US3811426A - Method and apparatus for the in-vessel radiation treatment of blood - Google Patents

Method and apparatus for the in-vessel radiation treatment of blood Download PDF

Info

Publication number
US3811426A
US3811426A US00362613A US36261373A US3811426A US 3811426 A US3811426 A US 3811426A US 00362613 A US00362613 A US 00362613A US 36261373 A US36261373 A US 36261373A US 3811426 A US3811426 A US 3811426A
Authority
US
United States
Prior art keywords
wire
layer
blood
radioisotope
blood vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00362613A
Inventor
G Culver
W Riemath
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Atomic Energy Commission (AEC)
Original Assignee
US Atomic Energy Commission (AEC)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Atomic Energy Commission (AEC) filed Critical US Atomic Energy Commission (AEC)
Priority to US00362613A priority Critical patent/US3811426A/en
Application granted granted Critical
Publication of US3811426A publication Critical patent/US3811426A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1001X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy using radiation sources introduced into or applied onto the body; brachytherapy
    • A61N5/1002Intraluminal radiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1001X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy using radiation sources introduced into or applied onto the body; brachytherapy
    • A61N2005/1019Sources therefor

Definitions

  • ABSTRACT An apparatus and a corresponding method for the invivo radio-therapy of blood by irradiation of the blood within the blood vessel.
  • the device includes a wire which has a straight section and small oppositely facing loops at each of its two ends.
  • An active radioisotope-layer is deposited over the center portion of the straight section of the wire and this radioisotopelayer is sealingly covered with a coating-layer to prevent any leaking of the radioisotope into the blood.
  • the wire is adapted for surgical implantation diagonally transverse a blood vessel in a manner so that the active radioisotope-layer lies fullywithin the blood vessel, while the end of the wire projects such that the two loops lie fully exterior to the blood vessel.
  • the device is surgically implanted diagonally transverse the blood vessel and is anchored in place with respect to the blood vessel by suturing through the loops.
  • the present invention relates to radiotherapy and radiation treatment of blood and is particularly concerned with the in-vivo radiation treatment of blood. Specifically, the present invention is concerned with the radiation treatment of blood within the blood vessel. Still more particularly, the present invention relates to a method and a device for implantating a radiation source within the blood vessel which reduces the amount of shielding required and hence the complexity of the device and simplifies surgical procedure.
  • Radiotherapy including radiation treatment of blood as a potential cure or control of various diseases is well known in the art, radiotherapy being extensively used in the treatment of various forms of cancer. In particular, radiotherapy as a treatment for the control of leukemia has been studied and undertaken in the past.
  • Immune reactions initiated by lymphocytes are usually the ultimate reason for failure oforgan transplants.
  • Current methods of suppressing these immune reactions include use of drug therapy, antilymphocyte antibodies, and irradiation. Typically, more than one of these approaches is used since there are problems associated with each.
  • a small implantable irradiator which would permit direct in-vivo irradiation of the blood is also desirable.
  • One such portable irradiator consists of a small tube of shielding material coated on the inside with a radioactive isotope which is further coated to prevent leakage into the blood system. Small sections of an artery or vein are surgically removed and this tube inserted in substitution therefor, the insertion being accomplished by suturing the blood vessel to small fiber tubes located on each end of the device. These devices then serve as a small section of the blood vessel.
  • An additional object of the present invention is to provide a method and apparatus for the irradiation treatment of blood within'the blood vessel itself.
  • Another object of the present invention is to provide a device which is less complex and requires less or no shielding and which can be implanted by simplified surgical procedures.
  • a layer from an active radioisotope is deposited on the center portion of a wire which includes a straight section and small oppositely facing loops at each of its two ends.
  • a coating-layer is deposited over the active radioisotope-layer to sealingly cover the radioisotope and prevent leaking of the radioisotope into the blood.
  • a coating-layer coats the central portion of the straight section 12 and sealingly covers the radioisotope-layer 18 so as to prevent any leaking of the radioisotope from the device into the bloodstream.
  • the device is shown as implanted in a blood vessel 22.
  • the device is adapted for implantation diagonally transverse blood vessel 22 and is implanted in a manner such that active layer 18 lies fully within blood vessel 22, i.e., active layer 18 lies within the interior 24 of the blood vessel 22 between the walls thereof.
  • the device is further implanted such that the loops l4 and 16 at the two ends of the straight section 12 lie fully outside and exterior to the blood vessel 22.
  • the device is anchored in place with respect to the blood vessel such as by sutures 26 and 28 through loops l4 and 16, respectively.
  • the device is anchored in order to prevent the undesirable loss of the device in the body and to prevent undesirable movement relative to the blood vessel 22.
  • the active radioisotope-layer 18 can be deposited on the center portion of the wire in any manner known and practicedin the art including, amo'ngothers, elec-- troplating from a solution containing the radioisotope.
  • the coating-layer can be deposited over the active radioisotope-layer in various manners well known in the art including, among others, vacuum sputtering of a metal.
  • the device Following depositing of the coating-layer and prior to implantation, the device must be sterilized, sterilization by gamma irradiation being one of the many possible methods which can be employed, The device is then implanted in a blood vessel by surgically inserting the device so as to lie diagonally transverse the blood vessel, as described hereinabove. While various means of surgical implantation can be used, two examples of surgical methods which have been found particularly adaptable to the present device are insertion through the blood vessel in a hypodermic needle followed by withdrawal of the hypodermic needle,
  • the device in place, and insertion of the device across theblood vessel through two surgical incisions in the wall of the blood vessel, the incisions being made on opposite sides of the blood vessel and diagonally spaced so as to accommodate the device diagonally thereacross.
  • the sutures used to close the surgical incisions in the blood vessel can also be employed to anchor the device in place with respect to the blood vessel by making the sutures through the loops on the respective two ends of the straight section.
  • This device offers versatility in that the choice of the radioisotope to be used can be made based upon the desired intensity of radiation and the desired energy of radiation. Since the coating-layer can be made very thin as by vacuum sputtering a metal, it is possible to use either alpha emitters or beta emitters for the radioisotope. Since the device is inserted directly into the bloodstream and is surrounded by blood, extensive radiation shielding is not required, as the radiation emitted will be absorbed by the blood itself with no damage to surrounding tissues. This device permits surgical implantation by means of much simpler surgical procedures and is therefore far less traumatic than other known implantation procedures.
  • a device was constructed and implanted in accordance with the present invention.
  • the device was formed of a Type 302 stainless steel spring wire 0.010 inch in diameter and just over 2 inches long.
  • the wire was formed with opposing 0.040-inch-diameter loops at each end, the centers of the loops being 2 inches apart.
  • the wire was ultrasonically'cleaned in approximately 10 percent solution of Delex a commercial detergent and ultrasonically rinsed in distilled water twice, followed by a tripple rinse in reagent-grade acetone, and I used in the past for production of standard samples of,
  • the electroplating cell was filled with approximately 10 cc of dimethyl sulfoxide.
  • a D-C power supply. was
  • Sputter deposition of each coating or containment layer was done in two steps in a MRC Model 8620 RF sputtering systemlocated in a glove box.
  • The'active wire was mounted on a simple holding fixture consisting of two support wires silver-brazed to a 5-inch stainless steel disk and bent to support the wires l/4 inch above the disk. It was necessary to open the chamber and to turn the wire over to sputter the containment on the reverse side.
  • the chamber was evacuated to 3 X Torr before back-filling to 4.5 millitorr of argon.
  • the first platinum containment layer of approximately 7,500 A was sputter-deposited at a power of 250 watts on a S-inch-diameter target, zero bias, 800 volts RF peak to peak.
  • the 7,500 A estimate is based on deposition rates for platinum previously established at 3.22 microns per hour at 500 watts by metallographic techniques.
  • the chamber was vented to argon, opened, the wire turned over, and pumped down and platinum sputtered on the other side. 7
  • the wire was removed to an open-faced hood and smearability and activity checked. After a light rub on the wire, a Q-tip counted 200-300 disintegrations per minute. Alpha activity on the yellow face Juno had dropped to 25 rads per hour uncorrected. The wire was then carefully rubbed with tweezer tips which had been wrapped with optical lens paper in order to knock off any high peaks of plutonium oxide.
  • the wire was then placed back in a sputtering chamber and approximately 3,500 A of platinum was deposited using the same sputtering conditions as for the first containment layer. After sputtering, the wire was smeared with Q-tips and facial tissue and only background count was noted, which is less than 25 disintegrations per minute.
  • the alpha activity as read on the yellow face .luno was 12.5 rads per hour on one side and rads per hour on the other side.
  • the device was implanted in a beagle dog.
  • insertion was accomplished, while the dog was anesthetized as for any surgery, by passing a long steel needle obliquely through the artery and drawing the irradiator device through the needle by means of a suture thread and suturing. through the loops of the device at both ends, to the wall of the blood vessel following removal of the steel needle.
  • Radiographs taken subsequent to implantation showed thewire continuing in place.
  • the other surgical procedure contemplated for use with the present device will be to dissect.
  • the first device was nonradioactive and'was implanted to develop techniques and to check thrombic effects of the wire itself.
  • the device with the radioactive layer was subsequently imp'lanted. After days, there was no gross evidence of thrombic effect in either animal but total absence of clotting can be confirmed only after the animal is sacrificed.
  • Pu was used as the source in the present instance, it is possible that because of the very short range of alpha particles and the difficulty of detecting any leakage, should a leakage subsequently develop, it is possible that beta emitters will prove to be preferable as the active radioisotope.
  • a beta emitter would provide a radiation which is suffi' ciently penetrating to give a sufficiently high dose rate to the blood and yet is not so penetrating that it would be damaging to surrounding tissue.
  • Use of more penetrating beta radiation would also have the advantage that a thicker containment layer could be used, insuring its integrity and containment of the radioisotope without reducing the radiation level to unacceptably low values.
  • An in-vivo radioisotope blood irradiator for invessel radiation treatment of blood comprising: a wire including a straight section and a small oppositely facing loop at each of the two ends thereof; an active radioisotope-layer deposited over the center portion of said straight section of the wire; and a coating-layer sealingly covering said active radioisotope-layer; said wire adapted for implantation diagonally transverse a blood vessel in a manner so that said active layer lies fully within said vessel and said ends project such that said two loops lie fully exterior to said vessel.
  • the blood irradiator of claim 1 further comprising suture means associated with each of said loops for anchoring said wire with respect to said blood vessel.
  • a method for in-vivo radiotherapy of blood by irradiation of the blood within a blood vessel comprising:

Abstract

An apparatus and a corresponding method for the in-vivo radiotherapy of blood by irradiation of the blood within the blood vessel. The device includes a wire which has a straight section and small oppositely facing loops at each of its two ends. An active radioisotope-layer is deposited over the center portion of the straight section of the wire and this radioisotope-layer is sealingly covered with a coating-layer to prevent any leaking of the radioisotope into the blood. The wire is adapted for surgical implantation diagonally transverse a blood vessel in a manner so that the active radioisotope-layer lies fully within the blood vessel, while the end of the wire projects such that the two loops lie fully exterior to the blood vessel. Following the depositing of the radioisotope-layer and the coating-layer on the wire and sterilization of the wire, the device is surgically implanted diagonally transverse the blood vessel and is anchored in place with respect to the blood vessel by suturing through the loops.

Description

United States Patent [191 Culver et al.
[ METHOD AND APPARATUS FOR THE lN-VESSEL RADIATION TREATMENT OF BLOOD [75] Inventors: Gordon G. Culver, Klamath Falls, Oreg.; William F. Riemath, Pasco, Wash.
[73] Assignee: The United States of America as represented by the United States Atomic Energy Commission, Washington, DC.
[22] Filed: May 21, 1973 [21] Appl. No.: 362,613
[52] U.S. Cl. ..-128/l.2, 250/493 [51] Int. Cl A6ln 5/10 [58] Field of Search l28/l.l, 1.2, 2 A, 260,
[5 6] References Cited UNITED STATES PATENTS 1,823,239 9/1931 Cervi 128/12 1,954,868 4/1934 Failla et al. 128/12 2,153,889 4/1939 Hames l28/1.l 2,405,026 7/1946 Feoer et a1 250/493 2,546,759 3/1951 Lee et al 128/260 3,505,991 4/1970 Hellerstein et al l28/l.l
[111 3,811,426 [451 May21, 1974 Primary Examiner-William E. Kamm Attorney, Agent, or Firm-John A. Horan; Arthur A. Churm; Robert J. Fisher 5 7] ABSTRACT An apparatus and a corresponding method for the invivo radio-therapy of blood by irradiation of the blood within the blood vessel. The device includes a wire which has a straight section and small oppositely facing loops at each of its two ends. An active radioisotope-layer is deposited over the center portion of the straight section of the wire and this radioisotopelayer is sealingly covered with a coating-layer to prevent any leaking of the radioisotope into the blood. The wire is adapted for surgical implantation diagonally transverse a blood vessel in a manner so that the active radioisotope-layer lies fullywithin the blood vessel, while the end of the wire projects such that the two loops lie fully exterior to the blood vessel. Following the depositing of the radioisotope-layer and the coating-layer on the wire and sterilization of the wire, the device is surgically implanted diagonally transverse the blood vessel and is anchored in place with respect to the blood vessel by suturing through the loops.
7 Claims, 1 Drawing Figure METHOD AND APPARATUS FOR THE IN-VESSEL RADIATION TREATMENT OF BLOOD CONTRACTUAL ORIGIN OF THE INVENTION The invention described herein was made in the course of, or under, a contact with the UNITED STATES ATOMIC ENERGY COMMISSION.
BACKGROUND OF THE INVENTION The present invention relates to radiotherapy and radiation treatment of blood and is particularly concerned with the in-vivo radiation treatment of blood. Specifically, the present invention is concerned with the radiation treatment of blood within the blood vessel. Still more particularly, the present invention relates to a method and a device for implantating a radiation source within the blood vessel which reduces the amount of shielding required and hence the complexity of the device and simplifies surgical procedure.
Radiotherapy including radiation treatment of blood as a potential cure or control of various diseases is well known in the art, radiotherapy being extensively used in the treatment of various forms of cancer. In particular, radiotherapy as a treatment for the control of leukemia has been studied and undertaken in the past.
Suppression oflymphocyte levels in circulating blood following irradiation of the total body with low doses of ionizing radiation is well known. It has been demonstrated that irradiation of blood in an exterior loop (extracorporeal irradiation of blood) suppresses lymphocyte levels without damage to other body tissues. It has consequently been shown that extracorporeal irradiation of blood is an effective adjunct or alternative to drug therapy for treating some forms of leukemia.
Immune reactions initiated by lymphocytes are usually the ultimate reason for failure oforgan transplants. Current methods of suppressing these immune reactions include use of drug therapy, antilymphocyte antibodies, and irradiation. Typically, more than one of these approaches is used since there are problems associated with each.
Acceptance times of skin allografts have been extended by extracorporeal irradiation of blood and this technique has been evaluated for its applicability for immunosuppression-relative to renal allografts. Significant reduction in early rejection eposodes and a significantly higher frequency of six-month renal graft survival has been reported for extracorporeal irradiation of blood-treated groups.
Most treatments of both experimental animals and humans have been accomplished by shunting blood through large fixed equipment such as cobalt-60, cesium- I 37 or X-ray sources, thereby necessitating specialized facilities. With the relatively long treatment regimes required, this severely limits the numbers of patients who can receive treatment and requires the inconvenience and expense of hospitalization. A small, inexpensive. portable irradiator is needed for the above reasons and also to permit chronic exposures of patients prior to and subsequent to kidney transplants.
A small implantable irradiator which would permit direct in-vivo irradiation of the blood is also desirable. One such portable irradiator consists of a small tube of shielding material coated on the inside with a radioactive isotope which is further coated to prevent leakage into the blood system. Small sections of an artery or vein are surgically removed and this tube inserted in substitution therefor, the insertion being accomplished by suturing the blood vessel to small fiber tubes located on each end of the device. These devices then serve as a small section of the blood vessel.
Alternatives to these devices are desirable as the surgical procedures involved in inserting them as a substitution for a section of a blood vessel are complex arid these devices require shielding to prevent the undesirable radiation of surrounding tissues.
Therefore, it is an object of the present invention to provide a methodand an apparatus for radiotherapy of blood.
It is a'further object of the present invention to provide a method and apparatus for in-vivo irradiation of blood. I
An additional object of the present invention is to provide a method and apparatus for the irradiation treatment of blood within'the blood vessel itself.
Another object of the present invention is to provide a device which is less complex and requires less or no shielding and which can be implanted by simplified surgical procedures. I 7
Other objects and advantages of the present invention will become apparent upon readingthe following description and with particular reference to the specific embodiment described hereinbelow.
' and apparatus is provided for in-vivo radiotherapy of blood by irradiation of the blood within a blood vessel.
A layer from an active radioisotope is deposited on the center portion of a wire which includes a straight section and small oppositely facing loops at each of its two ends. A coating-layer is deposited over the active radioisotope-layer to sealingly cover the radioisotope and prevent leaking of the radioisotope into the blood. Following sterilization of the device, the device is implanted in a blood vessel by surgically inserting the wire diagonally transverse a blood vessel in a manner such that the active layer lies fully within the blood vessel while the ends project such that the two loops lie fully exterior to the blood vessel. The device is anchored in place with respect to the blood vessel by suturing to the blood vessel through the loops at the end of the wire.
BRIEF DESCRIPTION OF THE DRAWINGS' An understanding of the features and operation of the present invention can be obtained from a reading of the following description and with reference to the drawing which is a sectional view through a blood vessel showing the device partially in section implanted in accordance with the present invention.
DETAILED DESCRIPTION OF THE INVENTION Referring now to the drawing, there is shown a device in accordance with the-present invention implanted layer 18. A coating-layer coats the central portion of the straight section 12 and sealingly covers the radioisotope-layer 18 so as to prevent any leaking of the radioisotope from the device into the bloodstream.
The device is shown as implanted in a blood vessel 22. The device is adapted for implantation diagonally transverse blood vessel 22 and is implanted in a manner such that active layer 18 lies fully within blood vessel 22, i.e., active layer 18 lies within the interior 24 of the blood vessel 22 between the walls thereof. The device is further implanted such that the loops l4 and 16 at the two ends of the straight section 12 lie fully outside and exterior to the blood vessel 22. The device is anchored in place with respect to the blood vessel such as by sutures 26 and 28 through loops l4 and 16, respectively. The device is anchored in order to prevent the undesirable loss of the device in the body and to prevent undesirable movement relative to the blood vessel 22. i The active radioisotope-layer 18 can be deposited on the center portion of the wire in any manner known and practicedin the art including, amo'ngothers, elec-- troplating from a solution containing the radioisotope. Similarly, the coating-layer can be deposited over the active radioisotope-layer in various manners well known in the art including, among others, vacuum sputtering of a metal. Following depositing of the coating-layer and prior to implantation, the device must be sterilized, sterilization by gamma irradiation being one of the many possible methods which can be employed, The device is then implanted in a blood vessel by surgically inserting the device so as to lie diagonally transverse the blood vessel, as described hereinabove. While various means of surgical implantation can be used, two examples of surgical methods which have been found particularly adaptable to the present device are insertion through the blood vessel in a hypodermic needle followed by withdrawal of the hypodermic needle,
' leaving the device in place, and insertion of the device across theblood vessel through two surgical incisions in the wall of the blood vessel, the incisions being made on opposite sides of the blood vessel and diagonally spaced so as to accommodate the device diagonally thereacross. lf the'device is implanted by the latter method wherein incisions are made in the blood vessel wall, the sutures used to close the surgical incisions in the blood vessel can also be employed to anchor the device in place with respect to the blood vessel by making the sutures through the loops on the respective two ends of the straight section.
This device offers versatility in that the choice of the radioisotope to be used can be made based upon the desired intensity of radiation and the desired energy of radiation. Since the coating-layer can be made very thin as by vacuum sputtering a metal, it is possible to use either alpha emitters or beta emitters for the radioisotope. Since the device is inserted directly into the bloodstream and is surrounded by blood, extensive radiation shielding is not required, as the radiation emitted will be absorbed by the blood itself with no damage to surrounding tissues. This device permits surgical implantation by means of much simpler surgical procedures and is therefore far less traumatic than other known implantation procedures.
DESCRIPTION OF PARTICULAR EMBODIMENT While the invention is hereinafter described in connection with a particular specific embodiment, it will be understood that it is not intended to limit the invention to only that specific embodiment, but it is intended to cover all alternatives, modifications and equivalents as maybe included within the spirit and scope of the inventionas defined by the appended claims.
A device was constructed and implanted in accordance with the present invention. The device was formed of a Type 302 stainless steel spring wire 0.010 inch in diameter and just over 2 inches long. The wire was formed with opposing 0.040-inch-diameter loops at each end, the centers of the loops being 2 inches apart.
The wire was ultrasonically'cleaned in approximately 10 percent solution of Delex a commercial detergent and ultrasonically rinsed in distilled water twice, followed by a tripple rinse in reagent-grade acetone, and I used in the past for production of standard samples of,
other radioactive actinides,
The electroplating cell was filled with approximately 10 cc of dimethyl sulfoxide. A D-C power supply. was
connected to a platinum anode and the irradiator wire serving as a cathode with small alligator clips. A magnetic stirrer was adjusted to rotate the stirring bar such as to give good mixing without causing a noticeable vortex in the liquid. micrograms of dried "PuO was dissolved in 25 microliters of 6 N nitric acid and transferred to the cell. The power supply was adjusted so as to apply 3.5 volts across the cell and adjusted so that the current flow through the cell was 0. l milliamp. The current was applied and continued for 20 minutes. in order to prevent redissolution of some of the PuO,, the liquid was decanted with a syringe to below the level of the wire before reducing the voltage.
While the current, voltage and electrode spacing are probably not critical and are interdependent as in any cell, in order toobtain very smooth deposits, itis important to adjust the current flow and stirring speed to prevent the formation of bubbles on the wire. 0n previous attempts using higher voltage and current, a few bubbles were produced on the wire, resulting in deposits which appeared thicker to the naked eye and were black. On microscopic examination, these deposits were found to be rough with high peaks and with the appearance of a sponge. On such a deposit, a containment layer thick enough to assure a nonsmearable de- M time, the alpha radiation level from the wire was mea-' sured using a yellow face Juno" and a reading of approximately 60 rads per hour uncorrected as read on the Juno was obtained.
Sputter deposition of each coating or containment layer was done in two steps in a MRC Model 8620 RF sputtering systemlocated in a glove box. The'active wire was mounted on a simple holding fixture consisting of two support wires silver-brazed to a 5-inch stainless steel disk and bent to support the wires l/4 inch above the disk. It was necessary to open the chamber and to turn the wire over to sputter the containment on the reverse side. The chamber was evacuated to 3 X Torr before back-filling to 4.5 millitorr of argon. The first platinum containment layer of approximately 7,500 A was sputter-deposited at a power of 250 watts on a S-inch-diameter target, zero bias, 800 volts RF peak to peak. The 7,500 A estimate is based on deposition rates for platinum previously established at 3.22 microns per hour at 500 watts by metallographic techniques. The chamber was vented to argon, opened, the wire turned over, and pumped down and platinum sputtered on the other side. 7
After the first complete containment layer had been sputtered on, the wire was removed to an open-faced hood and smearability and activity checked. After a light rub on the wire, a Q-tip counted 200-300 disintegrations per minute. Alpha activity on the yellow face Juno had dropped to 25 rads per hour uncorrected. The wire was then carefully rubbed with tweezer tips which had been wrapped with optical lens paper in order to knock off any high peaks of plutonium oxide.
The wire was then placed back in a sputtering chamber and approximately 3,500 A of platinum was deposited using the same sputtering conditions as for the first containment layer. After sputtering, the wire was smeared with Q-tips and facial tissue and only background count was noted, which is less than 25 disintegrations per minute. The alpha activity as read on the yellow face .luno was 12.5 rads per hour on one side and rads per hour on the other side.
An alpha-energy analysis was run on the completed device. using a 400-channel alpha-energy analyzer. The results showed the absence of any alphas having the 5.5 MeV energy characteristic of Pu which was convincing evidence that the activity is contained until such time that the platinum containment is either damaged through handling or eroded away by the blood flow. A peak was located at about 4.82 MeV and calculation of the thickness ofthe containment layer based on the energy analysis indicated a thickness in reasonable agreement with that projected from the deposition rate data.
Following sterilization with 400,000 rads of gamma radiation, the device was implanted in a beagle dog. In the present case. insertion was accomplished, while the dog was anesthetized as for any surgery, by passing a long steel needle obliquely through the artery and drawing the irradiator device through the needle by means of a suture thread and suturing. through the loops of the device at both ends, to the wall of the blood vessel following removal of the steel needle. With this technique. there is little disturbance of the blood vessel. Radiographs taken subsequent to implantation showed thewire continuing in place. The other surgical procedure contemplated for use with the present device will be to dissect. the descending aorta, make two small slits on opposite sides of the blood vessel and 2 inches diagonally apart, insert the wire and anchor it with sutures also used to close the slits. This procedure is much simplified over the previously used method of removing a part of the aorta and suturing in its place a multilayered tube with woven fiber ends.
Two of the devices were implanted in dogs. The first device was nonradioactive and'was implanted to develop techniques and to check thrombic effects of the wire itself. The device with the radioactive layer was subsequently imp'lanted. After days, there was no gross evidence of thrombic effect in either animal but total absence of clotting can be confirmed only after the animal is sacrificed. While Pu was used as the source in the present instance, it is possible that because of the very short range of alpha particles and the difficulty of detecting any leakage, should a leakage subsequently develop, it is possible that beta emitters will prove to be preferable as the active radioisotope. A beta emitter would provide a radiation which is suffi' ciently penetrating to give a sufficiently high dose rate to the blood and yet is not so penetrating that it would be damaging to surrounding tissue. Use of more penetrating beta radiation would also have the advantage that a thicker containment layer could be used, insuring its integrity and containment of the radioisotope without reducing the radiation level to unacceptably low values. 1
The embodiments of the invention in which an exclusive property or privilege is claimed'are defined as follows:
1. An in-vivo radioisotope blood irradiator for invessel radiation treatment of blood comprising: a wire including a straight section and a small oppositely facing loop at each of the two ends thereof; an active radioisotope-layer deposited over the center portion of said straight section of the wire; and a coating-layer sealingly covering said active radioisotope-layer; said wire adapted for implantation diagonally transverse a blood vessel in a manner so that said active layer lies fully within said vessel and said ends project such that said two loops lie fully exterior to said vessel.
2. The blood irradiator of claim 1 further comprising suture means associated with each of said loops for anchoring said wire with respect to said blood vessel.
3. The blood irradiator of claim 1 wherein said wire is stainless steel spring wire about 0.01 inch in diameter and slightly in excess of 2 inches in length, said loops are about 0.04 inch in diameter, the centers of said two loops are about 2 inches apart, and the active radioisotope-layer is deposited over the center 1 inch of said wire.
4. The blood irradiator of claim 3 wherein said active 4 radioisotope-layer comprises PuO and said coatinglayer comprises platinum.
5. A method for in-vivo radiotherapy of blood by irradiation of the blood within a blood vessel comprising:
a. depositing a layer of an active radioisotope on the center portion of a wire which includes a straight section and a small oppositely facing loop at each of the two ends thereof;
b. depositing a coating-layer over said active radioisotope-layer so as to sealingly cover said radioisotope;
c. sterilizing said wire; and
d. implanting said wire in said blood vessel by surgically inserting the wire diagonally transverse said blood vessel in a manner so that said active layer lies fully within said vessel and said ends project 3,81 1,426 7 8 such that said two loops lie fully exterior to said is deposited on the center portion of 21 Stainless steel vessel s wire by electroplating from a solution containing 6. The method of claim further comprising: suturmpuo and a thinvcoafin- 4a er of lafinum is de os ing through said loops to anchors'aid wire with respect 2 g Y P P to id bl d vesseL 5 ited over said PuO by vacuum sputtering.
7. The method of claim 5 wherein a layer of "F'u0

Claims (7)

1. An in-vivo radioisotope blood irradiator for in-vessel radiation treatment of blood comprising: a wire including a straight section and a small oppositely facing loop at each of the two ends thereof; an active radioisotope-layer deposited over the center portion of said straight section of the wire; and a coating-layer sealingly covering said active radioisotope-layer; said wire adapted for implantation diagonally transverse a blood vessel in a manner so that said active layer lies fully within said vessel and said ends project such that said two loops lie fully exterior to said vessel.
2. The blood irradiator of claim 1 further comprising suture means associated with each of said loops for anchoring said wire with respect to said blood vessel.
3. The blood irradiator of claim 1 wherein said wire is stainless steel spring wire about 0.01 inch in diameter and slightly in excess of 2 inches in length, said loops are about 0.04 inch in diameter, the centers of said two loops are about 2 inches apart, and the active radioisotope-layer is deposited over the center 1 inch of said wire.
4. The blood irradiator of claim 3 wherein said active radioisotope-layer comprises 238PuO2 and said coating-layer comprises platinum.
5. A method for in-vivo radiotherapy of blood by irradiation of the blood within a blood vessel comprising: a. depositing a layer of an active radioisotope on the center portion of a wire which includes a straight section and a small oppositely facing loop at each of the two ends thereof; b. depositing a coating-layer over said active radioisotope-layer so as to sealingly cover said radioisotope; c. sterilizing said wire; and d. implanting said wire in said blood vessel by surgically inserting the wire diagonally transverse said blood vessel in a manner so that said active layer lies fully within said vessel and said ends project such that said two loops lie fully exterior to said vessel.
6. The method of claim 5 further comprising: suturing through said loops to anchor said wire with respect to said blood vessel.
7. The method of claim 5 wherein a layer of 238PuO2 is deposited on the center portion of a stainless steel wire by electroplating from a solution containing 238PuO2 and a thin coating-layer of platinum is deposited over said 238PuO2 by vacuum sputtering.
US00362613A 1973-05-21 1973-05-21 Method and apparatus for the in-vessel radiation treatment of blood Expired - Lifetime US3811426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00362613A US3811426A (en) 1973-05-21 1973-05-21 Method and apparatus for the in-vessel radiation treatment of blood

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00362613A US3811426A (en) 1973-05-21 1973-05-21 Method and apparatus for the in-vessel radiation treatment of blood

Publications (1)

Publication Number Publication Date
US3811426A true US3811426A (en) 1974-05-21

Family

ID=23426788

Family Applications (1)

Application Number Title Priority Date Filing Date
US00362613A Expired - Lifetime US3811426A (en) 1973-05-21 1973-05-21 Method and apparatus for the in-vessel radiation treatment of blood

Country Status (1)

Country Link
US (1) US3811426A (en)

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3927325A (en) * 1974-07-10 1975-12-16 Us Energy Tissue irradiator
WO1990003827A1 (en) * 1988-10-07 1990-04-19 Hayman Michael H Apparatus for in situ radiotherapy
US5030195A (en) * 1989-06-05 1991-07-09 Nardi George L Radioactive seed patch for prophylactic therapy
US5059166A (en) * 1989-12-11 1991-10-22 Medical Innovative Technologies R & D Limited Partnership Intra-arterial stent with the capability to inhibit intimal hyperplasia
US5503613A (en) * 1994-01-21 1996-04-02 The Trustees Of Columbia University In The City Of New York Apparatus and method to reduce restenosis after arterial intervention
US5683345A (en) * 1994-10-27 1997-11-04 Novoste Corporation Method and apparatus for treating a desired area in the vascular system of a patient
US5707332A (en) * 1994-01-21 1998-01-13 The Trustees Of Columbia University In The City Of New York Apparatus and method to reduce restenosis after arterial intervention
US5713828A (en) * 1995-11-27 1998-02-03 International Brachytherapy S.A Hollow-tube brachytherapy device
US5728042A (en) * 1995-06-22 1998-03-17 Schneider (Europe) A.G. Medical appliance for ionizing radiation treatment having radiopaque markers
US5840008A (en) * 1995-11-13 1998-11-24 Localmed, Inc. Radiation emitting sleeve catheter and methods
US5882290A (en) * 1996-02-29 1999-03-16 Scimed Life Systems, Inc. Intravascular radiation delivery system
US5899882A (en) * 1994-10-27 1999-05-04 Novoste Corporation Catheter apparatus for radiation treatment of a desired area in the vascular system of a patient
US6019718A (en) * 1997-05-30 2000-02-01 Scimed Life Systems, Inc. Apparatus for intravascular radioactive treatment
US6045495A (en) * 1994-01-21 2000-04-04 The Trustees Fo Columbia University In The City Of New York Apparatus and method to treat a disease process in a luminal structure
US6059713A (en) * 1997-03-06 2000-05-09 Scimed Life Systems, Inc. Catheter system having tubular radiation source with movable guide wire
US6059812A (en) * 1997-03-21 2000-05-09 Schneider (Usa) Inc. Self-expanding medical device for centering radioactive treatment sources in body vessels
US6071227A (en) * 1993-07-01 2000-06-06 Schneider (Europe) A.G. Medical appliances for the treatment of blood vessels by means of ionizing radiation
US6086942A (en) * 1998-05-27 2000-07-11 International Brachytherapy S.A. Fluid-jet deposition of radioactive material for brachytherapy devices
US6099454A (en) * 1996-02-29 2000-08-08 Scimed Life Systems, Inc. Perfusion balloon and radioactive wire delivery system
US6110097A (en) * 1997-03-06 2000-08-29 Scimed Life Systems, Inc. Perfusion balloon catheter with radioactive source
US6120533A (en) * 1998-11-13 2000-09-19 Isostent, Inc. Stent delivery system for a radioisotope stent
US6146322A (en) * 1995-12-05 2000-11-14 Schneider (Europe) Ag Irradiating filament and method of making same
US6175760B1 (en) * 1998-02-17 2001-01-16 University Of Iowa Research Foundation Lesion localizer for nuclear medicine
US6203485B1 (en) 1999-10-07 2001-03-20 Scimed Life Systems, Inc. Low attenuation guide wire for intravascular radiation delivery
US6217503B1 (en) 1994-01-21 2001-04-17 The Trustees Of Columbia University In The City Of New York Apparatus and method to treat a disease process in a luminal structure
US6231494B1 (en) 1994-06-10 2001-05-15 Schneider (Europe) A.G. Medical device with radiation source
US6234951B1 (en) 1996-02-29 2001-05-22 Scimed Life Systems, Inc. Intravascular radiation delivery system
US6254552B1 (en) * 1997-10-03 2001-07-03 E.I. Du Pont De Nemours And Company Intra-coronary radiation devices containing Ce-144 or Ru-106
US6258019B1 (en) 1997-09-26 2001-07-10 Scimed Life Systems, Inc. Catheter for intraluminal treatment of a vessel segment with ionizing radiation
US6264596B1 (en) 1997-11-03 2001-07-24 Meadox Medicals, Inc. In-situ radioactive medical device
US6264599B1 (en) * 1999-08-10 2001-07-24 Syntheon, Llc Radioactive therapeutic seeds having fixation structure
US6302865B1 (en) 2000-03-13 2001-10-16 Scimed Life Systems, Inc. Intravascular guidewire with perfusion lumen
US6352501B1 (en) 1999-09-23 2002-03-05 Scimed Life Systems, Inc. Adjustable radiation source
EP1208874A1 (en) 2000-11-17 2002-05-29 MDS Nordion Inc. Radioactive medical device for radiation therapy
US6398708B1 (en) 1996-02-29 2002-06-04 Scimed Life Systems, Inc. Perfusion balloon and radioactive wire delivery system
US6398709B1 (en) 1999-10-19 2002-06-04 Scimed Life Systems, Inc. Elongated member for intravascular delivery of radiation
US6413203B1 (en) 1998-09-16 2002-07-02 Scimed Life Systems, Inc. Method and apparatus for positioning radioactive fluids within a body lumen
US6416457B1 (en) 2000-03-09 2002-07-09 Scimed Life Systems, Inc. System and method for intravascular ionizing tandem radiation therapy
US6475644B1 (en) 1998-11-18 2002-11-05 Radiovascular Systems, L.L.C. Radioactive coating solutions methods, and substrates
US6551278B1 (en) * 2000-11-10 2003-04-22 Scimed Life Systems, Inc. Miniature x-ray catheter with retractable needles or suction means for positioning at a desired site
US20030084988A1 (en) * 2001-11-02 2003-05-08 Terwilliger Richard A. Delivery system and method for interstitial radiation therapy using strands constructed with extruded strand housings
US20030092958A1 (en) * 2001-11-02 2003-05-15 Terwilliger Richard A. Delivery system and method for interstitial radiation therapy using seed elements with ends having one of projections and indentations
US20030147501A1 (en) * 2000-11-10 2003-08-07 Geitz Kurt Alfred Edward Heat sink for miniature x-ray unit
US6616629B1 (en) 1994-06-24 2003-09-09 Schneider (Europe) A.G. Medical appliance with centering balloon
US6638205B1 (en) 2000-11-17 2003-10-28 Mds (Canada) Inc. Radioactive medical device for radiation therapy
US6676590B1 (en) 1997-03-06 2004-01-13 Scimed Life Systems, Inc. Catheter system having tubular radiation source
US6706014B2 (en) 2000-11-10 2004-03-16 Scimed Life Systems, Inc. Miniature x-ray unit
US6752752B2 (en) 2000-11-10 2004-06-22 Scimed Life Systems, Inc. Multi-source x-ray catheter
US20040158116A1 (en) * 1993-09-15 2004-08-12 Mawad Michel E. Retrievable, shielded radiotherapy implant
US20050080314A1 (en) * 2003-10-09 2005-04-14 Terwilliger Richard A. Shielded transport for multiple brachytheapy implants with integrated measuring and cutting board
US6910999B2 (en) 2000-11-10 2005-06-28 Scimed Life Systems, Inc. Miniature x-ray unit
US20060069298A1 (en) * 2001-11-02 2006-03-30 World Wide Medical Technologies, Llc Delivery system and method for interstitial radiation therapy
US20060074270A1 (en) * 2003-05-13 2006-04-06 World Wide Medical Technologies, Llc Delivery system and method for interstitial radiation therapy using seed strands with custom end spacing
US20060155241A1 (en) * 2000-12-29 2006-07-13 Constantz Brent R Proton generating catheters and methods for their use in enhancing fluid flow through a vascular site occupied by a calcified vascular occlusion
US20070021642A1 (en) * 2005-07-22 2007-01-25 Worldwide Medical Technologies Llc Devices to resist migration and rotation of implants used in brachytherapy and other radiation therapy
US20070265488A1 (en) * 2006-05-09 2007-11-15 Worldwide Medical Technologies Llc After-loader for positioning implants for needle delivery in brachytherapy and other radiation therapy
US20070265487A1 (en) * 2006-05-09 2007-11-15 Worldwide Medical Technologies Llc Applicators for use in positioning implants for use in brachytherapy and other radiation therapy
US20080269540A1 (en) * 2007-04-27 2008-10-30 Worldwide Medical Technologies Llc Seed cartridge adaptor and methods for use therewith
US20090216063A1 (en) * 2008-01-29 2009-08-27 Biocompatibles Uk Limited Bio-absorbable brachytherapy strands
US20100261946A1 (en) * 2000-11-16 2010-10-14 Microspherix Llc Flexible and/or elastic brachytherapy seed or strand
US7874976B1 (en) 2006-09-07 2011-01-25 Biocompatibles Uk Limited Echogenic strands and spacers therein
US7878964B1 (en) 2006-09-07 2011-02-01 Biocompatibles Uk Limited Echogenic spacers and strands
US8187159B2 (en) 2005-07-22 2012-05-29 Biocompatibles, UK Therapeutic member including a rail used in brachytherapy and other radiation therapy
CN110603076A (en) * 2017-05-11 2019-12-20 阿尔法陶医疗有限公司 Polymer coatings for brachytherapy devices
US11857803B2 (en) 2020-12-16 2024-01-02 Alpha Tau Medical Ltd. Diffusing alpha-emitter radiation therapy with enhanced beta treatment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1823239A (en) * 1926-01-16 1931-09-15 Radium Emanation Corp Emanation seed
US1954868A (en) * 1929-12-18 1934-04-17 Failla Gioacchino Method and means for treatment by radiations
US2153889A (en) * 1937-07-20 1939-04-11 J A Deknatel & Son Inc Suture
US2405026A (en) * 1943-12-14 1946-07-30 Canadian Radium & Uranium Corp Alpha-ray emission device and method of making the same
US2546759A (en) * 1945-12-15 1951-03-27 John W Lee Subcutaneous medication
US3505991A (en) * 1968-02-13 1970-04-14 Us Air Force Intracorporeal vascular prosthetic blood irradiator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1823239A (en) * 1926-01-16 1931-09-15 Radium Emanation Corp Emanation seed
US1954868A (en) * 1929-12-18 1934-04-17 Failla Gioacchino Method and means for treatment by radiations
US2153889A (en) * 1937-07-20 1939-04-11 J A Deknatel & Son Inc Suture
US2405026A (en) * 1943-12-14 1946-07-30 Canadian Radium & Uranium Corp Alpha-ray emission device and method of making the same
US2546759A (en) * 1945-12-15 1951-03-27 John W Lee Subcutaneous medication
US3505991A (en) * 1968-02-13 1970-04-14 Us Air Force Intracorporeal vascular prosthetic blood irradiator

Cited By (124)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3927325A (en) * 1974-07-10 1975-12-16 Us Energy Tissue irradiator
WO1990003827A1 (en) * 1988-10-07 1990-04-19 Hayman Michael H Apparatus for in situ radiotherapy
US4976680A (en) * 1988-10-07 1990-12-11 Hayman Michael H Apparatus for in situ radiotherapy
US5030195A (en) * 1989-06-05 1991-07-09 Nardi George L Radioactive seed patch for prophylactic therapy
US5059166A (en) * 1989-12-11 1991-10-22 Medical Innovative Technologies R & D Limited Partnership Intra-arterial stent with the capability to inhibit intimal hyperplasia
EP0593136A1 (en) * 1989-12-11 1994-04-20 Robert E. Fischell Device for the prevention of arterial restenosis
US6074338A (en) * 1993-07-01 2000-06-13 Schneider (Europe) A.G. Medical appliances for the treatment of blood vessels by means of ionizing radiation
US6514191B1 (en) 1993-07-01 2003-02-04 Schneider (Europe) A.G. Medical appliances for the treatment of blood vessels by means of ionizing radiation
US6071227A (en) * 1993-07-01 2000-06-06 Schneider (Europe) A.G. Medical appliances for the treatment of blood vessels by means of ionizing radiation
US7083567B2 (en) * 1993-09-15 2006-08-01 Michel E. Mawad Retrievable, shielded radiotherapy implant
US20040158116A1 (en) * 1993-09-15 2004-08-12 Mawad Michel E. Retrievable, shielded radiotherapy implant
US5707332A (en) * 1994-01-21 1998-01-13 The Trustees Of Columbia University In The City Of New York Apparatus and method to reduce restenosis after arterial intervention
US6652441B2 (en) 1994-01-21 2003-11-25 The Trustees Of Columbia University In The City Of New York Apparatus and method to treat a disease process in a luminal structure
US6045495A (en) * 1994-01-21 2000-04-04 The Trustees Fo Columbia University In The City Of New York Apparatus and method to treat a disease process in a luminal structure
US6217503B1 (en) 1994-01-21 2001-04-17 The Trustees Of Columbia University In The City Of New York Apparatus and method to treat a disease process in a luminal structure
US5503613A (en) * 1994-01-21 1996-04-02 The Trustees Of Columbia University In The City Of New York Apparatus and method to reduce restenosis after arterial intervention
US6582352B2 (en) 1994-06-10 2003-06-24 Schneider (Europe) A.G. Medical appliance for treatment by ionizing radiation
US6231494B1 (en) 1994-06-10 2001-05-15 Schneider (Europe) A.G. Medical device with radiation source
US6616629B1 (en) 1994-06-24 2003-09-09 Schneider (Europe) A.G. Medical appliance with centering balloon
US5899882A (en) * 1994-10-27 1999-05-04 Novoste Corporation Catheter apparatus for radiation treatment of a desired area in the vascular system of a patient
US6306074B1 (en) 1994-10-27 2001-10-23 Novoste Corporation Method and apparatus for radiation treatment of a desired area in the vascular system of a patient
US5683345A (en) * 1994-10-27 1997-11-04 Novoste Corporation Method and apparatus for treating a desired area in the vascular system of a patient
US7066872B2 (en) 1994-10-27 2006-06-27 Best Vascular, Inc. Method and apparatus for treating a desired area in the vascular system of a patient
US7160238B1 (en) 1994-10-27 2007-01-09 Best Vascular, Inc. Method and apparatus for treating a desired area in the vascular system of a patient
US5728042A (en) * 1995-06-22 1998-03-17 Schneider (Europe) A.G. Medical appliance for ionizing radiation treatment having radiopaque markers
US5840008A (en) * 1995-11-13 1998-11-24 Localmed, Inc. Radiation emitting sleeve catheter and methods
US5863284A (en) * 1995-11-13 1999-01-26 Localmed, Inc. Devices and methods for radiation treatment of an internal body organ
US5713828A (en) * 1995-11-27 1998-02-03 International Brachytherapy S.A Hollow-tube brachytherapy device
US6163947A (en) * 1995-11-27 2000-12-26 International Brachytherapy S.A. Method of making a hollow-tube brachytherapy device
US6347443B2 (en) 1995-11-27 2002-02-19 International Brachytherapy S.A. Method of making a hollow-tube precursor brachytherapy device
US6146322A (en) * 1995-12-05 2000-11-14 Schneider (Europe) Ag Irradiating filament and method of making same
US5882290A (en) * 1996-02-29 1999-03-16 Scimed Life Systems, Inc. Intravascular radiation delivery system
US6398708B1 (en) 1996-02-29 2002-06-04 Scimed Life Systems, Inc. Perfusion balloon and radioactive wire delivery system
US6099454A (en) * 1996-02-29 2000-08-08 Scimed Life Systems, Inc. Perfusion balloon and radioactive wire delivery system
US6599230B2 (en) 1996-02-29 2003-07-29 Scimed Life Systems, Inc. Intravascular radiation delivery system
US6582353B1 (en) 1996-02-29 2003-06-24 Scimed Life Systems, Inc. Intravascular radiation delivery system
US6234951B1 (en) 1996-02-29 2001-05-22 Scimed Life Systems, Inc. Intravascular radiation delivery system
US6676590B1 (en) 1997-03-06 2004-01-13 Scimed Life Systems, Inc. Catheter system having tubular radiation source
US6110097A (en) * 1997-03-06 2000-08-29 Scimed Life Systems, Inc. Perfusion balloon catheter with radioactive source
US6059713A (en) * 1997-03-06 2000-05-09 Scimed Life Systems, Inc. Catheter system having tubular radiation source with movable guide wire
US6117065A (en) * 1997-03-06 2000-09-12 Scimed Life Systems, Inc. Perfusion balloon catheter with radioactive source
US6267775B1 (en) 1997-03-21 2001-07-31 Schneider (Usa) Inc. Self-expanding medical device for centering radioactive treatment sources in body vessels
US6059812A (en) * 1997-03-21 2000-05-09 Schneider (Usa) Inc. Self-expanding medical device for centering radioactive treatment sources in body vessels
US6019718A (en) * 1997-05-30 2000-02-01 Scimed Life Systems, Inc. Apparatus for intravascular radioactive treatment
US6422989B1 (en) 1997-05-30 2002-07-23 Scimed Life Systems, Inc. Method for intravascular radioactive treatment
US6258019B1 (en) 1997-09-26 2001-07-10 Scimed Life Systems, Inc. Catheter for intraluminal treatment of a vessel segment with ionizing radiation
US6254552B1 (en) * 1997-10-03 2001-07-03 E.I. Du Pont De Nemours And Company Intra-coronary radiation devices containing Ce-144 or Ru-106
US6264596B1 (en) 1997-11-03 2001-07-24 Meadox Medicals, Inc. In-situ radioactive medical device
US6175760B1 (en) * 1998-02-17 2001-01-16 University Of Iowa Research Foundation Lesion localizer for nuclear medicine
US6461433B1 (en) 1998-05-27 2002-10-08 International Brachytherapy, S.A. Fluid-jet deposition of radioactive material
US6086942A (en) * 1998-05-27 2000-07-11 International Brachytherapy S.A. Fluid-jet deposition of radioactive material for brachytherapy devices
US6413203B1 (en) 1998-09-16 2002-07-02 Scimed Life Systems, Inc. Method and apparatus for positioning radioactive fluids within a body lumen
US6120533A (en) * 1998-11-13 2000-09-19 Isostent, Inc. Stent delivery system for a radioisotope stent
US6475644B1 (en) 1998-11-18 2002-11-05 Radiovascular Systems, L.L.C. Radioactive coating solutions methods, and substrates
US6264599B1 (en) * 1999-08-10 2001-07-24 Syntheon, Llc Radioactive therapeutic seeds having fixation structure
US6352501B1 (en) 1999-09-23 2002-03-05 Scimed Life Systems, Inc. Adjustable radiation source
US6203485B1 (en) 1999-10-07 2001-03-20 Scimed Life Systems, Inc. Low attenuation guide wire for intravascular radiation delivery
US6398709B1 (en) 1999-10-19 2002-06-04 Scimed Life Systems, Inc. Elongated member for intravascular delivery of radiation
US6416457B1 (en) 2000-03-09 2002-07-09 Scimed Life Systems, Inc. System and method for intravascular ionizing tandem radiation therapy
US6302865B1 (en) 2000-03-13 2001-10-16 Scimed Life Systems, Inc. Intravascular guidewire with perfusion lumen
US6706014B2 (en) 2000-11-10 2004-03-16 Scimed Life Systems, Inc. Miniature x-ray unit
US7901345B2 (en) 2000-11-10 2011-03-08 Boston Scientific Scimed, Inc Miniature X-ray unit
US20030147501A1 (en) * 2000-11-10 2003-08-07 Geitz Kurt Alfred Edward Heat sink for miniature x-ray unit
US6752752B2 (en) 2000-11-10 2004-06-22 Scimed Life Systems, Inc. Multi-source x-ray catheter
US6551278B1 (en) * 2000-11-10 2003-04-22 Scimed Life Systems, Inc. Miniature x-ray catheter with retractable needles or suction means for positioning at a desired site
US20100266101A1 (en) * 2000-11-10 2010-10-21 Boston Scientific Scimed, Inc. Miniature x-ray unit
US6910999B2 (en) 2000-11-10 2005-06-28 Scimed Life Systems, Inc. Miniature x-ray unit
US6999559B2 (en) 2000-11-10 2006-02-14 Scimed Life Systems, Inc. Heat sink for miniature x-ray unit
US10994058B2 (en) 2000-11-16 2021-05-04 Microspherix Llc Method for administering a flexible hormone rod
US20100261946A1 (en) * 2000-11-16 2010-10-14 Microspherix Llc Flexible and/or elastic brachytherapy seed or strand
US8470294B2 (en) 2000-11-16 2013-06-25 Microspherix Llc Flexible and/or elastic brachytherapy seed or strand
US8821835B2 (en) 2000-11-16 2014-09-02 Microspherix Llc Flexible and/or elastic brachytherapy seed or strand
US9636402B2 (en) 2000-11-16 2017-05-02 Microspherix Llc Flexible and/or elastic brachytherapy seed or strand
US9636401B2 (en) 2000-11-16 2017-05-02 Microspherix Llc Flexible and/or elastic brachytherapy seed or strand
US10493181B2 (en) 2000-11-16 2019-12-03 Microspherix Llc Flexible and/or elastic brachytherapy seed or strand
US6638205B1 (en) 2000-11-17 2003-10-28 Mds (Canada) Inc. Radioactive medical device for radiation therapy
EP1208874A1 (en) 2000-11-17 2002-05-29 MDS Nordion Inc. Radioactive medical device for radiation therapy
US20060155241A1 (en) * 2000-12-29 2006-07-13 Constantz Brent R Proton generating catheters and methods for their use in enhancing fluid flow through a vascular site occupied by a calcified vascular occlusion
US7778701B2 (en) * 2000-12-29 2010-08-17 Cordia Corporation Proton generating catheters and methods for their use in enhancing fluid flow through a vascular site occupied by a calcified vascular occlusion
US8066627B2 (en) 2001-11-02 2011-11-29 Biocompatibles Uk Limited Delivery system and method for interstitial radiation therapy using strands constructed with extruded strand housings
US20060069298A1 (en) * 2001-11-02 2006-03-30 World Wide Medical Technologies, Llc Delivery system and method for interstitial radiation therapy
US7211039B2 (en) 2001-11-02 2007-05-01 Worldwide Medical Technologies Llc Strand with end plug
US20070191669A1 (en) * 2001-11-02 2007-08-16 Worldwide Medical Technologies Llc Strand with end plug
US20060235365A1 (en) * 2001-11-02 2006-10-19 World Wide Medical Technologies, Llc Delivery system and method for interstitial radiation therapy using strands constructed with extruded strand housings
US7094198B2 (en) 2001-11-02 2006-08-22 Worldwide Medical Technologies, Llc Delivery system and method for interstitial radiation therapy using seed elements with ends having one of projections and indentations
US7407477B2 (en) 2001-11-02 2008-08-05 Worldwide Medical Technologies Llc Strand with end plug
US7074291B2 (en) 2001-11-02 2006-07-11 Worldwide Medical Technologies, L.L.C. Delivery system and method for interstitial radiation therapy using strands constructed with extruded strand housings
US20030084988A1 (en) * 2001-11-02 2003-05-08 Terwilliger Richard A. Delivery system and method for interstitial radiation therapy using strands constructed with extruded strand housings
US20030092958A1 (en) * 2001-11-02 2003-05-15 Terwilliger Richard A. Delivery system and method for interstitial radiation therapy using seed elements with ends having one of projections and indentations
US7942803B2 (en) 2001-11-02 2011-05-17 Biocompatibles Uk Limited Delivery system and method for interstitial radiation therapy
US20100121130A1 (en) * 2001-11-02 2010-05-13 Biocompatibles Uk Limited Delivery system and method for interstitial radiation therapy
US7874974B2 (en) 2001-11-02 2011-01-25 Biocompatibles Uk Limited Delivery system and method for interstitial radiation therapy
US20060264688A1 (en) * 2001-11-02 2006-11-23 World Wide Medical Technologies, Llc Strand with end plug
US20060074270A1 (en) * 2003-05-13 2006-04-06 World Wide Medical Technologies, Llc Delivery system and method for interstitial radiation therapy using seed strands with custom end spacing
US7736294B2 (en) 2003-05-13 2010-06-15 Biocompatibles Uk Limited Delivery system and method for interstitial radiation therapy using seed strands with custom end spacing
US7736295B2 (en) 2003-05-13 2010-06-15 Biocompatibles Uk Limited Delivery system and method for interstitial radiation therapy using custom end spacing
US20060089520A1 (en) * 2003-05-13 2006-04-27 Terwilliger Richard A Delivery system and method for interstitial radiation therapy using custom end spacing
US20050080314A1 (en) * 2003-10-09 2005-04-14 Terwilliger Richard A. Shielded transport for multiple brachytheapy implants with integrated measuring and cutting board
US20090312594A1 (en) * 2005-07-22 2009-12-17 Biocompatibles Uk Limited Devices to resist migration and rotation of implants used in brachytherapy and other radiation therapy
US8187159B2 (en) 2005-07-22 2012-05-29 Biocompatibles, UK Therapeutic member including a rail used in brachytherapy and other radiation therapy
US20070021642A1 (en) * 2005-07-22 2007-01-25 Worldwide Medical Technologies Llc Devices to resist migration and rotation of implants used in brachytherapy and other radiation therapy
US20070021643A1 (en) * 2005-07-22 2007-01-25 World Wide Medical Technologies, Llc Implants for use in brachytherapy and other radiation therapy that resist migration and rotation
US8795146B2 (en) 2005-07-22 2014-08-05 Eckert & Ziegler Bebig S.A. Implants including spacers for use in brachytherapy and other radiation therapy that resist migration and rotation
US20090149692A1 (en) * 2005-07-22 2009-06-11 Biocompatibles Uk Limited Implants for use in brachytherapy and other radiation therapy that resist migration and rotation
US20090124894A1 (en) * 2005-07-22 2009-05-14 Biocompatibles Uk Limited Markers for use in brachytherapy and other radiation therapy that resist migration and rotation
US7972261B2 (en) 2005-07-22 2011-07-05 Biocompatibles Uk Limited Devices to resist migration and rotation of implants used in brachytherapy and other radiation therapy
US8790235B2 (en) 2005-07-22 2014-07-29 Eckert & Ziegler Debig S.A. Devices to resist migration and rotation of implants used in brachytherapy and other radiation therapy
US20090099402A1 (en) * 2005-07-22 2009-04-16 Biocompatibles Uk Limited Implants for use in brachytherapy and other radiation therapy that resist migration and rotation
US8021291B2 (en) 2005-07-22 2011-09-20 Biocompatibles Uk Limited Markers for use in brachytherapy and other radiation therapy that resist migration and rotation
US20090124846A1 (en) * 2005-07-22 2009-05-14 Biocompatibles Uk Limited Anchor seed cartridge for use with brachytherapy applicator
US8114007B2 (en) 2005-07-22 2012-02-14 Biocompatibles Uk Limited Implants for use in brachytherapy and other radiation therapy that resist migration and rotation
US7736293B2 (en) 2005-07-22 2010-06-15 Biocompatibles Uk Limited Implants for use in brachytherapy and other radiation therapy that resist migration and rotation
US8192345B2 (en) 2005-07-22 2012-06-05 Biocompatibles, UK Cartridge for use with brachytherapy applicator
US7988611B2 (en) 2006-05-09 2011-08-02 Biocompatibles Uk Limited After-loader for positioning implants for needle delivery in brachytherapy and other radiation therapy
US7985172B2 (en) 2006-05-09 2011-07-26 Biocompatibles Uk Limited After-loader devices and kits
US20070265487A1 (en) * 2006-05-09 2007-11-15 Worldwide Medical Technologies Llc Applicators for use in positioning implants for use in brachytherapy and other radiation therapy
US20070265488A1 (en) * 2006-05-09 2007-11-15 Worldwide Medical Technologies Llc After-loader for positioning implants for needle delivery in brachytherapy and other radiation therapy
US7878964B1 (en) 2006-09-07 2011-02-01 Biocompatibles Uk Limited Echogenic spacers and strands
US7874976B1 (en) 2006-09-07 2011-01-25 Biocompatibles Uk Limited Echogenic strands and spacers therein
US20080269540A1 (en) * 2007-04-27 2008-10-30 Worldwide Medical Technologies Llc Seed cartridge adaptor and methods for use therewith
US20090216063A1 (en) * 2008-01-29 2009-08-27 Biocompatibles Uk Limited Bio-absorbable brachytherapy strands
CN110603076A (en) * 2017-05-11 2019-12-20 阿尔法陶医疗有限公司 Polymer coatings for brachytherapy devices
US11529432B2 (en) 2017-05-11 2022-12-20 Alpha Tau Medical Ltd. Polymer coatings for brachytherapy devices
US11857803B2 (en) 2020-12-16 2024-01-02 Alpha Tau Medical Ltd. Diffusing alpha-emitter radiation therapy with enhanced beta treatment

Similar Documents

Publication Publication Date Title
US3811426A (en) Method and apparatus for the in-vessel radiation treatment of blood
US6527693B2 (en) Methods and implants for providing radiation to a patient
US5713828A (en) Hollow-tube brachytherapy device
JP3781331B2 (en) Method for producing xenon-133 for preventing vascular restenosis
US3927325A (en) Tissue irradiator
US3351049A (en) Therapeutic metal seed containing within a radioactive isotope disposed on a carrier and method of manufacture
US5030195A (en) Radioactive seed patch for prophylactic therapy
US6103295A (en) Method of affixing radioisotopes onto the surface of a device
US6419621B1 (en) Coiled brachytherapy device
US6986880B2 (en) Polymeric-matrix brachytherapy sources
EP1149592B1 (en) Radioactively coated devices
US20030204125A1 (en) Radiation delivery devices and methods for their manufacture
US6547816B1 (en) Formable integral source material for medical devices
US6471630B1 (en) Transmutable radiotherapy device
JP2003509178A (en) Wire-shaped radiation source for intravascular radiation therapy
Al-Abdulla et al. Experience with fast neutron therapy for unresectable carcinoma of the pancreas
von SALLMANN et al. Studies of the eye with radiosodium autographs
Stearner et al. Late changes in the irradiated microvasculature: An electron microscope study of the effects of fission neutrons
Chan et al. Carcinoma of the prostate. Its treatment by a combination of radioactive gold‐grain implant and external irradiation
Mullan et al. A nuclear needle for use in neurosurgery
US3576994A (en) Neutron radiography of deuterated tissue
BERG LOCALIZATION OF RADIOACTIVITY OF COLLOIDAL GOLD198: A Preliminary Report
CN1143656C (en) Radioactive 32P blood vessel support and its manufacture
GB2352635A (en) Medical stents
Allt et al. Experience with radioactive tantalum wire as a source for interstitial therapy