US3818976A - Process and apparatus for grinding granular materials at low temperatures - Google Patents

Process and apparatus for grinding granular materials at low temperatures Download PDF

Info

Publication number
US3818976A
US3818976A US00093824A US9382470A US3818976A US 3818976 A US3818976 A US 3818976A US 00093824 A US00093824 A US 00093824A US 9382470 A US9382470 A US 9382470A US 3818976 A US3818976 A US 3818976A
Authority
US
United States
Prior art keywords
gas
heat exchanger
heat
grinding
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00093824A
Inventor
A Ledergerber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inventa AG fuer Forschung und Patentverwertung
Original Assignee
Inventa AG fuer Forschung und Patentverwertung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CH1788569A priority Critical patent/CH491675A/en
Application filed by Inventa AG fuer Forschung und Patentverwertung filed Critical Inventa AG fuer Forschung und Patentverwertung
Priority to US00093824A priority patent/US3818976A/en
Application granted granted Critical
Publication of US3818976A publication Critical patent/US3818976A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B13/10Conditioning or physical treatment of the material to be shaped by grinding, e.g. by triturating; by sieving; by filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/18Use of auxiliary physical effects, e.g. ultrasonics, irradiation, for disintegrating
    • B02C19/186Use of cold or heat for disintegrating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B13/02Conditioning or physical treatment of the material to be shaped by heating
    • B29B13/021Heat treatment of powders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/004Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S241/00Solid material comminution or disintegration
    • Y10S241/37Cryogenic cooling

Definitions

  • pre-ground solid car-' bon dioxide may be admixed with a pre-cooled charging product before it enters the grinding mill.
  • the heat of grinding is then removed by a cooling medium, both partly from the pre-cooled charging product and from the vaporizing residual dry ice (solid CO)
  • solid CO vaporizing residual dry ice
  • Another possibility consists in the use of liquid nitrogen as a cooling medium. If there is direct contact between the liquid nitrogen and the charging product, the extremely low temperature may produce an impairment of the comminution properties of the charging product.
  • the heat generated during grinding is removed from the mill by a cooled gas circuit which for its part gives up the absorbed heat via a first heat exchanger to a cold-gas circuit, the necessary refrigerating capacity being produced by an approximately isentropic expansion of a compressed gas in one or more expansion machines.
  • the expanded gas after absorbing the heat in the first heat exchanger, is heated in a second heat exchanger to approximately ambient temperature by transfer of heat to the same gas compressed in an interposed compressor, which is cooled to the intake temperature of the expansion machines in counter-current to the heat-absorbing gas stream.
  • cold gas turbines as customarily used in gas liquefying plants may be employed as expansion machines.
  • the braking of the turbines may either be effected electrically with the interposition of a conventional gearing mechanism,
  • turbocompressors and reciprocating compressors may be employed for gas compression, depending upon the size of the required refrigerating capacity and on the pressure ratio employed.
  • Air is preferably employed as recycle gas, since in this way the cost of topping up the system in the event of leakage losses is low.
  • gases which are not liquefied in the working range may also be employed.
  • the process according to the invention allows the temperature during the grinding operation to be adjusted simply and within wide limits to any desired level and to be kept exactly constant thereat. Regulation may be effected by varying the pressure gradient in the refrigerating circuit, by varying the amount of gas in circulation or by varying the effective heat-exchanger area.
  • the cost of cold production by the new process is substantially smaller than in the case of the other processes that are known and operation is extremely simple in comparison to known processes.
  • the heat of compression is given off and the air finally passes through the pipe 27 back to the heat exchanger 3, in which the re-cycled air is cooled to the turbine intake temperature of -60 C.
  • the stream of air contained in pipe 34 is cooled to l00 C in the heat exchanger 2 and recycled to pipe 30 to a fluidized bed cooler 11, in which the plastics granules fed from the supply vessel 10 are pre-cooled.
  • the mixture of air and granules passes through the pipe 31 to the mill 12, in which the granules are crushed into powder.
  • the heat of grinding that is generated is removed from the stream of charging product, as a result of which the air temperature increases to 60 C.
  • the powder is separated from the recycled air in the separator l3 and is conveyed to a screening arrangement through valve 37, while the air is carried back to the heat exchanger 2 by the fan 14.
  • Conduit 35 (dotted lines) may be used in an alternative embodiment to recycle a portion of the heated air to pipe 30 to somewhat raise and regulate the temperature of air in conduit 30.
  • Appropriate conventional valves may be used to achieve this.
  • the first is indicated generally by numeral 40 and carclosed gas circuit indicated generally by numeral 42 and is the circuit used to control the temperature of the gas flowing in the first circuit 40.
  • the only element common to both circuits is heat exchanger 2, although the gases contained in the two circuits are not intermixed with each other by heat exchanger 2.
  • a process for controlling the temperature of granular material during grinding in a grinding mill of the type in which the granular material is mixed with a cold gas prior to grinding, separated from the ground material after grinding, recooled in a heat exchanger and then reused to cool additional granular material during grinding comprising the steps of feeding a gas which is cooler than the separated gas to the first heat exchanger such that the separated gas gives up at least a portion of its heat to said cooler gas, then heating said gas to approximately ambient temperature in a second heat exchanger, expanding said heated gas substantially isentropically to a predetermined cooler temperature in an expansion machine and recycling said cooler gas to said first heat exchanger.
  • step of heating the gas in the second heat exchanger comprises the steps of feeding gas having a temperature greater than that of the gas to be heated into the second heat exchanger, the warmer gas being fed into said second heat exchangerin counter-current to the direction of flow of the gas to be warmed.
  • Process for grinding granular materials, in particular granular plastics, at low temperatures characterized in that the heat generated during grinding is removed from the mill by a cooled gas circuit which for its part gives up the absorbed heat via a first heat exchanger to a cold-gas circuit, the necessary refrigerating capacity being produced by an approximately isentropic expansion of a compressed gas in one or more expansion machines, and the expanded gas, after the heat absorption effected in the first heat exchanger, being heated in a second heat exchanger to approxi mately ambient temperature by transfer of heat to the same gas compressed in an interposed compressor, which is cooled to the intake temperature of the expansion machines in counter-current to the heat-absorbing gas stream.

Abstract

Method and apparatus for the grinding of granular materials is provided in which the granular material is kept cool during the grinding operation. A stream of cool gas is mixed with the granular material in the grinding mill and recycled to a heat exchanger in which its heat is given up to a cool gas being continuously recycled through the heat exchanger. Compression and isentropic expansion means are provided in conjunction with the cooling gas to control the temperature of the cooling gas and thereby the temperature of the gas which is mixed with the granular material.

Description

United States Patent 1191 Ledergerber June 25, 1974 PROCESS AND APPARATUS FOR GRINDING GRANULAR MATERIALS AT Primary ExaminerCharles Sukalo LQW TEMPERATURES Attorney, Agent, or Firm-Bierman & Bierman [75] Inventor: Anton Ledergerber, Domatems,
Switzerland [73] Assignee: Inventa AG fur Forschung und [57] ABSTRACT Patentverwertung, Zurich, Switzerland Method and apparatus for the grinding of granular [22] Filed: Nov. 30, 1970 materials is provided in which the granular material is kept cool during the grinding operation. A stream of [211 App! 93824 cool gas is mixed with the granular material in the grinding mill and recycled to a heat exchanger in [30] Foreign Application Priority Data which its heat is given up to a cool gas being continu- Dec. 1, 1969 Switzerland 17885/69 ohsly recycled through the heat exchangerp sion and isentropic expansion means are provided in [52] US. Cl. 165/1, 241/17 Conjunction with the coohhg gas to control the 51 Int. Cl. r251 29/00 perature of the cooling gas and thereby the p [58] Field of Search 165/1, 61; 241/17 ture of the gas which is mixed with the granular mate- I rial.
[56] References Cited UNITED STATES PATENTS Arnold .i 241/17 5 Claims, 1 Drawing Figure PROCESS AND APPARATUS FOR GRINDING GRANULAR MATERIALS AT LOW TEMPERATURES In the grinding of granular materials into powder, the properties of the material require, in many cases, that the grinding operation be carried out at low temperatures. This applies in the grinding of granular plastics of rather great toughness and relatively low melting points. An example of such plastics is acopolymer formed out of the polyamides 6, 6.6 and 12. which must be ground substantially below C so that a satisfactory powder capable of flowing and of uniform grain structure may be obtained.
If the heat generated during the grinding is not removed in a sufficiently effective manner, too high temperatures occur. Such heat generation may bring the material to a temperature above its melting point, so that the grinding effect is reduced and the output of the mill is considerably decreased.
There are various art-known methods for removing the heat of grinding. For instance, pre-ground solid car-' bon dioxide may be admixed with a pre-cooled charging product before it enters the grinding mill. The heat of grinding is then removed by a cooling medium, both partly from the pre-cooled charging product and from the vaporizing residual dry ice (solid CO Although good grinding results are obtained by this method, it nevertheless has the disadvantage that uniform metering of the carbon dioxide presents difficulties, as a result of which the maintenance of an exact temperature is not readily realizable. Moreover, the handling of the cooling medium is troublesome and operation is uneconomic.
Another possibility consists in the use of liquid nitrogen as a cooling medium. If there is direct contact between the liquid nitrogen and the charging product, the extremely low temperature may produce an impairment of the comminution properties of the charging product.
Both methods are not very flexible as regards temperature control and require either an installation for producing liquid gas connected directly to the grinding apparatus or troublesome transport of these refrigerating agents over rather large distances. These methods are therefore economically unattractive.
It has been found that these disadvantages can be reliably avoided by a process for grinding granular materials at low temperatures. In accordance with the present invention, the heat generated during grinding is removed from the mill by a cooled gas circuit which for its part gives up the absorbed heat via a first heat exchanger to a cold-gas circuit, the necessary refrigerating capacity being produced by an approximately isentropic expansion of a compressed gas in one or more expansion machines. The expanded gas, after absorbing the heat in the first heat exchanger, is heated in a second heat exchanger to approximately ambient temperature by transfer of heat to the same gas compressed in an interposed compressor, which is cooled to the intake temperature of the expansion machines in counter-current to the heat-absorbing gas stream.
With a sufficiently large refrigerating capacity, cold gas turbines as customarily used in gas liquefying plants may be employed as expansion machines. The braking of the turbines may either be effected electrically with the interposition of a conventional gearing mechanism,
useful energy being obtained, or a braking blower may be coupled directly to the turbine to pre-compress the gas. Both turbocompressors and reciprocating compressors may be employed for gas compression, depending upon the size of the required refrigerating capacity and on the pressure ratio employed.
Air is preferably employed as recycle gas, since in this way the cost of topping up the system in the event of leakage losses is low. Of course, other gases which are not liquefied in the working range may also be employed.
The process according to the invention allows the temperature during the grinding operation to be adjusted simply and within wide limits to any desired level and to be kept exactly constant thereat. Regulation may be effected by varying the pressure gradient in the refrigerating circuit, by varying the amount of gas in circulation or by varying the effective heat-exchanger area. The cost of cold production by the new process is substantially smaller than in the case of the other processes that are known and operation is extremely simple in comparison to known processes.
The process will be explained in the following Example with reference to the accompanying drawing.
5,000 kg of air at 10 atmospheres absolute are expanded in the expansion turbine l to 1.5 atmospheres absolute, the air being cooled from 60" to 130 C. The cooled air is then conveyed through the pipe 21 to the first heat exchanger 2, being heated to C by absorption of heat from the grinding circuit. In the heat exchanger 3, the air is heated further to +l0 C, the heat being extracted from a stream of air carried in counter-current, as is explained hereinafter. The air leaving the heat exchanger 3 is conveyed through the pipe 23 tothe braking blower 4, where it is compressed from 1.2 to 1.8 atmospheres absolute. After intermediate cooling in the cooler 5, the air passes to the compressor 6 and is compressed thereby to 10 atmospheres absolute. Shown coupled to compressor 6 is a steamturbine 8 which can be replaced by any other suitable prime mover to drive the compressor 6.
In the final cooler 7, the heat of compression is given off and the air finally passes through the pipe 27 back to the heat exchanger 3, in whichthe re-cycled air is cooled to the turbine intake temperature of -60 C.
The stream of air contained in pipe 34 is cooled to l00 C in the heat exchanger 2 and recycled to pipe 30 to a fluidized bed cooler 11, in which the plastics granules fed from the supply vessel 10 are pre-cooled. The mixture of air and granules passes through the pipe 31 to the mill 12, in which the granules are crushed into powder. The heat of grinding that is generated is removed from the stream of charging product, as a result of which the air temperature increases to 60 C. The powder is separated from the recycled air in the separator l3 and is conveyed to a screening arrangement through valve 37, while the air is carried back to the heat exchanger 2 by the fan 14.
Conduit 35 (dotted lines) may be used in an alternative embodiment to recycle a portion of the heated air to pipe 30 to somewhat raise and regulate the temperature of air in conduit 30. Appropriate conventional valves may be used to achieve this.
ln effect, two separate gas flow circuits are shown.
The first is indicated generally by numeral 40 and carclosed gas circuit indicated generally by numeral 42 and is the circuit used to control the temperature of the gas flowing in the first circuit 40. The only element common to both circuits is heat exchanger 2, although the gases contained in the two circuits are not intermixed with each other by heat exchanger 2.
While only a limited number of embodiments have been shown and described, it is to be understood that many other modifications will occur to those skilled in the art. It is intended to cover all such modifications which fall within the spirit and scope of the appended claims.
What is claimed is:
1. In a process for controlling the temperature of granular material during grinding in a grinding mill of the type in which the granular material is mixed with a cold gas prior to grinding, separated from the ground material after grinding, recooled in a heat exchanger and then reused to cool additional granular material during grinding, the improvement comprising the steps of feeding a gas which is cooler than the separated gas to the first heat exchanger such that the separated gas gives up at least a portion of its heat to said cooler gas, then heating said gas to approximately ambient temperature in a second heat exchanger, expanding said heated gas substantially isentropically to a predetermined cooler temperature in an expansion machine and recycling said cooler gas to said first heat exchanger.
2. The process specified in claim 1 wherein the step of heating the gas in the second heat exchanger comprises the steps of feeding gas having a temperature greater than that of the gas to be heated into the second heat exchanger, the warmer gas being fed into said second heat exchangerin counter-current to the direction of flow of the gas to be warmed.
3. The process specified in claim 2 wherein the warmer gas is obtained by removing the heated gas from the second heat exchanger after it has been heated, compressing the removed gas, and recycling back to the second heat exchanger.
4. The process specified in claim 3 further comprising the steps of removing the gas fed in counter-current in said second heat exchanger and feeding it to said expansion machine.
5. Process for grinding granular materials, in particular granular plastics, at low temperatures, characterized in that the heat generated during grinding is removed from the mill by a cooled gas circuit which for its part gives up the absorbed heat via a first heat exchanger to a cold-gas circuit, the necessary refrigerating capacity being produced by an approximately isentropic expansion of a compressed gas in one or more expansion machines, and the expanded gas, after the heat absorption effected in the first heat exchanger, being heated in a second heat exchanger to approxi mately ambient temperature by transfer of heat to the same gas compressed in an interposed compressor, which is cooled to the intake temperature of the expansion machines in counter-current to the heat-absorbing gas stream.

Claims (5)

1. In a process for controlling the temperature of granular material during grinding in a grinding mill of the type in which the granular material is mixed with a cold gas prior to grinding, separated from the ground material after grinding, recooled in a heat exchanger and then reused to cool additional granular material during grinding, the improvement comprising the steps of feeding a gas which is cooler than the separated gas to the first heat exchanger such that the separated gas gives up at least a portion of its heat to said cooler gas, then heating said gas to approximately ambient temperature in a second heat exchanger, expanding said heated gas substantially isentropically to a predetermined cooler temperature in an expansion machine and recycling said cooler gas to said first heat exchanger.
2. The process specified in claim 1 wherein the step of heating the gas in the second heat exchanger comprises the steps of feeding gas having a temperature greater than that of the gas to be heated into the second heat exchanger, the warmer gas being fed into said second heat exchanger in counter-current to the direction of flow of the gas to be warmed.
3. The process specified in claim 2 wherein the warmer gas is obtained by removing the heated gas from the second heat exchanger after it has been heated, compressing the removed gas, and recycling back to the second heat exchanger.
4. The process specified in claim 3 further comprising the steps of removing the gas fed in counter-current in said second heat exchanger and feeding it to said expansion machine.
5. Process for grinding granular materials, in particular granular plastics, at low temperatures, characterized in that the heat generated during grinding is removed from the mill by a cooled gas circuit which for its part gives up the absorbed heat via a first heat exchanger to a cold-gas circuit, the necessary refrigerating capacity being produced by an approximately isentropic expansion of a compressed gas in one or more expansion machines, and the expanded gas, after the heat absorption effected in the first heat exchanger, being heated in a second heat exchanger to approximately ambient temperature by transfer of heat to the same gas compressed in an interposed compressor, which is cooled to the intake temperature of the expansion machines in counter-current to the heat-absorbing gas stream.
US00093824A 1969-12-01 1970-11-30 Process and apparatus for grinding granular materials at low temperatures Expired - Lifetime US3818976A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CH1788569A CH491675A (en) 1969-12-01 1969-12-01 METHOD OF GRINDING GRAINY MATERIALS AT LOW TEMPERATURES
US00093824A US3818976A (en) 1969-12-01 1970-11-30 Process and apparatus for grinding granular materials at low temperatures

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1788569A CH491675A (en) 1969-12-01 1969-12-01 METHOD OF GRINDING GRAINY MATERIALS AT LOW TEMPERATURES
US00093824A US3818976A (en) 1969-12-01 1970-11-30 Process and apparatus for grinding granular materials at low temperatures

Publications (1)

Publication Number Publication Date
US3818976A true US3818976A (en) 1974-06-25

Family

ID=27623574

Family Applications (1)

Application Number Title Priority Date Filing Date
US00093824A Expired - Lifetime US3818976A (en) 1969-12-01 1970-11-30 Process and apparatus for grinding granular materials at low temperatures

Country Status (2)

Country Link
US (1) US3818976A (en)
CH (1) CH491675A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3921917A (en) * 1973-03-09 1975-11-25 Linde Ag Method of comminuting of materials at low temperatures
US4056231A (en) * 1975-08-07 1977-11-01 British Steel Corporation Scrap treatment
US4102503A (en) * 1975-04-16 1978-07-25 Linde Aktiengesellschaft Method of and apparatus for the low-temperature milling of materials
US4846408A (en) * 1988-01-21 1989-07-11 Gentex Corporation Method for making a friction material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2400382A (en) * 1943-07-29 1946-05-14 Gerald D Arnold Closed hammer mill circuits

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2400382A (en) * 1943-07-29 1946-05-14 Gerald D Arnold Closed hammer mill circuits

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3921917A (en) * 1973-03-09 1975-11-25 Linde Ag Method of comminuting of materials at low temperatures
US4102503A (en) * 1975-04-16 1978-07-25 Linde Aktiengesellschaft Method of and apparatus for the low-temperature milling of materials
US4056231A (en) * 1975-08-07 1977-11-01 British Steel Corporation Scrap treatment
US4846408A (en) * 1988-01-21 1989-07-11 Gentex Corporation Method for making a friction material

Also Published As

Publication number Publication date
CH491675A (en) 1970-06-15

Similar Documents

Publication Publication Date Title
US3658259A (en) Method for granule pulverization
US4237695A (en) Method of and apparatus for the cooling of articles or materials
US6295833B1 (en) Closed loop single mixed refrigerant process
US3347055A (en) Method for recuperating refrigeration
US4102503A (en) Method of and apparatus for the low-temperature milling of materials
US3183666A (en) Method of gasifying a liquid gas while producing mechanical energy
US3608323A (en) Natural gas liquefaction process
US4575388A (en) Process for recovering argon
CN106672243A (en) Aircraft air conditioning system with cabin exhaust air turbine
ES8305656A1 (en) Method of producing gaseous oxygen and a cryogenic plant in which said method can be performed.
GB1282643A (en) Method and apparatus for producing refrigeration
KR100674451B1 (en) Apparatus for air separation
CN1081781C (en) Process and installatior for the production of gaseous oxygen and/or gaseous nitrogen under pressure by distillation or air
US3818976A (en) Process and apparatus for grinding granular materials at low temperatures
CN110486627B (en) Poly-generation system based on LNG cold energy utilization
US2698525A (en) Refrigeration arrangement utilizing the ranque tube
CN1133964A (en) Process for separation of gas mixture by cryogenic distillation
US4597268A (en) Method and apparatus for gas-cooling
US2785548A (en) Process for the production of liquid oxygen by separation from air
GB974542A (en) Liquefaction of gases
CN208025957U (en) A kind of novel freezing drying machine cold-hot integrated system
US5323616A (en) Process for cooling a gas in an apparatus for exploiting gases present in the air
JPH0148476B2 (en)
JP3390801B2 (en) Cooling method of crushed material in low-temperature crushing equipment
US3557566A (en) Method and device for producing cold and liquefying gases