US3808433A - Methods and apparatus for detection of very small particulate matter and macromolecules - Google Patents

Methods and apparatus for detection of very small particulate matter and macromolecules Download PDF

Info

Publication number
US3808433A
US3808433A US00319442A US31944272A US3808433A US 3808433 A US3808433 A US 3808433A US 00319442 A US00319442 A US 00319442A US 31944272 A US31944272 A US 31944272A US 3808433 A US3808433 A US 3808433A
Authority
US
United States
Prior art keywords
accordance
ions
heated surface
particles
molecules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00319442A
Inventor
W Fite
R Myers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US00319442A priority Critical patent/US3808433A/en
Priority to US05/465,163 priority patent/US3973121A/en
Application granted granted Critical
Publication of US3808433A publication Critical patent/US3808433A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/626Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using heat to ionise a gas

Definitions

  • counting gas borne particulate matter are described.
  • the particles are impacted onto a heated surface capable of pyrolyzing them. Some of the products of the pyrolysis are then surfaceionized, producing a burst of ions which is detected electronically producing a vvoltage pulse proportional to the amount of surfaceionizable matter originally present in the particle. Methods are described for adding to each particle an amount of surface-ionizable material proportional to e 'the particle size, enabling the instrument to measure the particle size distribution of a collection of gasborne particles.
  • the basic apparatus may detect particles by means of either positive or negative surfaceionization, and is capable of operation either when situated in air or when located in a vacuum system.
  • 3,665,441, 3,178,930, and 3,679,973 describe devices which charge particles in anionic discharge and then separate them according to ion mobility, and a device described in U.S. Pat. No. 3,628,139 utilizes the effect whereby an aerosol particle causes an avalanche. breakdown in the carrier fluid.
  • An apparatus described in US. Pat. No. 3,434,335 can acoustically detect 'particleswith sizes of the order of tens of microns. The process whereby an aerosol particle can change the resonance frequency of a piezoelectriccrystal'is described in US. Pat. Nos. 3,561,253 and 3,653,253.
  • the invention relates'to a newmethod and apparatus for detecting individual gasborne particles and/or macromolecules.
  • the method essentially comprises bringing eachparticle into contact with'heated surface capable of decomposing or vaporizing the particle and then surface-ionizing some of the atoms constituting' theparticle.
  • the pulse of ions thusgenerated is' detectedby,
  • a refinement of this method comprises use of a vacuumipump topartially evacuate the region in whichtheheatedsurfaceis located, with the gas containing and surrounding thev particles being leaked into 'the'pa'rtially evacuated region 'viaa small aperture. This hasthe effect of'reducing the viscous drag of the gas on the particles,'en'ablingthem toimpact more efficiently onto the heated surface.
  • a refinement comprisesuseof a device such-as an electron multiplier'which has the effect of multiplying the electric charge associated with each burst of ions by a factor of up to 10, hence creating a signal sufficiently large to be detected byelectronic means.
  • a further refinement comprises use of a mass analyzer to select one particular species, or agroup of species of ions leaving'the'heatedsurface and reject all other ions, thus increasing the signal to noise ratio and hence the sensitivity of the instrument.
  • a still furtherrefinement consists of adding to each particle, prior to detection, an amount of some specific surface-ionizable substance, said amount being characteristic of the size of the .particle. Upon impactiononto'the heated surface, the size of the ion pulse-generated will be characteristic of the size of the particle.
  • the resultingsodium ion is then detected'through its ,electrical'charge or upon being accelerated into an electronvmultiplier.
  • the metal surface is heated to' '800l,500". 'C. to establish rapid equilibration, and hence rapid responsetimes. (For alkalis ontungsten at 1 ,400 C., the average time required-for ionization and reemission after an atom strikes the surface is of the can be detected inthismanner.
  • the metal is dictated 'by its work function, which should be large for positive ion detection andsma'll for negative ion detection, and by theenvironment in which it isto operate.
  • tungsten is a satisfactory material-whereasthe high "resistance to oxidation of: iridium, rhenium, r rhodium, and ;platinum makes these materials preferable 'for-operation in air.
  • surfaces such as thoriated' tungsten are suitableifor operation-in'vacuum, whereas for'negative ion detection'in air, materials such as'bariumzirconate maybe used.
  • An alternative method is to deposit'pure metal on the surface through the pyrolytic decomposition of a compound such as tungsten hexacarbonyl, which can be administered to the surface either continuously or in cycles.
  • This second technique has been found to suppress the bursts of potassium ions (K resulting in both a reduced background signal and a Poisson (random) distribution for the emission of the l 1 ions.
  • a series of events is said to be random if the probability of an event occurring during a given time depends only on the length of that period of time, and is completely independent of whether any other similar events occur during the same period.
  • the probability P, that n events will occur during a time interval r is given by the Poisson distribution function P, e""n/n'., where E is the average number of events for the time interval 1'.
  • a particle or macromolecule containing some atoms (molecules) of a surface-ionizable element (compound) arrives at a suitable hot surface these atoms (molecules) can be surface ionized within a short period of time.
  • a typical particle heats up to within 90 percent of the surface temperature within several microseconds, and individual alkali atoms tend to be surfaceionized within a time of 10 to 100 us.
  • This clustering in time of ions which originate from a particle or macromolecule provides a powerful technique for distinguishing between the ions which come from the heated metal surface itself and those which originate from a particle.
  • the ion detector apparatus is made to perform'electrical integration over, say 10 microseconds. If the background signal from the metal surface has been reduced through conditioning or deposition of a fresh surface to 5 X l ions/sec, then'the average number of background counts duringone time constant of the detector will be X10) I0) 50 counts/ lOus. This causes the detector'to put out an average signal corresponding to 50 counts, with fluctuations correspondin g toar'andoni distribution of arrivalof 55a; ground ions. For example, if the average number of counts per 10 microseconds is 50 ions, then the probability-of getting lOO or more counts during 10 microseconds is age.
  • a major difiiculty in detecting gasbome particles is that, as the particle size decreases, the inertia of each particle decreases as the cube of the particle radius,
  • One solution to this problem comprises placing the heated surface into a chamber in which is maintained a partial vacuum and leaking the carrier gas with its suspended particles into the vacuum chamber through a small aperturein fluid communication with the sample. If, for instance, the pressure in the vacuum chamber is reduced to one torr (1 mm of mercury), then it can be shown that a 1 micron particle of density 1 gin/cm traveling 5 cm through the chamber can have its velocity reduced by, at most 8 percent prior to striking the heated surface.
  • the vacuum can in principle always be improved sufficiently to ensure impaction onto the heated surface.
  • a well rounded aperture will leak about 20 liters/sec of air per-cm of aperture area from atmospheric pressure into any pressure less than about 10 torr (mm of mercury).
  • the size of aperture required to leak the above 10 cm /sec into a chamber is A l0 liter/sec) (2O liter/sec-cm 5 X 10 cm corresponding to an aperture diameter of about 0.3 mm.
  • the maximum aperture diameter allowable is: a (5 X 10' torr) (l0 em /sec (4) (95 X 10 torr) (l0 cm/sec) 0.21 cm
  • the vacuum in the region of the heated surface is improved to less than lO mm of mercury
  • the ions emitted from the surface can be accelerated into an electron multiplier, which is adapted, to deliver an output charge of the order of- 10 times the charge contained in' the burst of ions.
  • a pulse height discriminator followed by a scalar or other recording device takes the output signal from the electron multiplier and registers the arrival of the particle.
  • the metal surface produces ions which comprise predominantly several species, e.g., for most tungsten surfaces, sodium ions, Na", and potassium ions, K", constitute about 90 percent of the background.
  • an improvement in the sensitivity and the signal-to-noise ratio is accomplished by taking the ions produced by surface ionization through an ion mass analyzer (mass spectrometer) prior to their reaching the electron multiplier.
  • inorganic particulate matter e.g., dust or smoke particles
  • impurities such as alkali metals, halogens, and hydrocarbons in sufficient quantity that the particles are immediately detectable without any further treatment of the particles.
  • Organic materials such as macromolecules frequently contain halogens or cyanogen radicals (CN) in sufficientquantities to produce detectable signals of CN or halogen nagative ions or more'complicated negative ions. It has also been found that many organic molecules can be surfaceionized so that a long macromolecule stands agood chance of breaking into fragments, with some of the fragments being ions.
  • This procedure consists of passing the particle through either a chamber containing a vapor of surface-ionizable atoms (molecules), or through a crossed atomic (molecular) beam of a surface ionizable element (compound). Atoms (molecules) from the vapor or atomic (molecular) beam strike the particle and are adsorbed onto the surface; The tagged particle, its surface enriched with surface-ionizable atoms (molecules), then moves to the hot metal surface where it releases its tagging atoms (molecules) as a burst of ions.
  • Macromolecules and large biological molecules are also detectable by the tagging approach.
  • One technique is chemically to substitute the tagging species for an atom in the molecule being tagged, e.g., substitute a fluorine atom for a hydrogen atom in a methyl group.
  • Another method is to attach the tagging atom or molecule to the macromolecule by a chemical bond, e.g., it has been foundthat a cesium atom will attach itself to an aromatic or heterocyclic ring (e.g., a nucleic acid molecule) via a weak resonance bond.
  • a further object is to detect said particles by means of their naturally occurring surface-ionizable constitutents.
  • a still further object of the invention is to add to such particles additional surface-ionizable materials which can supplement the naturally occurring ones.
  • a yet further object is to use the amount of additional material added to each particle as a measure of the size of said particle.
  • FIG. 1 is an isometric representation in partial section of one form of the invention in which the particles are drawn into a chamber, which may be either at atmospheric pressure or at'a partial vacuum, and impinged onto a heated surface where they produce bursts of ions which are collected onto an electrode.
  • FIG. 2 is an isometric representation in partial section of a form of the invention in which the particles are introduced into a vacuum system and impinged onto a heated surface where they produce bursts of ions which are detected by a particle multiplier;
  • FIG. 3 is an isometric representation similar to that in FIG. 2 except that there is interposed a mass analyzing device which transmits one particular species, or several particular species, of those ions which leave'the heated surface;
  • FIG. 4 represents a form of the invention similar to that represented by FIGL3 excpet that there is added an intermediatechamber and vacuum pump to provide a better vacuum in the detection region and/or to permit a larger initial aperture into the vacuum system;
  • FIG. 5 illustrates a further form of the invention similar to that in FIG. 4. which illustrates the addition of a tagging chamber which adds to the surface of each particle, subsequent to the injection of said particle into the vacuum chamber, a specific surface-ionizable substance;
  • FIG. 6 is a cross-sectional isometric view illustrating another method by which the particles can be tagged within the vacuum system;
  • FIG. 7 is a cross-sectional partial view showing the top of FIG. 4 with additional structure of a means of tagging each particle prior to entry into the vacuum system included;
  • FIG. 8 is a cross-sectional view of the heated surface shown in FIG. 1;
  • FIG. 9 is a sectional view representing another embodiment of theheated surface.
  • F I6. 10 is a sectional view representing a further embodiment of the heated surface.
  • FIG. 11 is a sectional view illustrating another construction of the upper portion of FIG.- 2.
  • FIG. 1 there is illustrated one embodiment of the invention in which particles 10 suspended in a carrier gas are drawn through an aperture 11' into a chamber 12 which is continuously being flushed by an exit tube 14 which is connected to a suitable exhaust fan. While in the chamber 12, some of the particles 10 impact onto a heated surface 15, which is mounted onto two feedthroughs 16, allowing electrical connections to be made to a power supply 17, capable of providing the current needed to heat thesurface.
  • each particle Upon impinging onto the surface 15, each particle releases a burst of ions 20 which is collected onto an off-axis electrode 21 mounted onto two feedthroughs 22 and to which a voltage is applied so as to attract the burst of ions, said voltage being applied through one of the feedthroughs 22 from a high-impedance. voltage supply 24.
  • the arrival of each burst of ions 20 onto-the electrode 21 produces a voltage pulse which is detected by a sensitive preamplifier 25, the input resistance of which, coupled with the innate capacitance with respect to earth of the detector apparatus, determines the integrating time constant of the system.
  • the integrated signal is then taken into a pulse height analyzer 26, a circuit which can be one of a number of variations known to the skill of the art, the function of which is to sort signal pulses according to size and to exclude random background counts, thus providing a pulse'height distribution curve which can be presented on on an appropriate display instrument 27.
  • the tendency of the collecting electrode 21 to become contaminated can be avoided by keeping said electrode sufficientlywarm as to reevaporate any collected impurities.
  • One means for accomplishing this comprises passing a current through the electrode 21 by means of abattery 30 connected to'the feedthroughs 22.
  • the particles 10 have been coal dust, iron carbonyl powder, talcum powder, submicron polystyrene spheres, cigatette smoke, and aerosol crystals of sodium chloride (NaCl), cesium chloride (CsCl), sodium iodide (Nal), potassium chloride (KCI), sodium cyanide (NaCN), etc.
  • the heated surface 15 was sometimes a directly heated iridium ribbon or wire and other times an indirectly heated film of platinum or tungsten oxide mounted on a substrate of quartz glass.
  • the collecting electrode 21 was sometimes an irridium strip and sometimes a platinum wire.
  • the distance between the heated surface 15 and the collecting electrode 21 was varied'from 2 mm to 1 cm, with the voltage differences varying from 0 to r 3,000 volts.
  • the preamplifier 25 was of a standard commercially available type with integrating time variable from l0 .to 10 sec.
  • Some usable pulse-height analyzing devices 26 ranged from the triggering level on a scope to a multichannel analyzer.
  • Display instruments 27 used scalers and chart recorders. It was found necessary to shield the system electrically to void pickup signals-from line voltages, other instruments, etc. 7
  • the exit tube 14 was connected to a mechanical vacuum pump with a pumpthese pressures.
  • FIG. 2 there isillustrated one embodiment of the invention in which particles "10'suspendedin a carrier gas are allowed to pass'through a small aperture 11 into a partially evacuated chamber 12, being continuously evacuated through a tube "14 connected to the intake of a suitable vacuum pump. Most of the carrier gas is pumped away through the tube 14, whileparticlesflO, by virtue of their greater inertia, travel'in a straightline to an aperture 31 which separateschamber 12from another chamber 32 maintained at a'hi'gher vacuumsuitable for the operation'of the apparatus.
  • the second chamber 32 is evacuated through a duct 34 which leads to a suitable vacuumxpump.
  • Particles 10 then impinge upon the surface of aheated material '15 which is mounted on two feedthroughs 16 providing electrical connections through a-flange 35.
  • Theheater power is provided from-a suitablepower supply 17. It will be understood'that material may be'heated directly or indirectly.
  • the voltage required to operate the multiplier is administered through a feedthroug'h 37 in the wall of vacuum chamber 32'from a suitable'powersupply 42.
  • the output signal of particle multiplier 36 is taken to the outside of the system through a coaxial feedthrough 40, leading to a preamplifier 25, the input resistance of which, coupled with the innate capacitance of the signal cable, determines the integrating time'constant of the detecting system.
  • the integrated signal is then taken into a pulse height analyzer 26,'the circuit for which-can be one of a number of variations within the skill of the art and-the function of which is to sort signal pulses according-to size and thus exclude random counts and provide a particle size distribution maintained at 50-200 microns of mercurypressure by a mechanical vacuum pump and region32 -was-maintainedat 10 torr by a mercury diffusion pump.
  • the heatedsurface '15 wascomposed ofdirectly-heated filamerits comprising a metal, iridium lr), tungsten (W),
  • an ion mass analyzing device 46 isinserted intermediate the heated surface 15 andthe particle multiplier 36.-Ot'herwise,-in this as well as subsequent embodiments, thesame reference numeralsare used forcomponents similar to those used forjdescribing FIG. 1.
  • the mass analyzing device 46 which is-shown here as a quadrupole mass filter, is powered'through'the set of feedthroughs 47 to whichthe massanalyzerspower supply 50 is connected. in our laboratories,the mass analyzing device 46 consisted' of a quadrupole mass filter.
  • aerosoicrystals o'fCsCl when impinged ontothe heated surface, releasedbursts of Cs and-Cl, but not of the other aforementionedsubstances.
  • FIG. 4' illustr atesaform of the'invention wherein an additional chamber 5 1 'is inserted for the purpose 'of providing abetter vacuum in the region 32 of the detector apparatus.
  • the intermediatechamber 5 1 is connected to an appropriate vacuum pump by means of a suitable vacuum connection to the opening 52.
  • this technique allows a better vacuum inthe region 32,5permitting the use of devices such'as quadrupole-mass filters which require a'vacuum better than 10" torr, and'also permitting a larger initial aperture 11, reducing the'tendency-of the aperture 1 tobecome clogged.
  • FIG. 5 depicts a design of the apparatus similar to that in FIG. 4, except a means'of tagging the particles 1 1 feedthroughs 57.
  • the tagging chamber is here shown in the intermediate chamber 51, it could also be mounted in the lower chamber 32.
  • FIG. 6 is a cross section of a different version of the tagging chamber.
  • the problem of noise signals due to surface-ionizable vapor leaking out of the tagging chamber 54 onto the heated surface is reduced by using a cross-beam technique.
  • a beam of the specific surface-ionizable substance, such as rubidium is generated by heating the substance 55 within an oven 60 which is heated by a heating coil 61, with current supplied to the coil through the set of feedthroughs 57.
  • FIG. 7 is a cross-section of the uppermost portion of the apparatus illustrated in FIG. 4 including chamber 12.
  • a sufficient amount of surface-ionizable material so as to renderthe particle detectable by the apparatus of FIG. 4.
  • Particles 10 are thus passed slowly via an airstream through a tagging vessel 66 to which a vapor designated 67 is continually introduced through known techniques, the vapor 67 being comprised of atoms or molecules of a surface-ionizable substance, such as NaCl, 81- 1,, etc.
  • vapor 67 attaches to the surface of each particle 10, the degree of attachment being dependent upon the size of the particle.
  • the particles are passed through a cleanup vessel 70 which contains a device (such as a coidsurface) or a material (such as an appropriate chemical substance; for example, activated carbon for chlorine) which preferentially removes from the carrier gas most of those free tagging atoms (molecules) which have not been to the surface of a particle.
  • a cleanup vessel 70 which contains a device (such as a coidsurface) or a material (such as an appropriate chemical substance; for example, activated carbon for chlorine) which preferentially removes from the carrier gas most of those free tagging atoms (molecules) which have not been to the surface of a particle.
  • a cleanup vessel 70 which contains a device (such as a coidsurface) or a material (such as an appropriate chemical substance; for example, activated carbon for chlorine) which preferentially removes from the carrier gas most of those free tagging atoms (
  • FIG. 8 represents one embodiment of the heated surface wherein the surface is composed of a conducting material, such as tungsten, which is directly heated by a current supplied by the surface power supply.
  • the surface l is a wire, or a coil of wire, or, preferably, a strip of a conducting material and is fastened to two support rods 71 which pass through the two vacuum-tight feedthroughs 6l mounted on the flange 35.
  • FIG. 9 depic'tsanother embodiment of the heated surface in which the surface is a conducting film 72 deposited ona non-conducting substrate 74 of arbitrary shape suchas mica, quartz, ceramic, etc.
  • Film 72 can be of any metal with suitable properties for surface- .ionization, such as high work function, low vapor pressure, and chemical stability. Examples are tungsten, iridium and platinum.
  • the apparatus is clamped onto a metallic block 75 of appropriate shape by means of a suitably designed metallic clamping device 78.
  • Block 75 is mounted onto an insulator 76 and a wire 77 fastened to the block 76 and to an electrical feedthrough 80 from a voltage source, selectively regulates the voltage on the thin film 72.
  • FIG. 10 represents a furtherembodime'nt of the heated surface in which two surfaces are used.
  • the particles to bedetected are first pyrolized on one surface 84, producing neutral atoms and molecules, some of which strike a nearby second surface 85 and are ionized.
  • the first surface 84 is not necessarily a conducting material, in which case it will produce few or no ions of its own. Examples of suitable materials for surface 84 are quartz, glass and ceramic.
  • Surface 84 can be constructed along similar lines as the apparatus described in FIG. 9.
  • the second surface 85 which can be directly or indirectly heated, is mounted parallel to the first, one such possible arrangement being shown in FIG. 10, where the second surface 85 is directly heated and contains an aperture 86.
  • the particles are madeto pass through the aperture and impinge upon the first surface 84, where they are pyrolized and vaporized, thus producing a 5 number of atoms and molecules, many of which strike the second surface 85, some of these producing ions which can then be extracted from the intersurface re- 7 gion by suitable electric andrnagnetic fields and detectedby the pulse-counting techniques discussed above.
  • the advantages of such a technique are that one can use the optimum temperatures of dissociating a particle and for producing surface-ionization, (these temperatures generally not being the same), and that this technique can help avoid contamination of the ioni'zing surface.
  • FIG. 11 is an enlargement of an upper half of FIG. 1 wherein orifice 31 is replaced by a skimmer 87 of the type described by Anderson, Andres, and Penn (Advances in Atomic and Molecular Physics 1, 345 (1965)).
  • This design is more'efiective for producing a beam of particles than that of FIG. 2, especially for smaller particles, whereas for sufficiently heavy particles, the structure shown in FIG. 2 works just as well, is easier to construct, and is more rugged.
  • the claims particle is intended to include (a) small particulate matter, whether electrically charged or neutral, whether solid or liquid, whether crystalline or polycrystalline, and of any chemical composition; or (b) large molecules of mass exceeding about 1,000 atomic mass units (AMU) with definite molecular structure, and polymers of such large molecules, whether in the free state or in a droplet or solvent, whether electrically charged or neutral and of any chemical nature.
  • AMU atomic mass units
  • the work ion shall include positively or negatively charged atoms, molecules, or radicals and shall also include, in the case of Claim 1, electrons.
  • a method of detecting a particle of dust, smoke and macromolecules of 1000 AMU or greater which comprises the steps of producing a burst of ions by inducing said particle to strike a heated surface and discerning the burst of ions so produced by the detection of its electrical charge.
  • An apparatus for the detection of individual gasborne particles of dust, smoke and-other macromolecules of 1,000 AMU or more which comprises ionization means which includes a heated surface in fluid communication with-the gas containing and surrounding said'particles, said surface adapted to receive said particles thereon and to produce a burst of ions throughsurface-ionization upon receiving one of said particles; and measuring means for performing the function of responding to the electric charge of said burst of ions including means for performing the function of registering said charge.
  • said measuring means includes a second surface, said heated surface and said second surface being at different potentials whereby an electric field is created between said surfaces which is adapted to cause a burst face.
  • An apparatus in accordance with claim 8 comprising means for creating an electric field wherein said heated surface is located in said electrical field, said electrical field being of such an intensity that the production of burst of ions at the heated surface initiates electrical breakdown of the carrier gas, said breakdown producing an additional number of ions, said ions being detected by'said'means.
  • said measuring means comprises apulse height discriminator adapted to separate small pulses caused by surface-ionizable impurities in the material of the heated'surfacefrom more intense pulses caused by said ions-produced at said heated surface upon being struck bysaid particles.
  • said heated surface iscomposed of a'metalin the group consisting of tungsten, iridium, platinum, tantalum, molybdenum, rhenium and gold.
  • a-circuit is provided for passing currentthroug h said wherein a furtherheated surface is included which is adapted to pyroliz e said particles thereby producing 'surface-ionizable atoms, molecules or radicals which thereafter strike said first-mentioned heated surface, where some of said atoms, molecules or radicals become surface-ionized,said ions being detected bysaid registration means.
  • measuring means includes an electron multiplier.
  • said measuring means comprises a pulse height discriminator adaptedto separate small pulses caused by surface-ionizable impurities in the material of the heated surface from more intense pulses caused by said burst of ions produced at said heated surface upon being struck by said particles.
  • said heated surface is composed of a metal in the group consisting of tungsten iridium, platinum, tantalum, molybdenum, rhenium and gold.
  • measuring means includes means for separating ions according to their charge-to-mass ratio.
  • An apparatus for the detection of particles of dust, smoke and other macromolecules of 1,000 AMU or more which comprises a first vacuum chamber with a small aperture opening to the gas containing and surrounding said particles and a small opening to a second vacuum chamber, said aperture and said opening being aligned, means for continuouslyexhausting both said vacuum chambers in a difierential pumping arrangement, the capacity of said exhaust means and the sizes of said aperture and said opening being such that said first vacuum chamber is maintained at a pressure substantially less than atmospheric pressure and that said second vacuum chamber is maintained at a pressure substantially less than the pressure in said first vacuum chamber, a heated surface within said second vacuum chamber located to receive particles that pass in a substantially straight line through said aperture and said opening and enter the second chamber, said surface being adapted to produce a burst of ions upon being struck by one of said particles, and measuring means responsive to said burst of ions including means for registering burst of ions produced at said heated surface.
  • measuring means comprises a pluse height discriminator adaptedto separate small pulses caused bysurface-ionizable impurities in the material of the heated surface from more intense pulses caused by said burst of ions produced at said heatedsurface upon being struck by one of said particles.
  • said heated surface is composed of a metal in 16 the group consisting of tungsten, iridium, platinum, tantalum, molybdenum, rhenium and gold.
  • measuring means includes means for separating ions according to their charge-to-mass ratio.
  • apparatus in accordance with claim 47 including means for producing said vapor in the form of an atomic-or molecular beam across which said particles bidium and cesium.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

A method and apparatus for detecting, sizing, and counting gas borne particulate matter are described. The particles are impacted onto a heated surface capable of pyrolyzing them. Some of the products of the pyrolysis are then surfaceionized, producing a burst of ions which is detected electronically producing a voltage pulse proportional to the amount of surfaceionizable matter originally present in the particle. Methods are described for adding to each particle an amount of surfaceionizable material proportional to the particle size, enabling the instrument to measure the particle size distribution of a collection of gasborne particles. The basic apparatus may detect particles by means of either positive or negative surfaceionization, and is capable of operation either when situated in air or when located in a vacuum system.

Description

United States Patent [1911 Fite et a1.
in] .3,808,433 .1 51 Apr.30, 1974 1 1 METHODS AND APPARATUS FOR DETECTION OF VERY SMALL PARTICULATE MATTER AND MACROMOLECULES i [76] Inventors: Wade L. Fite, 305 Pasadena Dr.,
Pittsburgh, Pa. 15215; Richard L. Myers, 604 Mulbery St.; Wilkinsburg,- Pa. 15221 [22] Filed: Dec. 2 9, 1972 [21] Appl. No.: 319,442
[52] US. Cl. 250/251, 250/425 [51] Int. Cl. G01m 27/78 [58] Field of Search 250/251, 425; 73/28 [56] References Cited UNITED STATESv PATENTS 3,433,944 3/1969 George 250/251 3,336.475 8/1967 Kilpatrick i 250/425 3,484.6(13 12/1969 Bloom et a1. i 250/251 3,300,6411 1/1967 Eubank .1 250/251 Primary Examiner-Archie R. Borchelt Assistant Examiner-B. C. Anderson Attorney, Agent, or Firm-Mason, Mason & Albright [571 nswer A method and apparatus fordetecting, sizing, and
counting gas borne particulate matter are described. The particles are impacted onto a heated surface capable of pyrolyzing them. Some of the products of the pyrolysis are then surfaceionized, producing a burst of ions which is detected electronically producing a vvoltage pulse proportional to the amount of surfaceionizable matter originally present in the particle. Methods are described for adding to each particle an amount of surface-ionizable material proportional to e 'the particle size, enabling the instrument to measure the particle size distribution of a collection of gasborne particles. The basic apparatus may detect particles by means of either positive or negative surfaceionization, and is capable of operation either when situated in air or when located in a vacuum system.
51 Claims, 11 Drawing Figures PATENTEDAPR 30 m4 SHEU 1 UF 9 I aeoamcas PATENTEnmau are.
wmzure 4 3.808.433 sum 8 0F 9 PATENTEUAPR 30 I974 Jim @MV/ A" 1 METHODS AND APPARATUS FOR DETECTION OF VERY SMALL PARTICULATE MA'I'I'ER AND MACROMOL ECULES BACKGROUND OF THE INVENTION The detection and size determination of airborne particulate matter has been the object of considerable research in recent years. In US. Pat. No. 2,702,471, a device is described which can detect either (1) particles with low vaporization temperatures, such aswater, or (2) particles which are readily combustible in air, such as oil, the size of either type of particle being of the order of tens of microns. U.S. Pat. Nos. 3,665,441, 3,178,930, and 3,679,973 describe devices which charge particles in anionic discharge and then separate them according to ion mobility, and a device described in U.S. Pat. No. 3,628,139 utilizes the effect whereby an aerosol particle causes an avalanche. breakdown in the carrier fluid. An apparatus described in US. Pat. No. 3,434,335 can acoustically detect 'particleswith sizes of the order of tens of microns. The process whereby an aerosol particle can change the resonance frequency of a piezoelectriccrystal'is described in US. Pat. Nos. 3,561,253 and 3,653,253.
sion hazard in mines byipossessing a large surface-tovolume ratio. Particles smaller'than a tenth of a micron are difficult to trap in filters or to remove from a gas by electrostatic precipitation. An effective method is thus needed for continuously detecting and counting 'very small particles. We have discovered thatthis canbe accomplished in anovel and new manner byaprocess'of pyrolysis on a hot surface,followed by surface'ionization of some of the atoms of each particle. Such a methodis described below and some typical apparatus are presented.
SUMMARY-OF THE INVENTION The inventionrelates'to a newmethod and apparatus for detecting individual gasborne particles and/or macromolecules. The method essentially comprises bringing eachparticle into contact with'heated surface capable of decomposing or vaporizing the particle and then surface-ionizing some of the atoms constituting' theparticle. The pulse of ions thusgenerated is' detectedby,
electronic means and converted into asi'gnal which is stored in a scalar or other recording device with a requirement being that the pulse of ions generated by the particle be greater than the background pulses generated by the ions which are formed from impurities normally on and in the heated surface. A refinement of this method comprises use of a vacuumipump topartially evacuate the region in whichtheheatedsurfaceis located, with the gas containing and surrounding thev particles being leaked into 'the'pa'rtially evacuated region 'viaa small aperture. This hasthe effect of'reducing the viscous drag of the gas on the particles,'en'ablingthem toimpact more efficiently onto the heated surface. "Another refinement comprisesuseof a device such-as an electron multiplier'which has the effect of multiplying the electric charge associated with each burst of ions by a factor of up to 10, hence creating a signal sufficiently large to be detected byelectronic means. A further refinement comprises use of a mass analyzer to select one particular species, or agroup of species of ions leaving'the'heatedsurface and reject all other ions, thus increasing the signal to noise ratio and hence the sensitivity of the instrument. A still furtherrefinement consists of adding to each particle, prior to detection, an amount of some specific surface-ionizable substance, said amount being characteristic of the size of the .particle. Upon impactiononto'the heated surface, the size of the ion pulse-generated will be characteristic of the size of the particle.
When an atom,- such as sodium, having an ionization potential comparable with the work function (the energy with which themetal'surface will hold an electron) of a metal, such as tungsten, comes into contact with thatmetal which isin a heated condition, the valance electron leaves the atom and enters the metal, with a positive sodium ion being reemitted into the gas phase.
The resultingsodium ion is then detected'through its ,electrical'charge or upon being accelerated into an electronvmultiplier. The metal surface is heated to' '800l,500". 'C. to establish rapid equilibration, and hence rapid responsetimes. (For alkalis ontungsten at 1 ,400 C., the average time required-for ionization and reemission after an atom strikes the surface is of the can be detected inthismanner.
'A-similar phenomenon operates to produce negative ions when an-atom'such as chlorine impinges upon a heated surface havinga work' function comparable to "theelectronaffinity of the incident atom. In this case,
an electron leavesthe Ehot metal and attaches to the chlorine atom,forming a :negative chlorine ion which :can bedetected'by its negative charge. Thehalides,
some alkali halides, and certain other molecules containing'electronegative radicals such as CN with high electron affinities'have been detected in this-manner.
ln bothjpositive and negative surface ionization the The "selection of the metal is dictated 'by its work function, which should be large for positive ion detection andsma'll for negative ion detection, and by theenvironment in which it isto operate. For particleswhich are-to be detected in vacuumlthroug'h:positiveion detection, tungsten is a satisfactory material-whereasthe high "resistance to oxidation of: iridium, rhenium, r rhodium, and ;platinum makes these materials preferable 'for-operation in air. For negative ion detection, surfaces such as thoriated' tungsten are suitableifor operation-in'vacuum, whereas for'negative ion detection'in air, materials such as'bariumzirconate maybe used.
Inthe normalmetals such as tungstemthere arealways' impurities, some of which are alkali and halogen atoms. Upon heating the metal; these diffuse to the'surface where they surface-.ionize and emit a constant current of positive or negative ions. A particularly troublesome species in the case of tungsten is potassium, which is emitted in bursts of up to lOi'ons, with the duration of the bursts z 50 microseconds .1s). This background emission can be reduced by conditioning the metal, i.e., by keeping it hot for many hours. An alternative method is to deposit'pure metal on the surface through the pyrolytic decomposition of a compound such as tungsten hexacarbonyl, which can be administered to the surface either continuously or in cycles. This second technique has been found to suppress the bursts of potassium ions (K resulting in both a reduced background signal and a Poisson (random) distribution for the emission of the l 1 ions.
A series of events is said to be random if the probability of an event occurring during a given time depends only on the length of that period of time, and is completely independent of whether any other similar events occur during the same period. Under these circumstances, the probability P, that n events will occur during a time interval r is given by the Poisson distribution function P, e""n/n'., where E is the average number of events for the time interval 1'.
If a particle or macromolecule containing some atoms (molecules) of a surface-ionizable element (compound) arrives at a suitable hot surface, these atoms (molecules) can be surface ionized within a short period of time. A typical particle heats up to within 90 percent of the surface temperature within several microseconds, and individual alkali atoms tend to be surfaceionized within a time of 10 to 100 us. This clustering in time of ions which originate from a particle or macromolecule providesa powerful technique for distinguishing between the ions which come from the heated metal surface itself and those which originate from a particle.
Suppose the ion detector apparatus is made to perform'electrical integration over, say 10 microseconds. If the background signal from the metal surface has been reduced through conditioning or deposition of a fresh surface to 5 X l ions/sec, then'the average number of background counts duringone time constant of the detector will be X10) I0) 50 counts/ lOus. This causes the detector'to put out an average signal corresponding to 50 counts, with fluctuations correspondin g toar'andoni distribution of arrivalof 55a; ground ions. For example, if the average number of counts per 10 microseconds is 50 ions, then the probability-of getting lOO or more counts during 10 microseconds is age. Owing to a slightly non-Poisson distribution of the background ions due to incomplete suppression of the I or about 1 such count per 200 seconds on the aver- As an exampleof the detection of heavy particles in air, suppose we are dealing with particles of 0. 1 micron radius which contain '10 parts per million of, say, so-
.dium -(Na; atomic mass 23). Assuming a particle density of 5 gram/cm", the number of sodium atoms available for surface-ionization is 4/3 10' cm (5 gin/cm) (10 (1 amu/l.67 X 10" gm) (1 atom/23 amu)?= 5 X 10 sodium atoms. When these atoms are surface-ionized and then collected at an electrode with a capacitance of 0.5 X 10 farad, the voltage pulse developed across the capacitor will be AV AQ/C (5 X 10 ions) (1.6 X 10 coulombs/ion) (0.5 X 10"" farad) 1.5 X 10 volts, a signal which is detectable by electronic means. Since at atmospheric pressure ions tend to difiuse rather slowly (the ionic mobility M for sodium ions in nitrogen gas at room temperature and pressure in an electric field E is about M 3.0 cm
volt sec E) it is usually necessary to apply a suitable voltage to either the heated surfaceor the collecting electrode or both, so as to produce an electric field which causes the ions to reach the collector in a reasonable period of time. For example, if the heated surface and the collector are 0.5 cm apart and the applied voltage difference is 2,000 volts, then the time t required for the ions to reach the collector will be t d/(M E (0.5 cm) (3.0 cm volt sec )(2 X 10 volts/0.5
cm) 4O us. This enables the burst of ions released.
but at a value at which the introduction of the charge from a burst of ions causes an avalanche breakdown of the carrier gas, producing many more ions. By methods well known in the art, the electric field is momentarily reduced by means of an external quenching circuit just after each breakdown begins", quenching the breakdown and preparing the detector for the next particle.
A major difiiculty in detecting gasbome particles is that, as the particle size decreases, the inertia of each particle decreases as the cube of the particle radius,
- while the viscous forces exerted by the carrier gas decrease only as the first power of the particle radius. As a result, suificiently small particles suspended in a moving gas will not readily deposit on any surfaces, but will instead tend to follow the streamlines of the carrier gas. According to Fuks, Mechanics of Aerosols, Pergamon,
p. 173, in order for particles of radius r and density 'y, 7 moving in an airstream of speed V viscosity n and atatmospheric pressure to impact with efficiency greater than 50 percent-onto a long perpendicularly oriented flat ribbon of width w, the airstream velocity V must be in excess of V 9nw/(ry); For a 1 micron (,u.) particle F l. gin/cm moving in air with visocity 19 lmicropoise, the velocity of the airstream required for'SO percent deposition on a 2 mm ribbon is about 3 X 10 cm/sec, a difiicult speed to'obtain at atmospheric pressure. For a particle ten times smaller, the speed required increases by a factor of 100. One solution to this problem comprises placing the heated surface into a chamber in which is maintained a partial vacuum and leaking the carrier gas with its suspended particles into the vacuum chamber through a small aperturein fluid communication with the sample. If, for instance, the pressure in the vacuum chamber is reduced to one torr (1 mm of mercury), then it can be shown that a 1 micron particle of density 1 gin/cm traveling 5 cm through the chamber can have its velocity reduced by, at most 8 percent prior to striking the heated surface.
For smaller particles, the vacuum can in principle always be improved sufficiently to ensure impaction onto the heated surface.
The method by which required pumping seeds are calculated will be briefly discussed. If gas from an initial pressure P leaks with a speed S liters/sec into a chamber which is at a lower pressure P due to being pumped at a speed S, liters/sec by a vacuum pump, thenin the steady state, conservation of mass flow necessitates the relationship P S P 8 As an example, if 10 cm lsec of air at atmospheric pressure are being leaked into a chamber which is being evacuated by means of a mechanical vacuum pump with a pumping speed of liters/sec, then the steady-state pressure in the chamber will be P 1 atmosphere) (10 liters/sec) (25 liters/sec) 4 X 10 atmosphere. A well rounded aperture will leak about 20 liters/sec of air per-cm of aperture area from atmospheric pressure into any pressure less than about 10 torr (mm of mercury). Thus the size of aperture required to leak the above 10 cm /sec into a chamber is A l0 liter/sec) (2O liter/sec-cm 5 X 10 cm corresponding to an aperture diameter of about 0.3 mm.
lf a high vacuum is required, and if for thispurpose two chambers having pressures of P and P of background gas are separated by an aperture of area a, with chamber 2 being evacuated by means of a diffusion pump with a pumping speed of S then%(p p )Ea P 8 where E is the average molecular speed of the background gas. For instance, if P, 10 torr, 6 l0 cm/sec, S 10 cm /sec, and we wish to have P less than 5 X 10 torr, then the maximum aperture diameter allowable is: a (5 X 10' torr) (l0 em /sec (4) (95 X 10 torr) (l0 cm/sec) 0.21 cm If the vacuum in the region of the heated surface is improved to less than lO mm of mercury, the ions emitted from the surface can be accelerated into an electron multiplier, which is adapted, to deliver an output charge of the order of- 10 times the charge contained in' the burst of ions. A pulse height discriminator followed by a scalar or other recording device takes the output signal from the electron multiplier and registers the arrival of the particle.
It usually happens that the metal surface produces ions which comprise predominantly several species, e.g., for most tungsten surfaces, sodium ions, Na", and potassium ions, K", constitute about 90 percent of the background. Hence, an improvement in the sensitivity and the signal-to-noise ratio is accomplished by taking the ions produced by surface ionization through an ion mass analyzer (mass spectrometer) prior to their reaching the electron multiplier. As an illustration, with a hot tungsten surface which produces 5 X 10 counts/sec of total background (sodium, potassium, and other metallic and organic ions) but only 5 X 10 counts/sec of cesium ions (Cs When a particle containing Cs impurities arrives then, without mass analysis the particle of cesium ions which need be released for detection over the background signal fluctuations is much smaller. Since 5 (background Cs) in this case is 0.5 pulses/10m, the probability for 10 or more backq n QWQEQPJ9HEEEE1I l h Iror one such count every 10 seconds. Hence one heavy particle need release only 10 (or'fewer, if a smaller sigrial/noise ratio is'permitted) Cs ions in order to be counted above the background.
Most inorganic particulate matter (e.g., dust or smoke particles) contains naturally occurring impurities such as alkali metals, halogens, and hydrocarbons in sufficient quantity that the particles are immediately detectable without any further treatment of the particles. Organic materials such as macromolecules frequently contain halogens or cyanogen radicals (CN) in sufficientquantities to produce detectable signals of CN or halogen nagative ions or more'complicated negative ions. It has also been found that many organic molecules can be surfaceionized so that a long macromolecule stands agood chance of breaking into fragments, with some of the fragments being ions.
If a particledoes not contain sufficient naturally occurring surface-ionizable impurities for the detection sensitivity available,. the signal .can be increased by tagging. This procedure consists of passing the particle through either a chamber containing a vapor of surface-ionizable atoms (molecules), or through a crossed atomic (molecular) beam of a surface ionizable element (compound). Atoms (molecules) from the vapor or atomic (molecular) beam strike the particle and are adsorbed onto the surface; The tagged particle, its surface enriched with surface-ionizable atoms (molecules), then moves to the hot metal surface where it releases its tagging atoms (molecules) as a burst of ions.
Through such tagging techniques it is possible to measure the geometrical cross section, and therefore the size of a particle, inasmuch as the size of the ion burst depends on the number of surface-ionizable atoms delivered to the hot surface by the particle, and that number is directly proportional to the surface area of the particle while in the tagging chamber. A final ad vantage is that onecan choose for the tagging species a substance not present in the normal background from the heated metal detector surface, and thus obtain an improved signal-to-noise ratio.
Macromolecules and large biological molecules are also detectable by the tagging approach. One technique is chemically to substitute the tagging species for an atom in the molecule being tagged, e.g., substitute a fluorine atom for a hydrogen atom in a methyl group. Another method is to attach the tagging atom or molecule to the macromolecule by a chemical bond, e.g., it has been foundthat a cesium atom will attach itself to an aromatic or heterocyclic ring (e.g., a nucleic acid molecule) via a weak resonance bond.
' In view of the foregoing, it is a principal object of this A further object is to detect said particles by means of their naturally occurring surface-ionizable constitutents. A still further object of the invention is to add to such particles additional surface-ionizable materials which can supplement the naturally occurring ones. A yet further object is to use the amount of additional material added to each particle as a measure of the size of said particle.
Other objects and advantages of the invention will become known by reference to the following description of some typical apparatus and the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an isometric representation in partial section of one form of the invention in which the particles are drawn into a chamber, which may be either at atmospheric pressure or at'a partial vacuum, and impinged onto a heated surface where they produce bursts of ions which are collected onto an electrode.
FIG. 2 is an isometric representation in partial section of a form of the invention in which the particles are introduced into a vacuum system and impinged onto a heated surface where they produce bursts of ions which are detected by a particle multiplier;
FIG. 3 is an isometric representation similar to that in FIG. 2 except that there is interposed a mass analyzing device which transmits one particular species, or several particular species, of those ions which leave'the heated surface;
FIG. 4 represents a form of the invention similar to that represented by FIGL3 excpet that there is added an intermediatechamber and vacuum pump to provide a better vacuum in the detection region and/or to permit a larger initial aperture into the vacuum system;
FIG. 5 illustrates a further form of the invention similar to that in FIG. 4. which illustrates the addition of a tagging chamber which adds to the surface of each particle, subsequent to the injection of said particle into the vacuum chamber, a specific surface-ionizable substance; i FIG. 6 is a cross-sectional isometric view illustrating another method by which the particles can be tagged within the vacuum system;
FIG. 7 is a cross-sectional partial view showing the top of FIG. 4 with additional structure of a means of tagging each particle prior to entry into the vacuum system included;
FIG. 8 is a cross-sectional view of the heated surface shown in FIG. 1;
FIG. 9 is a sectional view representing another embodiment of theheated surface;
F I6. 10 is a sectional view representing a further embodiment of the heated surface; and
FIG. 11 is a sectional view illustrating another construction of the upper portion of FIG.- 2.
DESCRIPTION OF THE PREFERRED EMBODIMENTS In FIG. 1 there is illustrated one embodiment of the invention in which particles 10 suspended in a carrier gas are drawn through an aperture 11' into a chamber 12 which is continuously being flushed by an exit tube 14 which is connected to a suitable exhaust fan. While in the chamber 12, some of the particles 10 impact onto a heated surface 15, which is mounted onto two feedthroughs 16, allowing electrical connections to be made to a power supply 17, capable of providing the current needed to heat thesurface. Upon impinging onto the surface 15, each particle releases a burst of ions 20 which is collected onto an off-axis electrode 21 mounted onto two feedthroughs 22 and to which a voltage is applied so as to attract the burst of ions, said voltage being applied through one of the feedthroughs 22 from a high-impedance. voltage supply 24. The arrival of each burst of ions 20 onto-the electrode 21 produces a voltage pulse which is detected by a sensitive preamplifier 25, the input resistance of which, coupled with the innate capacitance with respect to earth of the detector apparatus, determines the integrating time constant of the system. The integrated signal is then taken into a pulse height analyzer 26, a circuit which can be one of a number of variations known to the skill of the art, the function of which is to sort signal pulses according to size and to exclude random background counts, thus providing a pulse'height distribution curve which can be presented on on an appropriate display instrument 27. The tendency of the collecting electrode 21 to become contaminated can be avoided by keeping said electrode sufficientlywarm as to reevaporate any collected impurities. One means for accomplishing this comprises passing a current through the electrode 21 by means of abattery 30 connected to'the feedthroughs 22.
In one of several specific embodiments which have been used in our, laboratories, the particles 10 have been coal dust, iron carbonyl powder, talcum powder, submicron polystyrene spheres, cigatette smoke, and aerosol crystals of sodium chloride (NaCl), cesium chloride (CsCl), sodium iodide (Nal), potassium chloride (KCI), sodium cyanide (NaCN), etc. The heated surface 15 was sometimes a directly heated iridium ribbon or wire and other times an indirectly heated film of platinum or tungsten oxide mounted on a substrate of quartz glass. The collecting electrode 21 was sometimes an irridium strip and sometimes a platinum wire. The distance between the heated surface 15 and the collecting electrode 21 was varied'from 2 mm to 1 cm, with the voltage differences varying from 0 to r 3,000 volts. The preamplifier 25 was of a standard commercially available type with integrating time variable from l0 .to 10 sec. Some usable pulse-height analyzing devices 26 ranged from the triggering level on a scope to a multichannel analyzer. Display instruments 27 used scalers and chart recorders. It was found necessary to shield the system electrically to void pickup signals-from line voltages, other instruments, etc. 7
When the voltage between the heated surface and the collecting electrode was increased to near 3,000 volts across a gap of about 1 mm, it was observed that small discharges occur whenever smoke is blown onto the heated surface. it is considered that, inasmuch as the amount of electric charge associated with each discharge is many orders of magnitude greater than the charge associated with each burst of ions from a single particle, the' counting of such discharges provides a useful means of counting the particles which have the capacity to cause such discharges.
In a further set of experiments, the exit tube 14 was connected to a mechanical vacuum pump with a pumpthese pressures.
Upon evacuating the region-in which the heated surface is locatedto torr, it still was found possible to detect pulses of ions on the collecting electrode when coal dust, cigarette smoke, iron powder, and aerosol crystals-of the alkali halides were leaked into the vacuum system. The pulse heights were of the same size as those found in air'(provided the electricfields in'the latter case were kept below-the breakdown threshold) but with a shorter rise time, corresponding to the greater mobility-of ions ina vacuum.
In FIG. 2 there isillustrated one embodiment of the invention in which particles "10'suspendedin a carrier gas are allowed to pass'through a small aperture 11 into a partially evacuated chamber 12, being continuously evacuated through a tube "14 connected to the intake of a suitable vacuum pump. Most of the carrier gas is pumped away through the tube 14, whileparticlesflO, by virtue of their greater inertia, travel'in a straightline to an aperture 31 which separateschamber 12from another chamber 32 maintained at a'hi'gher vacuumsuitable for the operation'of the apparatus. The second chamber 32 is evacuated through a duct 34 which leads to a suitable vacuumxpump. Particles 10 then impinge upon the surface of aheated material '15 which is mounted on two feedthroughs 16 providing electrical connections through a-flange 35. Theheater power is provided from-a suitablepower supply 17. It will be understood'that material may be'heated directly or indirectly. Particles l0,upon impinging up'onheated surface 15, emit bursts of ions 20, which are driven by electricfields into a particle'multiplier 36. Any one of a number of types of particle multipliers,'the operation of which are well known in the art, may be utilized for this purpose. The voltage required to operate the multiplier is administered through a feedthroug'h 37 in the wall of vacuum chamber 32'from a suitable'powersupply 42. The output signal of particle multiplier 36 is taken to the outside of the system through a coaxial feedthrough 40, leading to a preamplifier 25, the input resistance of which, coupled with the innate capacitance of the signal cable, determines the integrating time'constant of the detecting system. The integrated signal is then taken into a pulse height analyzer 26,'the circuit for which-can be one of a number of variations within the skill of the art and-the function of which is to sort signal pulses according-to size and thus exclude random counts and provide a particle size distribution maintained at 50-200 microns of mercurypressure by a mechanical vacuum pump and region32 -was-maintainedat 10 torr by a mercury diffusion pump. The heatedsurface '15 wascomposed ofdirectly-heated filamerits comprising a metal, iridium lr), tungsten (W),
tantalum (Ta), and platinum (Pt), as such, and also composed of such metals with a freshly deposited coating'of-tungsten bythepyrolytic decomposition of-tungsten' hexacarbonyl, -W( CO) by a known technique. Filament temperatures from 7002,000C. were created bypassing electric currents through the filaments.
"Successful results were also obtainedby'depositing and decomposing "-W(CO') on nonconducting substrates *devices used were the triggering level 'on an oscilloscope and a multichannel-analyzer.Display instruments used were scalers and chart recorders. Inasmuch as aerodynamic forces are considerably stronger than gravitational forces for small'particles, the entire apparatus may be'moun'ted at any desired angle relative to the vertical. I
In anotherembodiment shown in FIG. 3, an ion mass analyzing device 46 isinserted intermediate the heated surface 15 andthe particle multiplier 36.-Ot'herwise,-in this as well as subsequent embodiments, thesame reference numeralsare used forcomponents similar to those used forjdescribing FIG. 1. The mass analyzing device 46, which is-shown here as a quadrupole mass filter, is powered'through'the set of feedthroughs 47 to whichthe massanalyzerspower supply 50 is connected. in our laboratories,the mass analyzing device 46 consisted' of a quadrupole mass filter. Using this device, we wereabl'e to ascertain that ionpulses of iodine, (I), chlorine (Cl), cyanogen (CN),-bromine (B r), cesium (Cs potassium (-'K*), sodium (Na and lithium (Li were formed when and only when particles containing'these componentsreached the heated surface.
Forexample, aerosoicrystals o'fCsCl, when impinged ontothe heated surface, releasedbursts of Cs and-Cl, but not of the other aforementionedsubstances.
FIG. 4'illustr atesaform of the'invention wherein an additional chamber 5 1 'is inserted for the purpose 'of providing abetter vacuum in the region 32 of the detector apparatus. The intermediatechamber 5 1 is connected to an appropriate vacuum pump by means of a suitable vacuum connection to the opening 52. By causing most of thebackground gas to be pumped away through theopening 52,this technique allows a better vacuum inthe region 32,5permitting the use of devices such'as quadrupole-mass filters which require a'vacuum better than 10" torr, and'also permitting a larger initial aperture 11, reducing the'tendency-of the aperture 1 tobecome clogged.
FIG. 5 depicts a design of the apparatus similar to that in FIG. 4, except a means'of tagging the particles 1 1 feedthroughs 57. Although the tagging chamber is here shown in the intermediate chamber 51, it could also be mounted in the lower chamber 32.
For the case of cesium vapor heated to 100 C., it can be shown that the number of cesium atoms which strike a particle or radius r is 8 X l() r, where r is given in microns. The actual number tagging the particle is the above number multipled by the sticking coefficient which, for a material such as cesium which exhibits strong chemisorption, should be nearly unity. In actual practice, it was found that this technique is effective only for large particles .(r 10p) because the cesium vapor also leaks out of the tagging chamber onto the filament, creating a large background signal.
FIG. 6 is a cross section of a different version of the tagging chamber. Here the problem of noise signals due to surface-ionizable vapor leaking out of the tagging chamber 54 onto the heated surface is reduced by using a cross-beam technique. A beam of the specific surface-ionizable substance, such as rubidium, is generated by heating the substance 55 within an oven 60 which is heated by a heating coil 61, with current supplied to the coil through the set of feedthroughs 57. The advantage of this technique is that the atoms or molecules of the specific surface-ionizable substance tend to leave the oven in a horizontal direction, where they can impinge upon and be trapped by a surface 62 which is cooled by contact with a coil of tubing 64 which contains a very cold 'liquid such as liquid nitrogen administered through an appropriate set of feed- .through conduits 65. Such cross-beam tagging methods have been carried out in our laboratories, with the tagging atoms comprising cesium, rubidium, and lithrum. I
FIG. 7 is a cross-section of the uppermost portion of the apparatus illustrated in FIG. 4 including chamber 12. However, prior to the pinhole 1 la set of vessels are provided for the-purpose of adding to the surface of each particle 10, while said particle suspended in a carrier gas, and prior to the injection of said particle into vacuum, a sufficient amount of surface-ionizable material so as to renderthe particle detectable by the apparatus of FIG. 4. Particles 10 are thus passed slowly via an airstream through a tagging vessel 66 to which a vapor designated 67 is continually introduced through known techniques, the vapor 67 being comprised of atoms or molecules of a surface-ionizable substance, such as NaCl, 81- 1,, etc. Some of vapor 67 attaches to the surface of each particle 10, the degree of attachment being dependent upon the size of the particle. Upon leaving the tagging vessel 66, the particles are passed through a cleanup vessel 70 which contains a device (such as a coidsurface) or a material (such as an appropriate chemical substance; for example, activated carbon for chlorine) which preferentially removes from the carrier gas most of those free tagging atoms (molecules) which have not been to the surface of a particle. Such chemical traps and cold' traps are common to and easily within the skill of the art.
FIG. 8 represents one embodiment of the heated surface wherein the surface is composed of a conducting material, such as tungsten, which is directly heated by a current supplied by the surface power supply. In this design the surface l is a wire, or a coil of wire, or, preferably, a strip of a conducting material and is fastened to two support rods 71 which pass through the two vacuum-tight feedthroughs 6l mounted on the flange 35. a
FIG. 9 depic'tsanother embodiment of the heated surface in which the surface is a conducting film 72 deposited ona non-conducting substrate 74 of arbitrary shape suchas mica, quartz, ceramic, etc. Film 72 can be of any metal with suitable properties for surface- .ionization, such as high work function, low vapor pressure, and chemical stability. Examples are tungsten, iridium and platinum. .In order to maintain electrical contact with the film 72, the apparatus is clamped onto a metallic block 75 of appropriate shape by means of a suitably designed metallic clamping device 78. Block 75 is mounted onto an insulator 76 and a wire 77 fastened to the block 76 and to an electrical feedthrough 80 from a voltage source, selectively regulates the voltage on the thin film 72. The entire assembly is mounted with insulating screws 81 on flange 35. The substrate and thin film surface are heated by radiation froma filament 82 which is mounted on the two feedthroughs 16. It is to be understood that this is one typical design outvof several that have been constructed and out of .many that could be constructed using the same princibons. Thin films of this type have been made of W, Pt,
and Ir in these laboratories.
FIG. 10 represents a furtherembodime'nt of the heated surface in which two surfaces are used. In this design the particles to bedetected are first pyrolized on one surface 84, producing neutral atoms and molecules, some of which strike a nearby second surface 85 and are ionized. The first surface 84 is not necessarily a conducting material, in which case it will produce few or no ions of its own. Examples of suitable materials for surface 84 are quartz, glass and ceramic. Surface 84 can be constructed along similar lines as the apparatus described in FIG. 9. For maximum efficiency, the second surface 85, which can be directly or indirectly heated, is mounted parallel to the first, one such possible arrangement being shown in FIG. 10, where the second surface 85 is directly heated and contains an aperture 86. The particles are madeto pass through the aperture and impinge upon the first surface 84, where they are pyrolized and vaporized, thus producing a 5 number of atoms and molecules, many of which strike the second surface 85, some of these producing ions which can then be extracted from the intersurface re- 7 gion by suitable electric andrnagnetic fields and detectedby the pulse-counting techniques discussed above. The advantages of such a technique are that one can use the optimum temperatures of dissociating a particle and for producing surface-ionization, (these temperatures generally not being the same), and that this technique can help avoid contamination of the ioni'zing surface.
FIG. 11 is an enlargement of an upper half of FIG. 1 wherein orifice 31 is replaced by a skimmer 87 of the type described by Anderson, Andres, and Penn (Advances in Atomic and Molecular Physics 1, 345 (1965)). This design is more'efiective for producing a beam of particles than that of FIG. 2, especially for smaller particles, whereas for sufficiently heavy particles, the structure shown in FIG. 2 works just as well, is easier to construct, and is more rugged.
For the purposes of the claims particle, as such, is intended to include (a) small particulate matter, whether electrically charged or neutral, whether solid or liquid, whether crystalline or polycrystalline, and of any chemical composition; or (b) large molecules of mass exceeding about 1,000 atomic mass units (AMU) with definite molecular structure, and polymers of such large molecules, whether in the free state or in a droplet or solvent, whether electrically charged or neutral and of any chemical nature. The work ion, as such, shall include positively or negatively charged atoms, molecules, or radicals and shall also include, in the case of Claim 1, electrons.
What is claimed is:
l. A method of detecting a particle of dust, smoke and macromolecules of 1000 AMU or greater which comprises the steps of producing a burst of ions by inducing said particle to strike a heated surface and discerning the burst of ions so produced by the detection of its electrical charge.
2. A method in accordance withclaim 1 wherein at least part of said burst of ions comprises surfaceionizable atoms or molecules occurring as constitutents of said particle including impurities therein.
3. A method in accordance with claim 1 wherein said particle is caused to pass through avapor of surfaceionizable atoms or molecules prior tov striking said heated surface, said surface-ionizable atoms or molecules attaching to said particle, at least partof said burst of ions comprising ions produced from said surface-ionizable atoms ormolecules by surface ionization at the heated surface.
4. A method of determining the size of a particle of dust, smoke and other macromolecules of about 1,000 AMU or larger, of surface-ionizable atoms or molecules wherein some of said atoms or molecules are attached to said particle during its passage through the vapor in a number proportional to the size ofsaid particle, causing said particle to strike a hot surface where said attached atoms or molecules are released and form aburst of ions, and detecting and measuring the electrical charge of said ions, the'total amount of said electrical charge being proportional to the number of said attached surface-ionizable atoms or molecules and therefore indicative of the'size of saidparticle.
5. An apparatus for the detection of individual gasborne particles of dust, smoke and-other macromolecules of 1,000 AMU or more which comprises ionization means which includes a heated surface in fluid communication with-the gas containing and surrounding said'particles, said surface adapted to receive said particles thereon and to produce a burst of ions throughsurface-ionization upon receiving one of said particles; and measuring means for performing the function of responding to the electric charge of said burst of ions including means for performing the function of registering said charge.
6. An apparatus in accordance with claim 5 wherein said measuring means includes a second surface, said heated surface and said second surface being at different potentials whereby an electric field is created between said surfaces which is adapted to cause a burst face.
of ions produced at said heated surface to be accelertric field being of such an intensity that-the production of burst of ions at the heated surface initiates electrical breakdown of the carrier gas, said breakdown producing an additional number of ions, said ions being detected by said means.
8. An apparatus'in accordance with claim 5 wherein said heated surface is located in a cylinder through which the. gas containing and surroundingthe particles, means beingassociated with said cylinder for inducing said gas to move at a speed sufficiently high that said particles are impact with high efficiency onto said heated surface. 1
9. An apparatus in accordance with claim 8 comprising means for creating an electric field wherein said heated surface is located in said electrical field, said electrical field being of such an intensity that the production of burst of ions at the heated surface initiates electrical breakdown of the carrier gas, said breakdown producing an additional number of ions, said ions being detected by'said'means.
10. An apparatus in accordance with claim 5 wherein said measuring means comprises apulse height discriminator adapted to separate small pulses caused by surface-ionizable impurities in the material of the heated'surfacefrom more intense pulses caused by said ions-produced at said heated surface upon being struck bysaid particles. i V 7 11. An apparatus in accordance with claim 5 wherein said heated surface iscomposed of a'metalin the group consisting of tungsten, iridium, platinum, tantalum, molybdenum, rhenium and gold.
12. An apparatus in accordance with claim 5 wherein a-circuit is provided for passing currentthroug h said wherein a furtherheated surface is included which is adapted to pyroliz e said particles thereby producing 'surface-ionizable atoms, molecules or radicals which thereafter strike said first-mentioned heated surface, where some of said atoms, molecules or radicals become surface-ionized,said ions being detected bysaid registration means.
14. An apparatus in accordance with claim 13 wherein the' temperature'of said-first-heated surface is higher than the'temperature of saidfurther heated surparticles therein and adapted to produce a burst of ions uponbeing struck by one of said particles in said vacuum chamber, and measuring means for performing the'function of registering said bursts of ions produced at said heated surface.
16. An apparatus in accordance with claim 15 wherein said measuring means includes an electron multiplier.
17. An apparatus in accordance with claim 15 wherein said measuring means comprises a pulse height discriminator adaptedto separate small pulses caused by surface-ionizable impurities in the material of the heated surface from more intense pulses caused by said burst of ions produced at said heated surface upon being struck by said particles.
wherein a circuit is provided for passing current through said heated surface for causing it to become heated.
21. An apparatus in accordance with claim 15, wherein said heated surface is composed of a metal in the group consisting of tungsten iridium, platinum, tantalum, molybdenum, rhenium and gold.
- 22. An apparatus in accordance with claim 15 wherein said measuring means includes means for separating ions according to their charge-to-mass ratio.
23. An apparatus in accordance with claim 22, wherein said means for separating'ions according to their charge-to-mass ratio is a quadrupole mass filter.
24. An apparatus for the detection of particles of dust, smoke and other macromolecules of 1,000 AMU or more which comprises a first vacuum chamber with a small aperture opening to the gas containing and surrounding said particles and a small opening to a second vacuum chamber, said aperture and said opening being aligned, means for continuouslyexhausting both said vacuum chambers in a difierential pumping arrangement, the capacity of said exhaust means and the sizes of said aperture and said opening being such that said first vacuum chamber is maintained at a pressure substantially less than atmospheric pressure and that said second vacuum chamber is maintained at a pressure substantially less than the pressure in said first vacuum chamber, a heated surface within said second vacuum chamber located to receive particles that pass in a substantially straight line through said aperture and said opening and enter the second chamber, said surface being adapted to produce a burst of ions upon being struck by one of said particles, and measuring means responsive to said burst of ions including means for registering burst of ions produced at said heated surface.
25. An apparatus in accordance with claim 24 wherein a circuit is provided for passing current through said heated surface for causing it to become heated.
26. An apparatus in accordance with claim 24 wherein said measuring means comprises a pluse height discriminator adaptedto separate small pulses caused bysurface-ionizable impurities in the material of the heated surface from more intense pulses caused by said burst of ions produced at said heatedsurface upon being struck by one of said particles. 27. An apparatus in accordance with claim 24 wherein said heated surface is composed of a metal in 16 the group consisting of tungsten, iridium, platinum, tantalum, molybdenum, rhenium and gold.
28. An'apparatus in accordance with claim 24 wherein said measuring means includes an electron multiplier. I
31. An apparatus in accordance with claim 29 wherein said vapor is composed of an alkali metal in the group consisting of lithium, sodium, potassium, rubidium and cesium. a
32. An apparatus in accordance with claim 29 wherein said vapor is composed of a compound containing halogen atoms in the group consisting of fluorine, chlorine, bromine and iodine, or molecules in the group consisting of fluorine, chlorine, bromine and iodine- V 33. An apparatus in accordance with claim 29 including means for producing said vapor in the form of an atomic or molecular beam across which said particles must pass. I a
34. An apparatus in accordance with claim 24 wherein a further heated surface is included which is adapted to pyrolize said particles producing surfaceionizable atoms, molecules or radicals which thereafter strike first-mentioned heated surface, where some of said atoms, molecules or radicals become surfaceionized, said ions being detected by said registration means. 1
35. An apparatus in accordance with claim 34 wherein the temperature of said first-heated surface is higher than the temperature of said further heated surface.
36. An apparatus in accordance with claim 24 wherein said measuring means includes means for separating ions according to their charge-to-mass ratio.
37. An apparatus in accordance with claim 36 wherein said means for separating ions according to their charge-to-mass ratio is a quadrupole mass filter.
38. An apparatus in accordance with claim 24 in which one or more vacuum chambers and means for exhausting said vacuum chambers are placed intermediate between said first vacuum chamber and said second vacuum chambers, in a difi'erential pumping arrangement.
39. An apparatus. in accordance with claim 38 wherein a circuit is provided for passing current through said heated surface for causing it to become heated.
42. An apparatus in accordance with claim 38 wherein said measuring means includes an electron multiplier.
43. An apparatus in accordance with claim 38 wherein a further heated surface is included which is adapted to pyrolize said particles thereby producing surface-ionizable atoms, molecules or radicals which thereafter strike said first-mentioned heated surface, where some of said atoms, molecules or radicals become surface-ionized, said ions being detected by said registration means.
44. An apparatus in accordance with claim 43 wherein the temperature of said first-heated surface is higher than the temperature of said further heated surface.
45. An apparatus in accordance with claim 38- 47. An apparatus in accordance with claim 38 wherein one of the vacuum chambers other than saidsecond vacuum chamber contains means for producing therein a vapor of surface-ionizable atoms or molecules.
48. An apparatus in accordance with claim 47, wherein said vapor is composed of an organic compound from which positive ions of organic radicals'or the negative ion CN" is produced by surface-ionization.
49. apparatus in accordance with claim 47 including means for producing said vapor in the form of an atomic-or molecular beam across which said particles bidium and cesium.

Claims (51)

1. A method of detecting a particle of dust, smoke and macromolecules of 1000 AMU or greater which comprises the steps of producing a burst of ions by inducing said particle to strike a heated surface and discerning the burst of ions so produced by the detection of its electrical charge.
2. A method in accordance with claim 1 wherein at least part of said burst of ions comprises surface-ionizable atoms or molecules occurring as constitutents of said particle including impurities therein.
3. A method in accordance with claim 1 wherein said particle is caused to pass through a vapor of surface-ionizable atoms or molecules prior to striking said heated surface, said surface-ionizable atoms or molecules attaching to said particle, at least part of said burst of ions comprising ions produced from said surface-ionizable atoms or molecules by surface ionization at the heated surface.
4. A method of determining the size of a particle of dust, smoke and other macromolecules of about 1,000 AMU or larger, of surface-ionizable atoms or molecules wherein some of said atoms or molecules are attached to said particle during its passage through the vapor in a number proportional to the size of said particle, causing said particle to strike a hot surface where said attached atoms or molecules are released and form a burst of ions, and detecting and measuring the electrical charge of said ions, the total amount of said electrical charge being proportional to the number of said attached surface-ionizable atoms or molecules and therefore indicative of the size of said particle.
5. An apparatus for the detection of individual gasborne particles of dust, smoke and other macromolecules of 1,000 AMU or more which comprises ionization means which includes a heated surface in fluid communication with the gas containing and surrounding said particles, said surface adapted to receive said particles thereon and to produce a burst of ions through surface-ionization upon receiving one of said particles; and measuring means for performing the function of responding to the electric charge of said burst of ions including means for performing the function of registering said charge.
6. An apparatus in accordance with claim 5 wherein said measuring means includes a second surface, said heated surface and said second surface being at different potentials whereby an electric field is created between said surfaces which is adapted to cause a burst of ions produced at said heated surface to be accelerated to said second surface.
7. An apparatus in accordance with claim 5, comprising means for creating an electric field wherein said heated surface is locateD in said electric field, said electric field being of such an intensity that the production of burst of ions at the heated surface initiates electrical breakdown of the carrier gas, said breakdown producing an additional number of ions, said ions being detected by said means.
8. An apparatus in accordance with claim 5 wherein said heated surface is located in a cylinder through which the gas containing and surrounding the particles, means being associated with said cylinder for inducing said gas to move at a speed sufficiently high that said particles are impact with high efficiency onto said heated surface.
9. An apparatus in accordance with claim 8 comprising means for creating an electric field wherein said heated surface is located in said electrical field, said electrical field being of such an intensity that the production of burst of ions at the heated surface initiates electrical breakdown of the carrier gas, said breakdown producing an additional number of ions, said ions being detected by said means.
10. An apparatus in accordance with claim 5 wherein said measuring means comprises a pulse height discriminator adapted to separate small pulses caused by surface-ionizable impurities in the material of the heated surface from more intense pulses caused by said ions produced at said heated surface upon being struck by said particles.
11. An apparatus in accordance with claim 5 wherein said heated surface is composed of a metal in the group consisting of tungsten, iridium, platinum, tantalum, molybdenum, rhenium and gold.
12. An apparatus in accordance with claim 5 wherein a circuit is provided for passing current through said heated surface for causing it to become heated.
13. An apparatus in accordance with claim 5, wherein a further heated surface is included which is adapted to pyrolize said particles thereby producing surface-ionizable atoms, molecules or radicals which thereafter strike said first-mentioned heated surface, where some of said atoms, molecules or radicals become surface-ionized, said ions being detected by said registration means.
14. An apparatus in accordance with claim 13 wherein the temperature of said first-heated surface is higher than the temperature of said further heated surface.
15. An apparatus for the detection of particles of dust, smoke and other macromolecules of 1,000 AMU or more which comprises a vacuum chamber with a small aperture opening to the gas containing and surrounding said particles, means for continuously exhausting said vacuum chamber, the capacity of said exhaust means and the size of said small aperture being such that the chamber is maintained at a pressure substantially less than atmospheric pressure, a heated surface within said vacuum chamber located to receive particles therein and adapted to produce a burst of ions upon being struck by one of said particles in said vacuum chamber, and measuring means for performing the function of registering said bursts of ions produced at said heated surface.
16. An apparatus in accordance with claim 15 wherein said measuring means includes an electron multiplier.
17. An apparatus in accordance with claim 15 wherein said measuring means comprises a pulse height discriminator adapted to separate small pulses caused by surface-ionizable impurities in the material of the heated surface from more intense pulses caused by said burst of ions produced at said heated surface upon being struck by said particles.
18. An apparatus in accordance with claim 15 wherein a further heated surface is included which is adapted to pyrolize said particles thereby producing surface-ionizable atoms, molecules or radicals which thereafter strike said first-mentioned heated surface, where some of said atoms, molecules or radicals become surface-ionized, said ions being detected by said registration means.
19. An apparatus in accordance with claim 18 wherein the temperature of said first-heated surface is higher than the temperature of said further heated surFace.
20. An apparatus in accordance with claim 15 wherein a circuit is provided for passing current through said heated surface for causing it to become heated.
21. An apparatus in accordance with claim 15, wherein said heated surface is composed of a metal in the group consisting of tungsten iridium, platinum, tantalum, molybdenum, rhenium and gold.
22. An apparatus in accordance with claim 15 wherein said measuring means includes means for separating ions according to their charge-to-mass ratio.
23. An apparatus in accordance with claim 22, wherein said means for separating ions according to their charge-to-mass ratio is a quadrupole mass filter.
24. An apparatus for the detection of particles of dust, smoke and other macromolecules of 1,000 AMU or more which comprises a first vacuum chamber with a small aperture opening to the gas containing and surrounding said particles and a small opening to a second vacuum chamber, said aperture and said opening being aligned, means for continuously exhausting both said vacuum chambers in a differential pumping arrangement, the capacity of said exhaust means and the sizes of said aperture and said opening being such that said first vacuum chamber is maintained at a pressure substantially less than atmospheric pressure and that said second vacuum chamber is maintained at a pressure substantially less than the pressure in said first vacuum chamber, a heated surface within said second vacuum chamber located to receive particles that pass in a substantially straight line through said aperture and said opening and enter the second chamber, said surface being adapted to produce a burst of ions upon being struck by one of said particles, and measuring means responsive to said burst of ions including means for registering burst of ions produced at said heated surface.
25. An apparatus in accordance with claim 24 wherein a circuit is provided for passing current through said heated surface for causing it to become heated.
26. An apparatus in accordance with claim 24 wherein said measuring means comprises a pluse height discriminator adapted to separate small pulses caused by surface-ionizable impurities in the material of the heated surface from more intense pulses caused by said burst of ions produced at said heated surface upon being struck by one of said particles.
27. An apparatus in accordance with claim 24 wherein said heated surface is composed of a metal in the group consisting of tungsten, iridium, platinum, tantalum, molybdenum, rhenium and gold.
28. An apparatus in accordance with claim 24 wherein said measuring means includes an electron multiplier.
29. An apparatus according to claim 24 wherein one of the vacuum chambers other than said second vacuum chamber contains means for producing therein a vapor of surface-ionizable atoms or molecules.
30. An apparatus in accordance with claim 29 wherein said vapor is composed of an organic compound from which positive ions of organic radicals or the negative ion CN is produced by surface-ionization.
31. An apparatus in accordance with claim 29 wherein said vapor is composed of an alkali metal in the group consisting of lithium, sodium, potassium, rubidium and cesium.
32. An apparatus in accordance with claim 29 wherein said vapor is composed of a compound containing halogen atoms in the group consisting of fluorine, chlorine, bromine and iodine, or molecules in the group consisting of fluorine, chlorine, bromine and iodine.
33. An apparatus in accordance with claim 29 including means for producing said vapor in the form of an atomic or molecular beam across which said particles must pass.
34. An apparatus in accordance with claim 24 wherein a further heated surface is included which is adapted to pyrolize said particles producing surface-ionizable atoms, molecules or radicals which thereafter strike first-mentioned heated surface, where some of said atoms, molecules or radicals become surface-ionized, said ions being detected bY said registration means.
35. An apparatus in accordance with claim 34 wherein the temperature of said first-heated surface is higher than the temperature of said further heated surface.
36. An apparatus in accordance with claim 24 wherein said measuring means includes means for separating ions according to their charge-to-mass ratio.
37. An apparatus in accordance with claim 36 wherein said means for separating ions according to their charge-to-mass ratio is a quadrupole mass filter.
38. An apparatus in accordance with claim 24 in which one or more vacuum chambers and means for exhausting said vacuum chambers are placed intermediate between said first vacuum chamber and said second vacuum chambers, in a differential pumping arrangement.
39. An apparatus in accordance with claim 38 wherein said measuring means comprises a pulse height discriminator adapted to separate small pulses caused by surface-ionizable impurities in the material of the heated surface from more intense pulses caused by said burst of ions produced at said heated surface upon being struck by one of said particles.
40. An apparatus in accordance with claim 38 wherein said heated surface is composed of a metal in the group consisting of tungsten, iridium, platinum, tantalum, molybdenum, rhenium and gold.
41. An apparatus in accordance with claim 38 wherein a circuit is provided for passing current through said heated surface for causing it to become heated.
42. An apparatus in accordance with claim 38 wherein said measuring means includes an electron multiplier.
43. An apparatus in accordance with claim 38 wherein a further heated surface is included which is adapted to pyrolize said particles thereby producing surface-ionizable atoms, molecules or radicals which thereafter strike said first-mentioned heated surface, where some of said atoms, molecules or radicals become surface-ionized, said ions being detected by said registration means.
44. An apparatus in accordance with claim 43 wherein the temperature of said first-heated surface is higher than the temperature of said further heated surface.
45. An apparatus in accordance with claim 38 wherein said measuring means includes means for separating ions according to their charge-to-mass ratio.
46. An apparatus in accordance with claim 45 wherein said means for separating ions according to their charge-to-mass ratio is a quadrupole mass filter.
47. An apparatus in accordance with claim 38 wherein one of the vacuum chambers other than said second vacuum chamber contains means for producing therein a vapor of surface-ionizable atoms or molecules.
48. An apparatus in accordance with claim 47, wherein said vapor is composed of an organic compound from which positive ions of organic radicals or the negative ion CN is produced by surface-ionization.
49. An apparatus in accordance with claim 47 including means for producing said vapor in the form of an atomic or molecular beam across which said particles must pass.
50. An apparatus in accordance with claim 47 wherein said vapor is composed of molecules or compounds containing halogen atoms in the group consisting of fluorine, chlorine, bromine and iodine, or molecules of the group consisting of fluorine, chlorine, bromine, and iodine.
51. An apparatus in accordance with claim 47 wherein said vapor is composed of an alkali metal in the group consisting of lithium, sodium, potassium, rubidium and cesium.
US00319442A 1972-12-29 1972-12-29 Methods and apparatus for detection of very small particulate matter and macromolecules Expired - Lifetime US3808433A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US00319442A US3808433A (en) 1972-12-29 1972-12-29 Methods and apparatus for detection of very small particulate matter and macromolecules
US05/465,163 US3973121A (en) 1972-12-29 1974-04-29 Detector for heavy ions following mass analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00319442A US3808433A (en) 1972-12-29 1972-12-29 Methods and apparatus for detection of very small particulate matter and macromolecules

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US46513674A Continuation-In-Part 1974-04-29 1974-04-29
US05/465,163 Continuation-In-Part US3973121A (en) 1972-12-29 1974-04-29 Detector for heavy ions following mass analysis

Publications (1)

Publication Number Publication Date
US3808433A true US3808433A (en) 1974-04-30

Family

ID=23242254

Family Applications (1)

Application Number Title Priority Date Filing Date
US00319442A Expired - Lifetime US3808433A (en) 1972-12-29 1972-12-29 Methods and apparatus for detection of very small particulate matter and macromolecules

Country Status (1)

Country Link
US (1) US3808433A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3973121A (en) * 1972-12-29 1976-08-03 Fite Wade L Detector for heavy ions following mass analysis
FR2337885A1 (en) * 1976-01-08 1977-08-05 Westinghouse Electric Corp ALKALINE IONIZATION DETECTOR
US4095171A (en) * 1976-04-07 1978-06-13 Westinghouse Electric Corp. Alkali metal ionization detector
US4117396A (en) * 1974-01-21 1978-09-26 Westinghouse Electric Corp. Sensor for thermally ionizable particles and/or vapors
US4134290A (en) * 1977-09-06 1979-01-16 The United States Of America As Represented By The United States Department Of Energy Technique for detecting liquid metal leaks
US4151414A (en) * 1974-04-29 1979-04-24 Extranuclear Laboratories, Inc. Method and apparatus for detection of extremely small particulate matter and vapors
US4209693A (en) * 1974-04-29 1980-06-24 Extranuclear Laboratories, Inc. Surface ionization monitor for particulates and method
US4383171A (en) * 1980-11-17 1983-05-10 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Particle analyzing method and apparatus
US4980557A (en) * 1988-06-06 1990-12-25 Extrel Corporation Method and apparatus surface ionization particulate detectors
GB2281627A (en) * 1993-09-03 1995-03-08 Scintrex Ltd Surface ionization detector for detecting trace amounts of organic molecules
EP0787985A1 (en) * 1996-02-03 1997-08-06 Cerberus Ag Method and device for detecting organic vapors and aerosols
US5981955A (en) * 1995-12-07 1999-11-09 The Regents Of The University Of California Isotope separation using a high field source and improved collectors
US6040574A (en) * 1998-03-05 2000-03-21 Aerodyne Research, Inc. Atmospheric-particle analyzer
US7214949B2 (en) * 2004-11-12 2007-05-08 Thorrn Micro Technologies, Inc. Ion generation by the temporal control of gaseous dielectric breakdown
DE102015016820A1 (en) * 2015-12-22 2017-06-22 Testo SE & Co. KGaA Particles measuring arrangement

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3300640A (en) * 1964-05-13 1967-01-24 Harold P Eubank Means for measuring plasma density by resonant charge transfer with a beam of neutral particles
US3336475A (en) * 1964-02-05 1967-08-15 Electro Optical Systems Inc Device for forming negative ions from iodine gas and a lanthanum boride contact ionizer surface
US3433944A (en) * 1966-10-11 1969-03-18 Frequency Control Corp Detector for molecular or atomic beam apparatus
US3484603A (en) * 1968-04-29 1969-12-16 Canadian Patents Dev Apparatus and method of identifying and selecting particles having a predetermined level of angular momentum

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3336475A (en) * 1964-02-05 1967-08-15 Electro Optical Systems Inc Device for forming negative ions from iodine gas and a lanthanum boride contact ionizer surface
US3300640A (en) * 1964-05-13 1967-01-24 Harold P Eubank Means for measuring plasma density by resonant charge transfer with a beam of neutral particles
US3433944A (en) * 1966-10-11 1969-03-18 Frequency Control Corp Detector for molecular or atomic beam apparatus
US3484603A (en) * 1968-04-29 1969-12-16 Canadian Patents Dev Apparatus and method of identifying and selecting particles having a predetermined level of angular momentum

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3973121A (en) * 1972-12-29 1976-08-03 Fite Wade L Detector for heavy ions following mass analysis
US4117396A (en) * 1974-01-21 1978-09-26 Westinghouse Electric Corp. Sensor for thermally ionizable particles and/or vapors
US4151414A (en) * 1974-04-29 1979-04-24 Extranuclear Laboratories, Inc. Method and apparatus for detection of extremely small particulate matter and vapors
US4209693A (en) * 1974-04-29 1980-06-24 Extranuclear Laboratories, Inc. Surface ionization monitor for particulates and method
FR2337885A1 (en) * 1976-01-08 1977-08-05 Westinghouse Electric Corp ALKALINE IONIZATION DETECTOR
US4095171A (en) * 1976-04-07 1978-06-13 Westinghouse Electric Corp. Alkali metal ionization detector
US4134290A (en) * 1977-09-06 1979-01-16 The United States Of America As Represented By The United States Department Of Energy Technique for detecting liquid metal leaks
US4383171A (en) * 1980-11-17 1983-05-10 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Particle analyzing method and apparatus
US4980557A (en) * 1988-06-06 1990-12-25 Extrel Corporation Method and apparatus surface ionization particulate detectors
GB2281627A (en) * 1993-09-03 1995-03-08 Scintrex Ltd Surface ionization detector for detecting trace amounts of organic molecules
US5981955A (en) * 1995-12-07 1999-11-09 The Regents Of The University Of California Isotope separation using a high field source and improved collectors
EP0787985A1 (en) * 1996-02-03 1997-08-06 Cerberus Ag Method and device for detecting organic vapors and aerosols
US5874314A (en) * 1996-02-03 1999-02-23 Cerberus Ag Method for detecting organic vapors and aerosols
US6040574A (en) * 1998-03-05 2000-03-21 Aerodyne Research, Inc. Atmospheric-particle analyzer
US7214949B2 (en) * 2004-11-12 2007-05-08 Thorrn Micro Technologies, Inc. Ion generation by the temporal control of gaseous dielectric breakdown
DE102015016820A1 (en) * 2015-12-22 2017-06-22 Testo SE & Co. KGaA Particles measuring arrangement

Similar Documents

Publication Publication Date Title
US3808433A (en) Methods and apparatus for detection of very small particulate matter and macromolecules
Noble et al. Real‐time single particle mass spectrometry: A historical review of a quarter century of the chemical analysis of aerosols
US3621240A (en) Apparatus and methods for detecting and identifying trace gases
US4772794A (en) Apparatus for the detection of airborne low volatility vapors
US20020134933A1 (en) Enhancements to ion mobility spectrometers
US3742213A (en) Apparatus and methods for detecting, separating, concentrating and measuring electronegative trace vapors
US5654543A (en) Mass spectrometer and related method
US20150279642A1 (en) Apparatus for sensing ionic current
JP2671657B2 (en) Polymer sensor
US3973121A (en) Detector for heavy ions following mass analysis
US2612607A (en) Mass spectrometer
US3992626A (en) Test instrument
US6943343B2 (en) Chemical agent detection apparatus and method
US2769911A (en) Mass spectrometer for analysing substances or indicating a small amount of a determined substance
US3318149A (en) Gas chromatography system
Sinha et al. Characterization of bacteria by particle beam mass spectrometry
US3740149A (en) Method and apparatus for measuring size distribution of particles using a three-dimensional alternating current electric field
Moore Dissociation of Solid SrO by Impact of Slow Electrons
Breskin et al. Electric field effects on the quantum efficiency of CsI photocathodes in gas media
US20060071163A1 (en) Ion counter
US4137453A (en) Methods and apparatus for improving electron capture detectors by collection of ions
Sharpe et al. The electronic catalyst: dissociation of chlorinated hydrocarbons by metal-insulator-metal electron emitters
Payne The Rosenblum Spark Counter: A New Counter for the Detection of Fast Ionizing Particles
US2786144A (en) Method for detecting hydrocarbons in soil gases
Balakin et al. Multichannel extraction of charged species from liquid with use of track membranes