US3816123A - Photographic processes and products employing 8-quinolinol phthaleins as optical filter agents - Google Patents

Photographic processes and products employing 8-quinolinol phthaleins as optical filter agents Download PDF

Info

Publication number
US3816123A
US3816123A US00202483A US20248371A US3816123A US 3816123 A US3816123 A US 3816123A US 00202483 A US00202483 A US 00202483A US 20248371 A US20248371 A US 20248371A US 3816123 A US3816123 A US 3816123A
Authority
US
United States
Prior art keywords
layer
silver halide
dye
image
indicator dye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00202483A
Inventor
A Borror
P Garcia
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polaroid Corp
Original Assignee
Polaroid Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polaroid Corp filed Critical Polaroid Corp
Priority to US00202483A priority Critical patent/US3816123A/en
Priority to US454692A priority patent/US3929797A/en
Application granted granted Critical
Publication of US3816123A publication Critical patent/US3816123A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C8/00Diffusion transfer processes or agents therefor; Photosensitive materials for such processes
    • G03C8/42Structural details
    • G03C8/44Integral units, i.e. the image-forming section not being separated from the image-receiving section
    • G03C8/48Integral units, i.e. the image-forming section not being separated from the image-receiving section characterised by substances used for masking the image-forming section

Definitions

  • ABSTRACT This invention relates to a class of phthalein indicator dyes useful as optical filter agents in photographic processes to protect a selectively exposed photosensitive material from further exposure during processing in the presence of incident light.
  • Such dyes comprise 3,3-disubstituted 1 phthalides and 3,3-disubstituted naphthalides wherein the 3,3 substituents are 8'- hydroxy-S -quino1y1 radicals.
  • the present invention relates to novel chemical compounds, and more specifically, it relates to a new class of phthalein indicator dyes and to a method for the preparation thereof. In a particular aspect it relates to certain quinoline phthaleins useful as optical filter agents in photographic processes for protecting an exposed photosensitive material from post-exposure fogging during development in the presence of extraneous incident light and to such photographic uses.
  • U.S. Pat. No.'3,4l5,644 discloses a composite photosensitive structure, particularly adapted for use in reflection type photographic diffusion transfer color processes.
  • This structure comprises a plurality of essential layers including, in sequence, a dimensionally stable opaque layer; one or more silver halide emulsion layers having associated therewith dye image-providing material which is soluble and diffusible, in alkali, at a first pH, as a function of the point-to-point degree of its associated silver halide emulsions exposure to incident actinic radiation; a polymeric layer adapted to receive solubilized dye image-providing material diffusing thereto; a polymeric layer containing sufficient acidifying capacity to effect reduction of a processing composition from the first pH to a second pH at which the dye image-providing material is substantially nondiffusible; and a dimensionally stable transparent layer.
  • This structure may be exposed to incident actinic radiation and processed by interposing, intermediate the silver halide emulsion layer and the reception layer, an alkaline processing composition providing the first pH and containing a light-reflecting agent, for example, titanium dioxide to provide a white background.
  • the light reflecting agent (referred to in said patent as an opacifying agent) also performs an opacifying function, i.e., it is effective to mask the developed silver halide emulsions and also acts to protect the photoexposed emulsions from postexposure fogging by light passing through the transparent layer if the photoexposed film unit is removed from the camera before image formation is complete.
  • the composite photosensitive structure includes a rupturable container, retaining the alkaline processing composition having the first pH and light-reflecting agent, fixedly positioned extending transverse a leading edge of the composite structure in order to effect, upon application of compressive pressure to the container, discharge of the processing composition intermediate the opposed surfaces of the reception layer and the next adjacent silver halide emulsion.
  • the liquid processing composition distributed intermediate the reception layer and the silver halide emulsion permeates the silver halide emulsion layers of the composite photosensitive structure to initiate development of the latent images contained therein resultant from photoexposure.
  • dye image-providing material associated with each of the respective silver halide emulsion layers is individually immobilized as a function of the point-to-point degree of the respective silver halide emulsion layer photoexposure, resulting in imagewise distributions of mobile dye image-providing materials adapted to transfer, by diffusion, to the reception layer to provide the desired transfer dye image.
  • a sufficient portion of the ions of the alkaline processing composition transfers, by diffusion, to the polymeric neutralizing layer to effect reduction in the alkalinity of the composite film unit to the second pH at which dye image-providing material is substantially nondiffusible, and further dye imageproviding material transfer is thereby substantially obviated.
  • the transfer dye image is viewed, as a reflection image, through the dimensionally stable transparent layer against the background provided by the reflecting agent, distributed as a component of the processing composition, intermediate the reception layer and next adjacent silver halide emulsion layer.
  • the thus-formed stratum effectively masks residual dye image-providing material retained in association with the developed silver halide emulsion layer subsequent to processing.
  • an organic light-absorbing reagent such as a dye, which is present as a light-absorbing species at the first pH and which may be converted to a substantially non-light-absorbing species at the second pH is used in conjunction with the light-reflecting agent to protect the selectively exposed silver halide emulsions from post-exposure fogging when development of the photoexposed emulsions is conducted in the presence of extraneous incident actinic radiation impinging on the transparent layer of the film unit.
  • pH-sensitive dyes derived from certain hydroxy-substituted carbocyclic aryl compounds viz., particularly phenolic and naphtholic compounds are disclosed as useful as optical filter agents for absorbing incident radiation actinic to selectively exposed photosensitive materials within a predetermined wavelength range in the longer wavelength region of the visible spectrum.
  • Certain of the novel indicator dyes disclosed therein, namely phthaleins derived from 8-hydroxyquinolines comprise the subject matter of the present invention together with a method for the preparation of the same.
  • phthalein indicator dyes are prepared via the Friedel-Crafts reaction by condensing the selected aromatic compound, e.g., phenol with phthalic or naphthalic acid, their anhydrides or acid chlorides at elevated temperature in the presence of a catalyst, such as, zinc chloride or sulfuric acid to yield the corresponding phenol phthalide or naphthalide.
  • a catalyst such as, zinc chloride or sulfuric acid to yield the corresponding phenol phthalide or naphthalide.
  • the invention accordingly comprises the processes involving the several steps and the relation and order of one or more of such steps with respect to each of the others, and the products and compositions possessing the features, properties and the relation of elements which are exemplified in the following detailed disclosure, and the scope of the application of which will be indicated in the claims.
  • a novel class of phthalein indicator dyes comprissing 3,3-disubstituted phthalides and 3,3-disubstituted naphthalides wherein the 3,3 substituents are 8'- hydroxy-'-quinolyl radicals, the same or different.
  • the dyes of the pres-, ent invention exhibit reversibly alterable spectral absorption characteristics in response to changes in environmental pH. They have a colored, light-absorbing form in alkaline media at a first pH value above their pKa and a substantially colorless form, i.e., a for which is substantially non-light-absorbing in the visible specthejorrnula:
  • pKa is meant the pH at which about 50 percent of the dye is present in its light-absorbing form and about 50 percent is present in its non-light-absorbing form.
  • phthalein indicator dyes are commonly employed, for example, to measure changes in pH value as reflected by the change in color of the dye from one color to another or from colored to colorless or vice versa.
  • the indicator dyes'of the present invention due to their broad spectral absorption characteristics are especially useful as optical filter agents in photographic processes where development of a selectively exposed photosensitive material is performed at least in part outside the confines of a camera in the presence of extraneous incident actinic radiation.
  • FIGURE is a graphic illustration of the spectral absorption characteristics of an 8-quinolinol phthalein of the present invention as compared to the spectral absorption characteristics of a simple phenol phthalein and represents the optical transmission density, i.e., absorbance of the respective dyes measured on a logarithm scale over the wavelength range of 350 nm. to 750 nm. in aqueous alkaline solution at a pH substantially above their pKa.
  • phthaleins of 8-hydroxyquinoline may be synthesized by reacting the selected quinoline and a phthalic or naphthalic acid or anhydride at elevated temperature in the absence of a solvent using phosphorous pentoxide to catalyze the reaction. It also has been found that phthaleins of 8-hydroxyquinoline in comparison to simple phenol phthaleins absorb radiation over a much broader wavelength range in the visible spectrum which render the subject dyes particularly useful as optical filter agents in photographic processes.
  • novel indicator dyes produced in accordance with the present invention comprise 3,3-disubstituted phthalides and 3,3-disubstituted naphthalides wherein the 3,3 substituents are 8'- hydroxy-5'-quinolyl radicals.
  • Typical of the indicator dyes of the present invention are those represented by wherein x represents the atoms necessary to complete a ring-closing moiety selected from a phthalide anda naphthalide.
  • the indicator dyes defined above and as represented in the foregoing formula may contain substituents on the quinolyl radicals and/0r ring-closing moiety as may be desired which do not interfere with the function of the dye for its selected ultimate use.
  • the indicator dye may be substituted with a bulky group, such as, a long chain substituent, e.g. dodecyloxy, hexadecyl or dodecylphenyl.
  • solubilizing groups e. g. carboxy or sulfonic acid groups to adjust the solubility in a given solution. Because of the convenience in preparation, the quinolyl radicals when substituted are the same, i.e., they contain the same substituents in the same position.
  • Typical substituents include branched or straight chain alkyl, such as, methyl, ethyl, isopropy], n-butyl, t-butyl, hexyl, octyl, dodecyl, hexadecyl, octadecyl and eicosanyl; aryl, such as, phenyl, Z-hydroxyphenyl, and naphthyl; alkaryl, such as benzyl, phenethyl, phenylhexyl, p-octylphenyl, p-dodecylphenyl; alkoxy, such as, methoxy, ethoxy, butoxy, l-ethoxy-2-( ,B- ethoxyethoxy), dodecyloxy and octadecyloxy; aryloxy, such as phenoxy, benzyloxy, naphthoxy; alkoxyal
  • indicator dyes within the scope of the present invention are as follows: 7
  • the indicator dyes of the present invention preferably are symmetrical, i.e., the quinolyl radicals are identical and are prepared by reacting an excess of the selected 8-hydroxyquinoline with the phthalic or naphthalic reactant provided it is the acid or the anhydride.
  • the phthalic or naphthalic reactant provided it is the acid or the anhydride.
  • a 1.5 equivalents of 8- hydroxyquinoline are used per equivalent of the phthalic or naphthalic acid or their anhydrides.
  • the reaction is carried out in the absence of a solvent at elevated temperature, and ordinarily, the reactantsare fused at a temperature of at least about 180C. and usually between about 180 and 200C. in the presence of phosphorus pentoxide.
  • the 8-hydroxyquinoline and the phthalic or naphthalic reactant may contain substituents, such as those enumberated above, provided the quinoline has a free position para to the hydroxy group for reaction with the acid or anhydride to form the dye product.
  • symmetrical dyes may be more conveniently prepared, it will be appreciated that unsymmetrical dyes may by synthesized following the foregoing procedure by reacting an intermediate, e.g., a 5,- ortho-carboxybenzoyl-S-hydroxyquinoline intemiediate with a second 8-hydroxyquinoline in the presence of phosphorus pentoxide to yield the unsymmetrical dye product.
  • Example 1 Preparation of the compound of formula (2): The title compound was prepared according to the procedure of Example 1 above using hemimellitic acid for reaction with the 8-hydroxyquinoline.
  • the spectral absorption characteristics of the 8- hydroxyquinoline phthalein produced in Example 1 above are graphically illustrated in the accompanying FlGURE in the curve designated X.
  • the curve X represents the optical transmission density, i.e., the absorbance of the indicator dye at a pH substantially-above its pKa in a solution of sodium hydroxide in aqueous ethanol.
  • Curve Y represents the spectral absorption characteristics of phenol phthalein, i.e., the optical transmission density as measured under the same conditions.
  • the quinolinol dye as compared to the phenol dye absorbs radiation over a considerably broader wavelength range in the visible spectrum. Also, the quinolinol phthalein absorbs radiation at longer wavelengths having a A max of about 635 in comparison to a A max of about 55 5 for the phenol phthalein and thus, provides absorption in a range intermediate phenol phthalein and l-naphthol phthalein ()t max of about 650).
  • the pH sensitive indicator dyes of the present invention may be used as optical filter agents in any photographic process including conventional tray processing and diffusion transfer photographic techniques. In such processes, the dye or dyes during development of a selectively exposed photosensitive material will be in a position and in a concentration effective to absorb a given level of non-selective radiation incident on and actinic to the photosensitive material.
  • the dyes may be initially disposed in the film unit,.for example, inv a layer(s) coextensive with one or both surfaces of the photosensitive layer. Where selective exposure of the photosensitive material is made through a layer containing the indicator dye, thenthe dyes should be in a non-light-absorbing form until the processing solution is applied.
  • the dyes may be initially disposed in the processing composition in their lightabsorbing form, for example, in the developing bath in tray processing or in the layer of processing solution distributed between the photosensitive element and the superposed image receiving element (or spreader sheet) in diffusion transfer processing.
  • the particular indicator dye or dyes selected should have an absorption spectrum corresponding to the sensitivity of the photosensitive layer, so as to afford protection over the predetermined wavelength range required by the particular photosensitive material employed and should have a pka such that they are in their colored form, i.e., lightabsorbing form at the pH at which the photographic process is performed.
  • Most commercially useful photographic processes are performed under alkaline conditions. Diffusion transfer processes, for example, usually employ highly alkaline processing solutions having a pH in excess of 12.
  • the color of the indicator dye may be discharged subsequent to image formation by adjusting the pH of the system to a value at which the dye is substantially non-light absorbing in the visible spectrum.
  • the optical filter agent such as, a dye or dyes of the present invention are rendered substantially colorless by reducing the environmental pH.
  • the optical filter agent is removed or separated from the layer containing the final image or retained in a layer that does not interfere with viewing of the final image, it is unnecessary to convert the indicator dye to its non-light-absorbing form, though the color may be discharged if desired.
  • the concentration of indicator dye is selected to provide the optical transmission density required, in combination with other layers intermediate the silver halide emulsion layer(s) and the incident radiation, to prevent nonimagewise exposure, i.e., fogging, by incident actinic light during the performance of the particular photographic process. It has been found, by interposing neutral density (carbon containing) filters over a layer of titanium dioxide, that a transmission density of approximately 6.0 from said neutral density filters was effective to prevent fogging of a diffusion transfer multicolor film unit of the type described in said US. Pat. No. 3,415,644 having a transparent support layer and an Equivalent ASA Exposure Index of approximately 75, when processed for 1 minute in 10,000 foot candles of color corrected light, a light intensity approximating the intensity of a noon summer sun.
  • the transmission density required to protect such a film unit under the stated conditions may also beexpressed in terms 'of the cess by following the above described procedure or obvious modifications thereof.
  • a second dye(s) in conjunction with the subject dye(s) that has a principal absorption in a second and at least partially different predetermined wavelength range such that the combination of dyes will afford protection from non-selective incident actinic radiation over the range of 400 to 700 nm.
  • the second dye employed may be non-color-changing but preferably, is also pH sensitive, i.e., has reversibly alterable spectral absorption characteristics in response to changes in the environmental pH so that it may be rendered light-absorbing or non-light-absorbing as desired.
  • Illustrative of such dyes are phthaleins derived from indoles, such as, indole phthalein.
  • the second dye also may be initially present in the film unit or in the processing composition as discussed above either together with or separate from the subject dyes and subsequent to processing may be removed from the film unit or retained within the film structure,,provided it is in a form or position such that it does not interfere with viewing of the image produced.
  • Dyes may be selected from the above-denoted class that are useful as optical filter agents in diffusion transsystem" transmission density of all the layers intermediate the silver halide layer(s) and the incident light; the system transmission density required to protect color film units of the aforementioned type and photographic speed has been found to be on the order of 7.0 to 7.2. Lesser levels of optical transmission density would, of course, provide effective protection for shorter processing times, lesser light intensities and/or films having lower exposure indices.
  • the transmission density and the indicator dye concentration necessary to provide the requisite protection from incident light may be readily determined for any photographic profer processes, for example, those employing composite diffusion transfer photosensitive elements including a film pack or roll wherein superposed photosensitive and image-receiving elements are maintained as a laminate after formation of the final image.
  • Such elements include at least one transparent support to allow view ing of the final image without destroying the structural integrity of the film unit.
  • the support carrying the photosensitive layer(s) is opaque and the support carrying the image-receiving layer is transparent and selective photoexposure of the photosensitive layer(s) and viewing of the final image both are effected through the latter support.
  • the final image is viewed as a reflection print, i.e., by reflected light, provided by a reflecting agent initially disposed in the processing composition applied and maintained intermediate the image-receiving and next adjacent photosensitive layer or by a preformed layer of reflecting agent initally positioned intermediate the image receiving and next adjacent-photosensitive layer.
  • a'preformed reflective layer while it should be capable of masking the photosensitive layer(s) subsequent to image formation, should not interfere with selective photoexposure of the photosensitive material prior to processing.
  • the indicator dye or dyes employed as the optical filter agent(s) may be positioned initially in a layer of the film unit, e.g., in a layer between the image-receiving and next adjacent photosensitive layer through which photoexposure is effected provided it is incorporated under conditions, i.e., at a pH such that it will not absorb actinic radiation intended to selectively expose the photosensitive material to form a latent image therein.
  • the optical filter agent may be in a layer coated over either the image-receiving layer or the next adjacent photosensitive layer and should remain substantially non-light-absorbing until a processing composition is applied providing a pH at which the indicator dye is capable of being rapidly converted to its lightabsorbing form to provide light protection when the film unit is removed from the camera.
  • the indicator dye may be initially present in the processing composition applied intermediate the image-receiving and next adjacent photosensitive layer subsequent to photoexposure. The dye, when initially disposed in the processing composition, will be in its light-absorbing form.
  • the dyes selected as optical filter agents should exhibit at the initial pH of the processing, maximum spectral absorption of radiation at the wavelengths to which the film units pohtosensitive silver halide layer or layers are sensitive, and preferably, should be substantially immobile or non-diffusible in the alkaline processing composition in order to achieve optimum efficiency as a radiation filter and to prevent diffusion of filter agent into layers of the film unit where its presence may be undesirable. Recognizing that the filter agent absorption will detract from image-viewing characteristics by contaminating reflecting pigment background, the selected agents should be those exhibiting major spectral absorption at the pH at which processing is effected and minimal absorption at a pH below that which obtains during transfer image formation. Accordingly, the selected optical filter agent or agents should possess a pKa below that of the processing pH and above that of the environmental pH subsequent to transfer image formation.
  • the concentration of indicator dye is selected to provide the optical transmission density required, in combination with other layers intermediate the silver halide emulsion layer(s) and the incident radiation, to prevent nonimagewise exposure, i.e., fogging, by incident actinic light during the performance of the particular photographic process.
  • the optical filter agents and reflecting agents together should possess the optical transmission density necessary to protect the photosensitive material for the particular photographic process.
  • the optimum concentration of optical filter agent(s) or filter agent(s) together with reflecting agent(s) may be readily determined empirically for each photographic system.
  • substantially any reflecting agent may be employed for the layer of reflecting agent, either preformed or applied as a component of the processing composition, it is preferred to select an agent that will not interfere with the color integrity of the dye transfer image, as viewed by the observer, and, most preferably, an agent which is aesthetically pleasing to the viewer and does not provide a background detracting from the information content of the image.
  • Particularly desirable reflecting agents will be those providing a white background, for viewing the transfer image, and specifically those conventionally employed to provide back-- ground for reflection photographic prints and, especially, those agents possessing the optical properties desired for reflection of incident radiation.
  • reflecting agents mention may be made of barium sulfate, zinc sulfide, titanium dioxide, barium stearate, silver flake, silicates, alumina, zirconium oxide, zirconium acetyl acetate, sodium zirconium sulfate, kaolin, mica, and the like.
  • a photographic film unit may be prepared by coating, in succession, on a gelatin subbed, 4 mil. opaque polyethylene terephthalate film base, the following layers:
  • a transparent 4 mil. polyethylene terephthalate film base may be coated, in succession, with the following illustrative layers:
  • the two components thus prepared may then be taped together in laminate form, at their respective edges, by means of a pressure-sensitive binding tape extending around, in contact with, and over the edges of the resultant laminate.
  • a rupturable container comprising an outer layer of lead foil and an inner liner or layer of polyvinyl chlor Water cc. Potassium hydroxide l 1.2 gms.
  • Hydroxyethyl cellulose (high viscosity) [commercially available from Hercules Powder Co., Wilmington,
  • N-phenethyl-a-picolinium bromide 2.7 gms.
  • Benzotriazole 1.15 gms. Titanium dioxide 50.0 gms.
  • uHu-n may then be fixedly mounted on the leading edge of each of the laminates, by pressure-sensitive tapes interconnecting the respective containers and laminates, such that, upon application of compressive pressure to a container, its contents may be distributed, upon rupture of the containers marginal seal, between the polymeric image-receiving layer and next adjacent gelatin layer.
  • the photosensitive composite film units may be exposed through step wedges to selectively filter radiation incident on the transparent polyethylene terephthalate layer and processed by passage of the exposed film units through appropriate pressure-applying members, such as suitably gapped, opposed rolls, to effect rupture of the container and distribution of its contents.
  • the multicolor dye transfer image formation may be viewed through the transparent polyethylene terephthalate layer against the titanium dioxide background provided by distribution of the pigment containing processing composition between the polymeric image-receiving layer and gelatin layer 9 of the photosensitive component.
  • the film unit may be exposed to incident light and the formation of the image may be viewed upon distribution of the processing composition by reason of the protection against incident radiation afforded the photosensitive silver halide emulsion layers by the optical filter agents and by reason of the effective reflective background afforded by the titanium dioxide.
  • the film unit detailed above is similar to that shown in FIG. 2 and related FIGS. 3 and 4 of aforementioned copending US. Pat. application Ser. No. 101,968.
  • the negative component of the film unit including the photosensitive strata and associated dye-image-forming material; the positive component including the timing, neutralizing and dyeable layers; and the processing composition including its components, such as, the alkaline material and various addenda are described in detail in application Ser. No. 101,968.
  • the specification of this application is specifically incorporated herein.
  • the dyes of thepresent invention may be employed in composite photosensitive elements, in general, where the dyeable stratum along with any associated layers may be contained together with the photosensitive strata as a unitary film unit which may be termed an integral negative positive film unit comprising a negative component including the aforementioned essential layers and a positive component including at least the dyeable stratum in which the color transfer image is to be formed.
  • the essential layers are preferably contained on a transparent dimensionally stable layer or support member positioned closest to the dyeable stratum so that the resulting transfer image is viewable through this transparent layer.
  • dimensionally stable layer which may be transparent or opaque is positioned on the opposed surface of the essential layers so that the aforementioned essential layers are sandwiched or confined between a pair of dimensionally stable layers or support members, at least one of which is transparent to permit viewing therethrough of a color transfer image obtained as a function of development of the exposed film unit in accordance with the known color diffusion transfer processes.
  • all of these film units may optionally contain other layers performing specific desired functions, e. g., spacer layers, pH-reducing layers, etc.
  • the film units of the foregoing description are exposed to form a developable image and thereafter developed by applying the appropriate processing composition to develop exposed silver halide and to form, as a function of development, an imagewise distribution of diffusible dye image-providing material which is transferred, at least in part by diffusion, to the dyeable stratum to impart thereto the desired color transfer image, e.g., a positive color transfer image.
  • this reflecting layer is provided prior to photoexposure, e.g., as a preformed layer included in the essential layers of the laminar structure comprising the film unit, and in others it is provided at some time thereafter, e.g., by including a suitable light-reflecting agent, for example, a white pigment, such as, titanium dioxide, in the processing composition.
  • a suitable light-reflecting agent for example, a white pigment, such as, titanium dioxide
  • such film units are employed in conjunction with a rupturable container, such as, that used above, containing the processing composition having the light-reflecting agent incorporated therein which container is adapted upon application of pressure of distributing its contents to develop the exposed film unit and to provide the light-reflecting layer.
  • a rupturable container such as, that used above, containing the processing composition having the light-reflecting agent incorporated therein which container is adapted upon application of pressure of distributing its contents to develop the exposed film unit and to provide the light-reflecting layer.
  • the photographic use of the dyes of the present invention as optical filter agents to prevent post-exposure fogging of a selectively exposed photosensitive material is not limited to diffusion transfer processes nor to such processes employing composite photosensitive elements. While the use of such dyes in composite multicolor diffusion transfer film units is a particularly preferred embodiment of the present invention, these dyes may be used with equally effective results in any photograhpic process where it is desired to protect a photosensitive material from incident radiation actinic to the photosensitive material within the wavelength range capable of being absorbed by the dye.
  • the Subject dyes may be used in conventional tray photographic processing as a component of the processing bath, or they may be present in a layer coextensive with one or both surfaces of a layer of photosensitive material to be processed using conventional tray procedures, provided that they are non-lightabsorbing prior to photoexposure and also subsequent to developing the latent image unless the layer.contain-.
  • the photoexposed photosensitive material will, of course, be transferred from the camera to the processing bath in the absence of radiation actinic to the material.
  • the subject dyes also may be employed in diffusion transfer processes where the photosensitive and imagereceiving elements are separated subsequent to the formation of a transfer image or where a spreader sheet is separated from the photosensitive element to reveal a final image in the negative.
  • the subject dyes may be used with composite diffusion transfer film units where the final image is to be viewed by tans mitted light. Also they may be used in composite film units specifically adapted, for example, for forming a silver transfer image, for developing a negative silver image by monobath processing, for obtaining an additive color image, and for obtaining a dye image by the silver dye bleach process which structures are described in detail in aforementioned copending U.S. application Ser. No. 101,968, particularly with reference to FIGS. 10 to 13 of-the applications drawings.
  • color diffusion transfer processes which employ color coupling techniques comprising, at least in part, reacting one or more color developing agents and one or more color formers or couplers to provide a dye transfer image to a superposed image-receiving layer and those disclosed in U.S. Pat. No.
  • the subject dyes are useful generally in photographic processes for producing silver, monochromatic and multi-color images using any photosensitive material including conventional and direct positive silver halide emulsions.
  • one or more of the dyes may be used along or in combination with another optical filter agent, such as another light-absorbing dye, which second dye may be non-color-changing or another pH sensitive dye.
  • the selected dye or dyes do not possess the desired stability in the processing composition for long term storage therein, they may be initially disposed in the film structure or stored in a double-compartmented pod or in one of two associated pods separate from the processing solution until such time as the pod(s) are ruptured whereupon the dyes are admixed with the processing solution.
  • a photographic process comprising the steps of seiectively exposing a photosensitive element comprising a layer of photosensitive material to radiation actinic thereto to provide a latent image therein, applying a processing composition to provide an indicator dye in a form capable of absorbing a predetermined wavelength range of radiation actinic to said photosensitive material, and developing said latent image while exposing said photosensitive element non-selectively to incident actinic radiation within said predetermined wavelength range, said indicator dye being present during development in a position and quantity effective to absorb said wavelength range of incident radiation in an amount sufficient to prevent any substantial increase, as a result of perfonning said process in the presence of incident radiation within said wavelength range, in the minimum density of the image obtained by said development of said latent image, and being selected from a 3,3-disubstituted phthalide and a 3,3- disubstituted naphthalide wherein the 3,3 substituents are 8-hydroxy-5'-quinolyl radicals.
  • said indicator dye is initially present in a processing composition permeable layer at a pH value at which it is substantially non-light absorbing, said layer being coextensive with at least one surface of said photosensitive layer and said processing composition applied thereto having a pH at which said indicator dye is lightabsorbing.
  • said indicator dye is a 3,3-disubstituted phthalide.
  • indicator dye is 3,3-bis-(8'-hydroxy-5-quinolyl)phthalide.
  • said indicator dye is 3,3-bis-(8-hydroxy-5-quinolyl)-7-carboxyphthalide.
  • a process of forming photographic diffusion transfer image which comprises, in combination, the steps of:
  • exposing a photographic film unit which comprises a plurality of layers including an opaque support layer carrying a photosensitive silver halide layer having associated therewith a compound capable of providing as a function of development an imagewise distribution of an image-forming material which is processing composition soluble and diffusible as a function of the point-to-point degree of exposure of said silver halide layer and a diffusion transfer process image-receiving layer adapted to receive solubilized image-forming material diffusing thereto;
  • said indicator dye being selected from a 3,3- disubstituted phthalide and a 3,3-disubstituted naphthalide wherein said 3,3 substitutents are 8- hydroxy-5-quinolyl radicals.
  • said indicator dye being present during development in a position and quantity effective to absorb said wavelength range of actinic radiation in an amount sufficient to prevent any substantial decrease, as a result of performing said process in the presence of incident actinic light within said wavelength range, in the maximum density of the image obtained by the transfer of said diffusible image-forming material.
  • a process of forming transfer images in color which comprises, in combinatiomthe steps of:
  • exposing a photographic film unit which is adapted to be processed by application of pressure to release and distribute a processing composition and which includes, in combination, a photosensitive element comprising a composite structure containing, as essential layers, in sequence, a first support layer opaque to incident actinic radiation; a photosensitive silver halide layer having associated therewith a compound capable of providing as a function of development an imagewise distribution of a dye image-forming material which is processing composition soluble and diffusible as a function of exposure of the photosensitive silver halide layer to actinic radiation; a polymeric layer dyeable by said dye image-forming material; a second support layer transparent to incident actinic radiation; and means securing said layers in substantially fixed relationship; means for interposing a reflecting agent and an indicator dye capable of absorbing incident radiation within a predetermined wavelength range actinic to said photosensitive layer at a pH above its pKa intermediate said dyeable polymeric layer and said photosensitive silver halide layer and associated dye image-forming material subsequent to photoexposure of said film unit,
  • a rupturable container retaining an aqueous alkaline processing composition possessing a pH above the pKa of said indicator dye fixedly positioned and extending transverse a leading edge of said photosensitive element to effect unidirectional discharge of the containers processing composition intermediate said dyeable polymeric layer and the photosensitive silver halide layer next adjacent thereto upon application of compressive force of said container;
  • said indicator dye being present in a quantity effective to absorb said wavelength range of incident radiation in an amount sufficient in combination with said reflecting agent, to prevent any substantial decrease, as a result of performing said process in the presence of incident actinic light within said wavelength range, in the maximum density of the image obtained by the transfer of said diffusible image-forming material.
  • a process of forming transfer images in color as defined in claim 11 wherein said indicator dye is initially disposed at a pH below its pKa in an aqueous alkaline processing composition permeable layer of said photosensitive element intermediate said dyeable polymeric layer and said silver halide layer, and said rupturable container containing said aqueous alkaline processing composition possessing a pH above the pKa of said indicator dye is fixedly positioned and extends transverse a leading edge of said photosensitive element to effect unidirectional discharge of the processing composition intermediate said dyeable polymeric layer and said layer containing said indicator dye upon application of compressive force to said container and including the step of discharging said processing composition, subsequent to exposure of said photosensitive element, intermediate said dyeable polymeric layer and said layer containing said indicator dye.
  • said dye-image forming material comprises a dye which is a silver halide developing agent and said photosensitivelayer isa silver halide emulsion.
  • said photosensitive element comprises at least two selectively sensitized silver halide emulsion layers, each of said layers having associated therewith an image-forming dye, which is a silver halide developing agent, of predetermined color, and is soluble and diffusible, in aqueous alkaline processing composition as a function of the point-to-point degree of exposure of the respective emulsion associated therewith.
  • said indicator dye is a 3,3-disubstituted phthalide.
  • said indicator dye is 3,3-bis-( 8 -hydroxy-5 quinolyl)phthalide.
  • a photographic film unit which comprises a plurality of layers including a support layer carrying on one surface, in order, a layer of photosensitive material and a layer comprising an indicator.
  • dye disposed at a pH below its pKa selected from a 3,3-disubstituted phthalide and a 3,3-disubstituted naphthalide wherein said 3,3 substitutents are 8-hydroxy-5'-quinolyl radicals.
  • a photographic film unit as defined in claim 24 which is adapted to be processed by application of pressure to release and distribute a processing composition and which comprises, in combination:
  • a photosensitive element including a composite structure containing, as essential layers, in sequence, a first support layer opaque to incident actinic radiation; at least two selectively sensitized silver halide layers, each having associated therewith an image-forming dye which is a silver halide developing agent of predetermined color, each of said dyes being soluble and diffusible in alkaline processing composition as a function of the pointto-point degree of exposure of the respective silver halide associated therewith, a polymeric layer dyeable by said dye; a second support layer transparent to incident actinic radiation; and means securing said layers in substantially fixed relationship;
  • a rupturable container retaining an alkaline processing composition containing reflecting agent fixedly positioned and extending transverse a leading edge of said photosensitive element to effect unidirectional discharge of said containers processing composition between said dyeable polymeric layer and the photosensitive silver halide layer next adjacent therto upon application of pressure to said container; and an indicator dye capable of absorbing incident radiation within a predetermined wavelength range actinic to said silver halide disposed in at least one of said processing composition and, at a pH below its pKa, in a layer intermediate said photosensitive silver halide layer andsaid second support layer transparent to incident actinic radiation, said indicator dye being selected from a 3,3-disubstituted phthalide and a 3,3-disubstituted naphthalide wherein said 3,3 substituents are 8- hydroxy-S -quinolyl radicals.
  • a photographic film unit as defined in claim 25 including at least one acid reacting polymeric layer positioned intennediate at least one of said first opaque layer and the photosensitive silver halide layer next adjacent thereto, and said second transparent layer and the dyeable polymeric layer next adjacent therto, said polymeric acid layer containing sufiicient acidifying function to effect reduction of said processing compo- 22 sition from a first pH at which said image-forming dye is substantially soluble and diffusible to a second pH at which said image-forming dye is substantially nondiffusible.
  • a film unit as defined in claim 28 wherein said indicator dye is 3,3-bis-(8'-hydroxy-5-quinolyl)-7-carboxyphthalide.
  • a photographic processing composition comprising an aqueous alkaline solution of a viscosity imparting reagent, a light-reflecting agent and an indicator dye selected from a 3,3-disubstituted phthalide and a 3,3-disubstituted naphthalide wherein said 3,3 substituents are 8'-hydroxy-5'-quinolyl radicals.
  • a photographic processing composition as defined in claim 32 which additionally contains a silver halide developing agent.
  • composition as defined in claim 34 wherein said indicator dye is 3,3-bis-(8'hydroxy-5'- quinolyl)phthalide.
  • composition as defined in claim 34 wherein said indicator dye is 3,3-bis-(8'-hydroxy-5quinolyl)- 7-carboxyphthalide.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Silver Salt Photography Or Processing Solution Therefor (AREA)

Abstract

This invention relates to a class of phthalein indicator dyes useful as optical filter agents in photographic processes to protect a selectively exposed photosensitive material from further exposure during processing in the presence of incident light. Such dyes comprise 3,3-disubstituted phthalides and 3,3disubstituted naphthalides wherein the 3,3 substituents are 8''hydroxy-5''-quinolyl radicals.

Description

United States Patent [191 Borror et a1.
PHOTOGRAPHIC PROCESSES AND PRODUCTS EMPLOYlNG'8-QUINOL1NOL PHTHALEINS AS OPTICAL FILTER AGENTS Inventors: Alan L. Borror; Paulina P. Garcia,
both of Arlington, Mass.
Assignee: Polaroid Corporation, Cambridge,
Mass.
Filed: Nov. 26, 1971 Appl. No.: 202,483
US. Cl 96/3, 96/29 R, 96/29 D, 96/66 R, 96/76 R, 96/77, 96/84 R Int. Cl. G03c 7/00, G03c 5/54, G03c 5/30, G03c 1/48, G03c 1/40, G030 1/84 Field of Search 96/66, 3, 29 D, 77, 84 R OPTiCAL TRANSMISSION DENSITY (LOG SCALE) 9 s June 11, 1974 [56] References Cited UNITED STATES PATENTS 3,647,437 3/1972 Land 96/3 3,702,245 11/1972 Simon et a1 96/3 Primary Examiner-Norman G. Torchin Assistant Examiner-Richard L. Schilling [5 7] ABSTRACT This invention relates to a class of phthalein indicator dyes useful as optical filter agents in photographic processes to protect a selectively exposed photosensitive material from further exposure during processing in the presence of incident light. Such dyes comprise 3,3-disubstituted 1 phthalides and 3,3-disubstituted naphthalides wherein the 3,3 substituents are 8'- hydroxy-S -quino1y1 radicals.
37 Claims, 1 Drawing Figure WAVELENGTH IN MILLIMICRONS slelell PATEmEmun 1 am I NVENTORS ALAN L. BORROR and PAULINA P. GARCIA ATTORNEYS PHOTOGRAPHIC PROCESSES AND PRODUCTS EMPLOYING S-QUINOLINOL PHTHALEINS AS OPTICAL FILTER AGENTS BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to novel chemical compounds, and more specifically, it relates to a new class of phthalein indicator dyes and to a method for the preparation thereof. In a particular aspect it relates to certain quinoline phthaleins useful as optical filter agents in photographic processes for protecting an exposed photosensitive material from post-exposure fogging during development in the presence of extraneous incident light and to such photographic uses.
2. Description of the Prior Art A number of photographic processes by which im ages may be developed and viewed within seconds or minutes after exposure have been proposed. Such processes generally employ a processing composition which is suitably distributed between two sheet-like elements, the desired image being carried by one of said shett-like elements. The resulting images may be in black-andwhite, e.g., in silver, or in one or more colors. Processing may be conducted in or outside of a camera. The most useful of such processes are the diffusion transfer processes which have been proposed for forming silver or dye images, and several of these processes have been commercialized. Such processes have in common the feature that the final image is a function of the formation of an image-wise distribution of an imageproviding reagent and the diffusion transfer of said distribution to or from the stratum carrying the final image, whether positive or negative.
U.S. Pat. No.'3,4l5,644 discloses a composite photosensitive structure, particularly adapted for use in reflection type photographic diffusion transfer color processes. This structure comprises a plurality of essential layers including, in sequence, a dimensionally stable opaque layer; one or more silver halide emulsion layers having associated therewith dye image-providing material which is soluble and diffusible, in alkali, at a first pH, as a function of the point-to-point degree of its associated silver halide emulsions exposure to incident actinic radiation; a polymeric layer adapted to receive solubilized dye image-providing material diffusing thereto; a polymeric layer containing sufficient acidifying capacity to effect reduction of a processing composition from the first pH to a second pH at which the dye image-providing material is substantially nondiffusible; and a dimensionally stable transparent layer. This structure may be exposed to incident actinic radiation and processed by interposing, intermediate the silver halide emulsion layer and the reception layer, an alkaline processing composition providing the first pH and containing a light-reflecting agent, for example, titanium dioxide to provide a white background. The light reflecting agent (referred to in said patent as an opacifying agent) also performs an opacifying function, i.e., it is effective to mask the developed silver halide emulsions and also acts to protect the photoexposed emulsions from postexposure fogging by light passing through the transparent layer if the photoexposed film unit is removed from the camera before image formation is complete.
In a preferred embodiment, the composite photosensitive structure includes a rupturable container, retaining the alkaline processing composition having the first pH and light-reflecting agent, fixedly positioned extending transverse a leading edge of the composite structure in order to effect, upon application of compressive pressure to the container, discharge of the processing composition intermediate the opposed surfaces of the reception layer and the next adjacent silver halide emulsion.
The liquid processing composition distributed intermediate the reception layer and the silver halide emulsion, permeates the silver halide emulsion layers of the composite photosensitive structure to initiate development of the latent images contained therein resultant from photoexposure. As a consequence of the development of the latent images, dye image-providing material associated with each of the respective silver halide emulsion layers is individually immobilized as a function of the point-to-point degree of the respective silver halide emulsion layer photoexposure, resulting in imagewise distributions of mobile dye image-providing materials adapted to transfer, by diffusion, to the reception layer to provide the desired transfer dye image. Subsequent to substantial dye image formation in the reception layer, a sufficient portion of the ions of the alkaline processing composition transfers, by diffusion, to the polymeric neutralizing layer to effect reduction in the alkalinity of the composite film unit to the second pH at which dye image-providing material is substantially nondiffusible, and further dye imageproviding material transfer is thereby substantially obviated.
The transfer dye image is viewed, as a reflection image, through the dimensionally stable transparent layer against the background provided by the reflecting agent, distributed as a component of the processing composition, intermediate the reception layer and next adjacent silver halide emulsion layer. The thus-formed stratum effectively masks residual dye image-providing material retained in association with the developed silver halide emulsion layer subsequent to processing.
In the copending U.S. Pat. application Ser. No. 786,352 of Edwin H. Land, filed Dec. 23, 1968, now abandoned, and Ser. No. 101,968 filed Dec. 28, 1970, now U.S. Pat. No. 3,647,437, in part a continuation of Ser. No. 786,352, an organic light-absorbing reagent (or optical filter agent), such as a dye, which is present as a light-absorbing species at the first pH and which may be converted to a substantially non-light-absorbing species at the second pH is used in conjunction with the light-reflecting agent to protect the selectively exposed silver halide emulsions from post-exposure fogging when development of the photoexposed emulsions is conducted in the presence of extraneous incident actinic radiation impinging on the transparent layer of the film unit.
In copending U.S. Pat. application Ser. No. 103,392, filed Jan. 4, 1971, now U.S. Pat. No. 3,702,245, pH- sensitive dyes derived from certain hydroxy-substituted carbocyclic aryl compounds, viz., particularly phenolic and naphtholic compounds are disclosed as useful as optical filter agents for absorbing incident radiation actinic to selectively exposed photosensitive materials within a predetermined wavelength range in the longer wavelength region of the visible spectrum. Certain of the novel indicator dyes disclosed therein, namely phthaleins derived from 8-hydroxyquinolines comprise the subject matter of the present invention together with a method for the preparation of the same.
Generally, phthalein indicator dyes are prepared via the Friedel-Crafts reaction by condensing the selected aromatic compound, e.g., phenol with phthalic or naphthalic acid, their anhydrides or acid chlorides at elevated temperature in the presence of a catalyst, such as, zinc chloride or sulfuric acid to yield the corresponding phenol phthalide or naphthalide.
Though a variety of phthaleins have been prepared in this manner, repeated attempts to synthesize 8- hydroxyquinoline phthaleins using prior art procedures have been unsuccessful. The desired indicator dye product cannot be obtained using sulfuric acid, zinc chloride or other strong acid and the metal catalysts conventionally employed in the production of phthaleins. Presumably, such catalysts deactivate the reaction site of the 8-hydroxyquinoline. It has now been found that these phthalein dyes may be prepared using phosphorus pentoxide as the catalyst under certain reaction conditions.
SUMMARY OF THE INVENTION It is the primary object of the present invention to provide a novel class of phthalein indicator dyes derived from 8hydroxyquinolines.
It is another object of the present invention to provide a novel class of phthalein indicator dyes useful as optical filter agents in photographic processes for preventing post-exposure fogging of a selectively exposed phtosensitive material during development in the presence of incident light. I
It is a further object of the present invention to provide products, compositions and processes for the de velopment of photosensitive materials in which the novel phthalein indicator dyes are used.
It is yet a further object of the present invention to provide a novel process for the preparation of the above-denoted phthalein dyes.
Other objects of this invention will in part be obvious and will in part appear hereinafter.
The invention accordingly comprises the processes involving the several steps and the relation and order of one or more of such steps with respect to each of the others, and the products and compositions possessing the features, properties and the relation of elements which are exemplified in the following detailed disclosure, and the scope of the application of which will be indicated in the claims.
According to the present invention, there is provided a novel class of phthalein indicator dyes comprissing 3,3-disubstituted phthalides and 3,3-disubstituted naphthalides wherein the 3,3 substituents are 8'- hydroxy-'-quinolyl radicals, the same or different. These indicator dyes will be defined with greater particularity hereinafter.
Like phthalein dyes, generally, the dyes of the pres-, ent invention exhibit reversibly alterable spectral absorption characteristics in response to changes in environmental pH. They have a colored, light-absorbing form in alkaline media at a first pH value above their pKa and a substantially colorless form, i.e., a for which is substantially non-light-absorbing in the visible specthejorrnula:
mm at a second pH below their pKa. By pKa is meant the pH at which about 50 percent of the dye is present in its light-absorbing form and about 50 percent is present in its non-light-absorbing form.
It will be appreciated that such compounds will find utility in titrations and other analytical procedures where phthalein indicator dyes are commonly employed, for example, to measure changes in pH value as reflected by the change in color of the dye from one color to another or from colored to colorless or vice versa. The indicator dyes'of the present invention, however, due to their broad spectral absorption characteristics are especially useful as optical filter agents in photographic processes where development of a selectively exposed photosensitive material is performed at least in part outside the confines of a camera in the presence of extraneous incident actinic radiation.
For a fuller understanding of the nature and objects of the invention, reference should be had to the following detailed description taken in connection with the accompanying drawing.
BRIEF DESCRIPTION OF THE DRAWING The FIGURE is a graphic illustration of the spectral absorption characteristics of an 8-quinolinol phthalein of the present invention as compared to the spectral absorption characteristics of a simple phenol phthalein and represents the optical transmission density, i.e., absorbance of the respective dyes measured on a logarithm scale over the wavelength range of 350 nm. to 750 nm. in aqueous alkaline solution at a pH substantially above their pKa.
DESCRIPTION OF THE PREFERRED EMBODIMENTS According to the present invention, it has been found that phthaleins of 8-hydroxyquinoline may be synthesized by reacting the selected quinoline and a phthalic or naphthalic acid or anhydride at elevated temperature in the absence of a solvent using phosphorous pentoxide to catalyze the reaction. It also has been found that phthaleins of 8-hydroxyquinoline in comparison to simple phenol phthaleins absorb radiation over a much broader wavelength range in the visible spectrum which render the subject dyes particularly useful as optical filter agents in photographic processes.
The novel indicator dyes produced in accordance with the present invention, as noted above, comprise 3,3-disubstituted phthalides and 3,3-disubstituted naphthalides wherein the 3,3 substituents are 8'- hydroxy-5'-quinolyl radicals. Typical of the indicator dyes of the present invention are those represented by wherein x represents the atoms necessary to complete a ring-closing moiety selected from a phthalide anda naphthalide.
The indicator dyes defined above and as represented in the foregoing formula may contain substituents on the quinolyl radicals and/0r ring-closing moiety as may be desired which do not interfere with the function of the dye for its selected ultimate use. Where it is desired that the indicator dye be substantially immobile or nondiffusible in the processing solution, it may be substituted with a bulky group, such as, a long chain substituent, e.g. dodecyloxy, hexadecyl or dodecylphenyl. Also, it may be substituted with solubilizing groups, e. g. carboxy or sulfonic acid groups to adjust the solubility in a given solution. Because of the convenience in preparation, the quinolyl radicals when substituted are the same, i.e., they contain the same substituents in the same position.
Typical substituents include branched or straight chain alkyl, such as, methyl, ethyl, isopropy], n-butyl, t-butyl, hexyl, octyl, dodecyl, hexadecyl, octadecyl and eicosanyl; aryl, such as, phenyl, Z-hydroxyphenyl, and naphthyl; alkaryl, such as benzyl, phenethyl, phenylhexyl, p-octylphenyl, p-dodecylphenyl; alkoxy, such as, methoxy, ethoxy, butoxy, l-ethoxy-2-( ,B- ethoxyethoxy), dodecyloxy and octadecyloxy; aryloxy, such as phenoxy, benzyloxy, naphthoxy; alkoxyalkyl, such as methoxyethyl, dodecyloxyethyl; halo such as, fluoro, bromo, and chloro; trifluoralkyl, such as, trifiuoromethyl, monoand bis-trifluoromethyl carbinol; sulfonamido; sulfamoyl; acyl and its derivatives; aminomethyl; amido; sulfonyl; sulfo; cyano; nitro; amino including mono-and disubstituted amino, e.g., N-ethyl amino and N,N'-dimethylamino; carboxy; and hydroxyl.
Specific examples of indicator dyes within the scope of the present invention are as follows: 7
(s) OH on em N N\ OCH: omo
As noted previously, the indicator dyes of the present invention preferably are symmetrical, i.e., the quinolyl radicals are identical and are prepared by reacting an excess of the selected 8-hydroxyquinoline with the phthalic or naphthalic reactant provided it is the acid or the anhydride. Usually, a 1.5 equivalents of 8- hydroxyquinoline are used per equivalent of the phthalic or naphthalic acid or their anhydrides. The reaction is carried out in the absence of a solvent at elevated temperature, and ordinarily, the reactantsare fused at a temperature of at least about 180C. and usually between about 180 and 200C. in the presence of phosphorus pentoxide. The 8-hydroxyquinoline and the phthalic or naphthalic reactant may contain substituents, such as those enumberated above, provided the quinoline has a free position para to the hydroxy group for reaction with the acid or anhydride to form the dye product. Though symmetrical dyes may be more conveniently prepared, it will be appreciated that unsymmetrical dyes may by synthesized following the foregoing procedure by reacting an intermediate, e.g., a 5,- ortho-carboxybenzoyl-S-hydroxyquinoline intemiediate with a second 8-hydroxyquinoline in the presence of phosphorus pentoxide to yield the unsymmetrical dye product.
The following Examples are given to further illustrate the present invention and are not intended to limit the scope thereof.
Example 1 Example 2 Preparation of the compound of formula (2): The title compound was prepared according to the procedure of Example 1 above using hemimellitic acid for reaction with the 8-hydroxyquinoline. I
The spectral absorption characteristics of the 8- hydroxyquinoline phthalein produced in Example 1 above are graphically illustrated in the accompanying FlGURE in the curve designated X. The curve X represents the optical transmission density, i.e., the absorbance of the indicator dye at a pH substantially-above its pKa in a solution of sodium hydroxide in aqueous ethanol. Curve Y represents the spectral absorption characteristics of phenol phthalein, i.e., the optical transmission density as measured under the same conditions. a
From reference to the FIGURE, it can be seen that the quinolinol dye as compared to the phenol dye absorbs radiation over a considerably broader wavelength range in the visible spectrum. Also, the quinolinol phthalein absorbs radiation at longer wavelengths having a A max of about 635 in comparison to a A max of about 55 5 for the phenol phthalein and thus, provides absorption in a range intermediate phenol phthalein and l-naphthol phthalein ()t max of about 650).
The pH sensitive indicator dyes of the present invention may be used as optical filter agents in any photographic process including conventional tray processing and diffusion transfer photographic techniques. In such processes, the dye or dyes during development of a selectively exposed photosensitive material will be in a position and in a concentration effective to absorb a given level of non-selective radiation incident on and actinic to the photosensitive material. The dyes may be initially disposed in the film unit,.for example, inv a layer(s) coextensive with one or both surfaces of the photosensitive layer. Where selective exposure of the photosensitive material is made through a layer containing the indicator dye, thenthe dyes should be in a non-light-absorbing form until the processing solution is applied. Altemately, the dyes may be initially disposed in the processing composition in their lightabsorbing form, for example, in the developing bath in tray processing or in the layer of processing solution distributed between the photosensitive element and the superposed image receiving element (or spreader sheet) in diffusion transfer processing. The particular indicator dye or dyes selected should have an absorption spectrum corresponding to the sensitivity of the photosensitive layer, so as to afford protection over the predetermined wavelength range required by the particular photosensitive material employed and should have a pka such that they are in their colored form, i.e., lightabsorbing form at the pH at which the photographic process is performed. Most commercially useful photographic processes are performed under alkaline conditions. Diffusion transfer processes, for example, usually employ highly alkaline processing solutions having a pH in excess of 12.
in photographic processes where the optical filter agent is retained in a stratum through which the final image is to be viewed, the color of the indicator dye may be discharged subsequent to image formation by adjusting the pH of the system to a value at which the dye is substantially non-light absorbing in the visible spectrum. In photographic processes performed at an alkaline pH, the optical filter agent, such as, a dye or dyes of the present invention are rendered substantially colorless by reducing the environmental pH. In processes where the optical filter agent is removed or separated from the layer containing the final image or retained in a layer that does not interfere with viewing of the final image, it is unnecessary to convert the indicator dye to its non-light-absorbing form, though the color may be discharged if desired. I
The concentration of indicator dye is selected to provide the optical transmission density required, in combination with other layers intermediate the silver halide emulsion layer(s) and the incident radiation, to prevent nonimagewise exposure, i.e., fogging, by incident actinic light during the performance of the particular photographic process. It has been found, by interposing neutral density (carbon containing) filters over a layer of titanium dioxide, that a transmission density of approximately 6.0 from said neutral density filters was effective to prevent fogging of a diffusion transfer multicolor film unit of the type described in said US. Pat. No. 3,415,644 having a transparent support layer and an Equivalent ASA Exposure Index of approximately 75, when processed for 1 minute in 10,000 foot candles of color corrected light, a light intensity approximating the intensity of a noon summer sun. The transmission density required to protect such a film unit under the stated conditions may also beexpressed in terms 'of the cess by following the above described procedure or obvious modifications thereof.
Since most commercial photographic processes employ photosensitive materials sensitive to and exposable by actinic radiation throughout the visible spectrum. e.g., black-and-white panchromatic silver halide emulsions and multilayer silver halide emulsion elements, it is preferred to use a second dye(s) in conjunction with the subject dye(s) that has a principal absorption in a second and at least partially different predetermined wavelength range such that the combination of dyes will afford protection from non-selective incident actinic radiation over the range of 400 to 700 nm. The second dye employed may be non-color-changing but preferably, is also pH sensitive, i.e., has reversibly alterable spectral absorption characteristics in response to changes in the environmental pH so that it may be rendered light-absorbing or non-light-absorbing as desired. Illustrative of such dyes are phthaleins derived from indoles, such as, indole phthalein. The second dye also may be initially present in the film unit or in the processing composition as discussed above either together with or separate from the subject dyes and subsequent to processing may be removed from the film unit or retained within the film structure,,provided it is in a form or position such that it does not interfere with viewing of the image produced.
Dyes may be selected from the above-denoted class that are useful as optical filter agents in diffusion transsystem" transmission density of all the layers intermediate the silver halide layer(s) and the incident light; the system transmission density required to protect color film units of the aforementioned type and photographic speed has been found to be on the order of 7.0 to 7.2. Lesser levels of optical transmission density would, of course, provide effective protection for shorter processing times, lesser light intensities and/or films having lower exposure indices. The transmission density and the indicator dye concentration necessary to provide the requisite protection from incident light may be readily determined for any photographic profer processes, for example, those employing composite diffusion transfer photosensitive elements including a film pack or roll wherein superposed photosensitive and image-receiving elements are maintained as a laminate after formation of the final image. Such elements include at least one transparent support to allow view ing of the final image without destroying the structural integrity of the film unit. Preferably, the support carrying the photosensitive layer(s) is opaque and the support carrying the image-receiving layer is transparent and selective photoexposure of the photosensitive layer(s) and viewing of the final image both are effected through the latter support. The final image is viewed as a reflection print, i.e., by reflected light, provided by a reflecting agent initially disposed in the processing composition applied and maintained intermediate the image-receiving and next adjacent photosensitive layer or by a preformed layer of reflecting agent initally positioned intermediate the image receiving and next adjacent-photosensitive layer. It will be understood that a'preformed reflective layer, while it should be capable of masking the photosensitive layer(s) subsequent to image formation, should not interfere with selective photoexposure of the photosensitive material prior to processing.
When utilizing reflection-type composite film units, the indicator dye or dyes employed as the optical filter agent(s) may be positioned initially in a layer of the film unit, e.g., in a layer between the image-receiving and next adjacent photosensitive layer through which photoexposure is effected provided it is incorporated under conditions, i.e., at a pH such that it will not absorb actinic radiation intended to selectively expose the photosensitive material to form a latent image therein. For example, the optical filter agent may be in a layer coated over either the image-receiving layer or the next adjacent photosensitive layer and should remain substantially non-light-absorbing until a processing composition is applied providing a pH at which the indicator dye is capable of being rapidly converted to its lightabsorbing form to provide light protection when the film unit is removed from the camera. Rather than being initially disposed in the film unit, the indicator dye may be initially present in the processing composition applied intermediate the image-receiving and next adjacent photosensitive layer subsequent to photoexposure. The dye, when initially disposed in the processing composition, will be in its light-absorbing form.
The dyes selected as optical filter agents should exhibit at the initial pH of the processing, maximum spectral absorption of radiation at the wavelengths to which the film units pohtosensitive silver halide layer or layers are sensitive, and preferably, should be substantially immobile or non-diffusible in the alkaline processing composition in order to achieve optimum efficiency as a radiation filter and to prevent diffusion of filter agent into layers of the film unit where its presence may be undesirable. Recognizing that the filter agent absorption will detract from image-viewing characteristics by contaminating reflecting pigment background, the selected agents should be those exhibiting major spectral absorption at the pH at which processing is effected and minimal absorption at a pH below that which obtains during transfer image formation. Accordingly, the selected optical filter agent or agents should possess a pKa below that of the processing pH and above that of the environmental pH subsequent to transfer image formation.
As discussed previously, the concentration of indicator dye is selected to provide the optical transmission density required, in combination with other layers intermediate the silver halide emulsion layer(s) and the incident radiation, to prevent nonimagewise exposure, i.e., fogging, by incident actinic light during the performance of the particular photographic process. In the processes where the indicator dye or dyes selected as optical filter agents are used in conjunction with a reflecting agent or agents, the optical filter agents and reflecting agents together should possess the optical transmission density necessary to protect the photosensitive material for the particular photographic process. The optimum concentration of optical filter agent(s) or filter agent(s) together with reflecting agent(s) may be readily determined empirically for each photographic system.
While substantially any reflecting agent may be employed for the layer of reflecting agent, either preformed or applied as a component of the processing composition, it is preferred to select an agent that will not interfere with the color integrity of the dye transfer image, as viewed by the observer, and, most preferably, an agent which is aesthetically pleasing to the viewer and does not provide a background detracting from the information content of the image. Particularly desirable reflecting agents will be those providing a white background, for viewing the transfer image, and specifically those conventionally employed to provide back-- ground for reflection photographic prints and, especially, those agents possessing the optical properties desired for reflection of incident radiation.
As examples of reflecting agents, mention may be made of barium sulfate, zinc sulfide, titanium dioxide, barium stearate, silver flake, silicates, alumina, zirconium oxide, zirconium acetyl acetate, sodium zirconium sulfate, kaolin, mica, and the like.
Illustrative of the photographic use of the indicator dyes of the present invention as optical filter agents, a photographic film unit may be prepared by coating, in succession, on a gelatin subbed, 4 mil. opaque polyethylene terephthalate film base, the following layers:
1. a layer of the cyan dye developer l,4-bis-(,B-
[hydroquinonyl-a-methyl]-ethylamino)-5,8- dihydroxy-anthraquinone dispersed in gelatin and coated at a coverage of about'8O mgs./ft. of dye and about 100 mgs./ft. of gelatin;
2. a red-sensitive gelatino-silver iodobromide emulsion coated at a coverage of about 225 mgs./ft. of silver and about mgs./ft. of gelatin;
3. a layer of the acrylic latex sold by Rohm and Haas Co., Philadelphia, Penna, U.S.A., under the trade designation AC-6l and polyacrylamide coated at a coverage of about 150 mgs/ft. of AC61 and about 5 mgs/ftf of polyacrylamide;
4. a layer of the magenta dye developer Z-(p-[B- hydroquinonylethyl]-phenylazo) 4-isopropoxy- 1 naphthol dispersed in gelatin and coated at a coverage of mgs./ft. of dye and about 120 mgs./ft. of gelatin;
5. a green-sensitive gelatino-silver iodobromide emulsion coated at a coverage of about 120 mgs./f- L of silver and 60 mgs./ft. of gelatin;
6. a layer comprising the acrylic latex sold by Rohm and Haas Co. under the trade designation B-l5 and polyacrylamide coated at a coverage of about 100 mgs./ft. of B15 and about 10 mgs./ft. of polyacrylamide;v
7. a layer of the yellow dye developer 4-(p-[B- hydroquinonylethyl]-phenylazo)-3-(N-n-hexylcarbox-amid0)-l-phenyLS-pyrazolone and the auxiliary developer 4-methylphenyl hydroquinone dispersed in gelatin and coated at a coverage of about 50 mgs./ft. of dye, about 15 mgs/ft. of auxiliary developer and 50 mgs./ft. of gelatin;
8. a blue-sensitive gelatino-silver iodobromide emulsion coated at a coverage of about mgs./ft. of silver and about 75 mgs./ft. of gelatin; and
9. a layer of gelatin coated at a coverage of about 50 mgs./ft. of gelatin.
Then a transparent 4 mil. polyethylene terephthalate film base may be coated, in succession, with the following illustrative layers:
1. a 7:3 mixture, by weight, of polyethylene/maleic acid copolymer and polyvinyl alcohol at a coverage of about 1,400 mgs./ft. to provide a polymeric acid layer;
2. a graft copolymer of acrylamide and diacetone acrylamide on a polyvinyl alcohol backbone in a molar ratio of 123.2:1 at a coverage of about 800 mgs./ft. to provide a polymeric spacer layer; and
3. a 2:1 mixture, by weight, of polyvinyl alcohol and poly-4-vinylpyridine, at a coverage of about 900 mgs./ft.'-' and including about 20 mgs./ft. phenyl mercapto tetrazole, to provide a polymeric imagereceiving layer.
The two components thus prepared may then be taped together in laminate form, at their respective edges, by means of a pressure-sensitive binding tape extending around, in contact with, and over the edges of the resultant laminate.
A rupturable container comprising an outer layer of lead foil and an inner liner or layer of polyvinyl chlor Water cc. Potassium hydroxide l 1.2 gms.
Hydroxyethyl cellulose (high viscosity) [commercially available from Hercules Powder Co., Wilmington,
Delaware, under the trade name Natrasol 250] 3.4 gms.
N-phenethyl-a-picolinium bromide 2.7 gms. Benzotriazole 1.15 gms. Titanium dioxide 50.0 gms.
n-cufizr-o OH OH 1.0 gm.
uHu-n may then be fixedly mounted on the leading edge of each of the laminates, by pressure-sensitive tapes interconnecting the respective containers and laminates, such that, upon application of compressive pressure to a container, its contents may be distributed, upon rupture of the containers marginal seal, between the polymeric image-receiving layer and next adjacent gelatin layer.
The photosensitive composite film units may be exposed through step wedges to selectively filter radiation incident on the transparent polyethylene terephthalate layer and processed by passage of the exposed film units through appropriate pressure-applying members, such as suitably gapped, opposed rolls, to effect rupture of the container and distribution of its contents. During processing, the multicolor dye transfer image formation may be viewed through the transparent polyethylene terephthalate layer against the titanium dioxide background provided by distribution of the pigment containing processing composition between the polymeric image-receiving layer and gelatin layer 9 of the photosensitive component. The film unit may be exposed to incident light and the formation of the image may be viewed upon distribution of the processing composition by reason of the protection against incident radiation afforded the photosensitive silver halide emulsion layers by the optical filter agents and by reason of the effective reflective background afforded by the titanium dioxide.
The film unit detailed above is similar to that shown in FIG. 2 and related FIGS. 3 and 4 of aforementioned copending US. Pat. application Ser. No. 101,968. The negative component of the film unit including the photosensitive strata and associated dye-image-forming material; the positive component including the timing, neutralizing and dyeable layers; and the processing composition including its components, such as, the alkaline material and various addenda are described in detail in application Ser. No. 101,968. For convenience, the specification of this application is specifically incorporated herein.
Besides the above photosensitive element, the dyes of thepresent invention may be employed in composite photosensitive elements, in general, where the dyeable stratum along with any associated layers may be contained together with the photosensitive strata as a unitary film unit which may be termed an integral negative positive film unit comprising a negative component including the aforementioned essential layers and a positive component including at least the dyeable stratum in which the color transfer image is to be formed. The essential layers are preferably contained on a transparent dimensionally stable layer or support member positioned closest to the dyeable stratum so that the resulting transfer image is viewable through this transparent layer. Most preferably another dimensionally stable layer which may be transparent or opaque is positioned on the opposed surface of the essential layers so that the aforementioned essential layers are sandwiched or confined between a pair of dimensionally stable layers or support members, at least one of which is transparent to permit viewing therethrough of a color transfer image obtained as a function of development of the exposed film unit in accordance with the known color diffusion transfer processes. It will be appreciated that all of these film units, like the specific one detailed above, may optionally contain other layers performing specific desired functions, e. g., spacer layers, pH-reducing layers, etc.
Examples of such integral negative-positive film units for preparing color transfer images viewable without separation are those described and claimed in aforementioned U.S. Pat. No. 3,415,644 and in U.S. Pat. Nos. 3,415,645, 3,415,646, 3,473,925, and 3,573,043.
In general, the film units of the foregoing description, e.g., those described in the aforementioned patents and/or copending applications, are exposed to form a developable image and thereafter developed by applying the appropriate processing composition to develop exposed silver halide and to form, as a function of development, an imagewise distribution of diffusible dye image-providing material which is transferred, at least in part by diffusion, to the dyeable stratum to impart thereto the desired color transfer image, e.g., a positive color transfer image. Common to all of these systems is the provision of a reflecting layer between the dyeable stratum and the photosensitive strata to mask effectively the latter and to provide a background for viewing the color image contained in the dyeable stratum, whereby this image is viewable without separation, from the other layers or elements of the film unit. As discussed previously, in some embodiments this reflecting layer is provided prior to photoexposure, e.g., as a preformed layer included in the essential layers of the laminar structure comprising the film unit, and in others it is provided at some time thereafter, e.g., by including a suitable light-reflecting agent, for example, a white pigment, such as, titanium dioxide, in the processing composition. As an example of such a preformed layer, mention may be made of that disclosed in the copending applications of Edwin H. Land, Ser. Nos. 846,441, filed July 31, 1969, and 3,645, filed Jan. 19, 1970 and now U.S. Pat. Nos. 3,615,421 and 3,620,724, respectively. The reflecting pigment may be generated in situ as is disclosed in the copending applications of Edwin H. Land, Ser. Nos. 43,741 and 43,742, both filed June 5, 1970 and now U.S. Pat. Nos. 3,647,434 and 3,647,435, respectively. In a particularly preferred form, such film units are employed in conjunction with a rupturable container, such as, that used above, containing the processing composition having the light-reflecting agent incorporated therein which container is adapted upon application of pressure of distributing its contents to develop the exposed film unit and to provide the light-reflecting layer.
As noted previously, the photographic use of the dyes of the present invention as optical filter agents to prevent post-exposure fogging of a selectively exposed photosensitive material is not limited to diffusion transfer processes nor to such processes employing composite photosensitive elements. While the use of such dyes in composite multicolor diffusion transfer film units is a particularly preferred embodiment of the present invention, these dyes may be used with equally effective results in any photograhpic process where it is desired to protect a photosensitive material from incident radiation actinic to the photosensitive material within the wavelength range capable of being absorbed by the dye. For example, the Subject dyes may be used in conventional tray photographic processing as a component of the processing bath, or they may be present in a layer coextensive with one or both surfaces of a layer of photosensitive material to be processed using conventional tray procedures, provided that they are non-lightabsorbing prior to photoexposure and also subsequent to developing the latent image unless the layer.contain-.
ing the dyeis to be removed subsequent to processing.
In such procedures, the photoexposed photosensitive material will, of course, be transferred from the camera to the processing bath in the absence of radiation actinic to the material.
The subject dyes also may be employed in diffusion transfer processes where the photosensitive and imagereceiving elements are separated subsequent to the formation of a transfer image or where a spreader sheet is separated from the photosensitive element to reveal a final image in the negative. In addition to the composite diffusion transfer structures described above, the subject dyes may be used with composite diffusion transfer film units where the final image is to be viewed by tans mitted light. Also they may be used in composite film units specifically adapted, for example, for forming a silver transfer image, for developing a negative silver image by monobath processing, for obtaining an additive color image, and for obtaining a dye image by the silver dye bleach process which structures are described in detail in aforementioned copending U.S. application Ser. No. 101,968, particularly with reference to FIGS. 10 to 13 of-the applications drawings.
Although the invention has been discussed in detail throughout employing dye developers, the preferred image-providing materials, it will be readily recognized that other, less preferred, image-providing materials may be substituted in replacement of the preferred dye developers in the practice of the invention. For example, there may be employed dye image-forming materials such as those disclosed in U.S. Pat. Nos. 2,647,049;
3,443,941; 3,443,943; etc., wherein color diffusion transfer processes are described which employ color coupling techniques comprising, at least in part, reacting one or more color developing agents and one or more color formers or couplers to provide a dye transfer image to a superposed image-receiving layer and those disclosed in U.S. Pat. No. 2,774,668 and 3,087,817, wherein color diffusion transfer processes are described which employ the imagewise differential transfer of complete dyes by the mechanisms therein described to provide a transfer dye image to a contiguous image-receiving layer, and thus including the employment' of image-providing materials in whole or in part initially insoluble or nondiffusible as disposed in the film unit which diffuse during processing as a direct or indirect function of exposure.
In view of the foregoing, it will be readily apparent that the subject dyes are useful generally in photographic processes for producing silver, monochromatic and multi-color images using any photosensitive material including conventional and direct positive silver halide emulsions. Depending upon the selected photosensitive material, one or more of the dyes may be used along or in combination with another optical filter agent, such as another light-absorbing dye, which second dye may be non-color-changing or another pH sensitive dye. 1f the selected dye or dyes do not possess the desired stability in the processing composition for long term storage therein, they may be initially disposed in the film structure or stored in a double-compartmented pod or in one of two associated pods separate from the processing solution until such time as the pod(s) are ruptured whereupon the dyes are admixed with the processing solution.
Since certain changes may be made in the above product and process without departing from the scope of the invention herein involved, it is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
What is claimed is:
l. A photographic process comprising the steps of seiectively exposing a photosensitive element comprising a layer of photosensitive material to radiation actinic thereto to provide a latent image therein, applying a processing composition to provide an indicator dye in a form capable of absorbing a predetermined wavelength range of radiation actinic to said photosensitive material, and developing said latent image while exposing said photosensitive element non-selectively to incident actinic radiation within said predetermined wavelength range, said indicator dye being present during development in a position and quantity effective to absorb said wavelength range of incident radiation in an amount sufficient to prevent any substantial increase, as a result of perfonning said process in the presence of incident radiation within said wavelength range, in the minimum density of the image obtained by said development of said latent image, and being selected from a 3,3-disubstituted phthalide and a 3,3- disubstituted naphthalide wherein the 3,3 substituents are 8-hydroxy-5'-quinolyl radicals.
2. A process as defined in claim 1 wherein saidindicator dye is initially disposed in said processing composition having a pH at which said indicator dye is lightabsorbing, said processing composition being applied to said photosensitive layer and said composition containing said indicator dye being separated from the photosensitive layer subsequent to substantial image development.
3. A process as defined in claim 1 wherein said indicator dye is retained in said element and is rendered ineffective to prevent viewing of the final image subsequent to substantial image development by adjusting the pH of said indicator dyes environment to a value at which it is substantially non-light-absorbing.
4. A process as defined in claim 3 wherein said indicator dye is initially present in a processing composition permeable layer at a pH value at which it is substantially non-light absorbing, said layer being coextensive with at least one surface of said photosensitive layer and said processing composition applied thereto having a pH at which said indicator dye is lightabsorbing.
5. A process as defined in claim 1 wherein said layer of photosensitive material is a silver halide layer.
6. A process as defined in claim 1 wherein said indicator dye is a 3,3-disubstituted phthalide.
7. A process as defined in claim 6 wherein said indicator dye is 3,3-bis-(8'-hydroxy-5-quinolyl)phthalide.
8. A process as defined in claim 6 wherein said indicator dye is 3,3-bis-(8-hydroxy-5-quinolyl)-7-carboxyphthalide.
9. A process of forming photographic diffusion transfer image which comprises, in combination, the steps of:
a. exposing a photographic film unit which comprises a plurality of layers including an opaque support layer carrying a photosensitive silver halide layer having associated therewith a compound capable of providing as a function of development an imagewise distribution of an image-forming material which is processing composition soluble and diffusible as a function of the point-to-point degree of exposure of said silver halide layer and a diffusion transfer process image-receiving layer adapted to receive solubilized image-forming material diffusing thereto;
b. contacting said photosensitive silver halide layer with an aqueous alkaline processing composition to provide an indicator dye in a form capable of absorbing a predetermined wavelength range of radiation actinic to said photosensitive material, said indicator dye being selected from a 3,3- disubstituted phthalide and a 3,3-disubstituted naphthalide wherein said 3,3 substitutents are 8- hydroxy-5-quinolyl radicals.
c. effecting thereby development of said silver halide emulsion;
i'd. forming thereby an imagewise distribution of diffusible image-forming material, as a function of the point-to-point degree of emulsion exposure; and
e. transferring, by diffusion, at least a portion of said imagewise distribution of diffusible image-forming material to said layer adapted to receive said material to provide an image therein; said indicator dye being present during development in a position and quantity effective to absorb said wavelength range of actinic radiation in an amount sufficient to prevent any substantial decrease, as a result of performing said process in the presence of incident actinic light within said wavelength range, in the maximum density of the image obtained by the transfer of said diffusible image-forming material.
10. A process of forming transfer images as defined in claim 9 wherein said indicator dye is disposed, at a pH below its pKa, in a separate processing composition permeable layer and said photosensitive silver halide layer is positioned intermediate said opaque support and said layer containing said indicator dye.
11. A process of forming transfer images in color which comprises, in combinatiomthe steps of:
a. exposing a photographic film unit which is adapted to be processed by application of pressure to release and distribute a processing composition and which includes, in combination, a photosensitive element comprising a composite structure containing, as essential layers, in sequence, a first support layer opaque to incident actinic radiation; a photosensitive silver halide layer having associated therewith a compound capable of providing as a function of development an imagewise distribution of a dye image-forming material which is processing composition soluble and diffusible as a function of exposure of the photosensitive silver halide layer to actinic radiation; a polymeric layer dyeable by said dye image-forming material; a second support layer transparent to incident actinic radiation; and means securing said layers in substantially fixed relationship; means for interposing a reflecting agent and an indicator dye capable of absorbing incident radiation within a predetermined wavelength range actinic to said photosensitive layer at a pH above its pKa intermediate said dyeable polymeric layer and said photosensitive silver halide layer and associated dye image-forming material subsequent to photoexposure of said film unit, said indicator dye being selected from a 3,3-disubstituted phthalide and a 3,3-disubstituted naphthalide wherein said 3,3 substituents are 8-hydroxy-5-quinolyl radicals;
a rupturable container retaining an aqueous alkaline processing composition possessing a pH above the pKa of said indicator dye fixedly positioned and extending transverse a leading edge of said photosensitive element to effect unidirectional discharge of the containers processing composition intermediate said dyeable polymeric layer and the photosensitive silver halide layer next adjacent thereto upon application of compressive force of said container;
b. applying compressive force to said rupturable container to effect unidirectional discharge of the containers processing composition intermediate said dyeable polymeric layer and said photosensitive silver halide layer;
c. effecting thereby substantial development of said silver halide layer and disposition of said reflecting agent and said indicator dye at a pH above its pKa intermediate said dyeable polymeric layer and said photosensitive silver halide layer;
d. as a result of said development, forming an imagewise distribution of diffusible dye image-forming material, as a function of the point-to-point degree of exposure of said photosensitive layer;
e. transferring, by diffusion, at least a portion of said imagewise distribution of diffusible dye imageforming material to said dyeable polymeric layer to provide a dye image thereto; and
f. maintaining said composite structure intact subsequent to said processing, said indicator dye being present in a quantity effective to absorb said wavelength range of incident radiation in an amount sufficient in combination with said reflecting agent, to prevent any substantial decrease, as a result of performing said process in the presence of incident actinic light within said wavelength range, in the maximum density of the image obtained by the transfer of said diffusible image-forming material.
12. A process of forming transfer images in color as defined in claim 11 wherein said indicator dye is initially disposed at a pH below its pKa in an aqueous alkaline processing composition permeable layer of said photosensitive element intermediate said dyeable polymeric layer and said silver halide layer, and said rupturable container containing said aqueous alkaline processing composition possessing a pH above the pKa of said indicator dye is fixedly positioned and extends transverse a leading edge of said photosensitive element to effect unidirectional discharge of the processing composition intermediate said dyeable polymeric layer and said layer containing said indicator dye upon application of compressive force to said container and including the step of discharging said processing composition, subsequent to exposure of said photosensitive element, intermediate said dyeable polymeric layer and said layer containing said indicator dye.
13. A process of forming transfer images in color as defined in claim 11 wherein said reflecting agent is titanium dioxide and said indicator dye and said titanium dioxide are initially disposed in said aqueous alkaline processing composition as retained in said rupturable container.
14. A process of forming transfer images in color as defined in claim 11 wherein said photosensitive element includes at least one acid reacting polymeric layer positioned intermediate at least one of a. said first opaque layer and the photosensitive silver ha ide layer next adjacent thereto, and b. said second transparent layer and the dyeable polymeric layer next adjacent thereto, and contains sufficient acidifying function to effect reduction of said aqueous alkaline processing composition from apH above to a pH below the pKa of said indicator dye and including the step of transferring, by diffusion, subsequent to substantial transfer dye image formation, a sufficient portion of the ions of said processing composition to said polymeric acid layer to thereby reduce said pH to a pH below said pKa. 15. A process of forming transfer images in color as defined in claim 11 wherein said dye-image forming material comprises a dye which is a silver halide developing agent and said photosensitivelayer isa silver halide emulsion.
16. A process of forming transfer images in color as defined in claim 15' wherein said photosensitive element comprises at least two selectively sensitized silver halide emulsion layers, each of said layers having associated therewith an image-forming dye, which is a silver halide developing agent, of predetermined color, and is soluble and diffusible, in aqueous alkaline processing composition as a function of the point-to-point degree of exposure of the respective emulsion associated therewith.
17. A process of forming transfer images in color as defined in claim 11 wherein said photosensitive element comprises three selectively sensitized silver halide emulsion layers on said support, in sequence, a redsensitive silver halide emulsion layer having associated therewith a cyan image-forming dye; a green-sensitive silver halide emulsion layer having associated therewith a magenta image-forming dye; a blue-sensitive silver halide emulsion layer having associated therewith a yellow image-forming dye; each of said cyan, magenta and yellow image-forming dyes being silver halide developing agents and soluble and diffusible in said aqueous alkaline processingsolution.
18. A process as defined in claim 11 wherein said indicator dye is a 3,3-disubstituted phthalide.
19. A process as defined in claim 18 wherein said indicator dye is 3,3-bis-( 8 -hydroxy-5 quinolyl)phthalide.
20. A process as'defined in claim 18 wherein said indicator dye is 3,3-bis-(8-hydroxy-5'-quinolyl)-7-carboxyphthalide.
21. A photographic film unit which comprises a plurality of layers including a support layer carrying on one surface, in order, a layer of photosensitive material and a layer comprising an indicator. dye disposed at a pH below its pKa selected from a 3,3-disubstituted phthalide and a 3,3-disubstituted naphthalide wherein said 3,3 substitutents are 8-hydroxy-5'-quinolyl radicals.
22. A photographic film unit as defined in claim 21 wherein said photosensitive material is silver halide.
23. A photographic film unit as defined in claim 22 wherein said silver halide layer has associated therewith a silver halide developing agent.
24. A photographic film unit as defined in claim 22 wherein said silver halide layer has associated there with a dye-providing compound capable of providing as a function of development an imagewise distribution of a dye image-forming material which is processing composition soluble and difiusible as a function of the point-to-point degree of exposure of said silver halide layer.
25. A photographic film unit as defined in claim 24 which is adapted to be processed by application of pressure to release and distribute a processing composition and which comprises, in combination:
a photosensitive element including a composite structure containing, as essential layers, in sequence, a first support layer opaque to incident actinic radiation; at least two selectively sensitized silver halide layers, each having associated therewith an image-forming dye which is a silver halide developing agent of predetermined color, each of said dyes being soluble and diffusible in alkaline processing composition as a function of the pointto-point degree of exposure of the respective silver halide associated therewith, a polymeric layer dyeable by said dye; a second support layer transparent to incident actinic radiation; and means securing said layers in substantially fixed relationship;
a rupturable container retaining an alkaline processing composition containing reflecting agent fixedly positioned and extending transverse a leading edge of said photosensitive element to effect unidirectional discharge of said containers processing composition between said dyeable polymeric layer and the photosensitive silver halide layer next adjacent therto upon application of pressure to said container; and an indicator dye capable of absorbing incident radiation within a predetermined wavelength range actinic to said silver halide disposed in at least one of said processing composition and, at a pH below its pKa, in a layer intermediate said photosensitive silver halide layer andsaid second support layer transparent to incident actinic radiation, said indicator dye being selected from a 3,3-disubstituted phthalide and a 3,3-disubstituted naphthalide wherein said 3,3 substituents are 8- hydroxy-S -quinolyl radicals.
26. A photographic film unit as defined in claim 25 including at least one acid reacting polymeric layer positioned intennediate at least one of said first opaque layer and the photosensitive silver halide layer next adjacent thereto, and said second transparent layer and the dyeable polymeric layer next adjacent therto, said polymeric acid layer containing sufiicient acidifying function to effect reduction of said processing compo- 22 sition from a first pH at which said image-forming dye is substantially soluble and diffusible to a second pH at which said image-forming dye is substantially nondiffusible.
27. A photographic film unit as defined in claim 26 wherein said reflecting agent taken together with said indicator dye are adapted to prevent further exposure of the selectively exposed silver halide layer during processing in the presence of radiation within said predetermined wavelength range actinic to the silver halide layer and incident on the surface of the film unit opposite to the opaque support layer.
28. A photographic film unit as defined in claim 27 wherein said photosensitive element includes, as essential layers, in sequence, from said opaque support layer, an alkaline solution permeable polymeric layer containing a cyan dye; a red-sensitive silver halide emulsion layer; an alkaline solution permeable polymeric layer containing a magenta dye; a green-sensitive silver halide emulsion layer; an alkaline solution permeable polymeric layer containing a yellow dye; a bluesensitive silver halide emulsion layer, each of said cyan, magenta and yellow dyes being silver halide developing agents and being soluble and difiusible, in aqueous alkaline solution at said first pH and substantially insoluble in aqueous alkaline solution at said second pH.
29. A film unit as defined in claim 25 wherein said indicator dye is a 3,3-disubstituted phthalide.
30. A film unit as defined in claim 29 wherein said indicator dye is 3 ,3-bis-( 8 -hydroxy-5 quinolyl)phthalide.
31. A film unit as defined in claim 28 wherein said indicator dye is 3,3-bis-(8'-hydroxy-5-quinolyl)-7-carboxyphthalide.
32. A photographic processing composition comprising an aqueous alkaline solution of a viscosity imparting reagent, a light-reflecting agent and an indicator dye selected from a 3,3-disubstituted phthalide and a 3,3-disubstituted naphthalide wherein said 3,3 substituents are 8'-hydroxy-5'-quinolyl radicals.
33. A photographic processing composition as defined in claim 32 which additionally contains a silver halide developing agent.
34. A composition as defined in claim 32 wherein said indicator dye is a 3,3-disubstituted phthalide.
35. A composition as defined in claim 34 wherein said indicator dye is 3,3-bis-(8'hydroxy-5'- quinolyl)phthalide.
36. A composition as defined in claim 34 wherein said indicator dye is 3,3-bis-(8'-hydroxy-5quinolyl)- 7-carboxyphthalide.
37. A composition as defined in claim 32 wherein said aqueous alkaline solution has a pH above the pKa of said indicator dye.

Claims (36)

  1. 2. A process as defined in claim 1 wherein said indicator dye is initially disposed in said processing composition having a pH at which said indicator dye is light-absorbing, said processing composition being applied to said photosensitive layer and said composition containing said indicator dye being separated from the photosensitive layer subsequent to substantial image development.
  2. 3. A process as defined in claim 1 wherein said indicator dye is retained in said element and is rendered ineffective to prevent viewing of the final image subsequent to substantial image development by adjusting the pH of said indicator dye''s environment to a value at which it is substantially non-light-absorbing.
  3. 4. A process as defined in claim 3 wherein said indicator dye is initially present in a processing composition permeable layer at a pH value at which it is substantialLy non-light absorbing, said layer being coextensive with at least one surface of said photosensitive layer and said processing composition applied thereto having a pH at which said indicator dye is light-absorbing.
  4. 5. A process as defined in claim 1 wherein said layer of photosensitive material is a silver halide layer.
  5. 6. A process as defined in claim 1 wherein said indicator dye is a 3,3-disubstituted phthalide.
  6. 7. A process as defined in claim 6 wherein said indicator dye is 3,3-bis-(8''-hydroxy-5''-quinolyl)phthalide.
  7. 8. A process as defined in claim 6 wherein said indicator dye is 3,3-bis-(8'' -hydroxy-5''-quinolyl)-7-carboxyphthalide.
  8. 9. A process of forming photographic diffusion transfer image which comprises, in combination, the steps of: a. exposing a photographic film unit which comprises a plurality of layers including an opaque support layer carrying a photosensitive silver halide layer having associated therewith a compound capable of providing as a function of development an imagewise distribution of an image-forming material which is processing composition soluble and diffusible as a function of the point-to-point degree of exposure of said silver halide layer and a diffusion transfer process image-receiving layer adapted to receive solubilized image-forming material diffusing thereto; b. contacting said photosensitive silver halide layer with an aqueous alkaline processing composition to provide an indicator dye in a form capable of absorbing a predetermined wavelength range of radiation actinic to said photosensitive material, said indicator dye being selected from a 3,3-disubstituted phthalide and a 3,3-disubstituted naphthalide wherein said 3,3 substitutents are 8''-hydroxy-5''-quinolyl radicals. c. effecting thereby development of said silver halide emulsion; d. forming thereby an imagewise distribution of diffusible image-forming material, as a function of the point-to-point degree of emulsion exposure; and e. transferring, by diffusion, at least a portion of said imagewise distribution of diffusible image-forming material to said layer adapted to receive said material to provide an image therein; said indicator dye being present during development in a position and quantity effective to absorb said wavelength range of actinic radiation in an amount sufficient to prevent any substantial decrease, as a result of performing said process in the presence of incident actinic light within said wavelength range, in the maximum density of the image obtained by the transfer of said diffusible image-forming material.
  9. 10. A process of forming transfer images as defined in claim 9 wherein said indicator dye is disposed, at a pH below its pKa, in a separate processing composition permeable layer and said photosensitive silver halide layer is positioned intermediate said opaque support and said layer containing said indicator dye.
  10. 11. A process of forming transfer images in color which comprises, in combination, the steps of: a. exposing a photographic film unit which is adapted to be processed by application of pressure to release and distribute a processing composition and which includes, in combination, a photosensitive element comprising a composite structure containing, as essential layers, in sequence, a first support layer opaque to incident actinic radiation; a photosensitive silver halide layer having associated therewith a compound capable of providing as a function of development an imagewise distribution of a dye image-forming material which is processing composition soluble and diffusible as a function of exposure of the photosensitive silver halide layer to actinic radiation; a polymeric layer dyeable by said dye image-forming material; a second support layer transparent to incident actinic radiation; and means securing said layers in substantially fixed relationship; means for interposing a reflecting agent and an indicator dye capable of absorbing incident radiation within a predetermined wavelength range actinic to said photosensitive layer at a pH above its pKa intermediate said dyeable polymeric layer and said photosensitive silver halide layer and associated dye image-forming material subsequent to photoexposure of said film unit, said indicator dye being selected from a 3,3-disubstituted phthalide and a 3,3-disubstituted naphthalide wherein said 3,3 substituents are 8''-hydroxy-5''-quinolyl radicals; a rupturable container retaining an aqueous alkaline processing composition possessing a pH above the pKa of said indicator dye fixedly positioned and extending transverse a leading edge of said photosensitive element to effect unidirectional discharge of the container''s processing composition intermediate said dyeable polymeric layer and the photosensitive silver halide layer next adjacent thereto upon application of compressive force of said container; b. applying compressive force to said rupturable container to effect unidirectional discharge of the container''s processing composition intermediate said dyeable polymeric layer and said photosensitive silver halide layer; c. effecting thereby substantial development of said silver halide layer and disposition of said reflecting agent and said indicator dye at a pH above its pKa intermediate said dyeable polymeric layer and said photosensitive silver halide layer; d. as a result of said development, forming an imagewise distribution of diffusible dye image-forming material, as a function of the point-to-point degree of exposure of said photosensitive layer; e. transferring, by diffusion, at least a portion of said imagewise distribution of diffusible dye image-forming material to said dyeable polymeric layer to provide a dye image thereto; and f. maintaining said composite structure intact subsequent to said processing, said indicator dye being present in a quantity effective to absorb said wavelength range of incident radiation in an amount sufficient in combination with said reflecting agent, to prevent any substantial decrease, as a result of performing said process in the presence of incident actinic light within said wavelength range, in the maximum density of the image obtained by the transfer of said diffusible image-forming material.
  11. 12. A process of forming transfer images in color as defined in claim 11 wherein said indicator dye is initially disposed at a pH below its pKa in an aqueous alkaline processing composition permeable layer of said photosensitive element intermediate said dyeable polymeric layer and said silver halide layer, and said rupturable container containing said aqueous alkaline processing composition possessing a pH above the pKa of said indicator dye is fixedly positioned and extends transverse a leading edge of said photosensitive element to effect unidirectional discharge of the processing composition intermediate said dyeable polymeric layer and said layer containing said indicator dye upon application of compressive force to said container and including the step of discharging said processing composition, subsequent to exposure of said photosensitive element, intermediate said dyeable polymeric layer and said layer containing said indicator dye.
  12. 13. A process of forming transfer images in color as defined in claim 11 wherein said reflecting agent is titanium dioxide and said indicator dye and said titanium dioxide are initially disposed in said aqueous alkaline processing composition as retained in said rupturable container.
  13. 14. A process of forming transfer images in color as defined in claim 11 wherein said photosensitive element includes at least one acid reacting polymeric layer positioned intermediate at least one of a. said first opaque layer and the photosensitive silver halide layer next adjacent thereto, and b. said second transparent layer and the dyeable polymeric layer neXt adjacent thereto, and contains sufficient acidifying function to effect reduction of said aqueous alkaline processing composition from a pH above to a pH below the pKa of said indicator dye and including the step of transferring, by diffusion, subsequent to substantial transfer dye image formation, a sufficient portion of the ions of said processing composition to said polymeric acid layer to thereby reduce said pH to a pH below said pKa.
  14. 15. A process of forming transfer images in color as defined in claim 11 wherein said dye-image forming material comprises a dye which is a silver halide developing agent and said photosensitive layer is a silver halide emulsion.
  15. 16. A process of forming transfer images in color as defined in claim 15 wherein said photosensitive element comprises at least two selectively sensitized silver halide emulsion layers, each of said layers having associated therewith an image-forming dye, which is a silver halide developing agent, of predetermined color, and is soluble and diffusible, in aqueous alkaline processing composition as a function of the point-to-point degree of exposure of the respective emulsion associated therewith.
  16. 17. A process of forming transfer images in color as defined in claim 11 wherein said photosensitive element comprises three selectively sensitized silver halide emulsion layers on said support, in sequence, a red-sensitive silver halide emulsion layer having associated therewith a cyan image-forming dye; a green-sensitive silver halide emulsion layer having associated therewith a magenta image-forming dye; a blue-sensitive silver halide emulsion layer having associated therewith a yellow image-forming dye; each of said cyan, magenta and yellow image-forming dyes being silver halide developing agents and soluble and diffusible in said aqueous alkaline processing solution.
  17. 18. A process as defined in claim 11 wherein said indicator dye is a 3,3-disubstituted phthalide.
  18. 19. A process as defined in claim 18 wherein said indicator dye is 3,3-bis-(8''-hydroxy-5''-quinolyl)phthalide.
  19. 20. A process as defined in claim 18 wherein said indicator dye is 3,3-bis-(8''-hydroxy-5''-quinolyl)-7-carboxyphthalide.
  20. 21. A photographic film unit which comprises a plurality of layers including a support layer carrying on one surface, in order, a layer of photosensitive material and a layer comprising an indicator dye disposed at a pH below its pKa selected from a 3,3-disubstituted phthalide and a 3,3-disubstituted naphthalide wherein said 3,3 substitutents are 8''-hydroxy-5''-quinolyl radicals.
  21. 22. A photographic film unit as defined in claim 21 wherein said photosensitive material is silver halide.
  22. 23. A photographic film unit as defined in claim 22 wherein said silver halide layer has associated therewith a silver halide developing agent.
  23. 24. A photographic film unit as defined in claim 22 wherein said silver halide layer has associated therewith a dye-providing compound capable of providing as a function of development an imagewise distribution of a dye image-forming material which is processing composition soluble and diffusible as a function of the point-to-point degree of exposure of said silver halide layer.
  24. 25. A photographic film unit as defined in claim 24 which is adapted to be processed by application of pressure to release and distribute a processing composition and which comprises, in combination: a photosensitive element including a composite structure containing, as essential layers, in sequence, a first support layer opaque to incident actinic radiation; at least two selectively sensitized silver halide layers, each having associated therewith an image-forming dye which is a silver halide developing agent of predetermined color, each of said dyes being soluble and diffusible in alkaline processing composition as a function of the point-to-point degree of exposure of the respective siLver halide associated therewith, a polymeric layer dyeable by said dye; a second support layer transparent to incident actinic radiation; and means securing said layers in substantially fixed relationship; a rupturable container retaining an alkaline processing composition containing reflecting agent fixedly positioned and extending transverse a leading edge of said photosensitive element to effect unidirectional discharge of said container''s processing composition between said dyeable polymeric layer and the photosensitive silver halide layer next adjacent therto upon application of pressure to said container; and an indicator dye capable of absorbing incident radiation within a predetermined wavelength range actinic to said silver halide disposed in at least one of said processing composition and, at a pH below its pKa, in a layer intermediate said photosensitive silver halide layer and said second support layer transparent to incident actinic radiation, said indicator dye being selected from a 3,3-disubstituted phthalide and a 3,3-disubstituted naphthalide wherein said 3,3 substituents are 8''-hydroxy-5''-quinolyl radicals.
  25. 26. A photographic film unit as defined in claim 25 including at least one acid reacting polymeric layer positioned intermediate at least one of said first opaque layer and the photosensitive silver halide layer next adjacent thereto, and said second transparent layer and the dyeable polymeric layer next adjacent therto, said polymeric acid layer containing sufficient acidifying function to effect reduction of said processing composition from a first pH at which said image-forming dye is substantially soluble and diffusible to a second pH at which said image-forming dye is substantially nondiffusible.
  26. 27. A photographic film unit as defined in claim 26 wherein said reflecting agent taken together with said indicator dye are adapted to prevent further exposure of the selectively exposed silver halide layer during processing in the presence of radiation within said predetermined wavelength range actinic to the silver halide layer and incident on the surface of the film unit opposite to the opaque support layer.
  27. 28. A photographic film unit as defined in claim 27 wherein said photosensitive element includes, as essential layers, in sequence, from said opaque support layer, an alkaline solution permeable polymeric layer containing a cyan dye; a red-sensitive silver halide emulsion layer; an alkaline solution permeable polymeric layer containing a magenta dye; a green-sensitive silver halide emulsion layer; an alkaline solution permeable polymeric layer containing a yellow dye; a blue-sensitive silver halide emulsion layer, each of said cyan, magenta and yellow dyes being silver halide developing agents and being soluble and diffusible, in aqueous alkaline solution at said first pH and substantially insoluble in aqueous alkaline solution at said second pH.
  28. 29. A film unit as defined in claim 25 wherein said indicator dye is a 3,3-disubstituted phthalide.
  29. 30. A film unit as defined in claim 29 wherein said indicator dye is 3,3-bis-(8''-hydroxy-5''-quinolyl)phthalide.
  30. 31. A film unit as defined in claim 28 wherein said indicator dye is 3,3-bis-(8''-hydroxy-5''-quinolyl)-7-carboxyphthalide.
  31. 32. A photographic processing composition comprising an aqueous alkaline solution of a viscosity imparting reagent, a light-reflecting agent and an indicator dye selected from a 3,3-disubstituted phthalide and a 3,3-disubstituted naphthalide wherein said 3,3 substituents are 8''-hydroxy-5''-quinolyl radicals.
  32. 33. A photographic processing composition as defined in claim 32 which additionally contains a silver halide developing agent.
  33. 34. A composition as defined in claim 32 wherein said indicator dye is a 3,3-disubstituted phthalide.
  34. 35. A composition as defined in claim 34 wherein said indicator dyE is 3,3-bis-(8''hydroxy-5''-quinolyl)phthalide.
  35. 36. A composition as defined in claim 34 wherein said indicator dye is 3,3-bis-(8''-hydroxy-5''-quinolyl)-7-carboxyphthalide.
  36. 37. A composition as defined in claim 32 wherein said aqueous alkaline solution has a pH above the pKa of said indicator dye.
US00202483A 1971-11-26 1971-11-26 Photographic processes and products employing 8-quinolinol phthaleins as optical filter agents Expired - Lifetime US3816123A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US00202483A US3816123A (en) 1971-11-26 1971-11-26 Photographic processes and products employing 8-quinolinol phthaleins as optical filter agents
US454692A US3929797A (en) 1971-11-26 1974-03-25 Photographic processes and products employing 8-quinolinol phthaleins as optical filter agents

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00202483A US3816123A (en) 1971-11-26 1971-11-26 Photographic processes and products employing 8-quinolinol phthaleins as optical filter agents

Publications (1)

Publication Number Publication Date
US3816123A true US3816123A (en) 1974-06-11

Family

ID=22750061

Family Applications (1)

Application Number Title Priority Date Filing Date
US00202483A Expired - Lifetime US3816123A (en) 1971-11-26 1971-11-26 Photographic processes and products employing 8-quinolinol phthaleins as optical filter agents

Country Status (1)

Country Link
US (1) US3816123A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3647437A (en) * 1970-12-18 1972-03-07 Polaroid Corp Photographic products, processes and compositions
US3702245A (en) * 1970-06-05 1972-11-07 Polaroid Corp Photographic diffusion-transfer processes and elements utilizing ph-sensitive optical filter agents to prevent fogging by extraneous actinic radiation during development

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3702245A (en) * 1970-06-05 1972-11-07 Polaroid Corp Photographic diffusion-transfer processes and elements utilizing ph-sensitive optical filter agents to prevent fogging by extraneous actinic radiation during development
US3647437A (en) * 1970-12-18 1972-03-07 Polaroid Corp Photographic products, processes and compositions

Similar Documents

Publication Publication Date Title
US3647437A (en) Photographic products, processes and compositions
US3702244A (en) Diffusion transfer photographic processes and elements utilizing ph-sensitive agents to prevent fogging by extraneous actinic radiation during development
US3706557A (en) Color diffusion transfer film unit containing a temporary barrier for developer restrainers
US3615422A (en) Photographic products and processes
US5422233A (en) Photographic processing compositions including hydrophobically modified thickening agent
US3888669A (en) Photographic products and processes with barrier layers for diffusable dyes
US3787209A (en) Color diffusion transfer color process and film with silver precipitating layer
US4329411A (en) Multicolor diffusion transfer products
US3734727A (en) Photographic products and processes
US3802881A (en) Color diffusion transfer film with whitening agent
US3779753A (en) Photographic processes and products employing aminomethyl-substituted phenolic phthaleins as optical filter agents
US3772026A (en) Colorless precursor of alkyl viologen as filter agent in photographic film
US4144065A (en) Polysilicates in photographic products and processes
US4003744A (en) Photographic products with photosensitive layers of same spectral sensitivity and different speed
US3929829A (en) PH sensitive dyes containing a phenolate group
US3932455A (en) Carbazole phthaleins
US3778265A (en) Novel photographic products and processes
US4367277A (en) Diffusion transfer product and process
US3862128A (en) Naphthalide indicator dyes
US3920667A (en) 3,3-DI-(Substituted azaphenanthen-8-yl)phthalides and naphthalides
US3816123A (en) Photographic processes and products employing 8-quinolinol phthaleins as optical filter agents
US4456674A (en) Color transfer photographic processes and products
US3801318A (en) Color diffusion transfer photographic products and processes with sulfur free silver halide solvents
US3929797A (en) Photographic processes and products employing 8-quinolinol phthaleins as optical filter agents
US3976659A (en) PH Sensitive dyes containing a phenolate group