US3815525A - Method and apparatus for introducing liquid into root zone of plants in soil - Google Patents

Method and apparatus for introducing liquid into root zone of plants in soil Download PDF

Info

Publication number
US3815525A
US3815525A US00295110A US29511072A US3815525A US 3815525 A US3815525 A US 3815525A US 00295110 A US00295110 A US 00295110A US 29511072 A US29511072 A US 29511072A US 3815525 A US3815525 A US 3815525A
Authority
US
United States
Prior art keywords
liquid
plunger
chamber
cylinder
bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00295110A
Inventor
B Zandman
B Telyatnikov
N Kholin
A Ryazanov
N Sorokin
S Dobrokhotov
V Sokolov
N Zaitsev
A Kainson
J Razygraev
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US00295110A priority Critical patent/US3815525A/en
Application granted granted Critical
Publication of US3815525A publication Critical patent/US3815525A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C23/00Distributing devices specially adapted for liquid manure or other fertilising liquid, including ammonia, e.g. transport tanks or sprinkling wagons
    • A01C23/02Special arrangements for delivering the liquid directly into the soil
    • A01C23/023Special arrangements for delivering the liquid directly into the soil for liquid or gas fertilisers
    • A01C23/026Localised non-continuous injection tools, e.g. pal injectors, spike wheels

Definitions

  • ABSTRACT Liquid under high pressure is injected into the root v adapted to discharge liquid as pulse jets.
  • a plunger is accommodated in the chamber, the plunger being reciprocated to transmit an impact to the liquid and being connected to a resilient compression member adapted to accumulate energy.
  • This invention relates generally to fertilizing and more particularly, it relates to a method of introducing highly pressurized liquid into root zone of plants in soil and to an apparatus for accomplishing the same.
  • This invention may be successfully used in growing large-and-small fruits, vineyards etc., when deep subsoil injection of liquidfertilizers directly into the root zone of a plant is required in order to provide a vast subsoil nourishing zone without destroying the root system of the plant.
  • the invention may also be used for subsoil irrigation of plants, for protection of plants from pests, as well as for stimulating growth of the former.
  • Methods of injecting liquids into soil comprising the step of introducing liquid into soil in the form of separate intermittent jets which penetrate into the soil to a negligible depth of about 6-8 inches under pressures ranging from 35 to 105 atm.
  • the device used for accomplishing the method comprises a measuring tank receiving pressurized liquid supplied by a pump and a cylinder disposed under the tank and containing a plunger reciprocating in the cylinderunder the action of a cam and connected to a valve (cf. U.S. Pat. No. 3,012,526, C11 I I6).
  • the process of injecting liquid into soil is carried out in the following way. Liquid is supplied from the pump to the measuring tank.
  • Devices for injecting liquids into soil comprising a spring-loaded piston disposed in a chamber and reciprocating therein due to engagement with a cam; a nozzle fixer in the lower part of the chamber, and a valve positioned in a pipe supplying liquid to the chamber (cf. US. Pat. No. 2,930,334. Cl.l l l-6).
  • the injection ofliquid is carried out in the following way.
  • the piston reciprocates in the chamber (moving downwardly under the action of the cam and upwardly under the action of the spring).
  • the chamber is vacuumized and the valve iscaused to operate due to the vacuum and under the action of the liquid gravity, whereby the space defined by the piston and sleeve is filled with the liquid.
  • the piston compresses the liquid and thereby gradually increases the pressure in the cavity. Due to the fact that there is no space between the piston and the liquid, the latter is gradually forced out of the cavity during the rotation of the cam and movement of the piston.
  • the opening provided in the sleeve is normally closed by the spring-loaded valve. When the pressure of the liquid acting on the valve exceeds the force of the spring, the valve is displaced downwardly permitting the liquid to come out of the nozzle through the openings. It is absolutely clear that the liquid pressure depends on the cam stroke and, therefore, the conventional device is limited with respect to the possibilies of increasing the pressure, and hence, the depth of injection.
  • the injection depth may, however, be increased by using a device with working units mounted on the tine of a cultivator and deepened together therewith into soil down to a required depth. While travelling along a furrow, the working unit of these devices introduces liquid into soil. However, in the case of use of the aforesaid device a split is formed in the soil, which results in damage and desiccation of the root system of plants, as well as in a partial wear of the working units due to the soil abrasive action.
  • An important object of the present invention is to provide a vast subsoil nourishing zone for plants.
  • Still another object of the invention is to simplify the design and to raise the reliability of the abovementioned device.
  • the pulse pressure in this case ranging from 1,000 to 3,500 atm.
  • the lower limit of this range (1,000 atm) is dictated by the requirement to inject liquid to the depth of not smaller than 30-50 cm. At pressures lower than 1,000 atm. the required depth of penetration cannot be achieved. In soil dressing of fruit crops and vineyards the required depth of liquid injection into soil is increased up to l m. This depth is achieved only at pressures of about 3,500 atm.
  • a further increase in the pressure is not advisable because the main part of the hole is made by the first portions of the liquid jet, while the rest portions thereof lose a considerable part of their energy in passing through the previously delivered liquid andonly thereafter can they reach the soil to increase slightly the depth already obtained.
  • the device for accomplishing the above-mentioned method is provided with means for delivering forces by a compressible elastic body disposed in the upper portion of the cylinder and adapted to accumulate the energy after the plunger leaves the chamber.
  • the energy, thus accumulated, aids in further acceleration of the plunger, necessary for delivering an impact upon the surface of the liquid contained in the chamber.
  • the elastic body is pressed by its one end to the plunger and by the other end to the stop disposed in the cylinder, the stop being made adjustable to control the energy accumulated by the elastic body.
  • Such a method and constructive embodiment of the device make it possible to inject liquid into soil in the form in high-speed pulse jets under a pressure of the range from L000 to 3,500atm to the depth of about 0.3-1 m without destroying the root. zone of plants.
  • means provided for reciprocation of the plunger are made as an elongated bar having a projection at one end adapted to receive a spring forced against this projection, while the other end of the bar is bent and connected to a traverse member driven from a power unit, the bent end of the bar is also connected by means of a pivot to another rod the free end of which is equipped with rollers periodically engaging a locking clamp secured to the plunger.
  • the means used to reciprocate the plunger comprise a wedge-shaped projection secured to the cylinder and have a chamfer surface directed from the traverse member towards the nozzle to ensure disengagement of the rollers and the locking clamps, as well as to ensure the entrance of the plunger into the chamber under the action of the force of the compressing elastic body.
  • the compressing elastic body in the form of a compression coil spring.
  • FIG. 1 schematically shows the method of injecting liquid into soil in accordance with the invention
  • FIG. 2 is a general sectional view of a device for accomplishing the method according to the present invention
  • FIG. 5 is a view similar to FIG. 4, at the beginning of the downward stroke of the plunger;
  • FIG. 6 shows a cross-sectional view of a nozzle with a valve.
  • the method of introducing liquid into the root zone of plants in soil comprising the steps of: periodically accumulating liquid inside a nozzle 1(FIG. l) disposed above the soil surface; periodically accumulating energy in means transmitting a force to deliver an impact to the liquid; subsequent periodical injection of the liquid into the root zone (2) of plants in a form of a highspeed pulse jet (3) developed under the action of. the impact.
  • the pressure generated at the moment of impact upon the liquid surface in this case, may be from 1,000 to 3,500 atm depending on breed of plants, kind of soils and the required depth of injection.
  • a device for injecting liquid into the root zone of plants under a high pulse pressure comprises a cylinder 4 with an outlet nozzle 1 (FIG. 2) attached to the lower portion of the cylinder. Also in the lower portion of the cylinder 4 there is provided a chamber 5. This chamber 5 is adjoined to the upper portion of the nozzle 1 and provided for periodical accumulation of liquid.
  • a valve 6 is positioned in the nozzle, the valve preventing premature discharging of liquid from the chamber 5. Liquid is supplied to the chamber from a tank 7 through pipelines 8 and 9 and a non-return valve 10 preventing returning of liquid back to the tank 7.
  • a cock 11 in inserted in the pipeline 9, which cock is adapted .to control the rate of admission of liquid into the chamber 5.
  • a plunger 12 is disposed in the cylinder 4, the plunger being capable of reciprocation for periodical entrance into the chamber 5 and transmission of an impact to the liquid accumulated in the chamber.
  • the device is provided with means for ensuring reciprocation of the plunger 12 and with force transmitting means.
  • the latter comprise a compression coil spring 13 which is rested by one end upon a plunger and by the other end upon an adjusting stop 14 screwed into the cylinder 4. This adjusting stop 14 makes it possible to control a force of the spring 13. A change in a force of the spring results in a change of energy used to accelerate the plunger 12 and to transmit an impact to the liquid.
  • Means for providing reciprocation of the plunger 12 comprise an elongated bar 15 having a projection 16 at one end, the projection being adapted to support a spring 17 embracing the bar.
  • the other end of the spring 17 rests upon an adjusting stop 18 screwed into the cylinder 4.- This stop 17 is adapted to control a force of the spring 18.
  • the other end of the bar is rigidly connected to a traverse member 19.
  • a cylinder 20 of an internal combustion engine 21 is mounted on the traverse element 19.
  • Mounted coaxially with the cylinder 20 is a piston 23 of the internal combustion engine, the piston being mounted on a stationary plate 22.
  • the internal combustion engine is adapted to provide the the force of the spring 17.
  • the role of the spring 17 grows at a tilted position ofthe device, when the effect of gravity of the traverse member and of the parts associated therewith on the downward movement thereof decreases.
  • a power cylinder 24 with a stem 25 is secured to the stationary plate 22. This cylinder is adapted for the initial starting of operation of the device, i.e. to perform the initial lifting of the traverse I member 19.
  • the wedge-shaped projections 31 are intended to adjust a height corresponding to the moment when the rollers 27 are disengaged from the locking clamp, whereby the plunger starts its downward stroke (the moemnt of disengagement is shown in FIG. 5).
  • the adjustment of a height of release of the plunger 12 is effected by moving the projections 31 along the plates 29 and securing them through different holes 30.
  • the valve 6 inserted into the nozzle 1 and adapted to prevent premature discharging of liquid from the nozzle is shown in more detail in FIG. 6.
  • the valve comprises a valve body 32 which is spring-loaded by means of a spring 33 rested at one end upon the valve body and at the other end upon a stop 34 screwed into the nozzle 1.
  • the stop 34 is provided with an opening 35 allowing the movement of the shank 36 of the valve body therethrough.
  • the opening 35 and the shank 36 have a square cross-section.
  • the device according to the invention functions as follows. At the beginning of the cycle the power cylinder 24 is activated, whereby the stem 25 thereof comes into contact with the traverse member 19 raising it upwardly. At this moment the rollers 27 pivotally mounted on the rod 26 are in engagement with the locking clamp 28 of the plunger 12. The latter is moving up together with the rods 26, and the traverse member 19, the springs 13 and 17 being compressed during this upward movement. As the plunger 12 raises, the liquid in the tank 7 is fed to the chamber 5 adjacent the nozzle 1. The rate of admission of liquid is adjusted by means of the cock 11 and is chosen so that at the moment, when the plunger begins its downward stroke, a predetermined space is defined between the end face of the plunger and the surface of the liquid. Liquid cannot flow out of the nozzle, as the outlet opening of the nozzleis closed by the valve body of the valve 6. 1
  • a device for injecting liquid into the root zone of plants under pulse pressure comprising: at least one cylinder having an outlet nozzle mounted at the lower end of said cylinder and adapted to be positioned above the soil surface; a chamber disposed in said cylinder adjacent to said nozzle thereabove and adapted for periodical accumulation of liquid; a valve disposed in said nozzle and adapted to prevent premature discharging of the liquid from said chamber; means in fluid communication with said chamber for supplying the liquid thereto at an adjustable rate of flow; anon-return valve disposed in said means for supplying the'liquid and adapted to prevent the return flow of the liquid; a plunger disposed in said cylinder and being capable of reciprocation for periodical entrance into said chamber in order to deliver an impact to the liquid accumulated in said chamber, whereby high pulse pressure is developed in said chamber, said pressure being utilized to discharge the accumulated liquid through said nozzle in the form of a high-speed pulse jet; means including a force transmitting element for ensuring reciprocation of said plunger; said force transmitting element comprising a compress
  • said means for ensuring reciprocation of said plunger comprise an elongated bar having a projection at its lower end, the other end of said bar being bent, a spring embracing said bar and resting upon said projection to move said bar to a lower initial position, a traverse member being connected to said bent end of said bar, means for imparting motion to said traverse member along with said bar, an additional bar being pivotally connected by one of its ends to said bent end of said elongated bar, rollers being disposed at the free end of said additional bar, and a locking clamp attached to said plunger and periodically interacting with said rollers to reciprocate said coil spring.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental Sciences (AREA)
  • Catching Or Destruction (AREA)

Abstract

Liquid under high pressure is injected into the root zone of plants in soil by the action of accumulated impact energy in the form of continuous pulse jets. A device for effecting injection of liquid comprises a chamber adapted to accumulated the liquid, and a nozzle disposed in the lower portion of the chamber and adapted to discharge liquid as pulse jets. A plunger is accommodated in the chamber, the plunger being reciprocated to transmit an impact to the liquid and being connected to a resilient compression member adapted to accumulate energy.

Description

United States Patent 19 Kainson et al.
in] 3,815,525 June 11, 1974 METHOD AND APPARATUS FOR INTRODUCING LIQUID INTO ROOT ZONE OF PLANTS IN SOIL [76] Inventors: Anatoly Yakovlevich Kainson,
novo-Alexeevskaya ulitsa, 3a; Jury Sergeevich Razygraev, ulitsa Elninskaya, l7. kv. 50; Nikolai Elizarovich Sorokin, ulitsa Mnevniki, l2, korpus l, kv. 6; Sergei Alexandrovich Dobrokhotov, ulitsa Chernyshevskogo, 37, kv. 56; Veniamin Prokofievich Sokolov, Begovaya Alleya, 5, kv. 51; Nikolai lvanovich Zaitsev, 2 Setunsky proezd, 4, kv. 52; Boris Genikhovich -Zandman, Zelenogradskaya ulitsa,
21, korpus l, kv. 107; Boris v Peisakhovich Telyatnikov, Leningradskoe Shosse, 56, kv. l5; Nikolai Dmitrievich Kholin, ulitsa Krasnaya Prusnya, 9, kv. 66, all of Moscow; Alexei Nikolaevich Ryazano'v, ulitsa Liteinaya, 48, ky. 8, Klin, all of'U.S.S.R.
[22] Filed: Oct. 5, 1972 [21] Appl. No.: 295,110
Related US. Application Data [63] Continuation-impart of Scr. No. 203.5005Nov. 30, 1971. abandoned, which is a continuation of Ser. No. 849.452, Aug. 12, 1969, abandoned.
[52] US. Cl. 111/6, 239/101 [51] Int. Cl. A010 23/02 [58] Field of Search 111/6, 99, 101v 533; 239/426 [56] I References Cited UNITED STATES PATENTS 2,930,334 3/1960 Marron et a1 11 1/6 2,988,025 6/1961 Johnston 111/6 3,012,526 12/1961 Baldwin ct a1 11 1/6 3,521,819 7/1970 Johnston 239/99 3,598,323 8/1971 Johnston et a1 239/533 Primary ExaminerRobert E. Bagwill Attorney, Agent, or Firm-Holman & Stern [57] ABSTRACT Liquid under high pressure is injected into the root v adapted to discharge liquid as pulse jets. A plunger is accommodated in the chamber, the plunger being reciprocated to transmit an impact to the liquid and being connected to a resilient compression member adapted to accumulate energy.
4 Claims, 6 Drawing Figures /7 f l4 /3 /6i i METHOD AND APPARATUS FOR INTRODUCING LIQUID INTO ROOT ZONE OF PLANTS IN SOIL CROSS-REFERENCE TO RELATED APPLICATIONS BACKGROUND OF THE INVENTION This invention relates generally to fertilizing and more particularly, it relates to a method of introducing highly pressurized liquid into root zone of plants in soil and to an apparatus for accomplishing the same.
This invention may be successfully used in growing large-and-small fruits, vineyards etc., when deep subsoil injection of liquidfertilizers directly into the root zone of a plant is required in order to provide a vast subsoil nourishing zone without destroying the root system of the plant. The invention may also be used for subsoil irrigation of plants, for protection of plants from pests, as well as for stimulating growth of the former.
Methods of injecting liquids into soil are known, such methods comprising the step of introducing liquid into soil in the form of separate intermittent jets which penetrate into the soil to a negligible depth of about 6-8 inches under pressures ranging from 35 to 105 atm. The device used for accomplishing the method comprises a measuring tank receiving pressurized liquid supplied by a pump and a cylinder disposed under the tank and containing a plunger reciprocating in the cylinderunder the action of a cam and connected to a valve (cf. U.S. Pat. No. 3,012,526, C11 I I6). The process of injecting liquid into soil is carried out in the following way. Liquid is supplied from the pump to the measuring tank. During the downward stroke of the plunger the liquid is passed to a delivery pipe through a valve, while on the upward stroke of the plunger the pressure of the liquid in the pipe and in an outlet cavity gradually increases. The outlet of the nozzle is ovelapped by a spring-loaded needle valve. When pressure of the liquid contained in the pipe exceeds the force of the spring, the needle valve is raised to open the outlet of the nozzle, whereby the liquid goes out of the nozzle under pressure and penetrates into soil. After the dropping of pressure in the chamber, the needle valve is lowered to overlap the nozzle outlet, whereupon the cycle is repeated. From the above-said it is clear, that the possibilities of the conventional device are extremely limited with respect to discharge pressure of the liquid coming out of the nozzle. To build up high pressure of an order of 3,000 atm. which is necessary for penetration of liquid to a relatively great depth of about 1 meter without destroying the root system of plants, it would be necessary to substantially increase the overall dimensions of the deivce, which is undesirable from the structural point of view.
Devices for injecting liquids into soil are also known in the art, comprising a spring-loaded piston disposed in a chamber and reciprocating therein due to engagement with a cam; a nozzle fixer in the lower part of the chamber, and a valve positioned in a pipe supplying liquid to the chamber (cf. US. Pat. No. 2,930,334. Cl.l l l-6). The injection ofliquid is carried out in the following way. The piston reciprocates in the chamber (moving downwardly under the action of the cam and upwardly under the action of the spring). During the upward stroke of the piston, the chamber is vacuumized and the valve iscaused to operate due to the vacuum and under the action of the liquid gravity, whereby the space defined by the piston and sleeve is filled with the liquid.
During the downward stroke, the piston compresses the liquid and thereby gradually increases the pressure in the cavity. Due to the fact that there is no space between the piston and the liquid, the latter is gradually forced out of the cavity during the rotation of the cam and movement of the piston. The opening provided in the sleeve is normally closed by the spring-loaded valve. When the pressure of the liquid acting on the valve exceeds the force of the spring, the valve is displaced downwardly permitting the liquid to come out of the nozzle through the openings. It is absolutely clear that the liquid pressure depends on the cam stroke and, therefore, the conventional device is limited with respect to the possibilies of increasing the pressure, and hence, the depth of injection.
The injection depth may, however, be increased by using a device with working units mounted on the tine of a cultivator and deepened together therewith into soil down to a required depth. While travelling along a furrow, the working unit of these devices introduces liquid into soil. However, in the case of use of the aforesaid device a split is formed in the soil, which results in damage and desiccation of the root system of plants, as well as in a partial wear of the working units due to the soil abrasive action.
SUMMARY OFTHE INVENTION It is an object of the present invention to provide such a method and an apparatus for introducing liquid into soil that will provide for injecting highly pressurized intermittent liquid into soil to a considerable depth without destroying the root zone of plants. v
- An important object of the present invention is to provide a vast subsoil nourishing zone for plants.
Still another object of the invention is to simplify the design and to raise the reliability of the abovementioned device.
In the accomplishment of these and other objectsof the invention, periodically accumulated portions of liquid are introduced into the root zone of plants in soil under the action of impact as pulse jets, the pulse pressure in this case ranging from 1,000 to 3,500 atm. The lower limit of this range (1,000 atm) is dictated by the requirement to inject liquid to the depth of not smaller than 30-50 cm. At pressures lower than 1,000 atm. the required depth of penetration cannot be achieved. In soil dressing of fruit crops and vineyards the required depth of liquid injection into soil is increased up to l m. This depth is achieved only at pressures of about 3,500 atm. A further increase in the pressure is not advisable because the main part of the hole is made by the first portions of the liquid jet, while the rest portions thereof lose a considerable part of their energy in passing through the previously delivered liquid andonly thereafter can they reach the soil to increase slightly the depth already obtained.
It should be borne in mind'that the soil resistance increases in proportion to the depth of the jet penetration and therefore, the critical moment is inevitable, when a further increasing of the pressure does not ensure an increment of the injection depth due to the loss of energy in the subsequent portions of the jet and due to the increase in the soil resistance.
In accordance with the present invention, the device for accomplishing the above-mentioned method is provided with means for delivering forces by a compressible elastic body disposed in the upper portion of the cylinder and adapted to accumulate the energy after the plunger leaves the chamber. The energy, thus accumulated, aids in further acceleration of the plunger, necessary for delivering an impact upon the surface of the liquid contained in the chamber. The elastic body is pressed by its one end to the plunger and by the other end to the stop disposed in the cylinder, the stop being made adjustable to control the energy accumulated by the elastic body.
Such a method and constructive embodiment of the device make it possible to inject liquid into soil in the form in high-speed pulse jets under a pressure of the range from L000 to 3,500atm to the depth of about 0.3-1 m without destroying the root. zone of plants.
The above-mentioned results were obtained by use of a device built in accordance with the main principles of the present invention which consist in a relatively slow accumulation of energy and in a very fast (some milliseconds) transmission of this energy to a definite volume of liquid contained in the chamber.
It is preferable that means provided for reciprocation of the plunger are made as an elongated bar having a projection at one end adapted to receive a spring forced against this projection, while the other end of the bar is bent and connected to a traverse member driven from a power unit, the bent end of the bar is also connected by means of a pivot to another rod the free end of which is equipped with rollers periodically engaging a locking clamp secured to the plunger. Such a specific embodiment of the device, in accordance with the invention, ensures reliable operation of the device as a whole,and, at the same time, makes it possible to simplify its structure.
In order to ensure the predetermined release height of the piston and the fixation of the amount of energy accumulated, it is expedient that the means used to reciprocate the plunger comprise a wedge-shaped projection secured to the cylinder and have a chamfer surface directed from the traverse member towards the nozzle to ensure disengagement of the rollers and the locking clamps, as well as to ensure the entrance of the plunger into the chamber under the action of the force of the compressing elastic body.
In order to ensure reliability of the device operation and for the sake of simplicity, it is preferrable to make the compressing elastic body in the form of a compression coil spring.
BRIEF DESCRIPTION OF THE DRAWINGS For further details of the invention, reference may be made to the drawings, in which:
FIG. 1 schematically shows the method of injecting liquid into soil in accordance with the invention;
FIG. 2 is a general sectional view of a device for accomplishing the method according to the present invention;
IV-IV in FIG. 2;
FIG. 5 is a view similar to FIG. 4, at the beginning of the downward stroke of the plunger;
FIG. 6 shows a cross-sectional view of a nozzle with a valve.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT The method of introducing liquid into the root zone of plants in soil comprising the steps of: periodically accumulating liquid inside a nozzle 1(FIG. l) disposed above the soil surface; periodically accumulating energy in means transmitting a force to deliver an impact to the liquid; subsequent periodical injection of the liquid into the root zone (2) of plants in a form of a highspeed pulse jet (3) developed under the action of. the impact. The pressure generated at the moment of impact upon the liquid surface, in this case, may be from 1,000 to 3,500 atm depending on breed of plants, kind of soils and the required depth of injection.
A device for injecting liquid into the root zone of plants under a high pulse pressure comprises a cylinder 4 with an outlet nozzle 1 (FIG. 2) attached to the lower portion of the cylinder. Also in the lower portion of the cylinder 4 there is provided a chamber 5. This chamber 5 is adjoined to the upper portion of the nozzle 1 and provided for periodical accumulation of liquid. A valve 6 is positioned in the nozzle, the valve preventing premature discharging of liquid from the chamber 5. Liquid is supplied to the chamber from a tank 7 through pipelines 8 and 9 and a non-return valve 10 preventing returning of liquid back to the tank 7. A cock 11 in inserted in the pipeline 9, which cock is adapted .to control the rate of admission of liquid into the chamber 5.
. A plunger 12 is disposed in the cylinder 4, the plunger being capable of reciprocation for periodical entrance into the chamber 5 and transmission of an impact to the liquid accumulated in the chamber. The device is provided with means for ensuring reciprocation of the plunger 12 and with force transmitting means. The latter comprise a compression coil spring 13 which is rested by one end upon a plunger and by the other end upon an adjusting stop 14 screwed into the cylinder 4. This adjusting stop 14 makes it possible to control a force of the spring 13. A change in a force of the spring results in a change of energy used to accelerate the plunger 12 and to transmit an impact to the liquid.
Means for providing reciprocation of the plunger 12 comprise an elongated bar 15 having a projection 16 at one end, the projection being adapted to support a spring 17 embracing the bar. The other end of the spring 17 rests upon an adjusting stop 18 screwed into the cylinder 4.- This stop 17 is adapted to control a force of the spring 18. The other end of the bar is rigidly connected to a traverse member 19. A cylinder 20 of an internal combustion engine 21 is mounted on the traverse element 19. Mounted coaxially with the cylinder 20 is a piston 23 of the internal combustion engine, the piston being mounted on a stationary plate 22. The
internal combustion engine is adapted to provide the the force of the spring 17. The role of the spring 17 grows at a tilted position ofthe device, when the effect of gravity of the traverse member and of the parts associated therewith on the downward movement thereof decreases. A power cylinder 24 with a stem 25 is secured to the stationary plate 22. This cylinder is adapted for the initial starting of operation of the device, i.e. to perform the initial lifting of the traverse I member 19.
nozzle. The wedge-shaped projections 31 are intended to adjust a height corresponding to the moment when the rollers 27 are disengaged from the locking clamp, whereby the plunger starts its downward stroke (the moemnt of disengagement is shown in FIG. 5).
The adjustment of a height of release of the plunger 12 is effected by moving the projections 31 along the plates 29 and securing them through different holes 30.
The valve 6 inserted into the nozzle 1 and adapted to prevent premature discharging of liquid from the nozzle is shown in more detail in FIG. 6. The valve comprises a valve body 32 which is spring-loaded by means of a spring 33 rested at one end upon the valve body and at the other end upon a stop 34 screwed into the nozzle 1. The stop 34 is provided with an opening 35 allowing the movement of the shank 36 of the valve body therethrough. In order to prevent rotation of the valve body 32 about the horizontal axes, the opening 35 and the shank 36 have a square cross-section.
The device according to the invention functions as follows. At the beginning of the cycle the power cylinder 24 is activated, whereby the stem 25 thereof comes into contact with the traverse member 19 raising it upwardly. At this moment the rollers 27 pivotally mounted on the rod 26 are in engagement with the locking clamp 28 of the plunger 12. The latter is moving up together with the rods 26, and the traverse member 19, the springs 13 and 17 being compressed during this upward movement. As the plunger 12 raises, the liquid in the tank 7 is fed to the chamber 5 adjacent the nozzle 1. The rate of admission of liquid is adjusted by means of the cock 11 and is chosen so that at the moment, when the plunger begins its downward stroke, a predetermined space is defined between the end face of the plunger and the surface of the liquid. Liquid cannot flow out of the nozzle, as the outlet opening of the nozzleis closed by the valve body of the valve 6. 1
As the rollers 27 are moving upwardly, they ride upon the wedge-shaped projections 31and are gradually disengaged from the locking clamp 28 (FIG. 5). When this occurs, the rod 26 is rotated about its pivot relative to the bar 15. With the rollers disengaged from the locking clamp 28, the plunger 12 instantly moves down under the action of the spring 10 thus transmitting an impact to the liquid contained in the chamber 5. Under the action of pressure of the liquid upon the chamfered surface of the valve body 32, the latter will be displaced, whereby the liquid is' permitted to flow out of the nozzle in the form of a high-speed pulse jet. When the whole charge of the liquid is exhausted, the valve body will be returned to its original position by means of the spring 33, thereby closing the outlet opening of the nozzle.
Upon disengagement of the rollers 27 from the locking clamp 28, the rods 15 and 26 together with the traverse 19 and the internal combustion engine 21 fall down under the action of gravity and the force of the spring 17. At this moment, the stem 25 of the power cylinder 24 is disengaged, whereby the power cylinder does not take part in the subsequent operation of the device. It should be noted that the spring 17 ensures the movement of the above-mentioned parts towards the locking clamp 28 of the plunger 12 at any position of the device (vertical, inclined or horizontal). At the extreme lower position the rollers again will come into engagement with the locking clamp 28, while the plunger 23 enters the cylinder 20 of the internal combustion engine 21. v
When the piston 23 enters the cylinder 20 of the 'internal combustion engine, this causes the compression of the air in the cylinder, and at this moment fuel is injected into the cylinder. Under the action of pressure of gases formed upon combustion of the fuel, the cylinder 20 of the internal combustion'engine moves upwards together with the traverse member 19 and the bars 15 and 26. The plunger 12, the locking clamp 28 of which is engaged with the rollers 27, also will be raised.
At the moment of disengagement of the rollers from the locking clamp 28, the plunger 12, the traverse member 19 and the parts associated therewith again will fall down, whereby the cycle is repeated.
What is claimed is:
1. A device for injecting liquid into the root zone of plants under pulse pressure comprising: at least one cylinder having an outlet nozzle mounted at the lower end of said cylinder and adapted to be positioned above the soil surface; a chamber disposed in said cylinder adjacent to said nozzle thereabove and adapted for periodical accumulation of liquid; a valve disposed in said nozzle and adapted to prevent premature discharging of the liquid from said chamber; means in fluid communication with said chamber for supplying the liquid thereto at an adjustable rate of flow; anon-return valve disposed in said means for supplying the'liquid and adapted to prevent the return flow of the liquid; a plunger disposed in said cylinder and being capable of reciprocation for periodical entrance into said chamber in order to deliver an impact to the liquid accumulated in said chamber, whereby high pulse pressure is developed in said chamber, said pressure being utilized to discharge the accumulated liquid through said nozzle in the form of a high-speed pulse jet; means including a force transmitting element for ensuring reciprocation of said plunger; said force transmitting element comprising a compressible resilient member disposed in the upper portion of said cylinder and adapted to accumulate energy; the accumulated energy further accelerating said plunger when the latter enters said chamber to deliver an impact to the liquid accumulated in said chamber; said resilient member being mounted on one end upon said plunger and on the other end upon a stop disposed in said cylinder, said resilient member exerting a force on said plunger throughout the reciprocation thereof; said stop being adjustable to adjust an amount of energy accumulated in said resilient memher 2. A device as claimed in claim 1, wherein said means for ensuring reciprocation of said plunger comprise an elongated bar having a projection at its lower end, the other end of said bar being bent, a spring embracing said bar and resting upon said projection to move said bar to a lower initial position, a traverse member being connected to said bent end of said bar, means for imparting motion to said traverse member along with said bar, an additional bar being pivotally connected by one of its ends to said bent end of said elongated bar, rollers being disposed at the free end of said additional bar, and a locking clamp attached to said plunger and periodically interacting with said rollers to reciprocate said coil spring.

Claims (4)

1. A device for injecting liquid into the root zone of plants under pulse pressure comprising: at least one cylinder having an outlet nozzle mounted at the lower end of said cylinder and adapted to be positioned above the soil surface; a chamber disposed in said cylinder adjacent to said nozzle thereabove and adapted for periodical accumulation of liquid; a valve disposed in said nozzle and adapted to prevent premature discharging of the liquid from said chamber; means in fluid communication with said chamber for supplying the liquid thereto at an adjustable rate of flow; a non-return valve disposed in said means for supplying the liquid and adapted to prevent the return flow of the liquid; a plunger disposed in said cylinder and being capable of reciprocation for periodical entrance into said chamber in order to deliver an impact to the liquid accumulated in said chamber, whereby high pulse pressure is developed in said chamber, said pressure being utilized to discharge the accumulated liquid through said nozzle in the form of a highspeed pulse jet; means including a force transmitting element for ensuring reciprocation of said plunger; said force transmitting element comprising a compressible resilient member disposed in the upper portion of said cylinder and adapted to accumulate energy; the accumulated energy further accelerating said plunger when the latter enters said chamber to deliver an impact to the liquid accumulated in said chamber; said resilient member being mounted on one end upon said plunger and on the other end upon a stop disposed in said cylinder, said resilient member exerting a force on said plunger throughout the reciprocation thereof; said stop being adjustable to adjust an amount of energy accumulated in said resilient member.
2. A device as claimed in claim 1, wherein said means for ensuring reciprocation of said plunger comprise an elongated bar having a projection at its lower end, the other end of said bar being bent, a spring embracing said bar and resting upon said projection to move said bar to a lower initial position, a traverse member being connected to said bent end of said bar, means for imparting motion to said traverse member along with said bar, an additional bar being pivotally connected by one of its ends to said bent end of said elongated bar, rollers being disposed at the free end of said additional bar, and a locking clamp attached to said plunger and periodically interacting with said rollers to reciprocate said plunger.
3. A device as claimed in claim 2, wherein said means for ensuring reciprocation of said plunger comprise a wedge-shaped projection secured to said cylinder, the chamfer surface of which is directed outwardly of said traverse member towards said nozzle to ensure disengagement of said rollers from said locking clamp with the result that under action of said compression resilient member said plunger moves downward to deliver an impact to the liquid.
4. A device as claimed in claim 1, in which said compression resilient member comprises a compression coil spring.
US00295110A 1971-11-30 1972-10-05 Method and apparatus for introducing liquid into root zone of plants in soil Expired - Lifetime US3815525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00295110A US3815525A (en) 1971-11-30 1972-10-05 Method and apparatus for introducing liquid into root zone of plants in soil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US20350071A 1971-11-30 1971-11-30
US00295110A US3815525A (en) 1971-11-30 1972-10-05 Method and apparatus for introducing liquid into root zone of plants in soil

Publications (1)

Publication Number Publication Date
US3815525A true US3815525A (en) 1974-06-11

Family

ID=26898666

Family Applications (1)

Application Number Title Priority Date Filing Date
US00295110A Expired - Lifetime US3815525A (en) 1971-11-30 1972-10-05 Method and apparatus for introducing liquid into root zone of plants in soil

Country Status (1)

Country Link
US (1) US3815525A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4182247A (en) * 1977-09-12 1980-01-08 Talbott Gene B Method and apparatus for crop transplanting
US4186671A (en) * 1974-06-17 1980-02-05 Huang Barney K Fluid injection soil opener for planters
US4624193A (en) * 1983-05-04 1986-11-25 John Blue Company Method and apparatus for the jet injection of agricultural liquids into the soil
US4807544A (en) * 1987-09-21 1989-02-28 Cross Equipment Company, Inc. Apparatus and method for subsurface injection of agrochemicals
US5119744A (en) * 1989-11-13 1992-06-09 The Toro Company Method and apparatus for treating turf
US5207168A (en) * 1989-11-13 1993-05-04 The Toro Company Method and apparatus for treating turf
US5322418A (en) * 1992-11-19 1994-06-21 The Toro Company High pressure liquid pump apparatus and pumping method
US5394812A (en) * 1992-04-20 1995-03-07 Dunning; Levant G. Injector for polymer placement and a method therefore
US5487346A (en) * 1994-01-10 1996-01-30 Taylor; Donald K. Soil injection system
US5575224A (en) * 1995-01-17 1996-11-19 Rogers; Ramon B. Injection tip for liquid distribution in a turf rootzone
US5605105A (en) * 1994-10-17 1997-02-25 Great Plains Manufacturing, Incorporated Method and apparatus for placing dry or liquid materials into the soil subsurface without tillage tools
US5741090A (en) * 1995-03-06 1998-04-21 Dunning; Levant G. Injector for polymer placement and method therefore
US5794550A (en) * 1996-09-24 1998-08-18 Chadwick; Galen John Implantation of a fixed water/nutrient gel
US6142084A (en) * 1996-02-16 2000-11-07 Hatloe; Jan Kare Method and device for periodic depositing of liquid manure such as slurry in a soil
US6431096B1 (en) 1999-10-04 2002-08-13 Textron Inc. Method and system for high pressure liquid injection of turf seed
US7255049B2 (en) * 2001-02-28 2007-08-14 Arysta Lifescience North America Corporation Subsurface soil injection method
US7845293B1 (en) 2009-12-23 2010-12-07 Sibert James E Apparatus and method for forming holes and for placing materials into sub-surface
US20110153070A1 (en) * 2009-12-23 2011-06-23 Sibert James E System and Method for Controlling Delivery of Materials Into Sub-Surface
US20110203500A1 (en) * 2010-02-23 2011-08-25 Dryject, Inc. Device for placing material on or beneath the soil surface
US20110203161A1 (en) * 2010-02-23 2011-08-25 Basf Corporation High pressure injection system for applying a pesticide beneath the surface of the ground
US20110203162A1 (en) * 2010-02-23 2011-08-25 Basf Corporation Method of pesticide treatment of soil adjacent structures
WO2014011781A1 (en) * 2012-07-13 2014-01-16 Basf Agro B.V., Arnhem (Nl), Zurich Branch Apparatus for injecting soil treatments
US9232780B2 (en) 2010-02-23 2016-01-12 Basf Corporation Apparatus for injecting soil treatments
USD849490S1 (en) * 2017-11-08 2019-05-28 Chapin Manufacturing, Inc. Irrigation injector
USD855420S1 (en) * 2017-11-08 2019-08-06 Chapin Manufacturing, Inc. Irrigation injector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2930334A (en) * 1956-05-11 1960-03-29 Coastal Supply & Chemical Comp Apparatus for soil treatment
US2988025A (en) * 1954-04-01 1961-06-13 John Blue Company Inc Method for applying liquids into the soil
US3012526A (en) * 1958-12-23 1961-12-12 Pineapple Res Inst Of Hawaii Method of injecting liquids into the soil
US3521819A (en) * 1968-04-01 1970-07-28 Continental Oil Co Valved ejector
US3598323A (en) * 1969-07-22 1971-08-10 Continental Oil Co Pressure accumulator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2988025A (en) * 1954-04-01 1961-06-13 John Blue Company Inc Method for applying liquids into the soil
US2930334A (en) * 1956-05-11 1960-03-29 Coastal Supply & Chemical Comp Apparatus for soil treatment
US3012526A (en) * 1958-12-23 1961-12-12 Pineapple Res Inst Of Hawaii Method of injecting liquids into the soil
US3521819A (en) * 1968-04-01 1970-07-28 Continental Oil Co Valved ejector
US3598323A (en) * 1969-07-22 1971-08-10 Continental Oil Co Pressure accumulator

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4186671A (en) * 1974-06-17 1980-02-05 Huang Barney K Fluid injection soil opener for planters
US4182247A (en) * 1977-09-12 1980-01-08 Talbott Gene B Method and apparatus for crop transplanting
US4624193A (en) * 1983-05-04 1986-11-25 John Blue Company Method and apparatus for the jet injection of agricultural liquids into the soil
US4807544A (en) * 1987-09-21 1989-02-28 Cross Equipment Company, Inc. Apparatus and method for subsurface injection of agrochemicals
US5119744A (en) * 1989-11-13 1992-06-09 The Toro Company Method and apparatus for treating turf
US5207168A (en) * 1989-11-13 1993-05-04 The Toro Company Method and apparatus for treating turf
US5394812A (en) * 1992-04-20 1995-03-07 Dunning; Levant G. Injector for polymer placement and a method therefore
US5322418A (en) * 1992-11-19 1994-06-21 The Toro Company High pressure liquid pump apparatus and pumping method
US5487346A (en) * 1994-01-10 1996-01-30 Taylor; Donald K. Soil injection system
US5605105A (en) * 1994-10-17 1997-02-25 Great Plains Manufacturing, Incorporated Method and apparatus for placing dry or liquid materials into the soil subsurface without tillage tools
US5575224A (en) * 1995-01-17 1996-11-19 Rogers; Ramon B. Injection tip for liquid distribution in a turf rootzone
US5741090A (en) * 1995-03-06 1998-04-21 Dunning; Levant G. Injector for polymer placement and method therefore
US6142084A (en) * 1996-02-16 2000-11-07 Hatloe; Jan Kare Method and device for periodic depositing of liquid manure such as slurry in a soil
US5794550A (en) * 1996-09-24 1998-08-18 Chadwick; Galen John Implantation of a fixed water/nutrient gel
US6431096B1 (en) 1999-10-04 2002-08-13 Textron Inc. Method and system for high pressure liquid injection of turf seed
US6722298B2 (en) 1999-10-04 2004-04-20 Textron Inc. Method and system for high pressure liquid injection of turf seed
US20040187752A1 (en) * 1999-10-04 2004-09-30 Engelke Milton C. Method and system for high pressure liquid injection of turf seed
US6892657B2 (en) 1999-10-04 2005-05-17 Textron Inc. Method and system for high pressure liquid injection of turf seed
US7255049B2 (en) * 2001-02-28 2007-08-14 Arysta Lifescience North America Corporation Subsurface soil injection method
US8047146B2 (en) 2001-02-28 2011-11-01 Arysta Lifescience North America, Llc Subsurface soil injection apparatus and method
US20100269742A1 (en) * 2001-02-28 2010-10-28 Arysta Lifescience North America, Llc Subsurface soil injection apparatus and method
US7748331B2 (en) * 2001-02-28 2010-07-06 Arysta Lifescience North America Llc Subsurface soil injection method
US7845293B1 (en) 2009-12-23 2010-12-07 Sibert James E Apparatus and method for forming holes and for placing materials into sub-surface
US20110153070A1 (en) * 2009-12-23 2011-06-23 Sibert James E System and Method for Controlling Delivery of Materials Into Sub-Surface
US8707878B2 (en) 2009-12-23 2014-04-29 James E. Sibert System and method for controlling delivery of materials into sub-surface
US8640636B2 (en) 2010-02-23 2014-02-04 BASF Agro B.V. Device for placing material on or beneath the soil surface
US8769866B2 (en) 2010-02-23 2014-07-08 BASF Agro B.V. High pressure injection system for applying a pesticide beneath the surface of the ground
US20110203162A1 (en) * 2010-02-23 2011-08-25 Basf Corporation Method of pesticide treatment of soil adjacent structures
US9686974B2 (en) 2010-02-23 2017-06-27 Basf Agro B.V., Arnhem (Nl), Zürich Branch Injection apparatus for injecting pesticide
US20110203161A1 (en) * 2010-02-23 2011-08-25 Basf Corporation High pressure injection system for applying a pesticide beneath the surface of the ground
US8656847B2 (en) 2010-02-23 2014-02-25 Basf Agro B.V., Arnhem (Nl), Zürich Branch Injection apparatus for injecting pesticide
US20110203500A1 (en) * 2010-02-23 2011-08-25 Dryject, Inc. Device for placing material on or beneath the soil surface
US20110203502A1 (en) * 2010-02-23 2011-08-25 Basf Corporation Injection apparatus for injecting pesticide
US8875438B2 (en) 2010-02-23 2014-11-04 BASF Agro B.V. Method of pesticide treatment of soil adjacent structures
US9232780B2 (en) 2010-02-23 2016-01-12 Basf Corporation Apparatus for injecting soil treatments
US9243378B2 (en) 2010-02-23 2016-01-26 BASF Agro B.V. Device for placing material on or beneath the soil surface
WO2014011781A1 (en) * 2012-07-13 2014-01-16 Basf Agro B.V., Arnhem (Nl), Zurich Branch Apparatus for injecting soil treatments
USD849490S1 (en) * 2017-11-08 2019-05-28 Chapin Manufacturing, Inc. Irrigation injector
USD855420S1 (en) * 2017-11-08 2019-08-06 Chapin Manufacturing, Inc. Irrigation injector

Similar Documents

Publication Publication Date Title
US3815525A (en) Method and apparatus for introducing liquid into root zone of plants in soil
US2930334A (en) Apparatus for soil treatment
US3012526A (en) Method of injecting liquids into the soil
EP0771219B1 (en) Ejection apparatus for high-pressure ejection of a liquid
US4624193A (en) Method and apparatus for the jet injection of agricultural liquids into the soil
US5322418A (en) High pressure liquid pump apparatus and pumping method
DE4115103A1 (en) FUEL INJECTION SYSTEM WITH COMMON PRESSURE PIPE
US3412798A (en) Method and apparatus for treating gas lift wells
US4220669A (en) Method and means for injecting fluids into meat products
US3863556A (en) Machine for injecting fluids into meat products
JP2662461B2 (en) Lawn treatment equipment
DE19517578A1 (en) Electronically controlled fluid injection system with pre-injection pressurizable fluid storage chamber and direct operated check valve
DE2251125A1 (en) FUEL INJECTION SYSTEM AND METHOD FOR CYCLIC GENERATION OF A HIGH PRESSURE IMPACT WITHIN SUCH A SYSTEM
US4142000A (en) Method and means for injecting fluids into meat products
US5012728A (en) Injection needles for injecting brine and the like into meat
EP1323350A3 (en) Method and means for injecting fluids into meat products
EP1203522A1 (en) Ground injection apparatus
US3779151A (en) Force-limited injection system for meat processing
US20060185567A1 (en) Ground injection apparatus
CN209609464U (en) A kind of Water soluble fertilizer accurately controls fertilization system
US6513423B2 (en) Pickling machine with hydraulically buffered needles
US2968351A (en) Fluid pressure operated chemical feeder
US2177792A (en) Soil fumigant applicator
DE3716802C2 (en)
US2635590A (en) Apparatus for fuel injection