US3819353A - Plant growth regulant carbamoylphosphonates - Google Patents

Plant growth regulant carbamoylphosphonates Download PDF

Info

Publication number
US3819353A
US3819353A US00085221A US8522170A US3819353A US 3819353 A US3819353 A US 3819353A US 00085221 A US00085221 A US 00085221A US 8522170 A US8522170 A US 8522170A US 3819353 A US3819353 A US 3819353A
Authority
US
United States
Prior art keywords
vegetation
composition
ammonium
carbamoylphosphonate
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00085221A
Inventor
W Langsdorf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Priority to US00085221A priority Critical patent/US3819353A/en
Priority to US00283769A priority patent/US3846512A/en
Priority to US05/478,968 priority patent/US3952074A/en
Application granted granted Critical
Publication of US3819353A publication Critical patent/US3819353A/en
Priority to US05/552,035 priority patent/US3975464A/en
Priority to US05/553,423 priority patent/US3997544A/en
Priority to US05/554,227 priority patent/US3981870A/en
Priority to US05/723,332 priority patent/US4048156A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • C07F9/095Compounds containing the structure P(=O)-O-acyl, P(=O)-O-heteroatom, P(=O)-O-CN
    • C07F9/096Compounds containing the structure P(=O)-O-C(=X)- (X = O, S, Se)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids RP(=O)(OH)2; Thiophosphonic acids, i.e. RP(=X)(XH)2 (X = S, Se)
    • C07F9/40Esters thereof
    • C07F9/4003Esters thereof the acid moiety containing a substituent or a structure which is considered as characteristic
    • C07F9/4062Esters of acids containing the structure -C(=X)-P(=X)(XR)2 or NC-P(=X)(XR)2, (X = O, S, Se)
    • C07F9/4065Esters of acids containing the structure -C(=X)-P(=X)(XR)2, (X = O, S, Se)

Definitions

  • This invention relates to the discovery that a selected group of novel carbamoylphosphonates can be used to regulate the growth rate of plants. More particularly,
  • the compounds of this invention are useful for controlling the growth of woody vegetation.
  • dialkyl carbamoylphosphonates are disclosed in US. Pat. No. 3,005,01Q as herbicides.
  • R is alkyl of one through six carbon atoms, chloroalkyl of one through six carbon atoms containing up to three chlorine atoms, bromoalkyl of one through six carbon atoms containing up to three bromine atoms, alkoxy alkyl of three through seven carbo n atoms, alkenyl of two through six carbon atoms, alkynyl of three through four carbon atoms, phenyl or benzyl;
  • R is hydrogen or methyl
  • R is hydrogen, methyl, amino, methylamino, or dimethylamino
  • R2 and R can be taken together to form a ring selected from -(CH -O(CH or ,H@ niiwl srni526;
  • nium hydrogen, sodium, lithium, potassium, cal-" cium, magnesium, zinc, manganese, barium or Rs Rn
  • R R and RJaiiE the same or different and each can be hydrogen, alkyl of one through four carbon atoms, or hydroxy alkyl of two through four carbon atoms
  • R is hydrogen, alkyl of one through 12 car- 60 bon atoms, amino, methylamino, or dimethylamino
  • R and R can be taken together to form a ring that is ((.;H.Z)Z 9 (C H 2)2 9 :(.ll".l,z).;- wb[ n i and R and R are H.
  • Preferred compounds of this invention include those 5 compounds of Formula (I) where R, is alkyl of one through four carbons or alkenyl of three through four carbons; R and R, are each hydrogen; and M is ammonium, hydrogen, or alkali metal such as sodium, lithium or potassium.
  • the most preferred compounds of this invention are ammonium allyl carbamoylphosphonate, ammonium ethyl carbamoylphosphonate, and ammonium isopropyl carbamoylphosphonate.
  • Another aspect of this invention relates to the method for modifying the growth rate of plants which comprises applying an effective amount of a compound of Formula (1) to a plant to effect modification of the growth rate of said plant. Specifically, the method of this invention results in retarding the growth rate of the treated plants.
  • Another aspect of this invention relates to formulations of compounds of Formula (1) with suitable agricultural adjuvants and modifiers or with tree wound dressings.
  • This invention is founded on the discovery that the compounds of Formula l are useful for modifying the growth rate of plants.
  • the compounds of this invention as represented by formula l), are particularly useful to retard the growth rate of plants without killing them.
  • the compounds of this invention are particularly useful to retard the growth of woody plants.
  • the compounds of this invention can, therefore, be applied in areas such as power line rights-of-way where low-growing and slow growing vegetation is especially desirable.
  • the compounds of this invention can also be used to control flowering, fruit set and coloration on apples and other fruits. They are useful to control the growth and flowering of ornamental species such as chrysanthemum and azalea.
  • the compounds of this invention can also be used to prolong the dormancy of perennial plants, and thereby protect the unsprouted buds from frost damage. This can be especially important in the protection of flower buds, which in some years, may sprout early and be killed by cold temperatures.
  • ammonium carbamoylphosphonate salts of this invention are readily prepared by the interaction of the diesters of carboalkoxyphosphonic acids with aqueous solutions of ammonia, primary amines or secondary amines.
  • R is alkyl of one through eight carbon atoms containing up to three bromine atoms, alkoxy alkyl of from three through 10 carbon atoms, alkenyl of two through eight carbon atoms, alkynyl of three through four carbon atoms, phenyl or benzyl;
  • R is alkyl of one through four carbon atoms, preferably methyl or ethyl;
  • R is alkyl of one through six carbon atoms, chloroalkyl of one through six carbon atoms containing up to three chlorine atoms, bromoalkyl of one through six carbon atoms containing up to three bromine atoms, alkoxy alkyl of three through seven carbon atoms, alkenyl of two through six carbon atoms, alkynyl of three through four carbon atoms, phenyl or benzyl;
  • R is hydrogen or methyl;
  • R is hydrogen, methyl, amino, methylamino, or dimethylamino; R
  • Equations (2) and (3) The synthesis method, exemplified by Equations (2) and (3) involves concurrent or consecutive aminolysis and hydrolysis of the starting dialkyl carboalkoxyphosphonate by interaction with water and the amine reactant.
  • Equations (2) and (3) represent the route predominantly taken by the reaction when combined in one operation, some hydrolysis may occur during or before aminolysis.
  • the postulated reaction sequence as represented by Equations (2) and (3) favoring formation of the carbamoylphosphonate intermediate is proved experimentally, as it is possible in some instances to isolate the carbamoylphosphonate intermediate shown as the product of Equation (2). It has, of course, also been experimentally demonstrated that the product of Equation (3) is in fact obtained.
  • dialkyl carbamoylphosphonates prepared as described above or by methods described in the chemical literature are readily hydrolized to the monoester salt compounds of this invention by addition to aqueous ammonia or amine solutions. Thisprocedure may be used therefore to obtain a mixed" product, comprising a salt of one amine and an amide of another. This will be discussed and exemplified below.
  • dialkyl carboalkoxyphosphonates and dialkyl carbamolyphosphonates used for the synthesis of the compounds of this invention can be prepared by methods available in the literature, such as Nylen, Chem. Ber. 57, 1023 (1924) and Reetz et al., J.A.C.S. 77,
  • the alkoxy group of the carboalkoxyphosphonate is limited for practical purposes to methyl and ethyl, since there appears to be no advantage to in creasing the size of the alcohol moiety. However, higher alcohol derivatives are useful in some instances.
  • an excess of ammonia or amine be employed in this reaction to insure good yields and rapid reaction.
  • a ratio of diester to amine of 1:2 or greater is employed.
  • the ratio of diester to amine of between 1:2 and 1:10 is employed. The excess amine insures that amidation of the carboxylic ester rather than hydrolysis is the predominant reaction.
  • a concentration of ammonia or amine of from 25 to 50 percent be employed, although the reaction can be operated at higher or lower concentrations.
  • This process can conveniently be carried out at about room temperature, although higher temperatures can also be employed if it is desired to speed up the rate of reaction.
  • This process is moderately exothermic, and therefore must be controlled by regulation of the diester addition rate and/or by external cooling to maintain the desired temperature.
  • a highly satisfactory procedure is to slowly add the diester to a stirring aqueous solution of the amine which is cooled and maintained at about 15C.
  • the temperature of the mixture is allowed to come to room temperature or slightly above.
  • the reaction is complete in a few minutes to several hours depending on the reactants and conditions used.
  • ammonium salts prepared as described above can be converted to salts of other bases or of alkaline and alkaline earth metals by interchanging the ammonium salt with appropriate bases or salts.
  • Another method is to convert the ammonium salt to the free acid, and then neutralize the free acid with the appropriate base or salt.
  • EXAMPLE 1 A solution of 48.5 parts of 29 percent aqueous ammonium hydroxide is stirred and cooled with an external ice bath to 15C. To the cooled solution 22 parts of diallyl carbomethoxyphosphonate is slowly added over a minute period. The mixture turns cloudy, but clears up after about minutes. During this time, the mixture is allowed to warm spontaneously to about 30C. and stirring is continued for 2 hours. The clear solution is stripped under reduced pressure (15 mm of Hg) at a water-bath temperature or 70C. The residue is a white crystalline solid which is recrystallized from absolute ethyl alcohol, giving 12.3 part of ammonium allyl carbamoylphosphonate, m.p. l60-l62.5C. Nonaqueous titration either as an acid or a base gives a molecular weight of 182 i l.
  • the mixture is warmed to 25C. and allowed to stir for 3 hours.
  • the clear solution on stripping under reduced pressure yields 9.6 parts methylammonium methyl N-methylca'rbamoylphosphonate as a colorless oil.
  • the product analyzes for the dihydrate.
  • Example 17 The procedure of Example 17 is repeated substituting an equivalent amount of the indicated Aqueous Amine for the methylamine of Example 17 and an equivalent amount of the indicated Phosphonate Ester for the dimethylcarbomethoxyphosphonate of Ex ample 17 to obtain the indicated Salt Product. Most of the indicated Salt Products are isolated as liquids or low melting solids.
  • Aqueous Amine Phosphonate Ester Salt Product l8 methylamine diethyl methylammonium carboethoxyethyl N-methylphosphonate carbamoylphosphonate l9 methylamine diisopropyl methylammonium (40%) carbomethoxyisopropyl N- phosphonate methylcarbamoylphosphonate 20 methylamine diallyl earbomethylammonium (40%) ethoxy-phosallyl N-methylphonate carbamoylphosphonate 2i dimethylamine diethyl carbodimethylammonium methoxyphosethyl N.N
  • Example 26-32 The procedure of Example 25 is repeated substitut- 1 ing an equivalent amount of the indicated Aqueous A- mine for the ammonia of Example 25 and an equivalent amount of the indicated Phosphonate Ester for the diethyl methylcarbamoylphosphonate of Example 25 to obtain the indicated Salt Product.
  • Aqueous Amine Phosphonate Ester Salt Product 26 ammonia (2 diphenyl N- ammonium phenyl methyl carba- N-methyl carbamoylphosphonate moylphosphonate 27 methylamine dimethyl N,N- methylammonium (25%) dimethyl carbamethyl N,N-dimoylphosphonate methylcarbamoylphosphonate 28 dimethylamine diethyl carbadimethylammonium (25%) moylphosphonate ethyl carbamoylphosphonate 29 allylamine (25%) diallyl carbamoylallylammonium phosphonate allyl carbamoylphosphonate 30 isobutylamine diisopropyl N- isobutylammonium (20% methyl carbaisopropyl N-methylmoylphosphonate carbamoylphosphonate 3
  • Example 33 The procedure of Example 33 is repeated substituting an equivalent amount of the indicated Alkenyl Reagent" for the ammonium allylcarbamoylphosphonate of Example 33 and an equivalent amount of the indicated Halogen for the bromine of Example 33 to ob- 8 EXAMPLE 36
  • An aqueous solution of 45 parts ammonium hydroxide is stirred and chilled with an ice bath, while 24.4 parts benzyl methyl carbomethoxyphosphonate is added slowly. Stirring is continued until a clear solution is obtained. Unreacted ammonium hydroxide and water are removed from the mixture under reduced pressure, leaving as a solid residue ammonium monobenzyl carbamoylphosphonate.
  • Example 36 The procedure of Example 36 is repeated subsituting an equivalent amount of the indicated Aqueous Amine for the ammonium hydroxide of Example 36 and an equivalent amount of the indicated Phosphonate Ester" for the benzyl methyl carbomethoxyphosphonate of Example 36 to obtain the indicated Salt Produ fla amirts rfl q ys ft ia iaiyr -w Ex.
  • Aqueous Amine Phosphonate Ester Salt Product 37 methylamine benzyl methyl methylammonium (4Q% carbomethoxybenzyl N-methylphosphonate carbamoylphosphonate 38 ammonia (29%) methyl phenyl ammonium phenyl M carbomethoxycarbamoylphosphosphonate phonate 39 dimethylamine butyl ethyl carbodimethylammonium methoxyphosbutyl N.N-di-methylphonate carbamoylphosphonate 40 ethylamine 5 methyl propargyl ethylammonium w r qarbg gt pxyp p sy y phosphonate carbamoylphosphonate 4
  • Base Phosphonate Salt Product 46 cthanolamine ammonium ethanolammonium methallyl hexamethallyl hexahydrohydroazepinocarazepinocarbonylbonylphosphophosphonate nate ethylammonium isa-propyl carbamoylphosphonate benzylammonium iso-propyl carbamoyphosphonate 47 henzylaminc EXAMPLE 48 EXAMPLES 49-56 The procedure of Example 48 is repeated, first obtaining the free acids of. the indicated Ammonium Phosphonate as was done in Example 48 and then neutralizing the acid with the indicated Base according to the procedure of Example 48 to obtain the indicated Salt Product.
  • compositions of the invention may contain as a conditioning agent one or more surface-active agents, sometimes called surfactants, in amounts sufficient to render a given composition containing the compounds of this invention readily soluble in water or capable of wetting foliage efficiently.
  • a conditioning agent one or more surface-active agents, sometimes called surfactants
  • the surface-active agent used in this invention can be a wetting, dispersing or an emulsifying agent which will assist dispersion and solution of the active compound.
  • the surface-active agent or surfactant can include such anionic, cationic and non-ionic agents as have heretofore been generally employed in plant control compositions of similar type. Suitable surface-active agents are set forth, for example in Detergents and Emulsifiers 1967 Annual by John W. McCutcheon, Inc.
  • the surface-active agent in general, less than l0 percent by weight of the surface-active agent will be used in compositions of this invention and ordinarily the amount of surface-active agents will range from 1-5 percent but may even be less than 1 percent by weight.
  • Additional surface-active agents can be added to the formulations to increase the ratio of surfactantzactive ingredient up to as high as 5:1 by weight. Such compositions may have a greater effectiveness than can be expected from a consideration of the activity of the com- 5 ponents used separately. When used at higher rates, it
  • the surfactant be present in the range of one-fifth to five parts surfactant for each one part of active agent.
  • Water-Soluble Powders are compositions containing the water-soluble active material, an inert solid extender which may or may not be water-soluble, and optionally one or more surfactants to provide rapid wetting and solution.
  • a buffer which may also function as an extender, can be present to improve formulation stability and to control the pH of the final spray solution.
  • the classes of extenders suitable for the watersoluble powder formulations of this invention are the natural clays, diatomaceous earth, synthetic mineral fillers derived from silica and silicate, starch, sugar, and inorganic salts. Most preferred fillers for this invention are kaolinites, attapulgite clay, montmorillonite clays, synthetic silicas, synthetic magnesium silicate, calcium sulfate dihydrate, and disodium hydrogen phosphate.
  • Suitable surfactants for use in such compositions are those listed by J. W. McCutcheon in Detergents and Emulsifiers" 1967 Annual.
  • Among the more preferred surfactants are the non-ionic and anionic type, and those most suitable for the preparation of the dry, soluble products of this invention are solid forms of compounds known to the art as wetters and dispersants. Oc-
  • a liquid, non-ionic compound classified primarily as an emulsifier may serve as both wetter and dispersant.
  • Most preferred wetting agents are alkylbenzeneand alkylnaphthalene-sulfonates, sulfated fatty alcohols, amines or acid amides, long-chain acid esters of sodium isethionate, esters of sodium sulfosuccinate, sulfated or sulfonated fatty acid esters, petroleum sulfonates, sulfonated vegetable oils, and ditertiary acetylenic glycols.
  • Preferred dispersants are methylcellulose, polyvinyl alcohol, lignin sulfonates, polymeric alkylnaphthalenesulfonates, sodium naphthalenesulfonate, polymethylene bisnaphthalenesulfonate, and sodium N-methyl-N- (long chain acid)taurates.
  • wetting and dispersing agents in these preferred water-soluble compositions of this invention are usually present at concentrations of from about 0.5 weight percent to weight percent.
  • the inert extender then completes the formulation. Where needed, 0.1 weight percent to 1.0 weight percent of the extender may be replaced by a corrosion inhibitor or an anti-foaming agent or both.
  • water-soluble formulations of the invention will contain from about 25 to 95 weight percent active material, from 0.5 to 2.0 weight percent wetting agent, from 0.25 to 5.0 weight percent dispersant, and from 4.25 to 74.25 weight percent inert extender, as these terms are described above.
  • the corrosion inhibitor will not exceed about 1 percent of the composition, and the anti-foaming agent will not exceed about 0.5 percent by weight of the composition, both replacing equivalent amounts of the inert extender.
  • aqueous solution concentrates are prepared by mixing a water-soluble active compound of this invention with water. A portion of the water may be replaced with methanol, ethanol, isopropanol, ethylene glycol, cellosolve or methyl cellosolve. Surfactants and buffering agents can optionally be present.
  • aqueous solution concentrates will contain from 15 to 60 percent of active ingredient, and from 40 to percent water or mixture of water and hydroxylated organic solvent.
  • Surfactants, corrosion inhibitors, buffering and anti-foam agents may also be included in which case they may replace up to 10 percent of the solvent system.
  • Dusts Dusts are dense powder compositions which are intended for application in dry form, in accordance with the preferred compositions and methods of the invention. Dusts are characterized by their free-flowing and rapid settling properties so that they are not readily windbome to areas where their presence is not desired. They contain primarily an active material and a dense, free-flowing, solid extender.
  • the inert extender may be either of vegetable or mineral origin, the wetting agent is preferably anionic or non-ionic and suitable adsorptive grinding aids are of mineral origin.
  • Suitable classes of inert solid extenders for use in the dust compositions are those organic or inorganic powders which possess high bulk density and are very freeflowing. They are also characterized by possessing relatively low surface areas and are poor in liquid adsorption.
  • Suitable classes of grinding aids are natural clays, diatomaceous earths, and synthetic mineral fillers derived from silica or silicate.
  • ionic and non-ionic wetting agents the most suitable are the members of the group known to the art as wetting agents and emulsifiers.
  • solid agents are preferred because of ease in incorporation some liquid non-ionic agents are also suitable in the dust formulations.
  • Preferred inert solid extenders for the dusts of this invention are micaceous talcs, pyrophyllite, dense kaolin clays, tobacco dust and ground calcium phosphate rock such as that known as Phosphodust, a trademark of the American Agricultural Chemical Company.
  • Preferred grinding aids are attapulgite clay, diatomaceous silica, synthetic fine silica and synthetic calcium and magnesium silicates.
  • Preferred wetting agents are those previously described under water-soluble powder formulations.
  • the inert solid extenders in the dusts of this invention are usually present in concentrations of from about 30 to weight percent of the total composition.
  • the grinding aid will usually constitute 5 to 50 weight percent of the composition, and the wetting agent will constitute from about 0 to L0 weight percent of the composition.
  • Dust compositions can also contain other surfactants such as dispersing agents in concentrations of up to about 0.5 weight percent.
  • water-soluble powders described above can also be used in the preparation of dusts. While such watersoluble powders could be used directly in dust form, it is more advantageous to dilute them by blending with the dense dust diluent. In this manner, dispersing agents, corrosion inhibitors, and anti-foam agents may also be found as components of a dust.
  • the dust compositions of this invention will comprise about 5 to 20 percent active material, 5 to 50 weight percent adsorptive filler, 0 to 1.0 weight percent wetting agent, and about 30 to 90 weight percent dense, free-flowing dust diluent, as these terms are used herein.
  • Such dust formulations can contain, in addition, minor amounts of dispersants, corrosion inhibitors, and anti-foam agents, derived from the water-soluble powders-used to make the dusts.
  • Suitable carriers are natural clays, some pyrophyllites and vermiculites. Wetting agents of the type listed by. J. W. McCutcheon in Detergents and Emulsifiers 1967 Annual can also be present to aid leaching of the active component.
  • One method of preparation suitable for both granules and pellets involves blending the active ingredient with clays, water-soluble salts, surfactants and a small amount of water. After pelleting and/or granulating, the formulation is dried prior to use.
  • a second method suitable for the preparation of granules formulation involves spraying a solution of the active material on prous, adsorptive, preformed clay or vermiculite granules. Surfactants listed by McCutcheon can also be included in the spray solution. After drying, the granules are ready for application.
  • the preferred granules or pellets will contain about to 30 weight percent of active material, about 0 to 5 weight percent wetting agent and about 65 to 95 weight percent inert mineral carrier.
  • Paints and Dressings Although the formulations described above can be used to apply the compounds of Formula l) to cut portions of plants, it is often preferable to incorporate them in conventional tree wound dressings which are commonly used in the trade. Thus, in one step, the cut can be protected and regrowth in the pruned area can be inhibited.
  • the compounds can readily be incorporated in the aqueous phase of conventional asphalt emulsion dressings and water based paints.
  • the active ingredient being a salt can cause conventional emulsions to thicken or break. In the former case mere dilution with water is effective to restore physical properties; in the latter case, a salt-tolerant emulsifier must be selected.
  • the compounds of Formula (1) have rather low solubility in organic solvents, they must be finely ground and well dispersed to be effective in systems such as solvent-based varnishes and paints. In such systems, the active ingredient must be treated as a pigment would be. Additionally, water must be rigorously excluded, otherwise the active material will not remain well-dispersed.
  • the preferred type of formulation is an emulsion with the compound of Formula (I) in the aqueous phase and the film former, solvent and propellant system in the organic phase. Dispersions in organic systems are possible but not preferred because of difficulty in assuring adequate mixing before use, the need to rigorously exclude moisture, and the expense of assuring an adequately fme particle size.
  • this invention is founded on the discovery that the compounds of Formula (1) are useful for modifying the growth rate of plants. More particularly the compounds of this invention are useful as plant growth retardants. They also affect the flowering and fruit set of numerous plants.
  • plant growth retardant as used in this disclosure is to be understood to mean an agent which when applied to a plant or its environs will slow the growth of the plant without killing or causing extensive injury to said plant. This also includes a delaying response on bud sprouting or prolonging of the dormancy period.
  • the compounds of this invention can be used to retard the growth of woody vegetation.
  • the compounds of this invention can also be used to control the growth of turf and other herbaceous vegetations.
  • the compounds of this invention can be applied as foliar sprays or as soil applications to retard the growth rate of such plants or to affect flowering and fruit set.
  • the compounds of this invention are applied as a foliar spray to the point of runoff although lower'volume application may also be effective.
  • the application be made a short time prior to the period when maximum plant growth is anticipated, but application can also be made during the symptom stage or just after the plants have been trimmed. Or if flowering and fruit set are to be modified, the treatment is applied before, during, or shortly after flowering.
  • rate of application is dependent upon the species to be treated and the results desired. In general, rates of from 0.25 to 20 kilograms per hectare are used although higher or lower rates can achieve the desired effect in some instances.
  • EXAMPLE 63 A dust having the following formula is prepared. Ammonium allyl carbamoylphosphonate 5.0 percent Talc 64.0 percent Attapulgite 30.0 percent Sodium benzenesulfonate 1.0 percent The active component is ground with the minor diluent and the surfactant to pass a 0.149 mm. screen. This material is then blended with the major diluent to form a dust composition.
  • Example 63 The dust formulation of Example 63 is applied, using a helicopter, at a rate of kilograms per hectare to an area under an electric power line in which the brush and trees have been freshly trimmed in spring at the time when the leaves on most of the plants are just fully expanded.
  • the application is made in the early morning when the foliage is wet with dew or just after a rain.
  • This treatment retards the growth of a large number of species along the right-of-way including the following species: red maple (Acer rubrum), black willow (Salix nigra), hawthorn (Crataegus spp.), sweet gum (Liquidamber styraciflua) and yellow poplar (Liriodendron tulipifera EXAMPLE 64 A water-soluble powder of the following formula is prepared.
  • Ammonium allyl carbamoylphosphonate 95.0 percent Synthetic silica 3.5 percent Disodium hydrogen phosphate 1.0 percent Dioctylsodium sulfosuccinate 0.5 percent
  • the above ingredients are mixed and then ground to pass a 0.42 mm. screen.
  • the resulting formulation is water-soluble powder, with the exception of the synthetic silica conditioning agent.
  • Ammonium 2-chloroethyl carbamoylphosphonate Ammonium methyl carbamoylphosphonate Sodium phenyl carbamoylphosphonate Hemicalcium benzyl carbamoylphosphonate Hemibarium ethyl carbamoylphosphonate Ammonium 2,3-dibromopropyl carbamoylphosphonate Diethylammonium ethyl carbamoylphosphonate Ammonium hexyl carbamoylphosphonate Four kilograms of the water-soluble powder formulation of Example 64 is dissolved in 200 liters of water and 0.5 percent of a non-phytotoxic wetting agent is added.
  • This solution is sprayed on one hectare of freshly trimmed Norway maple (Acer plantanoides) growing along struts under a power line. This treatment greatly reduces the rate of growth of the trees and extends the time interval between trimmings. The trees are not significantly injured by the treatment.
  • the water-soluble powder of Example 64 can be dissolved in water at the rate of 2,000 ppm. of active ingredient and applied to 1 acre of Virginia bunch peanuts at the time they are beginning to flower.
  • the treatment prevents excessive vegetative growth and promotes flowering and fruit set of the treated plants. As a result of the treatment the plants are easier to harvest and dry and more high quality nuts are harvested.
  • EXAMPLE 65 A wettable powder of the following formula is prepared.
  • the above ingredients are mixed and then ground to pass a 0.25 mm. screen.
  • the active ingredient in the above formulation dissolves when the composition is added to water.
  • Example 65 Twenty kilograms of the formulation of Example 65 is added to 400 liters of water and agitated until the active ingredient dissolves. This solution is then sprayed on 1 hectare of newly trimmed hedgerow in the spring after the leaves have expanded. This treatment greatly reduces the growth of plants growing in the hedgerow such as osage orange (Maclura pomifera), but does not seriously injure them. The hedgerow is thus kept neat with a minimum of labor expended for timming it.
  • osage orange Maclura pomifera
  • Disodium hydrogen phosphate l.0 percent Sodium laurylsulfate 0.5 percent Water 74.5 percent The above components are blended to form a homogeneous solution.
  • Example 66 Benzyltrimethylammonium benzyl N,N-dimethylcarbamoylphosphonate Trimethylammonium ethyl N-methylcarbamoylphosphonate Methylammonium isopropyl morpholinocarbonylphosphonate Triethylammonium ethyl carbamoylphosphonate
  • Ten kilograms of the solution prepared in Example 66 are added to 200 liters of water and applied with a fixed boom sprayer to one hectare of Kentucky bluegrass (Poa pratensis) turf glowing along a highway in early June. This treatment greatly reduces the rate of growth of the bluegrass for a period of four to eight weeks and the mowing required to maintain the area in an attractive condition is reduced.
  • EXAMPLE 67 A solution of the following formula is prepared. Allylammonium allyl N,N-dimethylcarbamoylphosphonate 24.0 percent Trimethylnonylpolyethyleneglycol ether 1.0 percent Water 20.0 percent Ethylene Glycol 55.0 percent The above components are blended to form a homogeneous solution.
  • Example 67 Ethanolammonium methallyl hexahydroazepinocarbonylphosphonate
  • Ammonium octyl carbamoylphosphonate Six kilograms of the formulation of Example 67 are added to 400 liters of water containing 0.5 percent Tween 20 (polyoxyethylenesorbitan monolaurate). This solution is sprayed to runoff on a freshly trimmed privet (Ligustrum ovalifolium) in May. The treatment greatly reduces the growth of the hedge. Little labor is N-methylcarrequired to keep it attractive all season.
  • a solution containing 227 gms. of active ingredient formulated as above is sprayed on an area of red delicious apple trees about 2 weeks after petal fall. This treatment prevents the June drop and gives a higher yield of apples per acre than that from a similar untreated acre of trees. It also reduces the growth of spurious shoots known as water sprouts and ameliorates the tendency to biannual bearing which is strong in this variety.
  • EXAMPLE 68 The following formulation is prepared. Ammonium methyl carbamoylphosphonate 25.0
  • Example 68 Morpholinium ethyl carbamoylphosphonate Sodium phenyl carbamoylphosphonate Hemicalcium benzyl carbamoylphosphonate
  • Five kilograms of the formulation of Example 68 are suspended in 100 liters of water and then sprayed to runoff on freshly trimmed trees and brush along the edge of a power line right-of-way.
  • This treatment greatly reduces the growth of the trees and shrubs without permanent injury to them and they are prevented from growing over. into the power line.
  • the vegetation on the right-of-way is controlled by applying herbicides. This treatment reduces the labor required to maintain the line.
  • a water solution of the formulation of Example 69 is prepared to contain 600 ppm. total active ingredient. This solution is sprayed on McIntosh apples to run-off in early September. The treatment prevents coloration in the apples and prevents premature fall before the apples are harvested.
  • EXAMPLE 70 The following wettable powder is prepared: ammonium ethyl carbamoylphosphonate 30.0
  • Example 70 The wettable powder of Example 70 is suspended in water at the rate of 4,000 p.p.m. of active ingredient and sprayed on an area of mixed brush under a power line. The application is made in mid- May just after the brush has been trimmed back to keep it away from under the power line. The solution is sprayed to run-off on the lower two-thirds of the trees which were not cut. This treatment effectively retards the growth of the trimmed vegetation for the next growing season as well as the one in which the vegetation is treated.
  • Example 70 The formulation of Example 70 is suspended in water at the rate of 1,000 p.p.m. of active ingredient and sprayed to the point of run-off on single trees located at random throughout orchards of apple, peach and cherry varieties. The treatments are applied while the trees are still in the dormant stage. During an early spring warm period the trees in these orchards begin to break dormancy and buds sprout. The treated trees, on the other hand, remain dormant and do not sprout nor flower while there is danger of frost. In this manner, a more reliable yield is assured.
  • ammonium ethyl carbamoylphosphonate A 1,0 percent water 29.0 percent asphalt 20.0 percent B xylene 25.0 percent polyglycerol stearate 5.0 percent C dichloro difluoromethane 20.0 percent
  • the predissolved aqueous phase (A), comprising active ingredient in water, is combined with the organic phase (B), comprising a solution of asphalt, emulsifier, and xylene, with agitation. To this is added, under pressure in an aerosol dispenser, the propellant C.
  • Trees under a power line are trimmed back in early May to prevent them growing into the lines.
  • the cut ends are treated with the wound dressing described above.
  • the treatment reduces the break of lateral buds and retards the rate of growth of those that do break.
  • the treatment causes overall retardation in the rate of growth of the treated plants. This lengthens the time between trimmings, reducing the cost of maintaining the power line.
  • Trees treated include sweetgum (Liquidambar styraciflua L.), black willow (Salix nigra Marsh), apple (Malus sp. Mill), and red maple (Acer rubrum L.).
  • the active compound, sodium oleate and water are combined and heated to 90C.
  • molten asphalt is added.
  • the suspension is cooled and packaged.
  • This emulsion containing 4 percent ethyl carbamoylphosphonate is applied as a wound dressing in late Spring following conventional pruning on red maple (Acer rubrum L.), red oak (Quercus borealis Michx.), paper birch (Betula papyrzfera Marsh), and sugar maple (Acer saccharum Marsh), growing under a power line.
  • the treatment retards the breaking of lateral buds and the rate of growth of laterals. This reduces the future trimming necessary to maintain the area.
  • R is hydrogen or methyl
  • R is hydrogen, methyl, amino, methylamino, or dimethylamino
  • M is selected from the group consisting of ammonium, hydrogen, sodium, lithium, potassium, calcium, magnesium, zinc, manganese, barium or each can be hydrogen, alkyl of one through four carbon atoms, or hydroxy alkyl of two through four carbon atoms; and R is hydrogen, alkyl of one through 12 carbon atoms, amino, methylamino, or dimethylamino; R and R can be taken together to form a ring that is or (CH2) Whfire n is n Rtami it a e H..-
  • composition of claim 1 wherein in the formula R is alkyl of one through four carbon atoms, or alkenyl of three through four carbon atoms,
  • R and R are each hydrogen
  • M is ammonium, hydrogen, sodium, lithium or potassium.
  • composition of claim 2 wherein the compound is ammonium allyl carbamoylphosphonate.
  • composition of claim 2 wherein the compound is ammonium ethyl carbamoylphosphonate.
  • composition of claim 2 wherein the compound is ammonium isopropyl carbamoylphosphonate.
  • the plant growth regulant composition of claim 1 comprised of from lweight percent of the compound and an asphaltic emulsion.
  • the plant growth regulant composition of claim 1 comprised of from 1-5 weight percent of a compound of the formula:
  • the plant growth regulant composition of claim-l comprised of from l-S weight percent of ammonium ethyl carbamoylphosphonate and an asphaltic emulsron.
  • the plant growth regulant composition of claim 1 comprised of from l-5 weight percent of ammonium isopropyl carbamoylphosphonate and an asphaltic emulsion.
  • a method for retarding the growth rate of woody vegetation which comprises applying an effective amount of the composition of claim 1 to cut portions of the woody vegetation to effect growth retardation and aid in healing the wound of the vegetation.
  • a method for retarding the growth rate of woody vegetation which comprises applying an effective amount of the composition of claim 2 to cut portions of the woody vegetation to effect growth retardation and aid in healing the wound of the vegetation.
  • a method for retarding the growth rate of woody vegetation which comprises applying an effective amount of the composition of claim 3 to cut portions of the woody vegetation to effect growth retardation and aid in healing the wound of the vegetation.
  • a method for retarding the growth rate of woody vegetation which comprises applying an effective amount of the composition of claim 4 to cut portions of the woody vegetation to effect growth retardation and aid in healing the wound of the vegetation.
  • a method for retarding the growth rate of woody vegetation which comprises applying an effective amount of the composition of claim 5 to cut portions of the woody vegetation to effect growth retardation and aid in healing the wound of the vegetation.
  • a method for retarding the growth rate of woody vegetation which comprises applying an effective amount of the composition of claim 6 to cut portions of the woody vegetation to effect growth retardation and aid in healing the wound of the vegetation.
  • a method for retarding the growth rate of woody vegetation which comprises applying an effective amount of the composition of claim 7 to cut portions of the woody vegetation to effect growth retardation and aid in healing the wound of the vegetation.
  • a method for retarding the growth rate of woody vegetation which comprises applying an effective amount of the composition of claim 8 to cut portions of the woody vegetation to effect growth retardation and aid in healing the wound of the vegetation.
  • a method for retarding the growth rate of woody vegetation which comprises applying an effective amount of the composition of claim 9 to cut portions of the woody vegetation to effect growth retardation and aid in healing the wound of the plant or vegetation.
  • a method for retarding the growth rate of woody vegetation which comprises applying an effective amount of the composition of claim 10 to cut portions of the plant or woody vegetation to effect growth retardation and aid in healing the wound of the vegetation.
  • a method for retarding the growth rate of plants which comprises applying an effective amount of the composition of claim 1 to cut portion of the plant to effect growth retardation and aid in healing the wound of the plant.

Abstract

This disclosure teaches a method for employing novel carbamoylphosphonates such as ammonium ethyl carbamoylphosphonate and ammonium allyl carbamoylphosphonate to regulate the growth rate of plants.

Description

. v Unlted States Patent 1191 1111 3,819,353 Langsclorf, Jr. [4 June 25, 1974 PLANT GROWTH REGULANT CARBAMOYLPHOSPHONATES 5 References Cited [75] Inventor: Wlllia m P. Langsdorf, Jr., NI STATES PATENTS wllmmgton 1,976,221 10/1934 Goodwin et al. 424/355 [73] Assignee: E. I. du Pont de Nemours and g s -f j 2 angs or r.. Company Wllmmgton 3,778,377 10/1966 Ferrocci 424/355 [22] Filed: Oct. 29, 1970 [211 A p]. N 35,221 Primary Examiner-James 0, Thomas, Jr,
Related U.S. Application Data 57 ABSTRACT [63] Continuation-impart of Ser. No. 731,732, May 24,
1968 Pat 3,627,507 and a continuatiomimpan Th1s dlsclosure teaches a method for employmg novel of S No. 803,962, March 3, [969 abandoned carbamoylphosphonates such as ammomum ethyl carbamoylphosphonate and ammonium allyl carbamoyl- [52] U.S. Cl. 71/76, 71 /86 Phosphonate to regulate h growth rate of Plants- [51] Int. Cl. A01 21 Claims, N0 Drawings [58] Field of Search 71/76, 86, 127, 85;
PLANT GROWTH REGULANT CARBAMOYLPHOSPHONATES CROSS-REFERENCE TO RELATED APPLICATIONS This application is a continuation-in-part of my copending application Ser. No. 731,732 now US. Pat, No. 3,627,507, filed May 24, 1968, and Ser. No. 803,962, filed Mar. 3, 1969 now abandoned. I
BACKGROUND OF THE INVENTION This invention relates to the discovery that a selected group of novel carbamoylphosphonates can be used to regulate the growth rate of plants. More particularly,
the compounds of this invention are useful for controlling the growth of woody vegetation.
Related compounds such as the dialkyl carbamoylphosphonates are disclosed in US. Pat. No. 3,005,01Q as herbicides.
SUMMARY OF THE INVENTION wherein:
R is alkyl of one through six carbon atoms, chloroalkyl of one through six carbon atoms containing up to three chlorine atoms, bromoalkyl of one through six carbon atoms containing up to three bromine atoms, alkoxy alkyl of three through seven carbo n atoms, alkenyl of two through six carbon atoms, alkynyl of three through four carbon atoms, phenyl or benzyl;
R is hydrogen or methyl;
R is hydrogen, methyl, amino, methylamino, or dimethylamino;
R2 and R can be taken together to form a ring selected from -(CH -O(CH or ,H@ niiwl srni526;
nium, hydrogen, sodium, lithium, potassium, cal-" cium, magnesium, zinc, manganese, barium or Rs Rn where R R and RJaiiE the same or different and each can be hydrogen, alkyl of one through four carbon atoms, or hydroxy alkyl of two through four carbon atoms; and R is hydrogen, alkyl of one through 12 car- 60 bon atoms, amino, methylamino, or dimethylamino; R and R, can be taken together to form a ring that is ((.;H.Z)Z 9 (C H 2)2 9 :(.ll".l,z).;- wb[ n i and R and R are H.
Preferred compounds of this invention include those 5 compounds of Formula (I) where R, is alkyl of one through four carbons or alkenyl of three through four carbons; R and R, are each hydrogen; and M is ammonium, hydrogen, or alkali metal such as sodium, lithium or potassium.
The most preferred compounds of this invention are ammonium allyl carbamoylphosphonate, ammonium ethyl carbamoylphosphonate, and ammonium isopropyl carbamoylphosphonate.
Another aspect of this invention relates to the method for modifying the growth rate of plants which comprises applying an effective amount of a compound of Formula (1) to a plant to effect modification of the growth rate of said plant. Specifically, the method of this invention results in retarding the growth rate of the treated plants.
Another aspect of this invention relates to formulations of compounds of Formula (1) with suitable agricultural adjuvants and modifiers or with tree wound dressings.
DESCRIPTION OF THE INVENTION This invention is founded on the discovery that the compounds of Formula l are useful for modifying the growth rate of plants. In this regard, it has been noted that the compounds of this invention, as represented by formula l), are particularly useful to retard the growth rate of plants without killing them. The compounds of this invention, are particularly useful to retard the growth of woody plants. The compounds of this invention can, therefore, be applied in areas such as power line rights-of-way where low-growing and slow growing vegetation is especially desirable.
In addition to their value as plant growth retardants the compounds of this invention can also be used to control flowering, fruit set and coloration on apples and other fruits. They are useful to control the growth and flowering of ornamental species such as chrysanthemum and azalea.
The compounds of this invention can also be used to prolong the dormancy of perennial plants, and thereby protect the unsprouted buds from frost damage. This can be especially important in the protection of flower buds, which in some years, may sprout early and be killed by cold temperatures.
Preparation The ammonium carbamoylphosphonate salts of this invention are readily prepared by the interaction of the diesters of carboalkoxyphosphonic acids with aqueous solutions of ammonia, primary amines or secondary amines.
This reaction can be considered to occur in two steps as is illustrated bythe following equations.
4' Rs ENE-.. -s
v bromoalkyl of one through eight carbon atoms containing up to three bromine atoms, alkoxy alkyl of from three through 10 carbon atoms, alkenyl of two through eight carbon atoms, alkynyl of three through four carbon atoms, phenyl or benzyl; R is alkyl of one through four carbon atoms, preferably methyl or ethyl; R, is alkyl of one through six carbon atoms, chloroalkyl of one through six carbon atoms containing up to three chlorine atoms, bromoalkyl of one through six carbon atoms containing up to three bromine atoms, alkoxy alkyl of three through seven carbon atoms, alkenyl of two through six carbon atoms, alkynyl of three through four carbon atoms, phenyl or benzyl; R is hydrogen or methyl; R is hydrogen, methyl, amino, methylamino, or dimethylamino; R and R can be taken together to form a ring selected from (CH O-(CH or (CH where n is 2-6; M is selected from the group consisting of ammonium, hydrogen, sodium, lithium, potassium, calcium, magnesium, zinc, manganese, barium or where R R and R can be the same or different and each can be hydrogen, alkyl of one through four carbon atoms, or hydroxy alkyl of two through four carbon atoms; and R is hydrogen, alkyl of one through 12 carbon atoms, amino, methylamino, or dimethylamino; R and R can be taken together to form a ring that is (CH ,tcu2, 2pr H;:),n: t and R and R are H.
The synthesis method, exemplified by Equations (2) and (3) involves concurrent or consecutive aminolysis and hydrolysis of the starting dialkyl carboalkoxyphosphonate by interaction with water and the amine reactant.
While Equations (2) and (3) represent the route predominantly taken by the reaction when combined in one operation, some hydrolysis may occur during or before aminolysis. However, the postulated reaction sequence as represented by Equations (2) and (3) favoring formation of the carbamoylphosphonate intermediate is proved experimentally, as it is possible in some instances to isolate the carbamoylphosphonate intermediate shown as the product of Equation (2). It has, of course, also been experimentally demonstrated that the product of Equation (3) is in fact obtained.
An alternate method for synthesis of those compounds of this invention where R is substituted by chlorine or bromine consists of the addition of halogen or hydrogen halide to the double bond of the compounds of this invention where R, is alkenyl. This reaction is illustrated by Equation (4).
The dialkyl carbamoylphosphonates prepared as described above or by methods described in the chemical literature are readily hydrolized to the monoester salt compounds of this invention by addition to aqueous ammonia or amine solutions. Thisprocedure may be used therefore to obtain a mixed" product, comprising a salt of one amine and an amide of another. This will be discussed and exemplified below.
The dialkyl carboalkoxyphosphonates and dialkyl carbamolyphosphonates used for the synthesis of the compounds of this invention can be prepared by methods available in the literature, such as Nylen, Chem. Ber. 57, 1023 (1924) and Reetz et al., J.A.C.S. 77,
3813-16 (1955) using appropriate ester intermediates. Generally, the alkoxy group of the carboalkoxyphosphonate is limited for practical purposes to methyl and ethyl, since there appears to be no advantage to in creasing the size of the alcohol moiety. However, higher alcohol derivatives are useful in some instances.
The following are illustrative of typical diesters of the carboalkoxyphosphonates:
Diethyl carbomethoxyphosphonate Diallyl carbomethoxyphosphonate Diisopropyl carboethoxyphosphonate Dibutyl carbobutoxyphosphonate Dimethallyl carboethoxyphosphonate The following are illustrative of typical carbamoylphosphonate esters:
Diethyl carbamoylphosphonate Diallyl N,N-dimethylcarbamoylphosphonate Diallyl carbamoylphosphonate Dipropyl N-methylcarbamoylphosphonate Dimethyl piperidinocarbonylphosphonate Bis(2-chloroethyl)carbamoylphosphonate The following are illustrative of the amines which can be used for the amination and/or hydrolysis of the esters:
Ammonia Methylamine Dimethylamine Allylamine Propylamine Ethylamine Morpholine Piperidine Methylhydrazine N,N-Dimethylhydrazine Ethanolamine More particularly, in the preferred procedure for preparing the ammonium alkyl carbamoylphosphonates of this invention, a dialkyl carboalkoxyphosphonate or dialkyl carbamoylphosphonate is added to a stirred aqueous solution of ammonia or other amine. Stirring is continued until a clear solution is obtained. The resultant salt can then be isolated by removal of the water through evaporation or by stripping under reduced pressure. In general, these salts are stable white crystalline solids or viscous liquids. Those which are solid can be recrystallized from one or a mixture of several lower alcohols. However, most of the products are suitable for use without purification.
It is preferred that an excess of ammonia or amine be employed in this reaction to insure good yields and rapid reaction. A ratio of diester to amine of 1:2 or greater is employed. Preferably the ratio of diester to amine of between 1:2 and 1:10 is employed. The excess amine insures that amidation of the carboxylic ester rather than hydrolysis is the predominant reaction.
It is also preferred that a concentration of ammonia or amine of from 25 to 50 percent be employed, although the reaction can be operated at higher or lower concentrations.
This process can conveniently be carried out at about room temperature, although higher temperatures can also be employed if it is desired to speed up the rate of reaction. This process is moderately exothermic, and therefore must be controlled by regulation of the diester addition rate and/or by external cooling to maintain the desired temperature.
A highly satisfactory procedure is to slowly add the diester to a stirring aqueous solution of the amine which is cooled and maintained at about 15C. When addition of the diester is complete, the temperature of the mixture is allowed to come to room temperature or slightly above. Generally, the reaction is complete in a few minutes to several hours depending on the reactants and conditions used.
The ammonium salts prepared as described above can be converted to salts of other bases or of alkaline and alkaline earth metals by interchanging the ammonium salt with appropriate bases or salts.
Another method is to convert the ammonium salt to the free acid, and then neutralize the free acid with the appropriate base or salt.
The following illustrative examples are presented to further illustrate this invention. In the following examples, parts and percentages are by weight unless otherwise specified.
EXAMPLE 1 A solution of 48.5 parts of 29 percent aqueous ammonium hydroxide is stirred and cooled with an external ice bath to 15C. To the cooled solution 22 parts of diallyl carbomethoxyphosphonate is slowly added over a minute period. The mixture turns cloudy, but clears up after about minutes. During this time, the mixture is allowed to warm spontaneously to about 30C. and stirring is continued for 2 hours. The clear solution is stripped under reduced pressure (15 mm of Hg) at a water-bath temperature or 70C. The residue is a white crystalline solid which is recrystallized from absolute ethyl alcohol, giving 12.3 part of ammonium allyl carbamoylphosphonate, m.p. l60-l62.5C. Nonaqueous titration either as an acid or a base gives a molecular weight of 182 i l.
EXAMPLES 2-18 The procedure of Example 1 is repeated by substituting an equivalent amount of the indicated Phosphonate Ester" for the diallyl carbomethoxyphosphonate of Example 1 to produce the indicated Salt Product.
Ex. Phosphonate Ester Salt Product 2 diethyl carbomethoxyphosphonate ammonium ethyl carbamoylphosphonate ammonium 2-chloroethyl carbamoylphosphonate 5 diallyl carboethoxyphosphonate 6 dimethallyl curhomethoxyphosphonate 7 diisopropyl carboethoxyphosphonate 8 dimcthyl curhomethoxyphosphonate 9 dipropyl curbupropoxyphosphonute diisobutyl carbomethoxyphosphonate -Continued Phosphonate Ester Salt Product ammonium hexyl carbamoylphosphonate dihexyl carbomethoxyphosphonate To a stirring ice-chilled solution of 35 parts 40 percent methylamine in water is added slowly 8.4 parts of dimethyl carbomethoxyphosphonate. The mixture is warmed to 25C. and allowed to stir for 3 hours. The clear solution on stripping under reduced pressure yields 9.6 parts methylammonium methyl N-methylca'rbamoylphosphonate as a colorless oil. The product analyzes for the dihydrate.
EXAMPLES 1 8-24 The procedure of Example 17 is repeated substituting an equivalent amount of the indicated Aqueous Amine for the methylamine of Example 17 and an equivalent amount of the indicated Phosphonate Ester for the dimethylcarbomethoxyphosphonate of Ex ample 17 to obtain the indicated Salt Product. Most of the indicated Salt Products are isolated as liquids or low melting solids.
Ex. Aqueous Amine Phosphonate Ester Salt Product l8 methylamine diethyl methylammonium carboethoxyethyl N-methylphosphonate carbamoylphosphonate l9 methylamine diisopropyl methylammonium (40%) carbomethoxyisopropyl N- phosphonate methylcarbamoylphosphonate 20 methylamine diallyl earbomethylammonium (40%) ethoxy-phosallyl N-methylphonate carbamoylphosphonate 2i dimethylamine diethyl carbodimethylammonium methoxyphosethyl N.N
phonate dimethylcarbamoylphosphonate 22 methylhydrazine diethyl carbomethyl carbazoylethoxyphosphosphonic acid. phonate monoethyl ester.
salt with methyl hydrazine 23 piperidine (50%) dibenzyl carbopiperidinium methoxyphosbenzyl piperphonate idinocarbonylphosphonate 24 l,ldipropyl carbol.l-dimethyl hydradimethylhyzadrine methoxyphoszinium propyl (35%) phonate 3.3-dimethylcarba- A zoylphosphonater EXAMPLE 25 Eight parts of diethyl N-methylcarbamoylphosphonate is added slowly to 18 parts of a 29 percent aqueous solution of ammonia, while holding the temperature at 25C. by external cooling. The unreacted ammonium hydroxide is allowed to evaporate, giving a white, crystalline, solid residue. Recrystallization from absolute ethanol gives five parts of ammonium ethyl N-methylcarbamoylphosphonate, mp. 189C.
EXAMPLES 26-32 The procedure of Example 25 is repeated substitut- 1 ing an equivalent amount of the indicated Aqueous A- mine for the ammonia of Example 25 and an equivalent amount of the indicated Phosphonate Ester for the diethyl methylcarbamoylphosphonate of Example 25 to obtain the indicated Salt Product.
Ex. Aqueous Amine Phosphonate Ester Salt Product 26 ammonia (2 diphenyl N- ammonium phenyl methyl carba- N-methyl carbamoylphosphonate moylphosphonate 27 methylamine dimethyl N,N- methylammonium (25%) dimethyl carbamethyl N,N-dimoylphosphonate methylcarbamoylphosphonate 28 dimethylamine diethyl carbadimethylammonium (25%) moylphosphonate ethyl carbamoylphosphonate 29 allylamine (25%) diallyl carbamoylallylammonium phosphonate allyl carbamoylphosphonate 30 isobutylamine diisopropyl N- isobutylammonium (20% methyl carbaisopropyl N-methylmoylphosphonate carbamoylphosphonate 3| h l i diisopropyl mormethylammonium (20%) pholinocarbonylisopropyl morphophosphonate linocarbonylphosphonate 32 triethanolamine diallyl carbamoyltriethanolammonium phosphonate allyl carbamoylphosphonate EXAMPLE 33 To a mixture of 12.1 parts of ammonium allylcarbamoylphosphonate and 100 parts of ethanol is added dropwise eight parts of bromine. The reaction mixture is filtered giving 8.5 parts of ammonium 2,3-
dibromopropyl carbamoylphosphonate, m.p. l65-16- 5o EXAMPLES 34-35 The procedure of Example 33 is repeated substituting an equivalent amount of the indicated Alkenyl Reagent" for the ammonium allylcarbamoylphosphonate of Example 33 and an equivalent amount of the indicated Halogen for the bromine of Example 33 to ob- 8 EXAMPLE 36 An aqueous solution of 45 parts ammonium hydroxide is stirred and chilled with an ice bath, while 24.4 parts benzyl methyl carbomethoxyphosphonate is added slowly. Stirring is continued until a clear solution is obtained. Unreacted ammonium hydroxide and water are removed from the mixture under reduced pressure, leaving as a solid residue ammonium monobenzyl carbamoylphosphonate. O
EXAMPLES 37-42 The procedure of Example 36 is repeated subsituting an equivalent amount of the indicated Aqueous Amine for the ammonium hydroxide of Example 36 and an equivalent amount of the indicated Phosphonate Ester" for the benzyl methyl carbomethoxyphosphonate of Example 36 to obtain the indicated Salt Produ fla amirts rfl q ys ft ia iaiyr -w Ex. Aqueous Amine Phosphonate Ester Salt Product 37 methylamine benzyl methyl methylammonium (4Q% carbomethoxybenzyl N-methylphosphonate carbamoylphosphonate 38 ammonia (29%) methyl phenyl ammonium phenyl M carbomethoxycarbamoylphosphosphonate phonate 39 dimethylamine butyl ethyl carbodimethylammonium methoxyphosbutyl N.N-di-methylphonate carbamoylphosphonate 40 ethylamine 5 methyl propargyl ethylammonium w r qarbg gt pxyp p sy y phosphonate carbamoylphosphonate 4| allylamine (25%) methyl allyl carallylammonium U boethox yphosallyl N-allyl carbaphonate moylphosphonate 42 pyrrolidine (30%) methyl propyl pyrrolidinium propyl carbomethoxypyrrolidinocarbonylphosphonatg phosphonate V EXAMPLE 43 To a stirring suspension of 21.2 parts ammonium butyl N-methylcarbamoylphosphonate and parts methanol is added 42 parts of a 40 percent solution of N-benzyltrimethylammonium hydroxide in methanol. Ammonia and methanol are stripped from the mixture at 40C. under reduced pressure, leaving benzyltrimethylammonium butyl N-methylcarbamoylphosphonate as a residue.
EXAMPLES 44-47 The procedure of Example 43 is repeated substituting an equivalent amount of the indicated Base" for the N-benzyltrimethylammonium hydroxide of Example 43 and an equivalent amount of the indicated Ammonium Phosphonate for the ammonium butyl N-methylcarbamoylphosphonate of Example 43 to obtain the indicated Salt Product.
Ammonium Ex. Base Phouphonute Snlt Product 44 ictracthylammonium allyl lctracthylnmmonium ammonium carhamoylphosmononllyl curhn hydroxide phonate moylphosphonntc 45 trimcthylamine ammonium ethyl lrimethylammonium (large excess) N-methylcarbamonoethyl N- moylphosphonate methylcarbamoylphosphonate EXAMPLES 58-63 The procedure of Example 57 is repeated substituting the indicated Bicarbonate Salt" for the potassium bicarbonate of Example 57 and an equivalent amount of the indicated Carbamoylphosphonate for the ammonium monoisobutyl carbamoylphosphonate of Ex- -Continued Ammonium Ex. Base Phosphonate Salt Product 46 cthanolamine ammonium ethanolammonium methallyl hexamethallyl hexahydrohydroazepinocarazepinocarbonylbonylphosphophosphonate nate ethylammonium isa-propyl carbamoylphosphonate benzylammonium iso-propyl carbamoyphosphonate 47 henzylaminc EXAMPLE 48 EXAMPLES 49-56 The procedure of Example 48 is repeated, first obtaining the free acids of. the indicated Ammonium Phosphonate as was done in Example 48 and then neutralizing the acid with the indicated Base according to the procedure of Example 48 to obtain the indicated Salt Product.
Ammonium Ex. Phosphonate Base Salt Product 49 ammonium sodium bicarbosodium phenyl phenyl carbanate carbamoylphosmoylphosphonate phonate 50 ammonium calcium hyhemicalcium benzyl benzyl carbamdroxide carbamwlPhosoylphosphonate phonate 51 ammonium ethyl barium hyhemibarium ethyl carbamoylphosdroxide carbamoylphosphonate phonate 52 ammonium hydroxyethyltrihydroxyethyltrimethyl-N,N- methylammonium methylammonium dimethylcarb a mhydroxide methyl N,N-dio yI phosphonate methylcarbamoylphosphonate 53 ammonium benzyltrimethylbenzyltrimethylbenzyl carbamammonium hyammonium benzyl oylphosphonate droxide carbamoylphosphonate 54 ammonium allyl magnesium hyhemimagnesium carbamoylphosdroxide allylcarbamoylphonate phosphonate 55 ammonium morpholine morpholinium butyl butyl N-methyl N-methylcarbamoylcarbamoylphosphosphonate phonate 56 ammonium trimethylamine trimethylammonoisopropyl monium isopropyl morpholinomorpholinocarbonyb carbonylphosphosphonate phonate EXAMPLE 57 To a stirred solution of 10 parts of potassium bicarbonate and 50 parts of water is added 18.4 parts ammonium isobutyl carbamoylphosphonate. Stirring is continued until solution is complete. The solution is evaporated to dryness, giving the solid product, potassium isobutylcarbamoylphosphonate.
ample 57 to obtain the indicated Salt Product.
Bicarbonate Carbamoyl- Ex. Salt phosphonate Salt Product 58 sodium ammonium ethyl sodium ethyl N- bicarbonate N-methylcarbammethylcarbamoyl- I 5 oylphosphonate phosphonate 59 potassium ammonium potassium benzyl c r n benzyl carbam carbamoylphosoylphosphonate phonate 60 tetramethylamammonium monotetramethylmonium allyl piperidinoammonium allyl icar on carbonylphospiperidinocarbonyl- 2O phonate phosphonate 61 benzyltrime ammonium butyl benzyltrimethylthylammonium carbamoylphosammonium butyl bicarbonate phonate carbamoylphos phonate 62 pentamethylhyammonium butyl pentamethylhydradrazinium carbamoylphoszinium butyl carbambicarbonate phonate oylphosphonate Formulation Plant growth modifying compositions of the present invention can be prepared by admixing at least one of the compounds of this invention with pest control adjuvants or modifiers to provide compositions in the form of dusts, water-soluble powders, solutions, granules or pellets. In addition, the plant growth modifying agents such as maleic hydrazide and Alar (N-dimethylaminosuccinamic acid) can be included in the compositions of this invention in combination with the compounds of this invention.
Compositions of the invention may contain as a conditioning agent one or more surface-active agents, sometimes called surfactants, in amounts sufficient to render a given composition containing the compounds of this invention readily soluble in water or capable of wetting foliage efficiently.
The surface-active agent used in this invention can be a wetting, dispersing or an emulsifying agent which will assist dispersion and solution of the active compound. The surface-active agent or surfactant can include such anionic, cationic and non-ionic agents as have heretofore been generally employed in plant control compositions of similar type. Suitable surface-active agents are set forth, for example in Detergents and Emulsifiers 1967 Annual by John W. McCutcheon, Inc.
In general, less than l0 percent by weight of the surface-active agent will be used in compositions of this invention and ordinarily the amount of surface-active agents will range from 1-5 percent but may even be less than 1 percent by weight.
Additional surface-active agents can be added to the formulations to increase the ratio of surfactantzactive ingredient up to as high as 5:1 by weight. Such compositions may have a greater effectiveness than can be expected from a consideration of the activity of the com- 5 ponents used separately. When used at higher rates, it
is preferred that the surfactant be present in the range of one-fifth to five parts surfactant for each one part of active agent.
Water-Soluble Powders Water-soluble powders are compositions containing the water-soluble active material, an inert solid extender which may or may not be water-soluble, and optionally one or more surfactants to provide rapid wetting and solution. A buffer, which may also function as an extender, can be present to improve formulation stability and to control the pH of the final spray solution.
The classes of extenders suitable for the watersoluble powder formulations of this invention are the natural clays, diatomaceous earth, synthetic mineral fillers derived from silica and silicate, starch, sugar, and inorganic salts. Most preferred fillers for this invention are kaolinites, attapulgite clay, montmorillonite clays, synthetic silicas, synthetic magnesium silicate, calcium sulfate dihydrate, and disodium hydrogen phosphate.
Suitable surfactants for use in such compositions are those listed by J. W. McCutcheon in Detergents and Emulsifiers" 1967 Annual. Among the more preferred surfactants are the non-ionic and anionic type, and those most suitable for the preparation of the dry, soluble products of this invention are solid forms of compounds known to the art as wetters and dispersants. Oc-
casionally a liquid, non-ionic compound classified primarily as an emulsifier may serve as both wetter and dispersant.
Most preferred wetting agents are alkylbenzeneand alkylnaphthalene-sulfonates, sulfated fatty alcohols, amines or acid amides, long-chain acid esters of sodium isethionate, esters of sodium sulfosuccinate, sulfated or sulfonated fatty acid esters, petroleum sulfonates, sulfonated vegetable oils, and ditertiary acetylenic glycols. Preferred dispersants are methylcellulose, polyvinyl alcohol, lignin sulfonates, polymeric alkylnaphthalenesulfonates, sodium naphthalenesulfonate, polymethylene bisnaphthalenesulfonate, and sodium N-methyl-N- (long chain acid)taurates.
Wetting and dispersing agents in these preferred water-soluble compositions of this invention are usually present at concentrations of from about 0.5 weight percent to weight percent. The inert extender then completes the formulation. Where needed, 0.1 weight percent to 1.0 weight percent of the extender may be replaced by a corrosion inhibitor or an anti-foaming agent or both.
Thus, water-soluble formulations of the invention will contain from about 25 to 95 weight percent active material, from 0.5 to 2.0 weight percent wetting agent, from 0.25 to 5.0 weight percent dispersant, and from 4.25 to 74.25 weight percent inert extender, as these terms are described above.
When the water-soluble powder contains a corrosion inhibitor or an anti-foaming agent or both, the corrosion inhibitor will not exceed about 1 percent of the composition, and the anti-foaming agent will not exceed about 0.5 percent by weight of the composition, both replacing equivalent amounts of the inert extender.
Solution Concentrates The aqueous solution concentrates are prepared by mixing a water-soluble active compound of this invention with water. A portion of the water may be replaced with methanol, ethanol, isopropanol, ethylene glycol, cellosolve or methyl cellosolve. Surfactants and buffering agents can optionally be present.
These aqueous solution concentrates will contain from 15 to 60 percent of active ingredient, and from 40 to percent water or mixture of water and hydroxylated organic solvent. Surfactants, corrosion inhibitors, buffering and anti-foam agents may also be included in which case they may replace up to 10 percent of the solvent system.
Dusts Dusts are dense powder compositions which are intended for application in dry form, in accordance with the preferred compositions and methods of the invention. Dusts are characterized by their free-flowing and rapid settling properties so that they are not readily windbome to areas where their presence is not desired. They contain primarily an active material and a dense, free-flowing, solid extender.
Their performance is sometimes aided by the inclusion of a wetting agent, and convenience in manufacture frequently demands the inclusion of an inert, adsorptive grinding aid. For the dust compositions of this invention, the inert extender may be either of vegetable or mineral origin, the wetting agent is preferably anionic or non-ionic and suitable adsorptive grinding aids are of mineral origin.
Suitable classes of inert solid extenders for use in the dust compositions are those organic or inorganic powders which possess high bulk density and are very freeflowing. They are also characterized by possessing relatively low surface areas and are poor in liquid adsorption. Suitable classes of grinding aids are natural clays, diatomaceous earths, and synthetic mineral fillers derived from silica or silicate. Among ionic and non-ionic wetting agents, the most suitable are the members of the group known to the art as wetting agents and emulsifiers. Although solid agents are preferred because of ease in incorporation some liquid non-ionic agents are also suitable in the dust formulations.
Preferred inert solid extenders for the dusts of this invention are micaceous talcs, pyrophyllite, dense kaolin clays, tobacco dust and ground calcium phosphate rock such as that known as Phosphodust, a trademark of the American Agricultural Chemical Company.
Preferred grinding aids are attapulgite clay, diatomaceous silica, synthetic fine silica and synthetic calcium and magnesium silicates. Preferred wetting agents are those previously described under water-soluble powder formulations.
The inert solid extenders in the dusts of this invention are usually present in concentrations of from about 30 to weight percent of the total composition. The grinding aid will usually constitute 5 to 50 weight percent of the composition, and the wetting agent will constitute from about 0 to L0 weight percent of the composition. Dust compositions can also contain other surfactants such as dispersing agents in concentrations of up to about 0.5 weight percent.
The water-soluble powders described above can also be used in the preparation of dusts. While such watersoluble powders could be used directly in dust form, it is more advantageous to dilute them by blending with the dense dust diluent. In this manner, dispersing agents, corrosion inhibitors, and anti-foam agents may also be found as components of a dust.
Thus, the dust compositions of this invention will comprise about 5 to 20 percent active material, 5 to 50 weight percent adsorptive filler, 0 to 1.0 weight percent wetting agent, and about 30 to 90 weight percent dense, free-flowing dust diluent, as these terms are used herein. Such dust formulations can contain, in addition, minor amounts of dispersants, corrosion inhibitors, and anti-foam agents, derived from the water-soluble powders-used to make the dusts.
Granules and Pellets Under some circumstances it may be advantageous to apply the compounds of this invention in the form of granules or pellets. Suitable carriers are natural clays, some pyrophyllites and vermiculites. Wetting agents of the type listed by. J. W. McCutcheon in Detergents and Emulsifiers 1967 Annual can also be present to aid leaching of the active component.
One method of preparation suitable for both granules and pellets involves blending the active ingredient with clays, water-soluble salts, surfactants and a small amount of water. After pelleting and/or granulating, the formulation is dried prior to use. A second method suitable for the preparation of granules formulation involves spraying a solution of the active material on prous, adsorptive, preformed clay or vermiculite granules. Surfactants listed by McCutcheon can also be included in the spray solution. After drying, the granules are ready for application.
The preferred granules or pellets will contain about to 30 weight percent of active material, about 0 to 5 weight percent wetting agent and about 65 to 95 weight percent inert mineral carrier.
Paints and Dressings Although the formulations described above can be used to apply the compounds of Formula l) to cut portions of plants, it is often preferable to incorporate them in conventional tree wound dressings which are commonly used in the trade. Thus, in one step, the cut can be protected and regrowth in the pruned area can be inhibited.
Having high water solubility, the compounds can readily be incorporated in the aqueous phase of conventional asphalt emulsion dressings and water based paints. At the low levels employed (1 5 percent), there is generally little effect on the physical properties of the systems, and commercial materials need not be reformulated. At relatively high levels, the active ingredient, being a salt can cause conventional emulsions to thicken or break. In the former case mere dilution with water is effective to restore physical properties; in the latter case, a salt-tolerant emulsifier must be selected.
As the compounds of Formula (1) have rather low solubility in organic solvents, they must be finely ground and well dispersed to be effective in systems such as solvent-based varnishes and paints. In such systems, the active ingredient must be treated as a pigment would be. Additionally, water must be rigorously excluded, otherwise the active material will not remain well-dispersed.
Whenpackaged as an aerosol, similar considerations apply. The preferred type of formulation is an emulsion with the compound of Formula (I) in the aqueous phase and the film former, solvent and propellant system in the organic phase. Dispersions in organic systems are possible but not preferred because of difficulty in assuring adequate mixing before use, the need to rigorously exclude moisture, and the expense of assuring an adequately fme particle size.
Application As stated earlier, this invention is founded on the discovery that the compounds of Formula (1) are useful for modifying the growth rate of plants. More particularly the compounds of this invention are useful as plant growth retardants. They also affect the flowering and fruit set of numerous plants.
The term plant growth retardant as used in this disclosure is to be understood to mean an agent which when applied to a plant or its environs will slow the growth of the plant without killing or causing extensive injury to said plant. This also includes a delaying response on bud sprouting or prolonging of the dormancy period.
The compounds of this invention can be used to retard the growth of woody vegetation. The compounds of this invention can also be used to control the growth of turf and other herbaceous vegetations.
The compounds of this invention can be applied as foliar sprays or as soil applications to retard the growth rate of such plants or to affect flowering and fruit set.
Preferably, the compounds of this invention are applied as a foliar spray to the point of runoff although lower'volume application may also be effective.
It is preferred that the application be made a short time prior to the period when maximum plant growth is anticipated, but application can also be made during the donnant stage or just after the plants have been trimmed. Or if flowering and fruit set are to be modified, the treatment is applied before, during, or shortly after flowering.
It will be recognized that the rate of application is dependent upon the species to be treated and the results desired. In general, rates of from 0.25 to 20 kilograms per hectare are used although higher or lower rates can achieve the desired effect in some instances.
The following examples are presented to further illustrate the formulation and application of the compounds of this invention. Parts and percentages in the following examples are by weight unless otherwise indicated.
EXAMPLE 63 A dust having the following formula is prepared. Ammonium allyl carbamoylphosphonate 5.0 percent Talc 64.0 percent Attapulgite 30.0 percent Sodium benzenesulfonate 1.0 percent The active component is ground with the minor diluent and the surfactant to pass a 0.149 mm. screen. This material is then blended with the major diluent to form a dust composition.
It will be understood that the other compounds of this invention can also be formulated in a like manner.
The dust formulation of Example 63 is applied, using a helicopter, at a rate of kilograms per hectare to an area under an electric power line in which the brush and trees have been freshly trimmed in spring at the time when the leaves on most of the plants are just fully expanded. The application is made in the early morning when the foliage is wet with dew or just after a rain. This treatment retards the growth of a large number of species along the right-of-way including the following species: red maple (Acer rubrum), black willow (Salix nigra), hawthorn (Crataegus spp.), sweet gum (Liquidamber styraciflua) and yellow poplar (Liriodendron tulipifera EXAMPLE 64 A water-soluble powder of the following formula is prepared.
Ammonium allyl carbamoylphosphonate 95.0 percent Synthetic silica 3.5 percent Disodium hydrogen phosphate 1.0 percent Dioctylsodium sulfosuccinate 0.5 percent The above ingredients are mixed and then ground to pass a 0.42 mm. screen. The resulting formulation is water-soluble powder, with the exception of the synthetic silica conditioning agent.
The following compounds of this invention can also be formulated in like manner.
Ammonium 2-chloroethyl carbamoylphosphonate Ammonium methyl carbamoylphosphonate Sodium phenyl carbamoylphosphonate Hemicalcium benzyl carbamoylphosphonate Hemibarium ethyl carbamoylphosphonate Ammonium 2,3-dibromopropyl carbamoylphosphonate Diethylammonium ethyl carbamoylphosphonate Ammonium hexyl carbamoylphosphonate Four kilograms of the water-soluble powder formulation of Example 64 is dissolved in 200 liters of water and 0.5 percent of a non-phytotoxic wetting agent is added. This solution is sprayed on one hectare of freshly trimmed Norway maple (Acer plantanoides) growing along struts under a power line. This treatment greatly reduces the rate of growth of the trees and extends the time interval between trimmings. The trees are not significantly injured by the treatment.
The water-soluble powder of Example 64 can be dissolved in water at the rate of 2,000 ppm. of active ingredient and applied to 1 acre of Virginia bunch peanuts at the time they are beginning to flower. The treatment prevents excessive vegetative growth and promotes flowering and fruit set of the treated plants. As a result of the treatment the plants are easier to harvest and dry and more high quality nuts are harvested.
EXAMPLE 65 A wettable powder of the following formula is prepared.
Hemibarium benzyl carbamoylphosphonate 50.0
percent Montmorrilonite 43.0 percent Synthetic silica 4.0 percent Disodium hydrogen phosphate 1.0 percent Sodium alkylnaphthalenesulfonate 1.0 percent Sodium lignin sulfonate 1.0 percent The above ingredients are mixed and then ground to pass a 0.25 mm. screen. The active ingredient in the above formulation dissolves when the composition is added to water.
Twenty kilograms of the formulation of Example 65 is added to 400 liters of water and agitated until the active ingredient dissolves. This solution is then sprayed on 1 hectare of newly trimmed hedgerow in the spring after the leaves have expanded. This treatment greatly reduces the growth of plants growing in the hedgerow such as osage orange (Maclura pomifera), but does not seriously injure them. The hedgerow is thus kept neat with a minimum of labor expended for timming it.
EXAMPLE 66 A solution of the following formula is prepared.
Ammonium ethyl carbamoylphosphonate 24.0
percent Disodium hydrogen phosphate l.0 percent Sodium laurylsulfate 0.5 percent Water 74.5 percent The above components are blended to form a homogeneous solution.
The following compounds can be formulated in like manner.
Benzyltrimethylammonium benzyl N,N-dimethylcarbamoylphosphonate Trimethylammonium ethyl N-methylcarbamoylphosphonate Methylammonium isopropyl morpholinocarbonylphosphonate Triethylammonium ethyl carbamoylphosphonate Ten kilograms of the solution prepared in Example 66 are added to 200 liters of water and applied with a fixed boom sprayer to one hectare of Kentucky bluegrass (Poa pratensis) turf glowing along a highway in early June. This treatment greatly reduces the rate of growth of the bluegrass for a period of four to eight weeks and the mowing required to maintain the area in an attractive condition is reduced.
EXAMPLE 67 A solution of the following formula is prepared. Allylammonium allyl N,N-dimethylcarbamoylphosphonate 24.0 percent Trimethylnonylpolyethyleneglycol ether 1.0 percent Water 20.0 percent Ethylene Glycol 55.0 percent The above components are blended to form a homogeneous solution.
The following components can be formulated in like manner.
Ethanolammonium methallyl hexahydroazepinocarbonylphosphonate Dodecyltrimethylammonium butyl bamoylphosphonate Ammonium octyl carbamoylphosphonate Six kilograms of the formulation of Example 67 are added to 400 liters of water containing 0.5 percent Tween 20 (polyoxyethylenesorbitan monolaurate). This solution is sprayed to runoff on a freshly trimmed privet (Ligustrum ovalifolium) in May. The treatment greatly reduces the growth of the hedge. Little labor is N-methylcarrequired to keep it attractive all season.
A solution containing 227 gms. of active ingredient formulated as above is sprayed on an area of red delicious apple trees about 2 weeks after petal fall. This treatment prevents the June drop and gives a higher yield of apples per acre than that from a similar untreated acre of trees. It also reduces the growth of spurious shoots known as water sprouts and ameliorates the tendency to biannual bearing which is strong in this variety.
EXAMPLE 68 The following formulation is prepared. Ammonium methyl carbamoylphosphonate 25.0
percent Sodium lauryl sulfate 50.0 percent Magnesium silicate l0.0 percent Kaolinite 15.0 percent The above components are blended. micropulvcrized to pass a 0.30 mm. screen and reblended.
The following compounds can be formulated in like manner.
Morpholinium ethyl carbamoylphosphonate Sodium phenyl carbamoylphosphonate Hemicalcium benzyl carbamoylphosphonate Five kilograms of the formulation of Example 68 are suspended in 100 liters of water and then sprayed to runoff on freshly trimmed trees and brush along the edge of a power line right-of-way. This treatment greatly reduces the growth of the trees and shrubs without permanent injury to them and they are prevented from growing over. into the power line. The vegetation on the right-of-way is controlled by applying herbicides. This treatment reduces the labor required to maintain the line.
EXAMPLE 69 An aqueous concentrate solution is prepared which contains the following ingredients:
ammonium ethyl carbamoylphosphonate 24.0
percent N-dimethylaminosuccinamic acid 12.0 percent water 32.0 percent methanol 32.0 percent The above ingredients are stirred together with slight warming until a homogeneous solution results.
A water solution of the formulation of Example 69 is prepared to contain 600 ppm. total active ingredient. This solution is sprayed on McIntosh apples to run-off in early September. The treatment prevents coloration in the apples and prevents premature fall before the apples are harvested.
EXAMPLE 70 The following wettable powder is prepared: ammonium ethyl carbamoylphosphonate 30.0
percent maleic hydrazide 20.0 percent synthetic silica 2.5 percent montmorillonite 45.0 percent sodium alkylnaphthalene sulfonate 2.0 percent partially desulfonated sodium lignin sulfonate 0.5
percent The above ingredients are blended, micropulverized to a particle size essentially below 50 microns and reblended.
The wettable powder of Example 70 is suspended in water at the rate of 4,000 p.p.m. of active ingredient and sprayed on an area of mixed brush under a power line. The application is made in mid-May just after the brush has been trimmed back to keep it away from under the power line. The solution is sprayed to run-off on the lower two-thirds of the trees which were not cut. This treatment effectively retards the growth of the trimmed vegetation for the next growing season as well as the one in which the vegetation is treated.
The formulation of Example 70 is suspended in water at the rate of 1,000 p.p.m. of active ingredient and sprayed to the point of run-off on single trees located at random throughout orchards of apple, peach and cherry varieties. The treatments are applied while the trees are still in the dormant stage. During an early spring warm period the trees in these orchards begin to break dormancy and buds sprout. The treated trees, on the other hand, remain dormant and do not sprout nor flower while there is danger of frost. In this manner, a more reliable yield is assured.
EXAMPLE 71 The following aerosol preparation is prepared:
ammonium ethyl carbamoylphosphonate A 1,0 percent water 29.0 percent asphalt 20.0 percent B xylene 25.0 percent polyglycerol stearate 5.0 percent C dichloro difluoromethane 20.0 percent The predissolved aqueous phase (A), comprising active ingredient in water, is combined with the organic phase (B), comprising a solution of asphalt, emulsifier, and xylene, with agitation. To this is added, under pressure in an aerosol dispenser, the propellant C.
Trees under a power line are trimmed back in early May to prevent them growing into the lines. The cut ends are treated with the wound dressing described above. The treatment reduces the break of lateral buds and retards the rate of growth of those that do break. In addition, the treatment causes overall retardation in the rate of growth of the treated plants. This lengthens the time between trimmings, reducing the cost of maintaining the power line. Trees treated include sweetgum (Liquidambar styraciflua L.), black willow (Salix nigra Marsh), apple (Malus sp. Mill), and red maple (Acer rubrum L.).
EXAMPLE 72 The following asphalt emulsion is prepared:
ammonium ethyl carbamoylphosphonate 4.0 percent sodium oleate 2.0 percent water 47.0 percent asphalt 47.0 percent The active compound, sodium oleate and water are combined and heated to 90C. In a high shear mixer, molten asphalt is added. The suspension is cooled and packaged.
This emulsion containing 4 percent ethyl carbamoylphosphonate is applied as a wound dressing in late Spring following conventional pruning on red maple (Acer rubrum L.), red oak (Quercus borealis Michx.), paper birch (Betula papyrzfera Marsh), and sugar maple (Acer saccharum Marsh), growing under a power line. The treatment retards the breaking of lateral buds and the rate of growth of laterals. This reduces the future trimming necessary to maintain the area.
I claim:
1. A plant growth regulant and tree wound dressing composition comprising an effective amount of an asphaltic emulsion in combination with a compound of the formula:
R is hydrogen or methyl;
R is hydrogen, methyl, amino, methylamino, or dimethylamino;
M is selected from the group consisting of ammonium, hydrogen, sodium, lithium, potassium, calcium, magnesium, zinc, manganese, barium or each can be hydrogen, alkyl of one through four carbon atoms, or hydroxy alkyl of two through four carbon atoms; and R is hydrogen, alkyl of one through 12 carbon atoms, amino, methylamino, or dimethylamino; R and R can be taken together to form a ring that is or (CH2) Whfire n is n Rtami it a e H..-
2. The composition of claim 1 wherein in the formula R is alkyl of one through four carbon atoms, or alkenyl of three through four carbon atoms,
R and R are each hydrogen; and
M is ammonium, hydrogen, sodium, lithium or potassium.
3. The composition of claim 2 wherein the compound is ammonium allyl carbamoylphosphonate.
4. The composition of claim 2 wherein the compound is ammonium ethyl carbamoylphosphonate.
5. The composition of claim 2 wherein the compound is ammonium isopropyl carbamoylphosphonate.
6. The plant growth regulant composition of claim 1 comprised of from lweight percent of the compound and an asphaltic emulsion.
7. The plant growth regulant composition of claim 1 comprised of from 1-5 weight percent of a compound of the formula:
9. The plant growth regulant composition of claim-l comprised of from l-S weight percent of ammonium ethyl carbamoylphosphonate and an asphaltic emulsron.
10. The plant growth regulant composition of claim 1 comprised of from l-5 weight percent of ammonium isopropyl carbamoylphosphonate and an asphaltic emulsion.
11. A method for retarding the growth rate of woody vegetation which comprises applying an effective amount of the composition of claim 1 to cut portions of the woody vegetation to effect growth retardation and aid in healing the wound of the vegetation.
12. A method for retarding the growth rate of woody vegetation which comprises applying an effective amount of the composition of claim 2 to cut portions of the woody vegetation to effect growth retardation and aid in healing the wound of the vegetation.
13. A method for retarding the growth rate of woody vegetation which comprises applying an effective amount of the composition of claim 3 to cut portions of the woody vegetation to effect growth retardation and aid in healing the wound of the vegetation.
14. A method for retarding the growth rate of woody vegetation which comprises applying an effective amount of the composition of claim 4 to cut portions of the woody vegetation to effect growth retardation and aid in healing the wound of the vegetation.
15. A method for retarding the growth rate of woody vegetation which comprises applying an effective amount of the composition of claim 5 to cut portions of the woody vegetation to effect growth retardation and aid in healing the wound of the vegetation.
16. A method for retarding the growth rate of woody vegetation which comprises applying an effective amount of the composition of claim 6 to cut portions of the woody vegetation to effect growth retardation and aid in healing the wound of the vegetation.
17. A method for retarding the growth rate of woody vegetation which comprises applying an effective amount of the composition of claim 7 to cut portions of the woody vegetation to effect growth retardation and aid in healing the wound of the vegetation.
18. A method for retarding the growth rate of woody vegetation which comprises applying an effective amount of the composition of claim 8 to cut portions of the woody vegetation to effect growth retardation and aid in healing the wound of the vegetation.
19. A method for retarding the growth rate of woody vegetation which comprises applying an effective amount of the composition of claim 9 to cut portions of the woody vegetation to effect growth retardation and aid in healing the wound of the plant or vegetation.
20. A method for retarding the growth rate of woody vegetation which comprises applying an effective amount of the composition of claim 10 to cut portions of the plant or woody vegetation to effect growth retardation and aid in healing the wound of the vegetation.
21. A method for retarding the growth rate of plants which comprises applying an effective amount of the composition of claim 1 to cut portion of the plant to effect growth retardation and aid in healing the wound of the plant.
227$"? UNITED STATES PATENT OFFICE CERTIFICATE CORRECTIN Patent NO- 2 8 l3.355 Dated June 25, 1214 Inventor(s) William P, L ;Lgsdorf, Jr.
It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Claim 19, Column 20, line #6,- delete plant or".
(SEAL) Attest: I
McCOY M. GIBSON JR. c. MARSHALL DANN .Attesting Officer Commissioner of Patents

Claims (20)

  1. 2. The composition of claim 1 wherein in the formula R1 is alkyl of one through four carbon atoms, or alkenyl of three through four carbon atoms, R2 and R3 are each hydrogen; and M is ammonium, hydrogen, sodium, lithium or potassium.
  2. 3. The composition of claim 2 wherein the compound is ammonium allyl carbamoylphosphonate.
  3. 4. The composition of claim 2 wherein the compound is ammonium ethyl carbamoylphosphonate.
  4. 5. The composition of claim 2 wherein the compound is ammonium isopropyl carbamoylphosphonate.
  5. 6. The plant growth regulant composition of claim 1 comprised of from 1-5 weight percent of the compound and an asphaltic emulsion.
  6. 7. The plant growth regulant composition of claim 1 comprised of from 1-5 weight percent of a compound of the formula:
  7. 8. The plant growth regulant composition of claim 1 comprised of from 1-5 weight percent of ammonium allyl carbamoylphosphonate and an asphaltic emulsion.
  8. 9. The plant growth regulant composition of claim 1 comprised of from 1-5 weight percent of ammonium ethyl carbamoylphosphonate and an asphaltic emulsion.
  9. 10. The plant growth regulant composition of claim 1 comprised of from 1-5 weight percent of ammonium isopropyl carbamoylphosphonate and an asphaltic emulsion.
  10. 11. A method for retarding the growth rate of woody vegetation which comprises applying an effective amount of the composition of claim 1 to cut portions of the woody vegetation to effect growth retardation and aid in healing the wound of the vegetation.
  11. 12. A method for retarding the growth rate of woody vegetation which comprises applying an effective amount of the composition of claim 2 to cut portions of the woody vegetation to effect growth retardation and aid in healing the wound of the vegetation.
  12. 13. A method for retarding the growth rate of woody vegetation which comprises applying an effective amount of the composition of claim 3 to cut portions of the woody vegetation to effect growth retardation and aid in healing the wound of the vegetation.
  13. 14. A method for retarding the growth rate of woody vegetation which comprises applying an effective amount of the composition of claim 4 to cut portions of the woody vegetation to effect growth retardation and aid in healing the wound of the vegetation.
  14. 15. A method for retarding the growth rate of woody vegetation which comprises applying an effective amount of the composition of claim 5 to cut portions of the woody vegetation to effect growth retardation and aid in healing the wound of the vegetation.
  15. 16. A method for retarding the growth rate of woody vegetation which comprises applying an effective amount of the composition of claim 6 to cut portions of the woody vegetation to effect growth retardation and aid in healing the wound of the vegetation.
  16. 17. A method for retarding the growth rate of woody vegetation which comprises applying an effective amount of the composition of claim 7 to cut portions of the woody vegetation to effect growth retardation and aid in healing the wound of the vegetation.
  17. 18. A method for retarding the growth rate of woody vegetation which comprises applying an effective amount of the composition of claim 8 to cut portions of the woody vegetation to effect growth retardation and aid in healing the wound of the vegetation.
  18. 19. A method for retarding the growth rate of woody vegetation which comprises applying an effective amount of the composition of claim 9 to cut portions of the woody vegetation to effect growth retardation and aid in healing the wound of the plant or vegetation.
  19. 20. A method for retarding the Growth rate of woody vegetation which comprises applying an effective amount of the composition of claim 10 to cut portions of the plant or woody vegetation to effect growth retardation and aid in healing the wound of the vegetation.
  20. 21. A method for retarding the growth rate of plants which comprises applying an effective amount of the composition of claim 1 to cut portion of the plant to effect growth retardation and aid in healing the wound of the plant.
US00085221A 1968-05-24 1970-10-29 Plant growth regulant carbamoylphosphonates Expired - Lifetime US3819353A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US00085221A US3819353A (en) 1968-05-24 1970-10-29 Plant growth regulant carbamoylphosphonates
US00283769A US3846512A (en) 1968-05-24 1972-08-25 Carbamoylphosphonates
US05/478,968 US3952074A (en) 1968-05-24 1974-06-13 Carbamoylphosphonates
US05/552,035 US3975464A (en) 1968-05-24 1975-02-24 Carbamoylphosphonates
US05/553,423 US3997544A (en) 1968-05-24 1975-02-26 Plant growth regulant carbamoylphosphonates
US05/554,227 US3981870A (en) 1968-05-24 1975-02-28 Plant growth regulant carbamoylphosphonates
US05/723,332 US4048156A (en) 1968-05-24 1976-09-14 Carbamoylphosphonates

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US73173268A 1968-05-24 1968-05-24
US80396269A 1969-03-03 1969-03-03
BE743863 1969-12-30
US00085221A US3819353A (en) 1968-05-24 1970-10-29 Plant growth regulant carbamoylphosphonates

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US80396269A Continuation-In-Part 1968-05-24 1969-03-03

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US00283769A Continuation-In-Part US3846512A (en) 1968-05-24 1972-08-25 Carbamoylphosphonates
US05/478,968 Continuation-In-Part US3952074A (en) 1968-05-24 1974-06-13 Carbamoylphosphonates

Publications (1)

Publication Number Publication Date
US3819353A true US3819353A (en) 1974-06-25

Family

ID=27424953

Family Applications (1)

Application Number Title Priority Date Filing Date
US00085221A Expired - Lifetime US3819353A (en) 1968-05-24 1970-10-29 Plant growth regulant carbamoylphosphonates

Country Status (1)

Country Link
US (1) US3819353A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4017297A (en) * 1975-08-29 1977-04-12 E. I. Du Pont De Nemours And Company Phosphonates for the control of bindweed
US4017296A (en) * 1975-08-29 1977-04-12 E. I. Du Pont De Nemours And Company Phosphonates for control of bindweed
US4135909A (en) * 1974-05-10 1979-01-23 Basf Aktiengesellschaft Salts of phosphonic acids
US4191551A (en) * 1978-05-25 1980-03-04 E. I. Du Pont De Nemours And Company Growth retardants
US4218235A (en) * 1978-07-10 1980-08-19 Monsanto Company Ester derivatives of n-trifluoroacetyl-n-phosphonomethylglycine and the herbicidal use thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1976221A (en) * 1931-10-10 1934-10-09 Dorr Co Inc Wood preservative
US2086670A (en) * 1932-08-19 1937-07-13 Charles G Grimes Tree protection
US3627507A (en) * 1968-05-24 1971-12-14 Du Pont Plant growth regulant carbamoylphosphonates
US3778377A (en) * 1971-10-06 1973-12-11 Universal Oil Prod Co Protecting metal during acid contact

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1976221A (en) * 1931-10-10 1934-10-09 Dorr Co Inc Wood preservative
US2086670A (en) * 1932-08-19 1937-07-13 Charles G Grimes Tree protection
US3627507A (en) * 1968-05-24 1971-12-14 Du Pont Plant growth regulant carbamoylphosphonates
US3778377A (en) * 1971-10-06 1973-12-11 Universal Oil Prod Co Protecting metal during acid contact

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4135909A (en) * 1974-05-10 1979-01-23 Basf Aktiengesellschaft Salts of phosphonic acids
US4017297A (en) * 1975-08-29 1977-04-12 E. I. Du Pont De Nemours And Company Phosphonates for the control of bindweed
US4017296A (en) * 1975-08-29 1977-04-12 E. I. Du Pont De Nemours And Company Phosphonates for control of bindweed
US4191551A (en) * 1978-05-25 1980-03-04 E. I. Du Pont De Nemours And Company Growth retardants
US4218235A (en) * 1978-07-10 1980-08-19 Monsanto Company Ester derivatives of n-trifluoroacetyl-n-phosphonomethylglycine and the herbicidal use thereof

Similar Documents

Publication Publication Date Title
EP0109314B1 (en) Aluminum n-phosphonomethylglycine and its use as a herbicide
US4168963A (en) Herbicidal agents
HU184659B (en) Process for preparing sesquisodium-n-/phosphono-methyl/-glycine and herbicide compositions containing such compound
US4221583A (en) N-Phosphonomethylglycinonitrile and certain derivatives thereof
US3627507A (en) Plant growth regulant carbamoylphosphonates
CS243456B2 (en) Male anthers' sterilization agent and method of its efficient substance's production
EP0039310B1 (en) Phosphonomethylglycylhydroxamic acid and salts thereof, their preparation and use in herbicide compositions
US3846512A (en) Carbamoylphosphonates
US3819353A (en) Plant growth regulant carbamoylphosphonates
JPH10509435A (en) Fluoroalkenyl compounds and their use as pest control agents
US3943201A (en) Alkoxy carboxycarbonylphosphonic acid esters
US4018854A (en) Carboxyphosphonates
US3619166A (en) Method of increasing sugar content of crops
US3849102A (en) Plant growth regulant method
US3997544A (en) Plant growth regulant carbamoylphosphonates
US3952074A (en) Carbamoylphosphonates
US4048156A (en) Carbamoylphosphonates
US3981870A (en) Plant growth regulant carbamoylphosphonates
US3975464A (en) Carbamoylphosphonates
KR910000725B1 (en) Processes for the preparation of phosphorus-containing functional derivatives of acetic acid
US3712936A (en) Alkyl carbamoyl-n,n-dialkylphosphonamidates
EP0115176B1 (en) Stannic n-phosphonomethylglycine compounds and their use as herbicides
US4105432A (en) Cyclized derivatives of N-(2-hydroxyalkyl)-N-phosphonomethylglycine compounds
HU184234B (en) Preparations for controlling the plant growth
IL32107A (en) Carbamoylphosphonates and their use as plant growth regulants