US3814455A - Apparatus for compensating for the longitudinal movement of a safety ski binding - Google Patents

Apparatus for compensating for the longitudinal movement of a safety ski binding Download PDF

Info

Publication number
US3814455A
US3814455A US00342468A US34246873A US3814455A US 3814455 A US3814455 A US 3814455A US 00342468 A US00342468 A US 00342468A US 34246873 A US34246873 A US 34246873A US 3814455 A US3814455 A US 3814455A
Authority
US
United States
Prior art keywords
binding
axis
ski
spring
acting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00342468A
Inventor
G Salomon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR7001826A external-priority patent/FR2076550A5/fr
Application filed by Individual filed Critical Individual
Priority to US00342468A priority Critical patent/US3814455A/en
Application granted granted Critical
Publication of US3814455A publication Critical patent/US3814455A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C9/00Ski bindings
    • A63C9/08Ski bindings yieldable or self-releasing in the event of an accident, i.e. safety bindings
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C9/00Ski bindings
    • A63C9/007Systems preventing accumulation of forces on the binding when the ski is bending
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C9/00Ski bindings
    • A63C9/08Ski bindings yieldable or self-releasing in the event of an accident, i.e. safety bindings
    • A63C9/084Ski bindings yieldable or self-releasing in the event of an accident, i.e. safety bindings with heel hold-downs, e.g. swingable
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C9/00Ski bindings
    • A63C9/08Ski bindings yieldable or self-releasing in the event of an accident, i.e. safety bindings
    • A63C9/085Ski bindings yieldable or self-releasing in the event of an accident, i.e. safety bindings with sole hold-downs, e.g. swingable

Definitions

  • ABSTRACT The disclosure herein describes an apparatus for compensating for the longitudinal movement of a safety ski binding and thereby protecting the skier when falling.
  • the moving part of the ski binding is subjected to the action of a resilient force which resists the displacement of the moving part in one direction; this resilient force varies as a function of the moving part and, at the same time it varies, the component of this force which acts on the moving part of the binding parallel with the direction of movement thereof, is maintained at an appreciably constant value.
  • the present invention relates to safety ski bindings, and more particularly to bindings, a portion of which at least is susceptible to movement along the longitudinal axis of the ski.
  • the movements for which this known arrangement is intended to compensate may be caused, for instance, by temporary bending of the ski, a type of boot unsuitable for the adjustment at the binding location, incorrect longitudinal adjustment of the binding location on the ski, or the presence of foreign matter, such as snow, between the binding and the boot.
  • This type of known arrangement is resilient and, in order to assure its resiliency, it makes use either of a part of the energy of the resilient system ensuring the safety of the. binding in the event of a fall," or of the energy of a resilient system independent of the binding mechanism.
  • the mechanism ensuring the safe functioning of the binding is known to be adjusted to release in response to a specific stressapplied by the boot to the binding, and it is therefore" essential that no external stress shall temporarily modify the calibration of the safety mechanism.
  • variable reaction of this known type of arrangement on the moving part of the binding does in fact modify this calibration, which leads to irregular and unexpected functioning of the safety binding, with the result that skis fitted with these bindings are dangerous.
  • a device of this kind must be simple, reliable in operation, of small size, inexpensive, rugged, and it must re quire a minimum of moving parts.
  • a movement-compensating device comprises a resilient unit arranged between a fixed element integral with the ski and the longitudinally mobile part of the binding, the resilient unit exerting upon this mobile part a force which opposes the force which causes the binding to move longitudinally, the force having an appreciably constant value regardless of the extent of longitudinal movement of the moving part of the binding.
  • the compensating device according to the invention is therefore particularly well suited to exert an almost constant opposing force on the moving part of the binding which is capable of moving longitudinally over a relatively short distance. It is therefore sufficient if the design and arrangement of the device produce the desired result while functioning within relatively narrow limits. This consideration therefore permits the use of a simple and inexpensive device.
  • the said binding is preferably stopped, in such a manner that the resilient unit exerts upon the moving part a force opposing the movement of the binding towards what is known as the rearward position, one component of this force acting parallel with the longitudinal movement of the binding and having a value equal to that of the constant opposing force acting on the binding while it is moving.
  • the resilient unit comprises means which, when the resilient force thereof varies while the moving part of the binding is moving, modify the orientation of this resilient force in relation to the longitudinal direction in which the force displacing the moving part acts, with the result that the angle formed between the said resultant and the direction of displacement varies in proportion to the variationin the resilient force, which means that the component of the said resilient force acting upon the moving part of the binding parallel with the direction of displacement has an almost constant value.
  • the resilient unit comprises at least one guided spring, the axis of which is kept in a straight line, the ends of the said spring being connected to elements co-operating on the one hand with the fixed structure of the ski and, on the other hand, with the moving part of the safety binding.
  • the compensating device according to the invention may vary in design, depending upon whether it is desired to obtain a device exhibiting high functional accuracy or, on the contrary, relative accuracy, i.e., one which allows minor tolerances in the constant value of the opposing force.
  • the design of the device may be extremely simple and economical, whereas if high functional accuracy is required, the design of the device will be somewhat more complex and slightly more costly.
  • two parts pivot respectively about vertical axes integral with the ski, one of the parts being subjected to the action of a spring attached to a fixed point of the ski and pushing the second part into contact with the moving part of the binding, the parts exhibiting cam profiles which co-operate and slide upon each other in almost spot contact, which makes frictional forces almost negligible.
  • a return spring kept in a straight line is stopped at one end by a fixed part integral with the ski, the other end of the spring resting on a toothed wheel to which it applies a torque, the toothed wheel engaging with a rack mounted to slide along the longitudinal axis of the ski in a sliding support, the front end of the rack abutting against the moving part of the binding.
  • the spring is in almost spot contact with the toothed wheel, preferably along a chord-like section thereof, the distance between the axis of the wheel and the point of contact with the spring varying in proportion to the restoring force of the spring.
  • a spring is mounted on a telescopic support intended to keep it substantially parallel with the longitudinal axis of the ski, one end of the support being integral with the ski while the other end pushes into contact with the moving part of the binding an intermediate part mounted on a pivot remote from the longitudinal axis of the ski and from the axis of the spring.
  • the intermediate part having a profile which co-operates with a conjugate profile pertaining to the mobile part of the binding.
  • the profile of the intermediate part may cooperate with a conjugate profile pertaining to a fixed part of the binding, via an element integral with the moving part of the binding and moving within the two profiles.
  • FIG. 1 shows a plan view of a safety binding comprising a compensating device, in a first form of execution
  • FIG. 2 is a side elevation of the binding and device in FIG. I;
  • FIG. 3 shows the device in FIGS. 1 and 2 in a different position, the binding having been moved towards its rearward position
  • FIG. 4 is a plan view of the device according to another form of execution shown in two different conditions, one in full lines and one in broken lines;
  • FIG.'5 is a side elevation of the device, as seen in the direction of arrow 9 in FIG. 4;
  • FIGS. 6 and 7 show a partial longitudinal section of the device according to another form of execution and in two different conditions
  • FIGS. 8 and 9 show a plan view in two extreme conditions of a device according to another form of execution.
  • l is a central section of the ski and 2 is the moving part of a safety binding, for example, a heel-piece carrying a holding jaw 3 for a boot (not shown).
  • a safety binding for example, a heel-piece carrying a holding jaw 3 for a boot (not shown).
  • the moving part of the binding will be considered as a heel-piece but it is to be understood that it might also be some other binding element.
  • Theheel-piece may move longitudinally along axis XX of the ski, sliding on lateral tongues 4, with which it is equipped, in corresponding slides 5 integral with a bracket 6 attached to the ski in any appropriate manner.
  • Slides 5 have longitudinal stops 7, at least at their front ends, which-limit the forward travel of the heelpiece. These stops, which may be of any known type, are preferably simultaneously adjustable on slides 5.
  • Rear stops might also be provided to limit the rearward travel of the heel-piece, but this is not mandatory.
  • the said compensating device consists. of a telescopic element comprising a cylinder 11 in which a rod 12 slides.
  • cylinder 11 The free end of cylinder 11 is fixed to flange 13 of a female part 14 of the ball joint, male part 15 of whichcarries a seat 16 permanently attached to skil, in an area laterally remote from longitudinal axis XX and preferably in that half of the ski opposite to the location of seat 8 of the ball joint attached to the binding. It will also be observed in the drawing that seat 16 is located to the rear of bracket 6 in which the binding slides.
  • rod 12 also carries at its free end a female part 18 of flanged ball joint 17 which co-operates with male part 9 of the ball joint carried by the heelpiece.
  • a compression spring 19 is mounted around telescopic element 11-12, the ends of the said spring resting against flanges 13 and 17.
  • rod 12 In the vicinityof flange 17, rod 12 has an expanded section 20, the shoulder of which is intended to come into contact with the .freeend of cylinder 11 in order to limit the compression travel of spring 19 (as shown in FIG. 3).
  • the expanded section comes into contact with the cylinder, it is impossible to compress device 10 any further, and the device therefore be comes a stop, limiting the rearward travel of binding 2.
  • the device is therefore free to contract or expand as indicated by the double arrow B in FIG. 1, and to pivot about ball joint 15 as indicated by double arrow A.
  • the angle between the axis of device 10 and longitudinal axis XX of the ski is preferably between 30 and and this applies over the entire travel of the binding.
  • spring 19 when the binding is in the forward position shown in FIG. 1, spring 19 is already in the compressed condition, exerting upon the moving part of the binding a force, the resultant of which, following the axis of the spring,- is shown at 22; the said force has a longitudinal component 23 and a'transverse component 24.
  • longitudinal component 23 is invariable, and the opposing longitudinal force which it represents has a constant value, regardless of the movement of the heel-piece.
  • binding 2 is shown in its maximal rearward position, and it may be seen that resultant 22' and transverse component 24 are greater than resultant 22 and component 24 in FIG. 1, just as angle a is larger than angle a; only longitudinal component 23 remains the same in both figures.
  • the compensating device consists of two parts and 61 mounted to pivot about fixed vertical axes 62 and 63 respectively, the latter being integral with a common support plate 64 mounted on the ski behind heel-piece 2.
  • Part 60 is generally triangular in shape, and one of its rounded tips 65 is kept in permanent contact with the rear face of the heel-piece.
  • Part 61 is L-shaped, one end of an arm 66 thereof carrying an axis 66' to which is hooked one end of a tension spring 67, the other end being hooked to a stationary axis integral with the ski.
  • Free end 69 of the other arm of the L-shaped part is rounded and is in contact with a concave side of part 60 facing tip 65.
  • heel-piece 2 may slide on a bracket fixed to ski I, by means of a system of slides of any appropriate type, for instance, a dove-tail system.
  • the compensating device is located behind the heelpiece in a housing 81 attached to the ski and equipped at the top with a longitudinal guiding slide 82 in which a rack 84 may slide in the direction of double arrow 83, the rack carrying, at the end emerging from the housing, a rod 85 in constant contact with the rear face of the heel-piece.
  • the rack engages with a toothed sector 86 turning freely on a horizontal axis 87 running perpendicularly to the longitudinal axis of the ski, and mounted in a bracket 88 attached to the ski.
  • a compression spring 90 presses against the chord or flat part 89 of the toothed sector, the axis of the spring being parallel with the longitudinal axis of the ski, and the spring being located in a tubular sleeve 91 attached by its rear end 92 to the rear wall of housing 81, the rear end of the spring thus resting against housing 81.
  • the sleeve Towards its forward end, the sleeve exhibits a slot 93 extending in the form of a generatrix and providing a free passage for the rotary motion of the toothed sector.
  • the toothed sector When the heel-piece is in its forward" position, i.e. up against the forward stops as shown in FIG. 6, the toothed sector is arranged in such a manner that chord 89 is not perpendicular in relation to the axis of spring 90.
  • the spring which may be in spot contact with the chord, imparts at all times a torque to the toothed sector, the latter transmitting to the rack and to heel-piece 2 a forward thrust.
  • spring 90 rests at A against the chord and imparts to the toothed sector a thrust 94 which produces an opposing force 95 acting on rack 84 and therefore on heel-piece 2.
  • Thrust 97 exerted by the spring on the sector is superior to force 94, but since sector 86 has pivoted, and since the distance between the point of application of this thrust and axis 0 has altered simultaneously, opposing force 95 transmitted by the toothed sector to the rack remains at a practically constant value, the force being transmitted directly to heel-piece 2.
  • the heel-piece 2 may slide on its lateral tongues 4 in slides 5 integral with a bracket 6 attached to ski 1.
  • Bracket 6 extends to the rear of slides 5, forming a plate on which a part 100, pivoting about a vertical axis 101 integral with the ski, may slide.
  • a curved slot 102 is cut into part 100, th slot co-operating, when part pivots, with another curved slot 103 cut into the rear part of bracket 6, these two slots co-operating via a vertical axis 104 provided in a head 105 located between the ski and the bottom surface of bracket 6 and free to move in slot 103 in the direction of double arrow 106.
  • the rear portion of pivoting part 100 has a convex ramp 107 co-operating with a roller 108 mounted on the head 110 of a telescopic support 109 extending approximately parallel with longitudinal axis XX' of the ski, base 111 of which is integral with a seat 112 attached to the ski.
  • the head of the telescopic support is extended by a rod 113 sliding in a cylinder 114 drilled from end to end and pertaining to base 111.
  • a compression spring 115 abuts against a flange on the head and base 111.
  • the compression travel of the support may be limited by contact between an expanded part 116 on the head and cylinder 114.
  • the spring exerts a thrust 117 on part 100 which is pivoted forward and presses axis 104 against the rear of heel-piece 2 thus providing an opposing force, component 118 of which is parallel with axis XX of the ski.
  • Slots 102 and 103 and ramp 107 keep opposing force 118 constant by reason of their shape and arrangement. Variations in compression of spring 115 and/or variations in the position of the heel-piece thus subjecting the latter at all times to the same opposing force.
  • the resilient device might consist of a lever pivoting about an axis integral with the ski, the lever being subjected, at one end, to the action of a spring, while the'other end constantly abuts against the longitudinally moving part of the binding.
  • the resilient device might also comprise a lever pivoting about an axis integral with the ski, the lever being subjected to the action of a spring acting upon the longitudinally mobile part of the binding via two conjugate profiles, one pertaining to the lever and the other to the moving part of the binding, a part having a good coefficient of friction being interposed between the two conjugate profiles.
  • a safety ski binding mounted on a ski comprising: slides rigid with said ski and parallel to the longitudinal side of said ski; a movable member mounted in said slides for guided motion in the longitudinal axis of said ski, said member carrying a boot retaining jaw; a fixed structure rigid with said ski and arranged apart from said movable member; and a resilient system including a spring element one end of which is in abutment against said fixed structure, an intermediate element rotatably mounted on an axis rigid with said ski,

Landscapes

  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)

Abstract

The disclosure herein describes an apparatus for compensating for the longitudinal movement of a safety ski binding and thereby protecting the skier when falling. To achieve this aim, the moving part of the ski binding is subjected to the action of a resilient force which resists the displacement of the moving part in one direction; this resilient force varies as a function of the moving part and, at the same time it varies, the component of this force which acts on the moving part of the binding parallel with the direction of movement thereof, is maintained at an appreciably constant value.

Description

United States atet [191 Salomon June 4, 1974 [54] APPARATUS FOR COMPENSATING FOR [56] References Cited THE LONGITUDINAL MOVEMENT OF A UNITED T S P TENT SAFETY 5K1 BINDING 3 529,845 9/1970 Kanno 280/1135 T Inventor: Georges Pierre Joseph Salomon, 34
Avenue de Laverchy, Annecy. France Filed: Mar. 19, 1973 Appl. No.: 342,468
Related US. Application Data Division of Ser No. 107,254, Jan. 18. 197]. Pat No. 3.734.522.
Foreign Application Priority Data Primary Examiner-Robert R. Song [57] ABSTRACT The disclosure herein describes an apparatus for compensating for the longitudinal movement of a safety ski binding and thereby protecting the skier when falling. To achieve this aim. the moving part of the ski binding is subjected to the action of a resilient force which resists the displacement of the moving part in one direction; this resilient force varies as a function of the moving part and, at the same time it varies, the component of this force which acts on the moving part of the binding parallel with the direction of movement thereof, is maintained at an appreciably constant value.
7 Claims, 9 Drawing Figures ZATENTEDJUN 41% 3.814455 SHEET 3 [1F 4 PATENTEDJUH 4 m4 SHEET l 0F 4 APPARATUS FOR COMPENSATING FOR THE LONGITUDINAL MOVEMENT OF A SAFETY SKI BINDING This is a division of application Ser. No. l07,254 filed Jan. 8, 1971, now US. Pat. No. 3,734,522.
' The present invention relates to safety ski bindings, and more particularly to bindings, a portion of which at least is susceptible to movement along the longitudinal axis of the ski.
Known types of safety bindings for skis, intended to protect the skier when falling forwards, backwards, or sideways, are usually mounted on the ski so that they may slide longitudinally, for example in grooves, and may thus be adjusted to different sizes of boot. F urthermore, these known bindings are frequently equipped with an arrangement which applies a constant longitudinal thrust to the moving part of the bindings, so that they may bear against the boots. The purpose of this longitudinal thrust is to keep the bindings pressed against the boots, in spite of any movement the bindings may make. The movements for which this known arrangement is intended to compensate may be caused, for instance, by temporary bending of the ski, a type of boot unsuitable for the adjustment at the binding location, incorrect longitudinal adjustment of the binding location on the ski, or the presence of foreign matter, such as snow, between the binding and the boot.
This type of known arrangement is resilient and, in order to assure its resiliency, it makes use either of a part of the energy of the resilient system ensuring the safety of the. binding in the event of a fall," or of the energy of a resilient system independent of the binding mechanism.
However, although with this type of arrangement it is possible to obtain constant bearing of the binding against the boot while the said binding is being displaced, the value of the compensating force exerted by the arrangement on the binding, in response to the displacement thereof cannot be constant.
Thus, when the binding moves longitudinally, especially under the circumstances mentioned above, the bearing force of the boot against the binding varies, and the resilient arrangement reacts with an opposing action which also varies.
Moreover, the mechanism ensuring the safe functioning of the binding is known to be adjusted to release in response to a specific stressapplied by the boot to the binding, and it is therefore" essential that no external stress shall temporarily modify the calibration of the safety mechanism.
Now the variable reaction of this known type of arrangement on the moving part of the binding does in fact modify this calibration, which leads to irregular and unexpected functioning of the safety binding, with the result that skis fitted with these bindings are dangerous.
Applicant has therefore endeavoured to eliminate the disadvantages of ski bindings which move longitudinally and have compensating arrangements.
ln order to achieve this aim, applicant proposes, according to the invention, to subject the moving part of the binding to the action of a resilient force resisting displacement of the moving part in one direction, this resilient force varying as a function of the said moving part of the binding and, at the same time that this resilient force varies, to maintain, at an appreciably constant value, the component of this force which acts on the moving part of the binding parallel withthe direction of movement thereof.
Thus, however, far the moving part of the binding moves, it is subjected to a longitudinal force of a predetermined constant value, this force at no time having any effect upon the safety function of the binding.
As regards the device which makes it possible to apply the method mentioned above, its achievement is subject to a variety of demands inherent in the technology of ski bindings.
A device of this kind must be simple, reliable in operation, of small size, inexpensive, rugged, and it must re quire a minimum of moving parts.
In a general way, a movement-compensating device according to the present invention comprises a resilient unit arranged between a fixed element integral with the ski and the longitudinally mobile part of the binding, the resilient unit exerting upon this mobile part a force which opposes the force which causes the binding to move longitudinally, the force having an appreciably constant value regardless of the extent of longitudinal movement of the moving part of the binding.
It should nevertheless be noted that, in the case of safety bindings for skis, the longitudinal movement of the moving part of the binding is limited by its nature,
and does not exceed a few centimetres.
The compensating device according to the invention is therefore particularly well suited to exert an almost constant opposing force on the moving part of the binding which is capable of moving longitudinally over a relatively short distance. It is therefore sufficient if the design and arrangement of the device produce the desired result while functioning within relatively narrow limits. This consideration therefore permits the use of a simple and inexpensive device.
It will be observed that when the moving part of the binding is in what is known as the forward" position, in which position the ski is not put on, the said binding is preferably stopped, in such a manner that the resilient unit exerts upon the moving part a force opposing the movement of the binding towards what is known as the rearward position, one component of this force acting parallel with the longitudinal movement of the binding and having a value equal to that of the constant opposing force acting on the binding while it is moving.
In the rearward' position, it is also of advantage for the binding to be up against a stop.
According to one aspect of the invention, the resilient unit comprises means which, when the resilient force thereof varies while the moving part of the binding is moving, modify the orientation of this resilient force in relation to the longitudinal direction in which the force displacing the moving part acts, with the result that the angle formed between the said resultant and the direction of displacement varies in proportion to the variationin the resilient force, which means that the component of the said resilient force acting upon the moving part of the binding parallel with the direction of displacement has an almost constant value.
Furthermore, the resilient unit comprises at least one guided spring, the axis of which is kept in a straight line, the ends of the said spring being connected to elements co-operating on the one hand with the fixed structure of the ski and, on the other hand, with the moving part of the safety binding.
The compensating device according to the invention may vary in design, depending upon whether it is desired to obtain a device exhibiting high functional accuracy or, on the contrary, relative accuracy, i.e., one which allows minor tolerances in the constant value of the opposing force.
If this relative functional accuracy is acceptable, the design of the device may be extremely simple and economical, whereas if high functional accuracy is required, the design of the device will be somewhat more complex and slightly more costly.
According to one form of execution of the devices, two parts pivot respectively about vertical axes integral with the ski, one of the parts being subjected to the action of a spring attached to a fixed point of the ski and pushing the second part into contact with the moving part of the binding, the parts exhibiting cam profiles which co-operate and slide upon each other in almost spot contact, which makes frictional forces almost negligible.
According to another form of execution, a return spring kept in a straight line is stopped at one end by a fixed part integral with the ski, the other end of the spring resting on a toothed wheel to which it applies a torque, the toothed wheel engaging with a rack mounted to slide along the longitudinal axis of the ski in a sliding support, the front end of the rack abutting against the moving part of the binding. The spring is in almost spot contact with the toothed wheel, preferably along a chord-like section thereof, the distance between the axis of the wheel and the point of contact with the spring varying in proportion to the restoring force of the spring.
According to still another form of execution, a spring is mounted on a telescopic support intended to keep it substantially parallel with the longitudinal axis of the ski, one end of the support being integral with the ski while the other end pushes into contact with the moving part of the binding an intermediate part mounted on a pivot remote from the longitudinal axis of the ski and from the axis of the spring. the intermediate part having a profile which co-operates with a conjugate profile pertaining to the mobile part of the binding. As a variant, the profile of the intermediate partmay cooperate with a conjugate profile pertaining to a fixed part of the binding, via an element integral with the moving part of the binding and moving within the two profiles.
The invention will now be described in detail, and by way of non-restrictive example, with reference to the attached drawings, wherein:
FIG. 1 shows a plan view of a safety binding comprising a compensating device, in a first form of execution;
FIG. 2 is a side elevation of the binding and device in FIG. I;
FIG. 3 shows the device in FIGS. 1 and 2 in a different position, the binding having been moved towards its rearward position;
FIG. 4 is a plan view of the device according to another form of execution shown in two different conditions, one in full lines and one in broken lines;
FIG.'5 is a side elevation of the device, as seen in the direction of arrow 9 in FIG. 4;
FIGS. 6 and 7 show a partial longitudinal section of the device according to another form of execution and in two different conditions;
FIGS. 8 and 9 show a plan view in two extreme conditions of a device according to another form of execution.
In the following description, similar elements have the same reference numbers. I
, In FIGS. 1 to 3, l is a central section of the ski and 2 is the moving part of a safety binding, for example, a heel-piece carrying a holding jaw 3 for a boot (not shown). Hereinafter. the moving part of the binding will be considered as a heel-piece but it is to be understood that it might also be some other binding element. Theheel-piece may move longitudinally along axis XX of the ski, sliding on lateral tongues 4, with which it is equipped, in corresponding slides 5 integral with a bracket 6 attached to the ski in any appropriate manner. Slides 5 have longitudinal stops 7, at least at their front ends, which-limit the forward travel of the heelpiece. These stops, which may be of any known type, are preferably simultaneously adjustable on slides 5. Rear stops might also be provided to limit the rearward travel of the heel-piece, but this is not mandatory. Attached to the rear face of heel-piece 2, and in area closeto longitudinal axis. XX ofthe ski, is the seat 8 of the male part 9 of a ball joint, the female portion of which is part of a compensating device generally marked 10. The said compensating device consists. of a telescopic element comprising a cylinder 11 in which a rod 12 slides. The free end of cylinder 11 is fixed to flange 13 of a female part 14 of the ball joint, male part 15 of whichcarries a seat 16 permanently attached to skil, in an area laterally remote from longitudinal axis XX and preferably in that half of the ski opposite to the location of seat 8 of the ball joint attached to the binding. It will also be observed in the drawing that seat 16 is located to the rear of bracket 6 in which the binding slides.
Furthermore, rod 12 also carries at its free end a female part 18 of flanged ball joint 17 which co-operates with male part 9 of the ball joint carried by the heelpiece. A compression spring 19 is mounted around telescopic element 11-12, the ends of the said spring resting against flanges 13 and 17.
In the vicinityof flange 17, rod 12 has an expanded section 20, the shoulder of which is intended to come into contact with the .freeend of cylinder 11 in order to limit the compression travel of spring 19 (as shown in FIG. 3). When the expanded section comes into contact with the cylinder, it is impossible to compress device 10 any further, and the device therefore be comes a stop, limiting the rearward travel of binding 2. The device is therefore free to contract or expand as indicated by the double arrow B in FIG. 1, and to pivot about ball joint 15 as indicated by double arrow A.
It will be noted that the angle between the axis of device 10 and longitudinal axis XX of the ski is preferably between 30 and and this applies over the entire travel of the binding. Moreover, according to the design, when the binding is in the forward position shown in FIG. 1, spring 19 is already in the compressed condition, exerting upon the moving part of the binding a force, the resultant of which, following the axis of the spring,- is shown at 22; the said force has a longitudinal component 23 and a'transverse component 24.
In actual operation, if binding 2 moves towards the rear in the direction of arrow 21, under the action of a force superior to longitudinal component 23 of the device, spring 19 (FIG. 3) is compressed in the direction of arrow B and, at the same time, device as a whole pivots about ball joint in the direction of arrow A, ball joint 9 making this movement possible. Therefore, as the compression of the spring, and thus its resilient reaction represented by resultant 22, increases, angle a between the axis of device 10 and longitudinal axis XX increases proportionally, as does transverse component 24.
Thus, in the vectorial system of FIGS. 1 and 3, longitudinal component 23 is invariable, and the opposing longitudinal force which it represents has a constant value, regardless of the movement of the heel-piece. In F IG. 3, binding 2 is shown in its maximal rearward position, and it may be seen that resultant 22' and transverse component 24 are greater than resultant 22 and component 24 in FIG. 1, just as angle a is larger than angle a; only longitudinal component 23 remains the same in both figures.
The simplicity of this device is interesting, but the presence of a transverse component 24 acting upon the binding may increase the friction between the binding and one of its slides (the top slide in FIG. 1) as the binding moves; above all it may produce increased wear in the said slide.
In FIGS. 4 and 5, the compensating device consists of two parts and 61 mounted to pivot about fixed vertical axes 62 and 63 respectively, the latter being integral with a common support plate 64 mounted on the ski behind heel-piece 2. Part 60 is generally triangular in shape, and one of its rounded tips 65 is kept in permanent contact with the rear face of the heel-piece. Part 61 is L-shaped, one end of an arm 66 thereof carrying an axis 66' to which is hooked one end of a tension spring 67, the other end being hooked to a stationary axis integral with the ski. Free end 69 of the other arm of the L-shaped part is rounded and is in contact with a concave side of part 60 facing tip 65.
When the heel-piece is in the forward position shown in full lines in FIG. 4, spring 67 urges part 61 up wards (as seen in the drawing) and end 69 of part 61 tends to rock part 60 downwards, applying tip 65 to the heel-piece with a specific force, the longitudinal component of which is indicated at 71. Thus the heel-piece, stopped in the forward direction, has imparted to it a longitudinal thrust 71. When the binding returns to its rearward position, shown in broken lines, under the action of a force 72 greater than the said thrust 71, it pushes back part 60, the concave side of which causes part 61 to pivot'downwards, thus stretching spring 67. Concave ramp 70 on part 60 is calculated in such a manner that for any given position of heel-piece 2, Iongitudinal component 71 of the force acting upon the said heel-piece has a constant value.
In FIGS. 6 and 7, heel-piece 2 may slide on a bracket fixed to ski I, by means of a system of slides of any appropriate type, for instance, a dove-tail system.
The compensating device is located behind the heelpiece in a housing 81 attached to the ski and equipped at the top with a longitudinal guiding slide 82 in which a rack 84 may slide in the direction of double arrow 83, the rack carrying, at the end emerging from the housing, a rod 85 in constant contact with the rear face of the heel-piece.
The rack engages with a toothed sector 86 turning freely on a horizontal axis 87 running perpendicularly to the longitudinal axis of the ski, and mounted in a bracket 88 attached to the ski. A compression spring 90 presses against the chord or flat part 89 of the toothed sector, the axis of the spring being parallel with the longitudinal axis of the ski, and the spring being located in a tubular sleeve 91 attached by its rear end 92 to the rear wall of housing 81, the rear end of the spring thus resting against housing 81. Towards its forward end, the sleeve exhibits a slot 93 extending in the form of a generatrix and providing a free passage for the rotary motion of the toothed sector.
When the heel-piece is in its forward" position, i.e. up against the forward stops as shown in FIG. 6, the toothed sector is arranged in such a manner that chord 89 is not perpendicular in relation to the axis of spring 90. As a result of this, the spring, which may be in spot contact with the chord, imparts at all times a torque to the toothed sector, the latter transmitting to the rack and to heel-piece 2 a forward thrust.
It is to be understood that the arrangement illustrated is a schematic example only, and that some other system of contact between the toothed sector and the spring is conceivable.
When the heel-piece is stopped in its forward position, as shown in FIG. 6, spring 90 rests at A against the chord and imparts to the toothed sector a thrust 94 which produces an opposing force 95 acting on rack 84 and therefore on heel-piece 2.
In the rearward position illustrated in FIG. 7, resulting from a force 96 acting upon the heel-piece, superior in value to force 95, the heel-piece pushes rack 84 back, causing toothed sector 85 to pivot in a clockwise direction, and thus compressing spring 90. Thus, point of contact B between the latter and chord 89 is spaced from pivot axis 0 of the toothed sector 86; in other words, distance OB is greater than distance OA. Thrust 97 exerted by the spring on the sector is superior to force 94, but since sector 86 has pivoted, and since the distance between the point of application of this thrust and axis 0 has altered simultaneously, opposing force 95 transmitted by the toothed sector to the rack remains at a practically constant value, the force being transmitted directly to heel-piece 2.
In FIGS. 8 and 9, the heel-piece 2 may slide on its lateral tongues 4 in slides 5 integral with a bracket 6 attached to ski 1. Bracket 6 extends to the rear of slides 5, forming a plate on which a part 100, pivoting about a vertical axis 101 integral with the ski, may slide. In the front, a curved slot 102 is cut into part 100, th slot co-operating, when part pivots, with another curved slot 103 cut into the rear part of bracket 6, these two slots co-operating via a vertical axis 104 provided in a head 105 located between the ski and the bottom surface of bracket 6 and free to move in slot 103 in the direction of double arrow 106.
The rear portion of pivoting part 100 has a convex ramp 107 co-operating with a roller 108 mounted on the head 110 of a telescopic support 109 extending approximately parallel with longitudinal axis XX' of the ski, base 111 of which is integral with a seat 112 attached to the ski. The head of the telescopic support is extended by a rod 113 sliding in a cylinder 114 drilled from end to end and pertaining to base 111. A compression spring 115 abuts against a flange on the head and base 111. As in the case of the telescopic supports in FIGS. 1 to 3, the compression travel of the support may be limited by contact between an expanded part 116 on the head and cylinder 114.
When the heel-piece 2 is in the forward positon, shown in FIG. 8, the spring exerts a thrust 117 on part 100 which is pivoted forward and presses axis 104 against the rear of heel-piece 2 thus providing an opposing force, component 118 of which is parallel with axis XX of the ski.
Under the action of a force 120 causing the heelpiece to move towards the rear, the heel-piece pushes axis 104 backwards, which causes part 100 to rock in a clockwise direction. Ramp 107 thereof compresses telescopic support 109, whereupon the spring exerts a reaction 117' greater than thrust 117 on'part 100. But since axis 104 has simultaneously moved away from axis 101 of part 100, component 118 of the opposing force exerted by axis 104 on the heel-piece is almost equal in value to component 118 in FIG. 8.
Slots 102 and 103 and ramp 107 keep opposing force 118 constant by reason of their shape and arrangement. Variations in compression of spring 115 and/or variations in the position of the heel-piece thus subjecting the latter at all times to the same opposing force.
It is to be understood that this present description is not restrictive, and that additions and modifications could be applied without thereby departing from the scope of the invention.
Thus, in one form of execution-not shown, the resilient device might consist of a lever pivoting about an axis integral with the ski, the lever being subjected, at one end, to the action of a spring, while the'other end constantly abuts against the longitudinally moving part of the binding.
The resilient device might also comprise a lever pivoting about an axis integral with the ski, the lever being subjected to the action of a spring acting upon the longitudinally mobile part of the binding via two conjugate profiles, one pertaining to the lever and the other to the moving part of the binding, a part having a good coefficient of friction being interposed between the two conjugate profiles.
I claim:
1. A safety ski binding mounted on a ski and comprising: slides rigid with said ski and parallel to the longitudinal side of said ski; a movable member mounted in said slides for guided motion in the longitudinal axis of said ski, said member carrying a boot retaining jaw; a fixed structure rigid with said ski and arranged apart from said movable member; and a resilient system including a spring element one end of which is in abutment against said fixed structure, an intermediate element rotatably mounted on an axis rigid with said ski,
the other end of said spring element co-acting with said intermediate element, and a thrusting element movably carried on a part rigid with said ski and interposed between said intermediate element and said movable member, a cam relationship being provided between said intermediate element and at least one of the two other elements with which it is co-acting in order that said resilient system exerts on said movable member an opposite action of substantially constant value, regardless of the longitudinal travel of said movable member.
2. A safety ski binding as claimed in claim 1, wherein said spring element is substantially parallel to the longitudinal axis of the ski.
3. A safety ski binding as claimed in claim 1, wherein said intermediate element comprises a part co-acting with said spring element and a part co-acting with said thrusting element, said parts being angularly spaced relative to the axis of said intermediate element.
4. A safety ski binding as claimed in claim 1, wherein said thrusting element is totally mounted on a fixed axis parallel to the axis of the intermediate element and rigid with said ski, said thrusting element having a cam portion whichcontacts said intermediate element.
5. A safety ski .binding as claimed in claim 4, wherein said intermediate element is a bent lever, one arm of which is fixed to the end of said spring element and the other arm of which is slidably contacting said cam portion of said thrusting-element.
6. A safety ski binding as claimed in claim 1, wherein said thrusting element is constituted by a rack slidably mounted on the fixed structure in a direction parallel to the longitudinal axis of said ski and said intermediate element is a toothed section, rotatably mounted on a fixed axis, said rack and said toothed section being in engagement, said toothed section showing a flat part acting as a cam and on which is applied one end of said spring element, the other end of which is in abutment against said fixed structure.
7. A safety ski binding as claimed in claim 1, wherein said thrusting axis is constituted by a vertical axis slidably mounted in a curved slot of a support fixed to the ski, said vertical axis being in contact with said movable member and slidably co-acting with a curved slot acting as a cam which is provided on said intermediate element, the latter being pivotally mounted on a fixed axis and having a cam portion angularly spaced from said curved slot relative to said fixed axis, said cam portion co-acting with said spring element.

Claims (6)

  1. 2. A safety ski binding as claimed in claim 1, wherein said spring element is substantially parallel to the longitudinal axis of the ski.
  2. 3. A safety ski binding as claimed in claim 1, wherein said intermediate element comprises a part co-acting with said spring element and a part co-acting with said thrusting element, said parts being angularly spaced relative to the axis of said intermediate element.
  3. 4. A safety ski binding as claimed in claim 1, wherein said thrusting element is totally mounted on a fixed axis parallel to the axis of the intermediate element and rigid with said ski, said thrusting element having a cam portion which contacts said intermediate element.
  4. 5. A safety ski binding as claimed in claim 4, wherein said intermediate element is a bent lever, one arm of which is fixed to the end of said spring element and the other arm of which is slidably contacting said cam portion of said thrusting element.
  5. 6. A safety ski binding as claimed in claim 1, wherein said thrusting element is constituted by a rack slidably mounted on the fixed structure in a direction parallel to the longitudinal axis of said ski and said intermediate element is a toothed section, rotatably mounted on a fixed axis, said rack and said toothed section being in engagement, said toothed section showing a flat part acting as a cam and on which is applied one end of said spring element, the other end of which is in abutment against said fixed structure.
  6. 7. A safety ski binding as claimed in claim 1, wherein said thrusting axis is constituted by a vertical axis slidably mounted in a curved slot of a support fixed to the ski, said vertical axis being in contact with said movable member and slidably co-acting with a curved slot acting as a cam which is provided on said intermediate element, the latter being pivotally mounted on a fixed axis and having a cam portion angularly spaced from said curved slot relative to said fixed axis, said cam portion co-acting with said spring element.
US00342468A 1970-01-19 1973-03-19 Apparatus for compensating for the longitudinal movement of a safety ski binding Expired - Lifetime US3814455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00342468A US3814455A (en) 1970-01-19 1973-03-19 Apparatus for compensating for the longitudinal movement of a safety ski binding

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7001826A FR2076550A5 (en) 1970-01-19 1970-01-19
US00342468A US3814455A (en) 1970-01-19 1973-03-19 Apparatus for compensating for the longitudinal movement of a safety ski binding

Publications (1)

Publication Number Publication Date
US3814455A true US3814455A (en) 1974-06-04

Family

ID=26215495

Family Applications (1)

Application Number Title Priority Date Filing Date
US00342468A Expired - Lifetime US3814455A (en) 1970-01-19 1973-03-19 Apparatus for compensating for the longitudinal movement of a safety ski binding

Country Status (1)

Country Link
US (1) US3814455A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3529845A (en) * 1967-11-10 1970-09-22 Hiroaki Kanno Safety binding metal for heel of ski boots

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3529845A (en) * 1967-11-10 1970-09-22 Hiroaki Kanno Safety binding metal for heel of ski boots

Similar Documents

Publication Publication Date Title
US4302027A (en) Safety ski binding
US3620545A (en) Safety clamp for ski bindings employing a combined vertical and horizontal swing catch
US3909024A (en) evices for braking loose skis
US4362313A (en) Toe abutment member for a ski binding
US3278195A (en) Safety ski binding
US3572738A (en) Securing head for safety ski bindings
US4218071A (en) Ski safety binding with automatic compensating mechanism
US3734522A (en) Apparatus and method for compensating for the longitudinal movement of a safety ski binding
US3900206A (en) Safety ski binding
US4529218A (en) Ski binding part
US3797843A (en) Device for securing a boot to a base
US3814455A (en) Apparatus for compensating for the longitudinal movement of a safety ski binding
US4088343A (en) Front jaw
US20240181326A1 (en) Alpine touring binding toe unit
US4266801A (en) Braking device for skis
US3685849A (en) Toe iron for safety ski bindings
US4940253A (en) Safety binding
US4003587A (en) Safety binding for ski boots
US4431210A (en) Ski binding jaw, in particular a front jaw
US4682786A (en) Safety ski binding
US4143886A (en) Safety ski binding
US4340242A (en) Safety ski binding
US4915407A (en) Binding with independently acting release and retention features
US4488734A (en) Ski brake
US3960384A (en) Method for providing recoil in a safety binding for skis and device for the same