US3805644A - Earth drilling machine - Google Patents

Earth drilling machine Download PDF

Info

Publication number
US3805644A
US3805644A US00239466A US23946672A US3805644A US 3805644 A US3805644 A US 3805644A US 00239466 A US00239466 A US 00239466A US 23946672 A US23946672 A US 23946672A US 3805644 A US3805644 A US 3805644A
Authority
US
United States
Prior art keywords
wrench
jaws
drill pipe
drill
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00239466A
Inventor
W Porter
H Klein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robbins Co
ROBBINS J AND ASS Inc
Original Assignee
Robbins Co
ROBBINS J AND ASS Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robbins Co, ROBBINS J AND ASS Inc filed Critical Robbins Co
Priority to US00239466A priority Critical patent/US3805644A/en
Application granted granted Critical
Publication of US3805644A publication Critical patent/US3805644A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B19/00Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables
    • E21B19/16Connecting or disconnecting pipe couplings or joints
    • E21B19/167Connecting or disconnecting pipe couplings or joints using a wrench adapted to engage a non circular section of pipe, e.g. a section with flats or splines
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B3/00Rotary drilling
    • E21B3/02Surface drives for rotary drilling
    • E21B3/022Top drives

Definitions

  • a portion of the traveling frame projects laterally of the drive columns and supports two drive motors, two reducing gearing assemblies, a collector gearing assembly and drive head means.
  • the traveling frame and equipment carried thereby are moved up and down by triangularly arranged thrust ram means, each comprising a downwardly opening, upwardly projecting, piston chamber having a lower mounting portion originally secured to the travelingframe and a downwardly directed piston having a lower mounting portion secured to the base frame.
  • the drive head includes a breakout wrench having a plurality of laterally swinging wrench jaws moved in and out by linear fluid motors.
  • the wrench jaws have radially inwardly directed wrench portions which are like spanner wrenches.
  • the free end of each wrench jaw makes abutting contact with a shank portion of the adjacent wrench jaw, so that in use the wrench jaws brace each other and form a compression ring surrounding the engaged drill pipe.
  • the drill head includes a tool joint component which is movable axially a limited amount relative to the traveling cross frame.
  • a connector rod connects this tool joint component to the piston of a linear fluid motor supported axially above the drill head. Fluid is introduced into themotor below the piston for the purpose of counterbalancing the weight of the drill head and any drill pipe connected thereto.
  • a holding wrench is located below the turning wrench. It comprises a plurality of wrench jaws pivotally mounted for lateral swinging movement, a surrounding control ring, and individual links interconnected between each wrench jaw and the control ring.
  • the control ring is rotated by linear fluid motors. Rotation in one direction causes the links to move the wrench jaws radially inwardly into a position of engagement with holding wrench receiving portions on drill pipe, and movement in the opposite direction causes the links to move the wrench jaws radially outwardly in space relationship from the drill pipe.
  • the present invention relates to earth boring or drilling machines. It particularly relates to mechanism for counterbalancing the weight of the drill stem and other rotary components, to turning and holding breakout wrenches, and to mechanism for supporting and vertically moving the rotary drilling equipment.
  • the present invention relates to an earth boring or drilling machine of the same basic type as disclosed in U.S. Pat..No. 3,220,494, granted on Nov. 30, 1965 to Robert E. Cannon et al, in U.S. Pat. No. 3,454,114, granted July 8, 1969 to Leland B. Poage, in U.S. Pat. No. 3,490,546, granted Jan. 20, 1970 to John S. Hattrup et al, and in U.S. Pat. No. 3,463,247, granted Aug. 26, 1969 to Harold T. Klein.
  • the machine of the present invention is a precision earth drilling machine which includes rotary drilling equipment mounted for precision movement up -and-down along a plurality of elongated base supported guide columns by traveling cross frame which is hydraulically raised and lowered.
  • the machine of the present invention is a larger capacity machine, adapted for delivering much higher torque than any of the machines shown by the aforementioned patents.
  • Drilling machines of the present invention are characterized by high torque breakout apparatus for the sectional drill stem which is used with the machine, and by drilling equipment which includes hydraulic means for counterbalancing the weight of the drill stem and certain components of the drilling equipment.
  • the drill stem weight counterbalancing equipment of the present invention includes a linear fluid motor which is mounted on a frame portion of the drilling machine substantially in line with the drilling axis.
  • a tension member is interconnected between the piston of such motor and a floating drill head which is threadable to the sections of drill pipe.
  • This drill head and a power drive mechanism therefor are carried together on a traveling cross frame.
  • the drill head is surrounded by a remotely controllable breakout wrench adapted to grip each section of drill pipe at a location axially inwardly of the drill pipe from its threaded connection with the drill head.
  • the drilling equipment also includes a holding wrench located at a wrench table spaced axially from the drill head on the drilling axis.
  • the pipe section second from the drill head is held by this holding wrench mechanism andthe drill head is rotated in reverse by breaking, i.e. loosening, the threaded joint between the first and second sections of pipe. If the threaded joint between the first section of pipe and the drill head breaks first, the breakout wrench is activated to engage the first section of pipe and the drill head is again reversed for loosening the threaded connection between the first two sections.
  • the linear fluid motor-automatically moves the floating drill head axially in response to thread travel during the breakout procedure.
  • the present invention relates to an improved high torque breakout wrench and an improved high torque holding wrench. It also relates to improvements in the hydraulic thrust ram system used for raising and lowering the traveling cross frame which carries the rotary drilling equipment.
  • FIG. 1 is an isometric view taken from above and looking towards one side and the front of a drilling machine constructed according to the present invention, showing the drilling apparatus in a partially raised position;
  • FIG. 2 is a view like FIG. 1, but showing the'drilling apparatus in a lowered position;
  • FIG. 3 is a fragmentary, somewhat schematic front elevational view of breakout mechanism for the drill pipe and a fluid motor type counterbalancing system for the drill head and drill pipe; 7
  • FIG. 4 is an enlarged scale view partially in section and partially in elevation of the breakout apparatus shown by FIG. 3', with both the holding and driving wrenches in retracted positions;
  • FIG. 5 is a view similar to FIG. 4, butshowing the holding wrench engaging the second section of pipe from the drill head and the drill head uncoupled from the tool joint at the upper end of the upper drill stem section;
  • FIG. 6 is a view similar to FIGS. 4 and 5, but showing the turning wrench engaged with the upper section of drill pipe, and the threaded tool jointat the lower end of the upper length of pipe decoupled;
  • FIG. 7 is a view similar to FIGS. 4-6, but typifying a situation wherein on reverse rotation of the drill head,
  • the lower threaded joint breaks first, such view showing the lower joint completely coupled
  • FIG. 8 is an enlarged scale elevational view, with some parts in section, of the counterbalancing fluid motor and an internal parts position indicating mechanism associated therewith;
  • FIG. 9 is a cross-sectional view taken through the drill head above the turning wrench, substantially along line 9--9 of FIG. 3;
  • FIG. is a cross-sectional view taken through the machine immediately above the holding wrench, substantially at the level indicated by line 10-40 in FIG.
  • FIG. 11 is a view partially in elevation and partially in longitudinal section of a length of drill pipe
  • FIG. 12 is a cross-sectional view taken through the recesses formed in the drill pipe for receiving portions of the turning wrench jaws;
  • FIG. 13 is a cross-sectional view taken through the holding wrench flats, substantially along line 13--13 of FIG. 11.
  • the illustrated embodiment is shown to comprise a lower or base frame assembly 10 including a base plate 12 and a generally U-shaped main frame 14 upstanding from the plate 12.
  • Frame 14 includes upstanding wall portions forming a pair of sockets 16 which occupy near corner positions on the plate 12.
  • the lower end portions of a pair of parallel guide columns 18 are received in the sockets 16 and are rigidly secured to the base frame thereby.
  • a fixed cross frame 20 rigidly interconnects the upper ends of the guide columns 18.
  • traveling cross frame 22 includes vertically spaced apartupper and lower guide sleeves 24, 26 which surroundingly engage the columns 18.
  • a lower portion of the traveling cross frame 22 extends laterally from the sleeves 26 into a position over the base frame assembly 10. It includes wall means 28 forming a housing for a bearing assembly (FIG. 3).
  • a second housing 30 extends laterally from the upper guide sleeves 24 into a position above the housing 28. Housings 28, 30, sleeves 24, 26 and the interconnecting parts of traveling cross frame 22 are structurally integrated into a single rigid frame assembly.
  • the upper housing 30 contains collector gearing 32 having a pair of inputs 34 and a single output 36.
  • a pair of drive motor assemblies are bolted to the housing 30, and each has an output shaft which is coupled to one of theinputs of the collector gearing.
  • the motor assemblies comprise an electric motor 38 and a planetary type reduction transmission 40, such as the type shown'b'y FIG. 7 of the aforementioned US. Pat. No. 3,454,114.
  • Traveling cross frame 22 is raised and lowered by a plurality of thrust rams 41.
  • each thrust ram 41 comprises a hollow piston chamber or cylinder, designated 42, and a piston 44.
  • the closed ends of the piston housings 42 are directed upwardly and the open ends are directed downwardly.
  • Mounting sockets 46 of split form receive the lower end portions of the housings 42 and firmly secure them to the traveling cross frame 22.
  • Pistons ,44 include upwardly directed head portions (not shown) and lower end mounting portions 48 which are secured to the lower frame 10. Mounting portions 48 are received between vertical plate porrams 41, including the means for supplying and exhausting a motive fluid to and from them, will not be specifically described herein. Rather, reference is made to US. Pat. No. 3,454,114, the contents of which are expressly incorporated herein by this reference.
  • the guide columns 18 and two of the thrust rams 41 are spaced apart in a quadrangular pattern, with the guide columns18 being relatively close to corner portions of the base frame assembly 10 on one side of such base frame 10 and the two thrust rams 41 being in the corner portions on the other side of base frame assembly 10.
  • the third thrust ram 41 is located generally between the guide columns 18 and forms a triangular pattern with the other two thrust rams 41.
  • the drilling axis is located substantially at the center of forces within the triangle.
  • the upper ends of the cylinders 42 are interconnected by a generally triangular shaped traveling head frame 52.
  • the output member 36 of the collector gearing 32 is shown to be drivingly connected to a rotary drive housing 54 supported for rotation on the traveling cross frame 22 by upper and lower sets of combination bearings 56, 58.
  • the expression combination bearing is used herein to mean a bearing which carries both axial and radial loads.
  • a drive head is received in a lower portion of the rotary housing 54.
  • a plate 62 having axial splines on its periphery is connected to the upper end of drill head 60. These mesh with corresponding internal axial splines 64 carried by the inner side wall of housing 54.
  • the peripheral splines on plate 62 and the splines 64 serve to drivingly connect the housing 54 to the drill head 60 for rotational drive but permits the drive head 60 to travel axially a limited amount relative to the housing 54.
  • a support stem 66 is rigidly connected at its lower end to the drill head 60 and'extends upwardly therefrom.
  • Stem 66 includes a swivel joint at 68.
  • the swivel joint 68 connects the upper and lower portions of the stem 66 together so that they move togetheraxially.
  • the portion of stem 66 below swivel joint 68 rotates with the drill head 60.
  • the portion of the support stem 66 above swivel 68 does not rotate.
  • a piston rod 70 rigidly connects the non-rotating portion of support stem 66 with a piston head 72.
  • Piston head 72 is mounted for linear up and down travel within a piston housing or cylinder 74 of a linear motor 76 which is mounted on top of the traveling head frame 52.
  • the primary function of linear motor 76 is for counterbalancing the weight of the drill head assembly and the drill stem connected thereto. However, it also plays a part in the drill stem breakout technique of the present invention, as will hereinafter be described in
  • Drill head 60 includes a drilling fluid passageway 78 tends from the drill head 60 upwardly through support stem 68, the swivel coupler 68, and an upper branch part 80 of support stem 66.
  • the branch part 80 extends upwardly through an opening 82 in plate 54. Opening 82 is sufficiently large that the branch part 80 is free to move axially up and down during axial travel of the support stem 66.
  • a radial support arm 84 extends laterally from the piston 70 below head frame 52.
  • the outer end of arm 84 is connected to the lower end of a movable core 86 mounted for axial travel within the tubular housing 90 of a variable voltage transformer 88.
  • Housing 90 includes an electrical coil 92 which surrounds the path of rod 86. Change in the axial position of core 86 changes the voltage output of transformer 88. Since core 86 is structurally coupled to the drill head 60 through the piston rod 70 and the support stem 66, the change in resistance of variable voltage transformer 88 gives an indication of the internal position of the drill head 60 and the other internal components connected thereto.
  • Variable voltage transformer 88 may be in an electrical circuit (not shown) which includes a direct read out device. In some installations a variable resistor may be used in place of the variable voltage transformer.
  • the lower end of drill head 60 is a tool joint component 94 connectible to a complementary tool joint component 96 at the upper end of each section 98 of the drill stem 100.
  • tool joint component gti a t h readed box and tool joint component 9 6 is a threaded $n
  • the illustrated form of drill pipe 98 is of composite form. It is shown to comprise a double box major section 102 and a double pin minor section or sub 104. At least the box type tool joint component 106 at the lower end of section 102 has threads which complement and will engage the threads of each pin component 96.
  • each length of drill pipe 98 includes a triangular pattern of axially elongated recesses 108. As shown by FIG. 12, shouldered portions 1 are located circumferentially between the recesses 108.
  • the recesses 108 are provided for receiving wrench jaw portions of a breakout wrench.
  • a second set of recesses or flats are provided on each length 98 axially inwardly of the recesses 108 and are designated 112.
  • the base surfaces of recesses 112 are preferably flat chord surfaces.
  • the drill head assembly includes an axial lower extension 114 of drive housing 44 which carries a breakout wrench mechanism 116, hereinafter sometimes referred to as the turning wrench.
  • the turning wrench 116 comprises a drum like carrier 118 which is rigidly secured to and is rotated by the extension 114.
  • a plurality of short posts 120 project downwardly from the lower end of carrier 118.
  • An open centered plate 122 is secured to the posts 120, such as by bolts 124.
  • Three circumferentially spaced apart wrench jaws 126 are pivotally mounted on the carrier 118 for swinging movement radially in and out relative to the position of the drill stem 100.
  • Each jaw 126 includes an outer end portion which is received between a pair of the posts 120.
  • Pivot pins 128 fit through openings formed in the outer end portions of the wrench jaws 126 and the wrench jaws 126 move relative to the pins 128.
  • the pivot pins 128 extend between the plate 122 and the carrier 118.
  • a linear fluid motor 130 is associated with each wrench jaw 126 for moving the same into and out from its wrenching positions.
  • the linear motors 130 are interconnected between connectors 132 on the wrench jaws 126, near the free ends thereof, and connectors 134 secured to the carrier 118. Pivotal connections are provided at 136 and 138 so that extension and retraction of the pistons 140 in motors 130 will cause the wrench jaws 126 to swing laterally of the drill pipe axis 140 between the wrenching positions depicted by solid lines in FIG. 9 and the retracted or inactive positions depicted by broken lines in FIG. 9 with respect to the upper wrench jaw 126 only.
  • the wrench jaws 126 are of the spanner wrench type. Each includes a radially inwardly directed recess 142 which is bounded at each of its circumferential ends by a generally radially extending wrench surface, designated 144, 146 in FIG. 9.
  • Each wrench jaw 126 has an inner shank portion 148 which is in tight load transferring engagement with an.
  • FIG. 9 the turning wrench 116 is shown in the process of being rotated counterclockwise.
  • the wrench surfaces 146 engage radial surfaces on the wrench sections 110.
  • the loading on the wrench jaws 126 is such that the wrench jaws want to swing further inwardly. This means that compressive loads are transferred from each wrench jaw 126 to the next where contact is made at surfaces 148, 150; the wrench jaws 126 are mutually self-bracing. Together the wrench jaws 126 cooperate to define a compression ring which surrounds the engaged portion of the drill pipe.
  • the base member 12 carries a holding wrench assembly 152 in axial alignment with the turning wrench 116.
  • An Opening 154 is provided in table 12 in axial alignment with the opening 156 in turning wrench plate 122.
  • Three wrench jaws 158 are pivotally connected to the table 12 by pivot pins 160.
  • Wrench surfaces 162 are formed on radial inner portions of the wrench jaws 158. In the illustrated embodiment the surfaces 162 are essentially flat surfaces and when the wrench 152 isin its operative position the surfaces 162 form a triangular pattern which corresponds to the triangular pattern of the pipe surfaces 112. In this operative position the wrench jaw surfaces 162 are contiguous the pipe surfaces 112.
  • the wrench jaws 158 are surrounded by a control ring 164.
  • the ring 164 includes three radially inwardly extending enlarged portions 166 in which are formed recesses 168 for receiving the rounded end portions of control links 170. Similar recesses 172 are formed in radial outer portions of the wrench jaws 158 to receive the opposite rounded ends of the control links 170.
  • the guide means for the control ring 164 includes three brace blocks 174. These brace blocks 174 are circumferentially spaced equal distances apart and are located such that when the turning wrench 152 is in its operative position they are radially aligned with the control links and with the mating pairs of wrench surfaces 162, 112. In such operative position the control links 170 are substantially radially oriented.
  • a pair of linear fluid motors 176 are interconnected between the table 12 and the control ring 160. Pivotal connections 178, 180 are provided at the opposite ends of the motors 176 so that there is freedom of movement of the motors 176 as the control ring 164 turns.
  • the motors 176 are operated in unison to rotate the ring 164.
  • the left side motor 176 is extended, the right side motor 176 is retracted, and the wrench jaws 158 are swung inwardly into holding engagement with the drill pipe.
  • the control links 170 are radially disposed so that the radially outwardly directed forces imposed on them by the drill pipe 100 through the wrench jaws 158 is transmitted by the control links 170 to the brace blocks 174 which are rigidly secured to the table 12.
  • the control ring 164 does not have to by itself carry the loads imposed on the wrench jaws 158 during the breakout or joint loosening operation.
  • the drill head 60 is then reversed, i.e. rotated in a tool joint loosening direction, for the purpose of randomly loosening one of the tool joints at the opposite ends of the upper section 98.
  • the threaded connection between the major and minor parts 102, 104 of the composite section 98 are secured against separation by an epoxy bonding agent or by a different thread design.
  • F IG. 5 relates to the situation when the upper tool joint loosens first.
  • the upper section 98 is shown to be physically separated from the drill head 60.
  • the tool joint components 94, 96 are not completed separated, but rather the joint is merely loosened.
  • the fluid motors 130 are operated to move the turning wrench jaws 126 into engagement with the shouldered portions 110 between the recesses 108 (FIG. 9).
  • the drill head 60 is again rotated in the thread loosening direction.
  • the portion of the drill stem 100 below the upper section 98 is still retained by the holding wrench 152.
  • the wrench jaws 126 transmit torque from the drill head 60 to the upper section 98, resulting in a loosening of the threads at the lower tool joint 106, 96.
  • the upper section 98 can be easily unscrewed and removed from the drill stem 100.
  • the drill head 60 is lowered and coupled to the next pipe section by loosely screwing together its box component 94 and the upstanding pin 96 of the next section 98.
  • the drill head 60 is then raised, with the weight of the drill stern 100 being carried by the loosely engaged threads of the loosely made-up tool joint, until such next section is in a position for removal wholly above the'holding wrench table 12, and the holding wrench receiving depressions 112 of the following section 98 are at the holding wrench station of the table 12.
  • the breakout wrench 116 is again operated to engage the new upper section 98, and the drill head 60 is rotated in reverse as before to loosen the threaded tool joint at the wrench table 12. This sequence of steps is repeated with the subsequent sections until all sections of the drill stem 100 have been removed from the drill hole.
  • the recesses 108 are axially elongated and the turning wrench jaws 126 are positioned therein such that there is always axial clearance above and below the wrench jaws 126. This is important because the weight of the drill stem 100 must be carried by the linear motor 76and none of it by the wrench jaws 126.
  • an added stage must be added to the technique in order to effect loosening of the tool joint between the upper section 98 and the drill head 60.
  • This stage involves maintaining the loosened lower tool joint components coupled, so that their threads may carry the weight of the drill stem 100, then retracting the holding wrench jaws 158, and then lowering the drill head 60, with the drill stem 100 attached, downwardly until the holding wrench receiving depressions 1 12 of the upper section 98 are at the holding wrench station of table 12.
  • the holding wrench jaws 158 are then moved inwardly and used to support the drill stem 100 and prevent its rotation.
  • the drill head 60 is then rotated in the joint loosening direction until the threaded tool joint 94, 96 is loosened. When this happens the joint components are maintained loosely coupled so that the threads can carry the weight of the drill stem 100.
  • the drive head 60 is then raised to locate the upper pipe section 98 in a proper position for removal.
  • the holding wrench 152 is reinserted on the second pipe section 98 and the first section 98, now having both of its tool joints loosened, is easily unscrewed from the second section 98 and from the drill head 60, and is then removed from the drill stem 100.
  • a drill pipe wrench comprising:
  • each control link pivotally connecting one end of each control link to its wrench jaw at a location on the wrench jaw spaced circumferentially from the pivotal connection between such wrench jaw and the support means
  • said wrench jaws having inner surface portions thereon configured to engage external portions of a drill pipe element located in said drill pipe path when the wrench jaws are swung inwardly,
  • fixed abutment means is located immediately radially outwardly of the ring in alignment with each link, to back up the ring and receive the loading imposed on the ring by the drill pipe during use of the wrench through the wrench jaws and the control links.
  • the drill pipe wrench of claim 1 comprising three wrench jaws which are equally spaced apart, with the inner surface portions of the wrench jaws together forming a generally triangular pattern.
  • each control link has a rounded head portion at each of its ends, and wherein the control ring and the wrench jaws have rounded complementary sockets for receiving the rounded heads of the control links.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)

Abstract

A traveling support frame is mounted for up and down travel by two parallel guide columns secured at their lower ends to a base frame. A portion of the traveling frame projects laterally of the drive columns and supports two drive motors, two reducing gearing assemblies, a collector gearing assembly and drive head means. The traveling frame and equipment carried thereby are moved up and down by triangularly arranged thrust ram means, each comprising a downwardly opening, upwardly projecting, piston chamber having a lower mounting portion originally secured to the traveling frame and a downwardly directed piston having a lower mounting portion secured to the base frame. The drive head includes a breakout wrench having a plurality of laterally swinging wrench jaws moved in and out by linear fluid motors. The wrench jaws have radially inwardly directed wrench portions which are like spanner wrenches. The free end of each wrench jaw makes abutting contact with a shank portion of the adjacent wrench jaw, so that in use the wrench jaws brace each other and form a compression ring surrounding the engaged drill pipe. The drill head includes a tool joint component which is movable axially a limited amount relative to the traveling cross frame. A connector rod connects this tool joint component to the piston of a linear fluid motor supported axially above the drill head. Fluid is introduced into the motor below the piston for the purpose of counterbalancing the weight of the drill head and any drill pipe connected thereto. A holding wrench is located below the turning wrench. It comprises a plurality of wrench jaws pivotally mounted for lateral swinging movement, a surrounding control ring, and individual links interconnected between each wrench jaw and the control ring. The control ring is rotated by linear fluid motors. Rotation in one direction causes the links to move the wrench jaws radially inwardly into a position of engagement with holding wrench receiving portions on drill pipe, and movement in the opposite direction causes the links to move the wrench jaws radially outwardly in space relationship from the drill pipe.

Description

United States Patent [m Porter 1 I II 3,805,644
1 1 Apr. 23, 1974 1 EARTH DRILLING MACHINE [75] Inventor: Wilson B.Porter,Seattle,HaroldT.
Klein, Bellevue, both of Wash.
7 [73] Assignees: James S. Robbins and A ssoc ia te s, I
Inc., by said Porter; The Robbins Company, both of Seattle, Wash. by said Klein 22 Filed: Mar. 30, 1972 2] Appl. No.: 239,466-
Related US. Application Data [62] Division of Ser. No. 75,020, Sept. 24, 1970, Pat. No.
[52] US. Cl. 81/57.2, 81/5733 [51] Int. Cl B25b 17/00, B25b 13/50 [58] Field of Search 81/57.2, 57.18, 57.33,
[56] References Cited UNITED STATES PATENTS 2,263,267 11/1941 Franklin 8l/57.35 X 1,812,816 6/1931 Weaver.... 8l/57.39 3,203,284 8/1965 N0rrick.... 81/573 X 3,689,060 9/1972 Hensley 8l/57.2 2,650,070 8/1953 Lundeen 81/57.l8 2,980,434 4/1961 Hoffman 279/106 Primary Examiner.lames L. Jones, Jr. I Attorney, Agent, or FirmGraybeal, Barnard, Uhlir & Hughes [57] ABSTRACT A traveling support frame is mounted for up and down travel by two parallel guide columns secured at their lower ends to a base frame. A portion of the traveling frame projects laterally of the drive columns and supports two drive motors, two reducing gearing assemblies, a collector gearing assembly and drive head means. The traveling frame and equipment carried thereby are moved up and down by triangularly arranged thrust ram means, each comprising a downwardly opening, upwardly projecting, piston chamber having a lower mounting portion originally secured to the travelingframe and a downwardly directed piston having a lower mounting portion secured to the base frame.
The drive head includes a breakout wrench having a plurality of laterally swinging wrench jaws moved in and out by linear fluid motors. The wrench jaws have radially inwardly directed wrench portions which are like spanner wrenches. The free end of each wrench jaw makes abutting contact with a shank portion of the adjacent wrench jaw, so that in use the wrench jaws brace each other and form a compression ring surrounding the engaged drill pipe.
The drill head includes a tool joint component which is movable axially a limited amount relative to the traveling cross frame. A connector rod connects this tool joint component to the piston of a linear fluid motor supported axially above the drill head. Fluid is introduced into themotor below the piston for the purpose of counterbalancing the weight of the drill head and any drill pipe connected thereto.
A holding wrench is located below the turning wrench. It comprises a plurality of wrench jaws pivotally mounted for lateral swinging movement, a surrounding control ring, and individual links interconnected between each wrench jaw and the control ring. The control ring is rotated by linear fluid motors. Rotation in one direction causes the links to move the wrench jaws radially inwardly into a position of engagement with holding wrench receiving portions on drill pipe, and movement in the opposite direction causes the links to move the wrench jaws radially outwardly in space relationship from the drill pipe.
3 Claims, 13 Drawing Figures PATENTEB APR 28 1914 SHEET 3 OF 5 lZ ma //6 EARTH DRILLING MACHINE This is a division of application Ser. No. 75,020, filed Sept. 24, 1970 now U.S. Pat. No. 3,695,364.
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to earth boring or drilling machines. It particularly relates to mechanism for counterbalancing the weight of the drill stem and other rotary components, to turning and holding breakout wrenches, and to mechanism for supporting and vertically moving the rotary drilling equipment.
2. Description of the Prior Art The present invention relates to an earth boring or drilling machine of the same basic type as disclosed in U.S. Pat..No. 3,220,494, granted on Nov. 30, 1965 to Robert E. Cannon et al, in U.S. Pat. No. 3,454,114, granted July 8, 1969 to Leland B. Poage, in U.S. Pat. No. 3,490,546, granted Jan. 20, 1970 to John S. Hattrup et al, and in U.S. Pat. No. 3,463,247, granted Aug. 26, 1969 to Harold T. Klein. In other words, like each of the machines of the above-identified patents, the machine of the present invention is a precision earth drilling machine which includes rotary drilling equipment mounted for precision movement up -and-down along a plurality of elongated base supported guide columns by traveling cross frame which is hydraulically raised and lowered. The machine of the present invention is a larger capacity machine, adapted for delivering much higher torque than any of the machines shown by the aforementioned patents.
Drilling machines of the present invention are characterized by high torque breakout apparatus for the sectional drill stem which is used with the machine, and by drilling equipment which includes hydraulic means for counterbalancing the weight of the drill stem and certain components of the drilling equipment.
Known but quite different systems for decoupling threaded sections of a drill stern are shown by U.S. Pat.
N6. 3 ,181,630, granted May 4,T9 65 to Robert S. Co-
burn; by U.S. Pat. No. 3,239,016, granted Mar. 8, 1966 to Emmett L. Alexander; by U.S. Pat. No. 3,291,225, granted Dec. 13, 1966 to Charles D. Foran; by U.S. Pat. No. 3,446,284, granted May 27, 1969 to Norman D. Dyer and Roy L. Van Winkle; and by U.S. Pat. No. 3,460,638, granted Aug. 12, 1969 to Stuart C. Millsapps, Jr.
Known prior but quite different systems for hydraulically counterbalancing the weight of a drill stem are shown by U.S. Pat. No. 1,781,707, granted Nov. 18, 1930 to Waldo Sheldon, and by U.S. Pat. No. 3,151,686, granted Oct. 6, 1964 to Archer W. Kammerer.
SUMMARY OF THE INVENTION The drill stem weight counterbalancing equipment of the present invention includes a linear fluid motor which is mounted on a frame portion of the drilling machine substantially in line with the drilling axis. A tension member is interconnected between the piston of such motor and a floating drill head which is threadable to the sections of drill pipe. This drill head and a power drive mechanism therefor are carried together on a traveling cross frame.
According to the invention, the drill head is surrounded by a remotely controllable breakout wrench adapted to grip each section of drill pipe at a location axially inwardly of the drill pipe from its threaded connection with the drill head. The drilling equipment also includes a holding wrench located at a wrench table spaced axially from the drill head on the drilling axis. In use the pipe section second from the drill head is held by this holding wrench mechanism andthe drill head is rotated in reverse by breaking, i.e. loosening, the threaded joint between the first and second sections of pipe. If the threaded joint between the first section of pipe and the drill head breaks first, the breakout wrench is activated to engage the first section of pipe and the drill head is again reversed for loosening the threaded connection between the first two sections. In addition to counterbalancing the weight of the drill stem and portions of the drilling equipment the linear fluid motor-automatically moves the floating drill head axially in response to thread travel during the breakout procedure.
In addition to new and improved breakout system, and to unique apparatus for counterbalancing drill stem and drilling equipment weight, the present invention relates to an improved high torque breakout wrench and an improved high torque holding wrench. It also relates to improvements in the hydraulic thrust ram system used for raising and lowering the traveling cross frame which carries the rotary drilling equipment.
BRIEF DESCRIPTION OF THE DRAWING In the drawing like letters and numerals refer to like parts, and: 7
FIG. 1 is an isometric view taken from above and looking towards one side and the front of a drilling machine constructed according to the present invention, showing the drilling apparatus in a partially raised position;
FIG. 2 is a view like FIG. 1, but showing the'drilling apparatus in a lowered position;
FIG. 3 is a fragmentary, somewhat schematic front elevational view of breakout mechanism for the drill pipe and a fluid motor type counterbalancing system for the drill head and drill pipe; 7
FIG. 4 is an enlarged scale view partially in section and partially in elevation of the breakout apparatus shown by FIG. 3', with both the holding and driving wrenches in retracted positions;
FIG. 5 is a view similar to FIG. 4, butshowing the holding wrench engaging the second section of pipe from the drill head and the drill head uncoupled from the tool joint at the upper end of the upper drill stem section;
FIG. 6 is a view similar to FIGS. 4 and 5, but showing the turning wrench engaged with the upper section of drill pipe, and the threaded tool jointat the lower end of the upper length of pipe decoupled;
FIG. 7 is a view similar to FIGS. 4-6, but typifying a situation wherein on reverse rotation of the drill head,
for random breaking of the threaded joints, the lower threaded joint breaks first, such view showing the lower joint completely coupled;
FIG. 8 is an enlarged scale elevational view, with some parts in section, of the counterbalancing fluid motor and an internal parts position indicating mechanism associated therewith;
FIG. 9 is a cross-sectional view taken through the drill head above the turning wrench, substantially along line 9--9 of FIG. 3;
FIG. is a cross-sectional view taken through the machine immediately above the holding wrench, substantially at the level indicated by line 10-40 in FIG.
FIG. 11 is a view partially in elevation and partially in longitudinal section of a length of drill pipe;
FIG. 12 is a cross-sectional view taken through the recesses formed in the drill pipe for receiving portions of the turning wrench jaws; and
FIG. 13 is a cross-sectional view taken through the holding wrench flats, substantially along line 13--13 of FIG. 11.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring more specifically to the several figures of the drawing, the illustrated embodiment is shown to comprise a lower or base frame assembly 10 including a base plate 12 and a generally U-shaped main frame 14 upstanding from the plate 12. Frame 14 includes upstanding wall portions forming a pair of sockets 16 which occupy near corner positions on the plate 12. The lower end portions of a pair of parallel guide columns 18 are received in the sockets 16 and are rigidly secured to the base frame thereby. A fixed cross frame 20 rigidly interconnects the upper ends of the guide columns 18. I v
The guide columns 18 support and guide a movable or traveling cross frame 22. Traveling cross frame 22 includes vertically spaced apartupper and lower guide sleeves 24, 26 which surroundingly engage the columns 18. A lower portion of the traveling cross frame 22 extends laterally from the sleeves 26 into a position over the base frame assembly 10. It includes wall means 28 forming a housing for a bearing assembly (FIG. 3). A second housing 30 extends laterally from the upper guide sleeves 24 into a position above the housing 28. Housings 28, 30, sleeves 24, 26 and the interconnecting parts of traveling cross frame 22 are structurally integrated into a single rigid frame assembly.
The upper housing 30 contains collector gearing 32 having a pair of inputs 34 and a single output 36. A pair of drive motor assemblies are bolted to the housing 30, and each has an output shaft which is coupled to one of theinputs of the collector gearing. In preferred form the motor assemblies comprise an electric motor 38 and a planetary type reduction transmission 40, such as the type shown'b'y FIG. 7 of the aforementioned US. Pat. No. 3,454,114.
Traveling cross frame 22. is raised and lowered by a plurality of thrust rams 41. According to the invention, each thrust ram 41 comprises a hollow piston chamber or cylinder, designated 42, and a piston 44. In the illustrated embodiment the closed ends of the piston housings 42 are directed upwardly and the open ends are directed downwardly. Mounting sockets 46 of split form receive the lower end portions of the housings 42 and firmly secure them to the traveling cross frame 22.
, Pistons ,44 include upwardly directed head portions (not shown) and lower end mounting portions 48 which are secured to the lower frame 10. Mounting portions 48 are received between vertical plate porrams 41, including the means for supplying and exhausting a motive fluid to and from them, will not be specifically described herein. Rather, reference is made to US. Pat. No. 3,454,114, the contents of which are expressly incorporated herein by this reference.
As shown by FIGS. 1, 2 and 10, the guide columns 18 and two of the thrust rams 41 are spaced apart in a quadrangular pattern, with the guide columns18 being relatively close to corner portions of the base frame assembly 10 on one side of such base frame 10 and the two thrust rams 41 being in the corner portions on the other side of base frame assembly 10. The third thrust ram 41 is located generally between the guide columns 18 and forms a triangular pattern with the other two thrust rams 41. The drilling axis is located substantially at the center of forces within the triangle. The upper ends of the cylinders 42 are interconnected by a generally triangular shaped traveling head frame 52.
Reference is now made to FIG. 3 of the drawing. The output member 36 of the collector gearing 32 is shown to be drivingly connected to a rotary drive housing 54 supported for rotation on the traveling cross frame 22 by upper and lower sets of combination bearings 56, 58. The expression combination bearing is used herein to mean a bearing which carries both axial and radial loads. A drive head is received in a lower portion of the rotary housing 54. A plate 62 having axial splines on its periphery is connected to the upper end of drill head 60. These mesh with corresponding internal axial splines 64 carried by the inner side wall of housing 54. The peripheral splines on plate 62 and the splines 64 serve to drivingly connect the housing 54 to the drill head 60 for rotational drive but permits the drive head 60 to travel axially a limited amount relative to the housing 54. I
A support stem 66 is rigidly connected at its lower end to the drill head 60 and'extends upwardly therefrom. Stem 66 includes a swivel joint at 68. The swivel joint 68 connects the upper and lower portions of the stem 66 together so that they move togetheraxially. The portion of stem 66 below swivel joint 68 rotates with the drill head 60. The portion of the support stem 66 above swivel 68 does not rotate. A piston rod 70 rigidly connects the non-rotating portion of support stem 66 with a piston head 72. Piston head 72 is mounted for linear up and down travel within a piston housing or cylinder 74 of a linear motor 76 which is mounted on top of the traveling head frame 52. The primary function of linear motor 76 is for counterbalancing the weight of the drill head assembly and the drill stem connected thereto. However, it also plays a part in the drill stem breakout technique of the present invention, as will hereinafter be described in detail.
Drill head 60 includes a drilling fluid passageway 78 tends from the drill head 60 upwardly through support stem 68, the swivel coupler 68, and an upper branch part 80 of support stem 66. The branch part 80 extends upwardly through an opening 82 in plate 54. Opening 82 is sufficiently large that the branch part 80 is free to move axially up and down during axial travel of the support stem 66. g
As best shown by FIG. 8, a radial support arm 84 extends laterally from the piston 70 below head frame 52. The outer end of arm 84 is connected to the lower end of a movable core 86 mounted for axial travel within the tubular housing 90 of a variable voltage transformer 88. Housing 90 includes an electrical coil 92 which surrounds the path of rod 86. Change in the axial position of core 86 changes the voltage output of transformer 88. Since core 86 is structurally coupled to the drill head 60 through the piston rod 70 and the support stem 66, the change in resistance of variable voltage transformer 88 gives an indication of the internal position of the drill head 60 and the other internal components connected thereto. Variable voltage transformer 88 may be in an electrical circuit (not shown) which includes a direct read out device. In some installations a variable resistor may be used in place of the variable voltage transformer.
The lower end of drill head 60 is a tool joint component 94 connectible to a complementary tool joint component 96 at the upper end of each section 98 of the drill stem 100. In the illustrated embodiment tool joint component gti a t h readed box and tool joint component 9 6 is a threaded $n The illustrated form of drill pipe 98 is of composite form. It is shown to comprise a double box major section 102 and a double pin minor section or sub 104. At least the box type tool joint component 106 at the lower end of section 102 has threads which complement and will engage the threads of each pin component 96.
As best shown by FIGS. 11-13, each length of drill pipe 98 includes a triangular pattern of axially elongated recesses 108. As shown by FIG. 12, shouldered portions 1 are located circumferentially between the recesses 108.
The recesses 108 are provided for receiving wrench jaw portions of a breakout wrench. A second set of recesses or flats are provided on each length 98 axially inwardly of the recesses 108 and are designated 112. The base surfaces of recesses 112 are preferably flat chord surfaces.
As shown by'FIGS. 3-9, the drill head assembly includes an axial lower extension 114 of drive housing 44 which carries a breakout wrench mechanism 116, hereinafter sometimes referred to as the turning wrench.
Referring to FIGS. 5-7, and 9, the turning wrench 116 comprises a drum like carrier 118 which is rigidly secured to and is rotated by the extension 114. A plurality of short posts 120 project downwardly from the lower end of carrier 118. An open centered plate 122 is secured to the posts 120, such as by bolts 124. Three circumferentially spaced apart wrench jaws 126 are pivotally mounted on the carrier 118 for swinging movement radially in and out relative to the position of the drill stem 100. Each jaw 126 includes an outer end portion which is received between a pair of the posts 120. Pivot pins 128 fit through openings formed in the outer end portions of the wrench jaws 126 and the wrench jaws 126 move relative to the pins 128. The pivot pins 128 extend between the plate 122 and the carrier 118. A linear fluid motor 130 is associated with each wrench jaw 126 for moving the same into and out from its wrenching positions. The linear motors 130 are interconnected between connectors 132 on the wrench jaws 126, near the free ends thereof, and connectors 134 secured to the carrier 118. Pivotal connections are provided at 136 and 138 so that extension and retraction of the pistons 140 in motors 130 will cause the wrench jaws 126 to swing laterally of the drill pipe axis 140 between the wrenching positions depicted by solid lines in FIG. 9 and the retracted or inactive positions depicted by broken lines in FIG. 9 with respect to the upper wrench jaw 126 only.
The wrench jaws 126 are of the spanner wrench type. Each includes a radially inwardly directed recess 142 which is bounded at each of its circumferential ends by a generally radially extending wrench surface, designated 144, 146 in FIG. 9.
When the wrench jaws 126 are in their operative positions the shouldered portions of the drill pipe are received in the recesses 142.
Each wrench jaw 126 has an inner shank portion 148 which is in tight load transferring engagement with an.
end surface 150 of an enjoining wrench jaw 126.
In FIG. 9 the turning wrench 116 is shown in the process of being rotated counterclockwise. The wrench surfaces 146 engage radial surfaces on the wrench sections 110. The loading on the wrench jaws 126 is such that the wrench jaws want to swing further inwardly. This means that compressive loads are transferred from each wrench jaw 126 to the next where contact is made at surfaces 148, 150; the wrench jaws 126 are mutually self-bracing. Together the wrench jaws 126 cooperate to define a compression ring which surrounds the engaged portion of the drill pipe.
Referring now to FIGS. 1, 3-7 and 10, the base member 12 carries a holding wrench assembly 152 in axial alignment with the turning wrench 116. An Opening 154 is provided in table 12 in axial alignment with the opening 156 in turning wrench plate 122. Three wrench jaws 158 are pivotally connected to the table 12 by pivot pins 160. Wrench surfaces 162 are formed on radial inner portions of the wrench jaws 158. In the illustrated embodiment the surfaces 162 are essentially flat surfaces and when the wrench 152 isin its operative position the surfaces 162 form a triangular pattern which corresponds to the triangular pattern of the pipe surfaces 112. In this operative position the wrench jaw surfaces 162 are contiguous the pipe surfaces 112.
The wrench jaws 158 are surrounded by a control ring 164. The ring 164 includes three radially inwardly extending enlarged portions 166 in which are formed recesses 168 for receiving the rounded end portions of control links 170. Similar recesses 172 are formed in radial outer portions of the wrench jaws 158 to receive the opposite rounded ends of the control links 170. The guide means for the control ring 164 includes three brace blocks 174. These brace blocks 174 are circumferentially spaced equal distances apart and are located such that when the turning wrench 152 is in its operative position they are radially aligned with the control links and with the mating pairs of wrench surfaces 162, 112. In such operative position the control links 170 are substantially radially oriented.
A pair of linear fluid motors 176 are interconnected between the table 12 and the control ring 160. Pivotal connections 178, 180 are provided at the opposite ends of the motors 176 so that there is freedom of movement of the motors 176 as the control ring 164 turns.
In operation, the motors 176 are operated in unison to rotate the ring 164. In FIG. 10 the left side motor 176 is extended, the right side motor 176 is retracted, and the wrench jaws 158 are swung inwardly into holding engagement with the drill pipe. The control links 170 are radially disposed so that the radially outwardly directed forces imposed on them by the drill pipe 100 through the wrench jaws 158 is transmitted by the control links 170 to the brace blocks 174 which are rigidly secured to the table 12. Thus, the control ring 164 does not have to by itself carry the loads imposed on the wrench jaws 158 during the breakout or joint loosening operation.
The breakout technique will now be described:
Let it be assumed in the drilling operation depicted by FIGS. 4-7 that the traveling frame 22 and the drilling head 60 carried thereby are in the process of being moved upwardly along the guide columns 18, and the drill stem 100 is being withdrawn from the drill hole. When the upper or first section 98 is wholly above the wrench table 12 and the holding wrench receiving depressions 112 of the second section 98 are in position at the wrench table l2'to receive the holding wrench jaws 158, axial movement'of the traveling frame 22 is stopped (FIG. 4). The control ring- 164 is then rotated to place it in the position shown by FIG. 10, with the wrench jaws 158 engaging the recesses 112. The portion of the drill stem 100 below the first section 98 is then restrained or anchored against both rotational and downward axial or gravitational movement.
The drill head 60 is then reversed, i.e. rotated in a tool joint loosening direction, for the purpose of randomly loosening one of the tool joints at the opposite ends of the upper section 98. The threaded connection between the major and minor parts 102, 104 of the composite section 98 are secured against separation by an epoxy bonding agent or by a different thread design. F IG. 5 relates to the situation when the upper tool joint loosens first. For the sake of clearer illustration, in FIG. 5 the upper section 98 is shown to be physically separated from the drill head 60. However, in the breakout operation the tool joint components 94, 96 are not completed separated, but rather the joint is merely loosened.
Assuming that the randomly loosening operation caused the upper joint to loosen first, and the threaded joint between components 94, 96 is not totally separated but is merely maintained loosely joined, the fluid motors 130 are operated to move the turning wrench jaws 126 into engagement with the shouldered portions 110 between the recesses 108 (FIG. 9). After this has been done the drill head 60 is again rotated in the thread loosening direction. The portion of the drill stem 100 below the upper section 98 is still retained by the holding wrench 152. During such rotation the wrench jaws 126 transmit torque from the drill head 60 to the upper section 98, resulting in a loosening of the threads at the lower tool joint 106, 96. With the tool jointsat both ends of the upper section 98 now loosened, the upper section 98 can be easily unscrewed and removed from the drill stem 100. 'After this is done the drill head 60 is lowered and coupled to the next pipe section by loosely screwing together its box component 94 and the upstanding pin 96 of the next section 98. The drill head 60 is then raised, with the weight of the drill stern 100 being carried by the loosely engaged threads of the loosely made-up tool joint, until such next section is in a position for removal wholly above the'holding wrench table 12, and the holding wrench receiving depressions 112 of the following section 98 are at the holding wrench station of the table 12. The breakout wrench 116 is again operated to engage the new upper section 98, and the drill head 60 is rotated in reverse as before to loosen the threaded tool joint at the wrench table 12. This sequence of steps is repeated with the subsequent sections until all sections of the drill stem 100 have been removed from the drill hole.
linear motor 76 below the piston head 72 to bias the drill head 60 upwardly. Thus, the drill head 60 and the drill pipe 98 connected thereto progressively moves upwardly as decoupling at joint 106, 96 proceeds.
The recesses 108 are axially elongated and the turning wrench jaws 126 are positioned therein such that there is always axial clearance above and below the wrench jaws 126. This is important because the weight of the drill stem 100 must be carried by the linear motor 76and none of it by the wrench jaws 126.
If during the initial reversal of the drill head 60, to cause a random loosening of the tool joints, the lower joint loosened first, then an added stage must be added to the technique in order to effect loosening of the tool joint between the upper section 98 and the drill head 60. This stage (not shown) involves maintaining the loosened lower tool joint components coupled, so that their threads may carry the weight of the drill stem 100, then retracting the holding wrench jaws 158, and then lowering the drill head 60, with the drill stem 100 attached, downwardly until the holding wrench receiving depressions 1 12 of the upper section 98 are at the holding wrench station of table 12. The holding wrench jaws 158 are then moved inwardly and used to support the drill stem 100 and prevent its rotation. The drill head 60 is then rotated in the joint loosening direction until the threaded tool joint 94, 96 is loosened. When this happens the joint components are maintained loosely coupled so that the threads can carry the weight of the drill stem 100. The drive head 60 is then raised to locate the upper pipe section 98 in a proper position for removal. The holding wrench 152 is reinserted on the second pipe section 98 and the first section 98, now having both of its tool joints loosened, is easily unscrewed from the second section 98 and from the drill head 60, and is then removed from the drill stem 100.
What is claimed is: a
l. A drill pipe wrench, comprising:
support means situated at least partially about a drill pipe path, i
a plurality of circumferentially spacedapart wrench jaws,
means pivotally connecting said wrench jaws to said support means for in and out swinging movement about circumferentially spaced apart axes situated radially outwardly from the drill pipe path,
a wrench jaw control ring surrounding said wrench jaws and a center axis,
means mounting said control ring for rotary movement about the center axis,
a control link for each wrench jaw,
means pivotally connecting one end of each control link to its wrench jaw at a location on the wrench jaw spaced circumferentially from the pivotal connection between such wrench jaw and the support means,
means pivotally connecting the opposite end of each control link to said control ring, and
means for selectively rotating said control ring in either direction,
with each of said axes being in parallelism with each other and with the drill pipe path,
with rotary movement of said control ring in one direction causing an inward swinging movement of said wrench jaws by said control links, and movement in the opposite direction causing an outward swinging movement of said wrench jaws by said control links,
said wrench jaws having inner surface portions thereon configured to engage external portions of a drill pipe element located in said drill pipe path when the wrench jaws are swung inwardly,
wherein the wrench jaws are moved inwardly into a drill pipe engaging position the control links are oriented generally radially, and
fixed abutment means is located immediately radially outwardly of the ring in alignment with each link, to back up the ring and receive the loading imposed on the ring by the drill pipe during use of the wrench through the wrench jaws and the control links. v
2. The drill pipe wrench of claim 1, comprising three wrench jaws which are equally spaced apart, with the inner surface portions of the wrench jaws together forming a generally triangular pattern.
3. The drill pipe wrench of claim 1, wherein each control link has a rounded head portion at each of its ends, and wherein the control ring and the wrench jaws have rounded complementary sockets for receiving the rounded heads of the control links.

Claims (3)

1. A drill pipe wrench, comprising: support means situated at least partially about a drill pipe path, a plurality of circumferentially spaced apart wrench jaws, means pivotally connecting said wrench jaws to said support means for in and out swinging movement about circumferentially spaced apart axes situated radially outwardly from the drill pipe path, a wrench jaw control ring surrounding said wrench jaws and a center axis, means mounting said control ring for rotary movement about the center axis, a control link for each wrench jaw, means pivotally connecting one end of each control link to its wrench jaw at a location on the wrench jaw spaced circumferentially from the pivotal connection between such wrench jaw and the support means, means pivotally connecting the opposite end of each control link to said control ring, and means for selectively rotating said control ring in either direction, with each of said axes being in parallelism with each other and with the drill pipe path, with rotary movement of said control ring in one direction causing an inward swinging movement of said wrench jaws by said control links, and movement in the opposite direction causing an outward swinging movement of said wrench jaws by said control links, said wrench jaws having inner surface portions thereon configured to engage external portions of a drill pipe element located in said drill pipe path when the wrench jaws are swung inwardly, wherein the wrench jaws are moved inwardly into a drill pipe engaging position the control links are oriented generally radially, and fixed abutment means is located immediately radially outwardly of the ring in alignment with each link, to back up the ring and receive the loading imposed on the ring by the drill pipe during use of the wrench through the wrench jaws and the control links.
2. The drill pipe wrench of claim 1, comprising three wrench jaws which are equally spaced apart, with the inner surface portions of the wrench jaws together forming a generally triangular pattern.
3. The drill pipe wrench of claim 1, wherein each control link has a rounded head portion at each of its ends, and wherein the control ring and the wrench jaws have rounded complementary sockets for receiving the rounded heads of the control links.
US00239466A 1970-09-24 1972-03-30 Earth drilling machine Expired - Lifetime US3805644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00239466A US3805644A (en) 1970-09-24 1972-03-30 Earth drilling machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US7502070A 1970-09-24 1970-09-24
US00239466A US3805644A (en) 1970-09-24 1972-03-30 Earth drilling machine

Publications (1)

Publication Number Publication Date
US3805644A true US3805644A (en) 1974-04-23

Family

ID=26756337

Family Applications (1)

Application Number Title Priority Date Filing Date
US00239466A Expired - Lifetime US3805644A (en) 1970-09-24 1972-03-30 Earth drilling machine

Country Status (1)

Country Link
US (1) US3805644A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5060542A (en) * 1990-10-12 1991-10-29 Hawk Industries, Inc. Apparatus and method for making and breaking joints in drill pipe strings
US20140048284A1 (en) * 2012-08-17 2014-02-20 Timothy S. Gallagher Drill Rod Break-Out Wrench and Method of Use

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1812816A (en) * 1930-04-24 1931-06-30 Gen Electric Power wrench
US2263267A (en) * 1940-06-22 1941-11-18 Shell Dev Tubing joint breaker
US2650070A (en) * 1950-04-08 1953-08-25 Byron Jackson Co Pipe gripping mechanism for power tongs
US2980434A (en) * 1959-03-20 1961-04-18 Oster Mfg Co Work holding and centering chuck
US3203284A (en) * 1962-07-09 1965-08-31 Joy Mfg Co Power wrench and power slip
US3689060A (en) * 1970-08-19 1972-09-05 William Burton Hensley Jr Retainer device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1812816A (en) * 1930-04-24 1931-06-30 Gen Electric Power wrench
US2263267A (en) * 1940-06-22 1941-11-18 Shell Dev Tubing joint breaker
US2650070A (en) * 1950-04-08 1953-08-25 Byron Jackson Co Pipe gripping mechanism for power tongs
US2980434A (en) * 1959-03-20 1961-04-18 Oster Mfg Co Work holding and centering chuck
US3203284A (en) * 1962-07-09 1965-08-31 Joy Mfg Co Power wrench and power slip
US3689060A (en) * 1970-08-19 1972-09-05 William Burton Hensley Jr Retainer device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5060542A (en) * 1990-10-12 1991-10-29 Hawk Industries, Inc. Apparatus and method for making and breaking joints in drill pipe strings
US20140048284A1 (en) * 2012-08-17 2014-02-20 Timothy S. Gallagher Drill Rod Break-Out Wrench and Method of Use

Similar Documents

Publication Publication Date Title
US3808916A (en) Earth drilling machine
US3695364A (en) Earth drilling machine
US10309166B2 (en) Genset for top drive unit
US3766991A (en) Electric power swivel and system for use in rotary well drilling
US4147215A (en) Independently powered breakout apparatus and method for a sectional drill string
US3920087A (en) Rotary drive and joint breakout mechanism
US3802057A (en) Method for loosening threaded pipe connections using an earth drilling machine
US9428972B2 (en) Simultaneous clamp and torque drive
US3554298A (en) Breakout apparatus for a sectional drill stem
US3629927A (en) Mouse hole chuck
US2311225A (en) Pipe rotating apparatus
US10689925B2 (en) Pipe wrench
US3744577A (en) Earth boring machine with a readily replaceable drill rod chuck
US3754605A (en) Earth drilling machine
US4073352A (en) Raise bore drilling machine
EP1232323B1 (en) Wrenching tong
US3901330A (en) Electric power drive assembly
US3915243A (en) Rotary drive and joint breakout mechanism
US3874196A (en) Rotary drive and joint breakout mechanism
US3805644A (en) Earth drilling machine
CN109577884A (en) Holding block, unloading rod structure and deep well drilling machine using structure
US4095656A (en) Raise bore drilling
US2657908A (en) Breakout table
CN212296225U (en) Integrated horizontal rotating mechanical arm
CN211573380U (en) Drilling equipment for coal mine tunneling operation