjustable fixed times by closing a contact to ring an electromechanical alarm
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C21/00Producing acoustic time signals by electrical means
    • G04C21/16Producing acoustic time signals by electrical means producing the signals at adjustable fixed times
    • G04C21/36Signal repeating devices

Definitions

  • This invention relates to an electric signaling device for alarm clocks, particularly for battery operated alarm clocks, with a switching device to be operated by the movement of the clock, and is a divisional application of application Ser. No. 672,819, filed Oct. 4, 1967.
  • the invention provides an electric signaling arrangement for alarm clocks, which, while being of a simple structure, will guarantee a safe and sure method of operation and which, after operation of a signal transmitter, will be ready for operation again within a short period of time.
  • the switching arrangement operated by the movement of the clock, has been developed as a double contact with one common contact element and two separate contact elements cooperating with said first element, and in that the separate contact elements have been arranged in staggered relationship between the separated contact elements and the contact elements in common in relation to the relative movement produced by the movement of the clock so as to come in contact with the common contact element one after the other.
  • the contact path which is closed first is connected with a transmitter of a warning signal and the second contact path is connected with a transmitter of a primary signal.
  • the transmitter of the warning signal can be of any desired type.
  • FIG. 1 is a cross-section of a portion of an alarm clock taken on lines I-I of FIGS. 2 and 3;
  • FIG. 2 is a sectional view taken on line IIII of FIG.
  • FIG. 3 is a sectional view taken on line III-IIIof FIG. 1.
  • FIG. 4 is a sectional view of a detail taken on line IV-IV of FIG. 3;
  • FIG. 5 is a cross-section of a modified construction of a single rotary contact taken on lines V-V of FIGS. 6 and 7;
  • FIG. 6 is a sectional view taken on line Vl-Vl of FIG. 5;
  • FIG. 7 is a sectional view taken on line VII--VII of FIG. 5;
  • FIG. 8 is a sectional view of a detail taken on line VIIiVIII of FIG. 7;
  • FIGS. 90 to 13c are diagrammatic views illustrating the contacts in different operating positions
  • FIG. 14 is a cross-section of a further modified construction of a portion of an alarm clock taken on line XIVXIV of FIG. 15;
  • FIG. 15 is a sectional view taken on line XV-XV of FIG. 14;
  • FIG. 16 is a cross section of an adjusting wheel
  • FIG. 17 illustrates an application of the apparatus
  • FIG. 18 is a wiring diagram of an electronic multivibrator circuit
  • FIGS. 19 to 21 are wiring diagrams showing various electronic multivibrator circuits.
  • the plate member 10 in FIGS. 1 to 4 consisting of an insulating material, supports the dial 12.
  • 11 designates a second plate member or frame.
  • a minute shaft 13 carrying the hand 14 has been mounted.
  • the hour sleeve or tube 15 carrying the hand 16 is mounted on the minute shaft 13, the hour sleeve in turn being encompassed by a bushing 20 carrying the hand 21 for the setting of the alarm.
  • This bushing 20 has been mounted rotatably and in frictional engagement with the plate member 10.
  • On the side facing away from the dial 12 there is provided the adjusting wheel 17 for the alarm, which is adjustable with the aid of a pinion 18 on a shaft 19.
  • a contact ring 22 made of electrically conductive material, with which a line or wire 23 has been connected.
  • the adjusting wheel 17 of the alarm has been provided with an outside or peripheral rim 17b and has in its center part a cavity, in which a contact spring'24 has been fastened with the aid of rivets 25.
  • a perforation 17a has been provided, which is within the area of the contact ring 22.
  • the contact point of the spring contact 24 protrudes through the perforation 17a and slides on the contact ring 22.
  • the rear end 24b of the contact spring 24 has been bent at a right angle and this end penetrates through a slot in the fortified edge 17b of the adjusting wheel 17 of the alarm to form a contact strip, which can be brought into electric contact with a contact sliding on the edge
  • a wheel 26 is fastened by-means of an insulating bushing 26a, which consists of the ring elements 26b and 26d, which are electrically conductive and have been separated electrically one from the other by an additional insulating bushing 26c.
  • the contact spring lamellae 28 and 27 are connected with the two electrically conductive ring elements 26b and 26d, which lamellae rest or contact on the edge 17b of the adjusting wheel 17 of the alarm.
  • the -two contacts 27 and 28 have been staggered in relation to one another somewhat in the direction of travel of the wheel 26, so that they will not come in contact with the contact strip 24b simultaneously. The method of operation will be explained hereinafter with reference to FIGS. 9 to 13.
  • slip rings 29 and 30, on which two contact springs 31 and 32 slide and which are connected to wires 33 and 34 arranged on the outside periphery of the wheel 26, are associated with the contacts 27 and 28 respectively.
  • FIGS. 5 to 8 show a modified design by way of example, with only one rotating contact.
  • the same parts in this. case have been given the same reference numbers for corresponding parts.
  • two concentrically located contact rings 40 and 41 are provided in the plate 10, made of nonconductive material, and are provided with electrical connectors (not shown).
  • the adjusting wheel 46 of the alarm has been arranged on the bushing 20, which in this case has been developed with a protruding edge 46c, FIG. 8.
  • Perforations 46a and 46b have been provided in two annular grooves of the adjusting wheel 46 of the alarm, through which spring contacts 47 and 48 project. These two contact springs 47 and 48 are in electrically conductive contact with the contact rings 40 and 41.
  • ends 47b and 48b of the contact springs 47 and 48 are bent at right angles and penetrate through the projecting edge 46c. Ends 47b and 48b are separated by a small distance as shown in FIG. 7.
  • a disk 49b is mounted on the hour tube or sleeve 15, with the aid of an insulating bushing 49a, and carries a spring contact 50.
  • This spring contact 50 glides on the protruding edge 460 of the adjusting wheel 46.
  • the contact lamella 50 is electrically conductively connected with the electrically conductive disk 49b.
  • a contact spring 51 slides on the periphery of the disk 49b and is provided with wire 52.
  • FIGS. 9a to 13a illustrate operative positions of the two contacts
  • FIGS. 9b to 13b illustrate contacts according to the structure of FIGS. 1 to 4
  • FIGS. 9c to 130 illustrate the contacts according to the structure of FIGS. 5 to 8.
  • FIGS. 9a to 90 show the position of the contacts shortly before reaching the time for sending out the alarm. Both contact paths S and S in this case are open.
  • both contacts are in contact with the switching strip or switching strips, that is, both contact paths S and S are closed.
  • FIGS. 12a to 12c show the position in which the first contact in the direction of movement, is opened.
  • the first contact in the direction of movement has left the contact strip 24b, while the following contact 28 is still located on the contact strip 24b.
  • the rotating contact 50 has left the first contact strip and is still only located on the second contact strip 47b. Consequently, the contact path S is open, while the contact path S is-still closed.
  • FIG. 13a shows a position in which the two contact paths S and S are again open and thus the signaling device has been completely switched off.
  • both contacts 27 and 28 have left contact strip 24b
  • contact 50 has left both contact strips 47b and 48b.
  • FIGS. 14 to 16 a third embodiment is illustrated.
  • the adjusting wheel 60 is mounted to the bushing 20, and the adjusting wheel is partially in the shape of a hollow cylinder.
  • Two contact springs 63 and 64 are mounted within the hollow cylindrical part with their respective contact ends 63b and 64b pointing approximately in the direction of the middle axis of the adjusting wheel 60.
  • the contact springs 63 and 64 are connected by declinated flanges 63a and 640 with slip rings 61 and 62 arranged on the outside periphery of the adjusting wheel 60, on which slip rings two contact springs 69 and 70 slide, which are provided with wires 71 and 72.
  • a disk 65 made of insulating material is placed on the hour cylinder or sleeve 15, which rotates together with the hour hand.
  • Disk 65 carries a slip ring 66 on one of its front sides, on which slides a'contact spring 67 which leads to a solid connector 68.
  • the contact ring 66 has been provided with a projecting flange 66a, which has been bent at right angles and which is located in the base of a notch 73 in the disk 65.
  • This notch includes an edge 65b running approximately radially and preferably being undercut, and with an edge 65a which runs approximately perpendicularly thereto.
  • the bent flange 66a of the slip ring 66 also preferably has an essentially radially running edge 660 which preferably is likewise undercut.
  • the direction of movement of the disk 65 has been indicated by an arrow. Because of the special development of the notch 73, the contact points 63b and 64b, upon reaching the edge 65b, will suddenly drop into notch 73, so that an instantaneous contact takes place with projecting flange 66a. Also, disengagement of the contact points is accomplished momentarily in a similar manner. Otherwise the method of operation is the same as in the case of the structure illustrated by way of example in FIGS. 1 to 8.
  • MV is a warning signal transmitter, which may be of any desired kind.
  • an electric transmitter which, for practical purposes, is developed as a transistormultivibrator.
  • An alarm bell L for example, has been connected to this alarm signal transmitter MV.
  • any other acoustic or an optic signal transmitter for example, an electric bulb or lamp, can be used.
  • S and S are the contact members opened and closed through the previously described contact arrangement. If the contact path S is closed, then the alarm signal transmitter MV is placed into operation, as a result of which, for example, the signal transmitter L is fed by impulses. If subsequently the contact path S is closed, thenthe alarm signal transmitter MV is shorted, so that now the signal transmitter L is fed continuously and thus it transmits a constant signal.
  • FIGS. 18 to 21 various electronic multi-vibrator circuits are shown, which can be used, for example, as alarm signal transmitters MV in FIG. 17.
  • FIG. 18 shows a multivibrator circuit using complementary transistors T and T
  • the subsequently added power transistor T in this case serves to drive the load.
  • the two transistors T and T are blocked. T will remain blocked until the condenser C will be charged by the resistances R R and R to such a point that the threshold voltage of the base-emitter path of transistor T has been reached. First of all a small base current will flow, which is fed, after having been increased by the increase of this transistor, to the transistor T as a control current. The transistor T thereupon becomes conductive and the through-connection of transistor T will be accelerated by the feedback through the resistance R and the condenser C. Thereupon the transistors T and T are opened.
  • the condenser C is then recharged by the base-emitter path of the transistor T until it falls short of the threshold voltage of the transistor T and the multivibrator tips back into the starting state.
  • the method of operation of the multivibrator is started as soon as the contact path S is closed.
  • the transistor T is switched according to the switching state of the transistor T the signal transmitter L being switched in the collector path of said transistor T which transmitter is thus fed by means of the current pulses created by the transistor T
  • the RC element from the condenser C and the resistance R and R determine, respectively, the duration time of the pause and the transmission time of the impulse.
  • the transistor T is bridged and the signal transmitter L is fed directly from the source of DC current, for example, from a battery.
  • D is a diode connected in parallel to the signal transmitter L, for example, an alarm bell, through which diode surges occuring during the operation are supposed to be suppressed.
  • FIG. 19 A multivibrator circuit is shown in FIG. 19 which uses onlytransistors which are of the same type conductivity.
  • p-n-p transistors have been used which, in comparison with n-p-n transistors, are considerably less expensive. For that reason one will have to put up with a somewhat lower degree of effectiveness, which in this case is of no particular importance.
  • the actual multivibrator is formed by the transistors T T and T Another transistor T has been provided here for the adaptation of power.
  • transistors T T and T are blocked, while transistor T is opened.
  • Transistor T remains blocked until condenser C has been charged by resistances R R and R to the point where the threshold voltage of the base-emitter path of transistor T has been reached.
  • a small base current which allows the collector-emitter path of transistor T to become conductive, will close.
  • the transistor T thus receives a smaller negative baseemitter voltage, as a result of which its collectoremitter path becomes less conductiveand the base of transistor T will be at a negative potential, so that the transistor T will be turned on.
  • the throughconnection of the transistors will be accelerated by the feedback R C.
  • the transistors T and T are opened, while T is blocked.
  • the base of the transistor T is controlled by the opened collector-emitter path of the transistor T so that this transistor too is opened and feeds the signal transmitter L located in its output circuit.
  • the condenser C is recharged by the base-emitter path of the transistor T and by resistances R and the opened collector-emitter path of the transistor T until it falls below the threshold voltage of transistor T as a result of which the transistors change their switching state and the circuit tips back into its starting state, in which the current is broken by the signal transmitter L.
  • the switching arrangement according to FIG. 21 has been further simplified in that the feedback is accomplished directly from the collector of the transistor T by the resistance R and the condenser C to the base of the transistor T and in thatthe alarm system L is now located within the collector branch of the transistor T As a result thereof, the above mentioned disadvantage of the superimposed of impulse is eliminated.
  • a diode D has been provided in parallel to the alarm system L, which serves for quenching the sparks and which thus prevents the occurrence of surges during the opening of the circuit containing the magnetic coil.
  • An electrical signaling device for an alarm clock having an adjusting wheel for setting an alarm and clockwork mechanism for indicating time comprising:
  • first mechanical contact means mounted to said adjusting wheel second mechanical contact means mounted to said clockwork mechanism to make successive first and second contact with said first mechanical contact means
  • an unsymmetrical unstable transistor multi-vibrator for providing an intermittent output signal, means responsive to said output signal and said second contact for generating respective first and second signals to indicate I the occurrence of said first or second contact, whereby said first signal is intermittent and said second signal is continuous.
  • said unsymmetrical unstable transistor multi-vibrator includes two complementary transistors and an output transistor responsive to the conductive and non-conductive states of said complementary transistors for driving said means for generating first and second signals.
  • An electrical signaling device further comprising a power source, said first signal activating said multi-vibrator, said means for generating first and second signals is connected in the collector circuit of said output transistor and said second signal means deactivates said output transistor to connect said means for indicating directly to said power source.
  • said unsymmetrical unstable transistor multi-vibrator includes three transistors of the same conductivity and a transistor amplifier responsive to the conductivity states of said three transistors to provide said output signal for driving said means for generating first and second signals.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromechanical Clocks (AREA)

Abstract

An electrical signaling device for providing intermittent and continuous indicating signals in response to first and second successive signals wherein an unstable multi-vibrator is switched by the first signal to activate an indicator and deactivated by the second signal to connect the indicating means directly to a source of power. The unstable multi-vibrator may alternatively comprise two and three transistors and the multi-vibrator output may alternatively be supplied to the indicating means through an amplifier.

Description

United States Patent [191 Assmus et al;
ELECTRIC SIGNALING DEVICE FOR ALARM CLOCKS 7 Inventors: Friedrich Assmus, Schillerstr 6,
Schramberg/Wurtt; Hans Flaig, Hutneck 23, Schramberg-Sulgen/Wurtt; Dieter Dietrich, Brestenberg, Lauterbach/Wurtt; Leo Hartner, Angst 514, Aichhalden/Wurtt, all of Germany Filed: Mar. 13, 1973 Appl. No: 340,739
Related US. Application Data Continuation of Ser. No. 74,314, Sept. 22, 1970, abandoned.
US. Cl. ..340/309.4 3140/3095 Int. Cl G04c 21/00 Field of Search 58/39, 39.5; 340/309 H June 25, 1974 [56] References Cited UNITED STATES PATENTS 3,318,084 5/1967 Patrick 58/395 R 3,681,916 8/1972 ltoyama 58/39 R Primary Examiner-Harold I. Pitts Attorney, Agent, or Firm-Watson, Cole, Grindle & Watson 5 Claims, 31 Drawing Figures l2 l0 t In 5d 171! in 30 25c ?ATENIEUJux25 I974 3320.105
sum 3 0r 6 IN V EN TORS iwa a PATENTEDJUNZE'IBM 3.820.105
sum 6 or s A Fig. 79
L J [C 42 Fig. 20
:D D h: 43
INVENTORS Jud; M By [Lad/7:? fizz/ M W aaw (it? 4180 7 ahza/ ELECTRIC SIGNALING DEVICE FOR ALARM CLOCKS This is a continuation of application Ser. No. 74,314, filed Sept. 22, 1970, and now abandoned.
This invention relates to an electric signaling device for alarm clocks, particularly for battery operated alarm clocks, with a switching device to be operated by the movement of the clock, and is a divisional application of application Ser. No. 672,819, filed Oct. 4, 1967.
The invention provides an electric signaling arrangement for alarm clocks, which, while being of a simple structure, will guarantee a safe and sure method of operation and which, after operation of a signal transmitter, will be ready for operation again within a short period of time. According to the invention, the switching arrangement, operated by the movement of the clock, has been developed as a double contact with one common contact element and two separate contact elements cooperating with said first element, and in that the separate contact elements have been arranged in staggered relationship between the separated contact elements and the contact elements in common in relation to the relative movement produced by the movement of the clock so as to come in contact with the common contact element one after the other. Preferably, the contact path which is closed first is connected with a transmitter of a warning signal and the second contact path is connected with a transmitter of a primary signal. At the same time, the transmitter of the warning signal can be of any desired type. Preferably, however, one will use an electronic transmitter for the warning signal, resulting in a simple structure with the double contact in the case of a comprehensive method of operation.
Further objects will be apparent from the following description when considered in connection with the accompanying drawings in which:
FIG. 1 is a cross-section of a portion of an alarm clock taken on lines I-I of FIGS. 2 and 3;
'FIG. 2 is a sectional view taken on line IIII of FIG.
FIG. 3 is a sectional view taken on line III-IIIof FIG. 1.
FIG. 4 is a sectional view of a detail taken on line IV-IV of FIG. 3;
FIG. 5 is a cross-section of a modified construction of a single rotary contact taken on lines V-V of FIGS. 6 and 7;
FIG. 6 is a sectional view taken on line Vl-Vl of FIG. 5;
FIG. 7 is a sectional view taken on line VII--VII of FIG. 5;
FIG. 8 is a sectional view of a detail taken on line VIIiVIII of FIG. 7;
FIGS. 90 to 13c are diagrammatic views illustrating the contacts in different operating positions;
FIG. 14 is a cross-section of a further modified construction of a portion of an alarm clock taken on line XIVXIV of FIG. 15;
FIG. 15 is a sectional view taken on line XV-XV of FIG. 14;
FIG. 16 is a cross section of an adjusting wheel;
FIG. 17 illustrates an application of the apparatus;
FIG. 18 is a wiring diagram of an electronic multivibrator circuit; and
FIGS. 19 to 21 are wiring diagrams showing various electronic multivibrator circuits.
The plate member 10 in FIGS. 1 to 4, consisting of an insulating material, supports the dial 12. 11 designates a second plate member or frame. In plates 10 and 11, a minute shaft 13, carrying the hand 14, has been mounted. The hour sleeve or tube 15 carrying the hand 16 is mounted on the minute shaft 13, the hour sleeve in turn being encompassed by a bushing 20 carrying the hand 21 for the setting of the alarm. This bushing 20 has been mounted rotatably and in frictional engagement with the plate member 10. On the side facing away from the dial 12 there is provided the adjusting wheel 17 for the alarm, which is adjustable with the aid of a pinion 18 on a shaft 19.
On the side of the plate member 10 made of nonconductive material and facing away from the dial 12, there is provided a contact ring 22 made of electrically conductive material, with which a line or wire 23 has been connected.
The adjusting wheel 17 of the alarm has been provided with an outside or peripheral rim 17b and has in its center part a cavity, in which a contact spring'24 has been fastened with the aid of rivets 25. In the adjusting wheel 17, a perforation 17a has been provided, which is within the area of the contact ring 22. The contact point of the spring contact 24 protrudes through the perforation 17a and slides on the contact ring 22. The rear end 24b of the contact spring 24 has been bent at a right angle and this end penetrates through a slot in the fortified edge 17b of the adjusting wheel 17 of the alarm to form a contact strip, which can be brought into electric contact with a contact sliding on the edge On the hour sleeve or tube 15, a wheel 26 is fastened by-means of an insulating bushing 26a, which consists of the ring elements 26b and 26d, which are electrically conductive and have been separated electrically one from the other by an additional insulating bushing 26c. The contact spring lamellae 28 and 27 are connected with the two electrically conductive ring elements 26b and 26d, which lamellae rest or contact on the edge 17b of the adjusting wheel 17 of the alarm. The -two contacts 27 and 28 have been staggered in relation to one another somewhat in the direction of travel of the wheel 26, so that they will not come in contact with the contact strip 24b simultaneously. The method of operation will be explained hereinafter with reference to FIGS. 9 to 13.
The slip rings 29 and 30, on which two contact springs 31 and 32 slide and which are connected to wires 33 and 34 arranged on the outside periphery of the wheel 26, are associated with the contacts 27 and 28 respectively.
It is also possible to use, instead of the contact ring 22 in a plate member 10 of a nonconductive material, a plate of an electrically conductive material on which the contact 24a will slide directly. However, in that case the movement of the clock will be under tension.
FIGS. 5 to 8 show a modified design by way of example, with only one rotating contact. The same parts in this. case have been given the same reference numbers for corresponding parts. In this case, two concentrically located contact rings 40 and 41 are provided in the plate 10, made of nonconductive material, and are provided with electrical connectors (not shown). The adjusting wheel 46 of the alarm has been arranged on the bushing 20, which in this case has been developed with a protruding edge 46c, FIG. 8. Perforations 46a and 46b have been provided in two annular grooves of the adjusting wheel 46 of the alarm, through which spring contacts 47 and 48 project. These two contact springs 47 and 48 are in electrically conductive contact with the contact rings 40 and 41.
The ends 47b and 48b of the contact springs 47 and 48, respectively, are bent at right angles and penetrate through the projecting edge 46c. Ends 47b and 48b are separated by a small distance as shown in FIG. 7.
A disk 49b is mounted on the hour tube or sleeve 15, with the aid of an insulating bushing 49a, and carries a spring contact 50. This spring contact 50 glides on the protruding edge 460 of the adjusting wheel 46. The contact lamella 50 is electrically conductively connected with the electrically conductive disk 49b. A contact spring 51 slides on the periphery of the disk 49b and is provided with wire 52.
The'methodof operation of the. structure according to FIGS. 1 m8, given by way of example, will be explained in more detail in the following paragraphs on the basis of FIGS. 9 to 13. FIGS. 9a to 13a illustrate operative positions of the two contacts; FIGS. 9b to 13b illustrate contacts according to the structure of FIGS. 1 to 4; and FIGS. 9c to 130 illustrate the contacts according to the structure of FIGS. 5 to 8.
FIGS. 9a to 90 show the position of the contacts shortly before reaching the time for sending out the alarm. Both contact paths S and S in this case are open.
In FIGS. 10a to 100 the first contact has been closed in the direction of movement of the contact, while the second contact has not reached the contact strip or the contactstrips as yet. The contact path S therefore is still open.
In FIGS. 11a to 110 both contacts are in contact with the switching strip or switching strips, that is, both contact paths S and S are closed.
FIGS. 12a to 12c show the position in which the first contact in the direction of movement, is opened. In FIG. 12b the first contact in the direction of movement has left the contact strip 24b, while the following contact 28 is still located on the contact strip 24b. In FIG. 120 the rotating contact 50 has left the first contact strip and is still only located on the second contact strip 47b. Consequently, the contact path S is open, while the contact path S is-still closed.
FIG. 13a shows a position in which the two contact paths S and S are again open and thus the signaling device has been completely switched off. In FIG. 13b both contacts 27 and 28 have left contact strip 24b, and in FIG. 13 contact 50 has left both contact strips 47b and 48b.
In FIGS. 14 to 16, a third embodiment is illustrated. In this embodiment the adjusting wheel 60 is mounted to the bushing 20, and the adjusting wheel is partially in the shape of a hollow cylinder. Two contact springs 63 and 64 are mounted within the hollow cylindrical part with their respective contact ends 63b and 64b pointing approximately in the direction of the middle axis of the adjusting wheel 60. The contact springs 63 and 64 are connected by declinated flanges 63a and 640 with slip rings 61 and 62 arranged on the outside periphery of the adjusting wheel 60, on which slip rings two contact springs 69 and 70 slide, which are provided with wires 71 and 72.
A disk 65 made of insulating material is placed on the hour cylinder or sleeve 15, which rotates together with the hour hand. Disk 65 carries a slip ring 66 on one of its front sides, on which slides a'contact spring 67 which leads to a solid connector 68. The contact ring 66 has been provided with a projecting flange 66a, which has been bent at right angles and which is located in the base of a notch 73 in the disk 65. This notch includes an edge 65b running approximately radially and preferably being undercut, and with an edge 65a which runs approximately perpendicularly thereto. The bent flange 66a of the slip ring 66 also preferably has an essentially radially running edge 660 which preferably is likewise undercut. The direction of movement of the disk 65 has been indicated by an arrow. Because of the special development of the notch 73, the contact points 63b and 64b, upon reaching the edge 65b, will suddenly drop into notch 73, so that an instantaneous contact takes place with projecting flange 66a. Also, disengagement of the contact points is accomplished momentarily in a similar manner. Otherwise the method of operation is the same as in the case of the structure illustrated by way of example in FIGS. 1 to 8.
In FIG. 17 the method of operation of the device according to the invention has been shown schematically. MV is a warning signal transmitter, which may be of any desired kind. One uses preferably as a warning signal transmitter, an electric transmitter which, for practical purposes, is developed as a transistormultivibrator. An alarm bell L, for example, has been connected to this alarm signal transmitter MV. Instead of an alarm bell, any other acoustic or an optic signal transmitter, for example, an electric bulb or lamp, can be used. S and S are the contact members opened and closed through the previously described contact arrangement. If the contact path S is closed, then the alarm signal transmitter MV is placed into operation, as a result of which, for example, the signal transmitter L is fed by impulses. If subsequently the contact path S is closed, thenthe alarm signal transmitter MV is shorted, so that now the signal transmitter L is fed continuously and thus it transmits a constant signal.
In FIGS. 18 to 21, various electronic multi-vibrator circuits are shown, which can be used, for example, as alarm signal transmitters MV in FIG. 17.
FIG. 18 shows a multivibrator circuit using complementary transistors T and T The subsequently added power transistor T in this case serves to drive the load.
During the pulse pause, in this case, the two transistors T and T are blocked. T will remain blocked until the condenser C will be charged by the resistances R R and R to such a point that the threshold voltage of the base-emitter path of transistor T has been reached. First of all a small base current will flow, which is fed, after having been increased by the increase of this transistor, to the transistor T as a control current. The transistor T thereupon becomes conductive and the through-connection of transistor T will be accelerated by the feedback through the resistance R and the condenser C. Thereupon the transistors T and T are opened. The condenser C is then recharged by the base-emitter path of the transistor T until it falls short of the threshold voltage of the transistor T and the multivibrator tips back into the starting state. The method of operation of the multivibrator is started as soon as the contact path S is closed. The transistor T is switched according to the switching state of the transistor T the signal transmitter L being switched in the collector path of said transistor T which transmitter is thus fed by means of the current pulses created by the transistor T The RC element from the condenser C and the resistance R and R determine, respectively, the duration time of the pause and the transmission time of the impulse.
If the contact member S is closed, then the transistor T is bridged and the signal transmitter L is fed directly from the source of DC current, for example, from a battery.
D is a diode connected in parallel to the signal transmitter L, for example, an alarm bell, through which diode surges occuring during the operation are supposed to be suppressed.
A multivibrator circuit is shown in FIG. 19 which uses onlytransistors which are of the same type conductivity. In the present case, p-n-p transistors have been used which, in comparison with n-p-n transistors, are considerably less expensive. For that reason one will have to put up with a somewhat lower degree of effectiveness, which in this case is of no particular importance.
The actual multivibrator is formed by the transistors T T and T Another transistor T has been provided here for the adaptation of power.
During the pulse pause, transistors T T and T are blocked, while transistor T is opened. Transistor T remains blocked until condenser C has been charged by resistances R R and R to the point where the threshold voltage of the base-emitter path of transistor T has been reached. First of all a small base current, which allows the collector-emitter path of transistor T to become conductive, will close. The transistor T thus receives a smaller negative baseemitter voltage, as a result of which its collectoremitter path becomes less conductiveand the base of transistor T will be at a negative potential, so that the transistor T will be turned on. The throughconnection of the transistors will be accelerated by the feedback R C. After that, the transistors T and T are opened, while T is blocked. The base of the transistor T is controlled by the opened collector-emitter path of the transistor T so that this transistor too is opened and feeds the signal transmitter L located in its output circuit.
The condenser C is recharged by the base-emitter path of the transistor T and by resistances R and the opened collector-emitter path of the transistor T until it falls below the threshold voltage of transistor T as a result of which the transistors change their switching state and the circuit tips back into its starting state, in which the current is broken by the signal transmitter L.
In the case of the modification given by way of example according to FIG. 20, the previously used adaptation of the transistor has been omitted. This is not possible without any difficulties in the case of the customary multi-vibrator, since, by switching on and off the signal transmitter L of an alarm bell, for example,-
through the interrupter contact, the impulses created are superimposed on the multi-vibrator impulses. In the case of the present circuit, this disadvantage does not have any disturbing effect. in this case the signal transmitter L has been switched in between the positive pole of the source of voltage and the emitter of transistor T Since during the pulse pause the interrupter contact of the alarm bell L is closed, the condenser C can be charged by the resistances R and R as well as by the winding of the alarm system. In the case of recharging via the base-emitter path of the transistor T and the resistances R and the opened collectoremitter path of T it will then be unimportant if the interrupter contact of the alarm system L is opened or closed during the time that the bell rings.
The switching arrangement according to FIG. 21 has been further simplified in that the feedback is accomplished directly from the collector of the transistor T by the resistance R and the condenser C to the base of the transistor T and in thatthe alarm system L is now located within the collector branch of the transistor T As a result thereof, the above mentioned disadvantage of the superimposed of impulse is eliminated.
In this case too, just as in the remaining circuits, a diode D has been provided in parallel to the alarm system L, which serves for quenching the sparks and which thus prevents the occurrence of surges during the opening of the circuit containing the magnetic coil.
What is claimed is:
1. An electrical signaling device for an alarm clock having an adjusting wheel for setting an alarm and clockwork mechanism for indicating time, comprising:
first mechanical contact means mounted to said adjusting wheel, second mechanical contact means mounted to said clockwork mechanism to make successive first and second contact with said first mechanical contact means, an unsymmetrical unstable transistor multi-vibrator for providing an intermittent output signal, means responsive to said output signal and said second contact for generating respective first and second signals to indicate I the occurrence of said first or second contact, whereby said first signal is intermittent and said second signal is continuous. 2. An electrical signaling device as claimed in claim 1, wherein said unsymmetrical unstable transistor multi-vibrator includes two complementary transistors and an output transistor responsive to the conductive and non-conductive states of said complementary transistors for driving said means for generating first and second signals.
3. An electrical signaling device according to claim 2 further comprising a power source, said first signal activating said multi-vibrator, said means for generating first and second signals is connected in the collector circuit of said output transistor and said second signal means deactivates said output transistor to connect said means for indicating directly to said power source.
4. An electrical signaling device as claimed in claim 1, wherein said unsymmetrical unstable transistor multi-vibrator includes three transistors of the same conductivity and a transistor amplifier responsive to the conductivity states of said three transistors to provide said output signal for driving said means for generating first and second signals.
vates said multi-vibrator and connects said means for generating first and second signals directly to said power source.
UNITED STATES PATENT OFFICE it 7 CERTIFICATE OF CORRECTION Patent No. 1 5 Dated June 25 1974 Inventor(s) Assmus 1 rs in the above-identified patent It is certified that error appea by corrected as shown below;
and that said Letters Patent are here FIRMA GEBRUDER JUNGHANS GESELLSCHAFT MIT FBESCHRANKTER HAFTUNG '73] Assignee Schramberg, Wurtcemberg, Germany Signed and sealed this 3rd day of December 1974.
(SEAL) Attest:
, McCOY M. GIBSON JR. I C. MARSHALL DANN Attesting Officer Conunissioner. of Patents r r FORM PO (10 UscoMM-DC 60378-969 w u.s4 eoimzgmzmmurmurs ornc: Bl! of-su-su. I

Claims (5)

1. An electrical signaling device for an alarm clock having an adjusting wheel for setting an alarm and clockwork mechanism for indicating time, comprising: first mechanical contact means mounted to said adjusting wheel, second mechanical contact means mounted to said clockwork mechanism to make successive first and second contact with said first mechanical contact means, an unsymmetrical unstable transistor multi-vibrator for providing an intermittent output signal, means responsive to said output signal and said second contact for generating respective first and second signals to indicate the occurrence of said first or second contact, whereby said first signal is intermittent and said second signal is continuous.
2. An electrical signaling device as claimed in claim 1, wherein said unsymmetrical unstable transistor multi-vibrator includes two complementary transistors and an output transistor responsive to the conductive and non-conductive states of said complementary transistors for driving said means for generating first and second signals.
3. An electrical signaling device according to claim 2 further comprising a power source, said first signal activating said multi-vibrator, said means for generating first and second signals is connected in the collector circuit of said output transistor and said second signal means deactivates said output transistor to connect said means for indicating directly to said power source.
4. An electrical signaling device as claimed in claim 1, wherein said unsymmetrical unstable transistor multi-vibrator includes three transistors of the same conductivity and a transistor amplifier responsive to the conductivity states of said three transistors to provide said output signal for driving said means for generating first and second signals.
5. An electrical signaling device as in claim 4 further comprising a power source, said first signal activates said multi-vibrator, said means for generating first and second signals is connected in the emitter electrode of said output transistor, and said second signal deactivates said multi-vibrator and connects said means for generating first and second signals directly to said power source.
US00340739A 1970-09-22 1973-03-13 Electric signaling device for alarm clocks Expired - Lifetime US3820105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00340739A US3820105A (en) 1970-09-22 1973-03-13 Electric signaling device for alarm clocks

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US7431470A 1970-09-22 1970-09-22
US00340739A US3820105A (en) 1970-09-22 1973-03-13 Electric signaling device for alarm clocks

Publications (1)

Publication Number Publication Date
US3820105A true US3820105A (en) 1974-06-25

Family

ID=26755515

Family Applications (1)

Application Number Title Priority Date Filing Date
US00340739A Expired - Lifetime US3820105A (en) 1970-09-22 1973-03-13 Electric signaling device for alarm clocks

Country Status (1)

Country Link
US (1) US3820105A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2392537A1 (en) * 1977-05-26 1978-12-22 Seikosha Kk ATTACK ELECTRICAL CIRCUIT FOR A PIEZOELECTRIC RESONATOR
US4569600A (en) * 1983-03-24 1986-02-11 Allied Corporation Brake temperature sensor
US4636770A (en) * 1983-03-31 1987-01-13 International Business Machines Corporation Display terminal
WO1987007966A1 (en) * 1986-06-18 1987-12-30 Matthias Scholer Alarm clock with an alarm signal device and an adjustable contact for actuating the latter
US6144619A (en) * 1998-11-02 2000-11-07 Reisman; John P. Flight watch with multiple timers and alarm indicating means

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2392537A1 (en) * 1977-05-26 1978-12-22 Seikosha Kk ATTACK ELECTRICAL CIRCUIT FOR A PIEZOELECTRIC RESONATOR
US4569600A (en) * 1983-03-24 1986-02-11 Allied Corporation Brake temperature sensor
US4636770A (en) * 1983-03-31 1987-01-13 International Business Machines Corporation Display terminal
WO1987007966A1 (en) * 1986-06-18 1987-12-30 Matthias Scholer Alarm clock with an alarm signal device and an adjustable contact for actuating the latter
US6144619A (en) * 1998-11-02 2000-11-07 Reisman; John P. Flight watch with multiple timers and alarm indicating means

Similar Documents

Publication Publication Date Title
US3820105A (en) Electric signaling device for alarm clocks
US2512775A (en) Signaling device
US3732685A (en) Clock mechanism
US2097901A (en) Radio tuning apparatus
US2135843A (en) Magnetogenerator
US3644689A (en) Electric signaling device for alarm clocks
US3534543A (en) Electric signaling device for alarm clocks
US3225536A (en) Electric clock
US2566597A (en) Power failure alarm
US2489098A (en) Process timer
GB1449418A (en) Switching mechanism eg for an alarm timepiece
US3318084A (en) Transistor alarm clock
GB633063A (en) Improvements in and relating to magnetic recording apparatus
US2098965A (en) Clock
US3697982A (en) Tone control signal circuit having tone pulses followed by continuous tone
US3332076A (en) Reading timer
US3546668A (en) Talking speedometer
US2008546A (en) Signal device and system
GB1434047A (en) Clock devices having alarm-release arrangements
US2002421A (en) Electric timepiece
US2797409A (en) Audio signal device
US3589123A (en) Signal device for electric alarm clocks
US4276625A (en) Bell-striking clock
US1844117A (en) Sound operated circuit controller
US3854104A (en) Circuit for controlling sound generator for alarm clocks