US3804605A - Hydrocarbon fuel compositions containing hydrocarbyl acid phosphate salts of amino polyamides - Google Patents

Hydrocarbon fuel compositions containing hydrocarbyl acid phosphate salts of amino polyamides Download PDF

Info

Publication number
US3804605A
US3804605A US00189413A US18941371A US3804605A US 3804605 A US3804605 A US 3804605A US 00189413 A US00189413 A US 00189413A US 18941371 A US18941371 A US 18941371A US 3804605 A US3804605 A US 3804605A
Authority
US
United States
Prior art keywords
additive
fuel
gasoline
ptb
hydrocarbyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00189413A
Inventor
F Robinson
M Rakow
E Jamieson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citgo Petroleum Corp
Original Assignee
Cities Service Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US05/077,040 external-priority patent/US3946053A/en
Application filed by Cities Service Oil Co filed Critical Cities Service Oil Co
Priority to US00189413A priority Critical patent/US3804605A/en
Application granted granted Critical
Publication of US3804605A publication Critical patent/US3804605A/en
Assigned to CITGO PETROLEUM CORPORATION, A CORP OF DE reassignment CITGO PETROLEUM CORPORATION, A CORP OF DE ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: CITIES SERVICE COMPANY
Assigned to CITIES SERVICE COMPANY A CORP. OF DE. reassignment CITIES SERVICE COMPANY A CORP. OF DE. MERGER (SEE DOCUMENT FOR DETAILS). DELAWARE, EFFECTIVE DEC. 20, 1978 Assignors: CITIES SERVICE OIL COMPANY
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/14Use of additives to fuels or fires for particular purposes for improving low temperature properties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/26Organic compounds containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/26Organic compounds containing phosphorus
    • C10L1/2633Organic compounds containing phosphorus phosphorus bond to oxygen (no P. C. bond)
    • C10L1/2658Organic compounds containing phosphorus phosphorus bond to oxygen (no P. C. bond) amine salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/02Use of additives to fuels or fires for particular purposes for reducing smoke development
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/04Use of additives to fuels or fires for particular purposes for minimising corrosion or incrustation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/06Use of additives to fuels or fires for particular purposes for facilitating soot removal

Definitions

  • ABSTRACT Hydrocarbyl acid phosphate salts of polyamides having at least one amino group and hydrocarbon fuel compositions containing samejThe salts are formed by neutralizing with a hydrocarbyl acid phosphate at least 10 percent of the amino groups of a polyamide containing from about 2 to about 6 amide groups and at least one amino group. Hydrocarbon fuel compositions containing these salts exhibit desirable properties such as enhanced carburetor detergency and carburetor anti-icing characteristics, improved water tolerance, excellent rust inhibition, and cleaner engine operation while engines operated thereon exhibit reduced hydrocarbon content in the exhaust.
  • liquid hydrocarbon fuels often require additives to improve their performance characteristics.
  • various additives are employed to assist in maintaining cleanliness in the carburetor and fuel intake system and to prevent carburetor icing as well as to inhibit rust.
  • the additives vary in effectiveness, and it is often necessary to use a number of additives in a single composition.
  • additives for hydrocarbon fuels are only marginally soluble in hydrocarbons. Furthermore, they are often employed in concentrations that approach their limits of solubility. As a result, hydrocarbon compositions containing such additives often exhibit poor stability and, as a result, on standing the additive may precipitate.
  • additives for hydrocarbon fuels have poor water tolerance.
  • fuel compositions containing such additives come in contact with water as, for example, in storage tanks, water enters the hydrocarbon phase. This is particularly deleterious in jet fuels.
  • the temperatures at high altitudes where jet aircraft operate are well below freezing.
  • water in the fuel crystallizes and plugs fuel filters, thereby cutting off the flow of fuel to the engines.
  • fuel tank heaters and additives to prevent ice formation are employed.
  • a serious problem relating to internal combustion engines is environmental pollution as, for example, air pollution by exhaust emissions from internal combustion engines.
  • a component of the exhaust from internal combustion engines is unburned hydrocarbons.
  • Various methods have been used to reduce the hydrocarbons in engine exhausts, for example, catalytic mufflers and positive crank case ventilation systems.
  • Desirable properties such as carburetor detergency, good carburetor anti-icing characteristics, and good rust inhibiting properties are imparted to normally liquid hydrocarbon fuels by the incorporation therein of hydrocarbon fuel-soluble organic compounds containing at least two amide linkages.
  • a particularly efficacious type of compound of this class is compounds containing at least two amide linkages and having in addition at least one free amino group. It has been found that when these polyamides containing at least one free amino group are converted to the hydrocarbyl hydrogen phosphate salts, incorporation thereof into normally liquid hydrocarbon fuels not only favors improved carburetor detergency, carburetor anti-icing,
  • hydrocarbon fuels containing hydrocarbyl hydrogen phosphate salts of polyamides having at least one amino group also have excellent stability and water tolerance and, in addition, engines operated thereon are characterized by reduced hydrocarbon emissions in the exhaust.
  • Yet another object of this invention is to provide normally liquid hydrocarbon fuel compositions having enhanced carburetor and fuel intake system detergency properties as well as superior carburetor anti-icing characteristics.
  • Yet another object of this invention is to provide normally liquid hydrocarbon fuel compositions which are characterized by reduced hydrocarbon content in the exhaust of internal combustion engines operated thereon.
  • this invention comprises a hydrocarbyl hydrocarbon phosphate salt of a compound having the general formula wherein m is at least 1 and the sum of n plus m is from 2 to about 6, R is a multivalent hydrocarbon group of about 2 to about 52 carbons, R is a hydrocarbylene group of about 2 to about 12 carbons, R is selected from the group consisting of hydrogen and hydrocarbyl groups of about 1 to about 30 carbons, R' is a hydrocarbyl group of from about 2 to about 12 carbons, and at least 10 percent of the amino groups contained therein are converted to the hydrocarbyl hydrogen phosphate salt; and normally liquid hydrocarbon fuel compositions comprising a major proportion of a normally liquid hydrocarbon fuel and a minor proportion of the above additive.
  • liquid hydrocarbon fuel compositions containing the additive compounds of this invention exhibit such desirable properties as enhanced carburetor and fuel intake system detergency properties as well as superior carburetor anti-icing characteristics.
  • hydrocarbon fuel compositions containing our additives have good water tolerance which favors dry fuel, and -they also have good rust inhibiting properties.
  • a particularly favorable aspect of hydrocarbon fuel compositions containing the additive compounds of this invention is that internal combustion engines operated thereon exhibit markedly reduced hydrocarbon emissions in the exhaust.
  • the good solubility of the additives of this invention in liquid hydrocarbon fuels ensures stability with little tendency toward gum formation.
  • Another advantage of our additives is their ability to impart desirable properties to liquid hydrocarbon fuels when used at low concentrations which makes them economically attractive.
  • the normally liquid hydrocarbon fuel compositions of this invention are prepared by incorporating into a major proportion of a normally liquid hydrocarbon fuel a minor proportion of an additive which is a hydrocarbon fuel-soluble organic compound containing at least two amide linkages.
  • the additives useful in the present invention have the following general structures:
  • R is a hydrogen or a hydrocarbyl group of about 1 to about 30 carbons and preferably about to about 25 carbons, e.g., an alkyl group, an aryl group, an aralkyl group, an alkaryl group, a cycloparaffin group, a cycloolefin group, or an aliphatic olefin group;
  • R R and R are polyvalent hydrocarbyl groups of about 2 to about 65 carbons and preferably about 3 to about 55 carbons, e.g., polyvalent aryl groups or olefinically saturated or unsaturated polyvalent alkyl groups, aralkyl groups, alkaryl groups, and naphthyl groups;
  • x is equal to or greater than one; and y is such that the total number of amide linkages in the molecule is two or more.
  • One or more hydrogens on hydrocarbyl groups R,, R R and R may be replaced by a heterocyclic group such as an imidazolyl group or by a functional group such as halide, hydroxyl, carboxyl, carbonyl, ester, mercaptyl, amino, substituted amino, or amide.
  • R R R or R may be the same or different whenever they occur more than once in any one molecule.
  • R and R may be the same or different in compounds represented by structure II.
  • Polyamides of the type represented by structure I may be prepared, for example, by condensing amino acids with one another through-their respective amino and carboxyl groups.
  • Polyamides of the type represented by structure I! may be prepared, for example, by condensing dicarboxylic acids with diamines.
  • Polyamides of the type represented by structure III may be prepared by condensing a polycarboxylic acid with ammonia or an amine. The amine may be selected from primary and secondary amines as well as compounds containing two or more amino groups.
  • Another class of amines that finds use in the practice of this invention is aminoalkyl substituted imidazolines of the general structure:
  • X represents the non-carboxyl portion of the dicarboxylic acid.
  • a particularly satisfactory class of amines is derived from l,3-propylenediamine.
  • N-( l O-phenylstearyl)-l ,3-propylenediamine and N-tallowyl-l,3-propylenediamine are especially efficacious.
  • a l,3-propylemediamine l5 condensed with a dicarboxylic acid, in addition to diamide some low molecular weight polyamide-type polymer of about 2 to 15 repeating units may be formed. It is also possible that the free amino groups of the diamide may react with the carbonyl oxygens of the amide groups to split out water and cyclize to form a tetrahydropyrimidine.
  • acids containing three, four or more carboxyl groups may be converted to amides and used successfully in the practice of this invention.
  • An example is a trimer acid designated as Empol 1040 and which is manufactured by Emery Industries, Inc. This is the trimer of a polyunsaturated C monocarboxylic fatty acid, being a C tricarboxylic acid.
  • a polyamide by condensing a specific amine with a specific polycarboxylic acid it is possible to condense mixtures of amines with mixtures of acids.
  • An example of a useful mixture of acids is Empol 1022 which is comprised of about three parts of 4 the dimer and about one part of the trimer of a polyunsaturated C monocarboxylic fatty acid.
  • An example of a suitable mixture of amines is two parts of 10- phenylstearylamine and one part of N-( lO-phenylstearyl )-l ,3-propylenediamine.
  • the polyamides of this invention may be prepared by adding one mole of the amine to each equivalent of the polycarboxylic acid in a suitable solvent and heating the mixture. Water formed as a by-product of the condensation reaction is removed from the reaction mixture, for example by azeotropic distillation. It is convenient when using an aromatic solvent such as toluene or xylene to employ a water separator to collect the byproduct water. On completion of the reaction, removal of the solvent as, for example, by distillation leaves the polyamide.
  • the preferred normally liquid hydrocarbon fuel com positions of this invention are prepared by incorporating into a major proportion of a normally liquid hydro-
  • the novel additives of this invention are prepared by reacting a hydrocarbyl hydrogen phosphate with a polyamide containing from 2 to about 6 amide groups and at least 1 amino group whereby at least about 10% of the amino groups are converted to the hydrocarbyl hydrogen phosphate salt.
  • the polyamides are prepared by condensing a polycarboxylic acid having from 2 to about 6 carboxyl groups with an amine or amines to convert each carboxyl group to the corresponding N- substituted amide group. It is critical that at least one N-substituted amide group in every molecule contain an amino group on the substituent.
  • At least one carboxyl group of the polycarboxylic acid must be condensed with a polyamine, preferably a diamine, while the remainder of the carboxyl groups may be condensed with either a monoamine or a polyamine. However, it is preferred that each carboxyl group be condensed with a diamine.
  • the preferred acids are dicarboxylic acids.
  • the preferred polyamides are diamino-diamides having the general formula wherein R is a hydrocarbylene group of about 2 '56 about 52 carbons and preferably about 4 to about 34 carbons, R is a hydrocarbylene group of about 2 to about 12 carbons and preferably about 2 to about 6 carbons, and R is selected from the group consisting of hydrogen and hydrocarbyl groups of about 1 to about 30 carbons and preferably about 3 to about 24 carbons.
  • the hydrocarbyl hydrogen phosphate which is reacted with the polyamide containing one or more amino groups to form the salt is preferably a hydrocarbyl hydrogen orthophosphate.
  • the hydrocarbyl hydrogen orthophosphate may be a dihydrocarbyl hydrogen orthophosphate, a hydrocarbyl dihydrogen orthophosphate, or preferably a mixture of a dihydrocarbyl hydrogen orthophosphate and a hydrocarbyl dihydrogen orthophosphate.
  • the hydrocarbyl portions contain from about 1 to about 15 carbons and preferably from about 3 to about 10 carbons.
  • the hydrocarbyl groups may be the same of different.
  • the hydrocarbyl portions may be aliphatic, aromatic, or naphthenic or they may contain various mixtures of aliphatic, aromatic and naphthenic segments. Aliphatic and naphthenic segments may be either saturated or unsaturated.
  • the ratio of hydrocarbyl hydrogen orthophosphate to the polyamide containing one or more amino groups is I such that at least about 10 percent of the amino groups are converted to the hydrocarbyl hydrogen orthophosphate salt.
  • While about 10 percent to about lOO percent of the amino groups may be converted to the hydrocarbyl hydrogen orthophosphate salt, it is preferred that about 50 percent to about 90 percent of the amino groups be converted to the salt since the presence of some free amino groups is usually desirable. However, an excess of hydrocarbyl hydrogen orthophosphate may be present in the case where 100 percent of the amino groups are converted to the salt.
  • the polyamide containing from 2 to about 6 amide groups and at least 1 amino group has the general formula wherein R is a m ultivalent hydrocarbon group of about 2 to about 52, and preferably about 4 to about 34, carbons, and m is at least 1 and the sum of n plus m is from 2 to about 6.
  • the polycarboxylic acid from which the polyamide is made therefore has the general formula wherin'li is iiiii'li'ivalnthydrocarbdn grou of about 2 to about 52 carbons and preferably about 4 to about 34 carbons.
  • R may be aliphatic, aromatic or naphthenic, or it may contain various mixtures of aliphatic, aromatic and naphthenic segments.
  • Aliphatic and naphthenic segments may be either saturated or unsaturated. While the sum of m plus n may be from 2 to about 6, it is preferred that the sum of m plus n be 2, i.e., a dicarboxylic acid.
  • suitable polycarboxylic acids are succinic acid; glutaric acid; adipic acid; terephthalic acid; l,4-cyclohexanedicarboxylic acid; pyromellitic acid, 1,1 S-dicarboxyoctadecane; and trimer acid which is the trimer of a polyunsaturated C monocarboxylic fatty acid, being a C tricarboxylic acid of uncertain structure.
  • the preferred polycarboxylic acid is a dimer acid produced by the dimerization of a polyunsaturated C monocarboxylic fatty acid to produce an unsaturated C dicarboxylic acid whose exact structure is not known with certainty.
  • a dimer acid is produced by General Mills under the trade name of Versadyme 216.
  • the amine which is condensed with the polycarboxylic acid to form the polyamide is selected from the group consisting of monoamines and polyamines, preferably diamines, having the general formulas 30 carbons and preferably about 3 to about 24 carbons,
  • R is a hydrocarbyl group of about 2 to about 12 carbons and preferably about 2 to about 6 carbons.
  • R, R', and R" when it is a hydrocarbyl group may be aliphatic, aromatic or naphthenic or they may contain various mixtures of aliphatic, naphthenic and aromatic segments. Aliphatic and naphthenic segments may be either saturated or unsaturated.
  • suitable monoamines are diethylamine, dodecylamine, cyclohexylamine, methylbutylamine and propylamine.
  • Suitable diamines are ethylenediamine; propylenediamine; 1,12-diaminododecane; hexamethylene; N-methyl-N '-propyl-l ,3-propylenediamine; N,N-dibutylenediamine; 1,4-diaminohexane; N-oleyl- 1,3-propylenediamine; N-cyclohexylethylenediamine; and N-( l0-phenylstearyl)-l ,3-propylenediamine.
  • the preferred amine is N-tallowyl-l,3 propylenediamine.
  • hydrocarbyl hydrogen phosphates are triethyl hydrogen pyrophosphate, methylphenyl dihydrogen pyrophosphate, cyclohexy] dihydrogen orthophosphate, diphenyl hydrogen orthophosphate, methyldecyl hydrogen orthophosphate, pentadecyl dihydrogen orthophosphate, dipropyl hydrogen orthophosphate, heptyl dihydrogen orthophosphate, isooctyl dihydrogen orthophosphate, and diisooctyl hydrogen orthosphosphate.
  • the preferred hydrocarbyl hydrogen phosphate is a mixture of isooctyl dihydrogen orthophosphate and diisooctyl hydrogen orthophosphate.
  • the polyamide containing from 2 to about 6 amide groups and at least one amino group contain about 24 to about 100, and preferably about 30 to about 90, carbons.
  • the preferred acid for amide formation is dimer acid
  • the preferred amine is N-tallowyl-l,3-propylenediamine
  • the preferred hydrocarbyl hydrogen phosphate for salt formation is a mixture of isooctyl dihydrogen orthophosphate and diisooctyl hydrogen orthophosphate
  • the preferred additive of our invention is a mixture of isooctyl dihydrogen orthophosphate and diisooctyl hydrogen orthophosphate salts of the diamide obtained by condensing one mole of dimer acid with 2 moles of N-tallowyl-l,3- propylenediamine.
  • the dimer acid condenses with the diamine to form the diamino-diamide
  • either amino group may condense with a carboxyl group and the product is therefore a wherein R is the C hydrocarbylene portion of the dimer acid and R is a tallowyl group.
  • the ratio of the mixture of isooctyl hydrogen orthophosphates to the diamino-diamide to form our preferred additive is such as to convert from about percent to about 100 percent, and preferably about 50 percent to about 90 percent, of the amino groups of the diamino-diamide to the corresponding isooctyl hydrogen orthophosphate salts. In the case where 100 percent of the amino groups are converted to the salt, it is contemplated that an excess of the mixture of isooctyl hydrogen orthophosphates may be present.
  • a particularly advantageous method of incorporating the additive of this invention into a normally liquid hydrocarbon fuel is to form a cocktail of the additive with other ingredients which, for example, enhance the ease of solution of the additive in the fuel and the handling characteristics of the additive itself.
  • An especially desirable cocktail contains 45 weight percent of the preferred additive of this invention, the additive being prepared by reacting about 3 parts by weight of the condensation product of 1 mole of dimer acid and 2 moles of N-tallowyl-1,3-propylenediamine with about 1 part by weight of a mixture of about 65 weight percent diisooctyl hydrogen orthophosphate and about 35 weight percent of isooctyl dihydrogen orthophosphate.
  • the amino groups of the diamino-diamide are neutralized by the mixture of isooctyl hydrogen orthophosphates.
  • the remainder of the cocktail comprises 48.6 weight percent toluene, 4.5 weight percent methanol, and 1.9 weight percent of a demulsifying agent, advantageously DS-4l5 manufactured by Petrolite Corporation.
  • Cocktails of additives of this invention with other ingredients which, for example, enhance the solubility of the additive will vary depending on a number of factors.
  • concentration of the additive in the cocktail will generally be as high as possible commensurate with ready solubility of the cocktail in the hydrocarbon fuel. Generally, the concentration of additive in the cocktail is about 40-60 weight percent.
  • the other components of the cocktail will generally be solvents or mixtures of solvents that readily dissolve the additive and which are miscible with the hydrocarbon fuel, as well as materials such as demulsifying agents.
  • the concentration in the normally liquid hydrocarbon fuel composition may vary from about 5 to about 1000, and preferably from about 10 to about 100, PTB of said cocktail.
  • the normally liquid hydrocarbon fuel is gasoline
  • a particularly desirable gasoline composition contains about 13 to about 20 PTB of said cocktail.
  • the efficacy of our additives in hydrocarbon fuel compositions is determined by subjecting the compositions to one or more of the following tests.
  • the tests and their procedures are as follows:
  • CARBURETOR DETERGENCY TEST Engine blow-by contaminants are generated in an engine and collected in a flask. At the end of the collection period the water phase is separated from the fuel phase, the latter being discarded. The water phase of the contaminants is used for the carburetor detergency evaluations.
  • the carburetor detergency test is run on a Cooperative Lubricants Research (CLR) engine, a single cylinder research engine manufactured by Laboratory Equipment Company.
  • CLR Cooperative Lubricants Research
  • the contaminants are injected into the carburetor throttle body of aC L R engine running with a rich mixture and on which the throttle plate has been removed and a 200 mesh stainless steel specimen screen installed at the entrance to the intake manifold.
  • the amount of deposits accumulated on the screen after 3 hours of engine operation indicates the detergency performance of the fuel.
  • Experimental fuels and reference fuels are tested with the same batch of contaminants.
  • the reflectance of the screen is a measure of the amount of deposits accumulated on the screen. The higher the reflectance, the cleaner the screen, i.e., the lower the accumulation of deposits.
  • the effectiveness of an additive is represented as the ratio, expressed as a percentage, of the average screen reflectance for the fuel containing the additive to the average screen reflectance for a reference fuel containing a commercially available carburetor detergent additive at a concentration of pounds per thousand barrels (PTB).
  • PTB pounds per thousand barrels
  • CARBURETOR ANTI-ICING TEST The test is run on a CLR single cyclinder engine coupled to a speed control dynamometer.
  • the engine is fitted with a special, thermally-isolated carburetor with external float bowls; no idle fuel system is used.
  • the carburetor has an adjustable main jet and the throttle body is constructed of glass or clear plastic so icing can be confirmed by visual inspection.
  • a temperature and humidity control system supplies inlet air to the carburetor at the desired conditions and also to a glass or clear plastic box enclosing the carburetor.
  • All anti-icing additives are evaluated in a blended base fuel composed of volume percent of ASTM isoby a choking of the engine by the ice formation.
  • time in seconds for the manifold vacuum to increase 1.5 and 2.0 inches of mercury are recorded as time to ice with the fuel which is being evaluated.
  • An increase in manifold vacuum of 1.5 inches of mercury is defined as trace ice and an increase in manifold vacuum of 2.0
  • inches of mercury is defined as severe ice.
  • Engine operating conditions are set so as to cause a reference fuel, i.e., a base fuel containing a reference 7 anti-icing additive, to ice sufficiently to cause a 2.0 inch manifold vacuum increase in to seconds.
  • a reference fuel i.e., a base fuel containing a reference 7 anti-icing additive
  • the base fuel containing no anti-icing additives will ice to the same extent in 18 to 20 seconds.
  • the interface is rated numerically according to accumulations of skin, dirt, bubbles and emulsion, and the numbers range from O to 7.
  • a rating of 0 denotes a clean break at the interface with no accumulations of any kind.
  • a rating of 7 denotes that the water phase is occupied completely by emulsion.
  • Various degrees of accumulations at the interface are thus assigned numerical values ranging from O for no accumulation to 7 for the poorest rating. Finer variations in the ratings may be denoted by and signs after the numerical rating.
  • a rating of 2- is slightly better than a rating of 2 while a rat-' ing of 5+ is slightly poorer than a rating of 5.
  • both the fuel phase and the water phase are rated for clarity as follows:
  • Passing ratings for a fuel composition are an interface rating of 0 to 2 and fuel and water phase clarity rating of C.
  • MULTIPLE CONTACT EMULSION TEST In an 8 oz. narrow-necked bottle are placed 100 ml. of the fuel to be tested and 10 ml. ofwater of a given pH. The mixture is shaken by hand for 2.5 minutes. The bottle is stored in an upright position in the dark and at the end of 24 hours the appearance of the fuel layer, oil-water interface and water layer are noted. The fuel layer is siphoned off and replaced with a fresh 100 ml. sample of the fuel to be tested. This procedure is re peated for a total of 10 times or until such time as the water layer is completely emulsified after the 24 hour setting period. At the end of each 24 hour period, the sample is rated according to a scale ranging from O to 1 l.
  • a rating of 0 denotes clean separation of fuel and iwater while the poorest rating of 11 indicates a completely solid emulsion.
  • plus and minus signs are applied to the numerical ratings to indicate finer varia-' ⁇ tions therein.
  • RUST TEST A 350 ml. sample of the normally liquid hydrocarbon fuel composition to be tested is extracted by shaking 1 fhydrocarbon fuel composition to be tested. The stirred cedure is repeated until five on the experimental fmixture is heated to F. A steel test specimen is infuel have been made, the times for manifold vacuum increases of 1.5 and 2.0 inches of mercury being noted. The times of the five runs are then averaged for each manifold vacuum increase. Either a base fuel or a refer- "serted into the stirred, heatedmixture and the mixture is stirred at 100F for 20 hours. The steel specimen is then removed, allowed to.drain and then washed with :precipitation naphtha or isooctane. The percent of the ence fuel is run after every two experimental a d 5 'fl surface of the steel test specimen that is covered by rust runs.
  • EQUlLlBRlUM HYDROCARBON EMISSION TEST The test is run using a CLR single cylinder test engine. The engine is clean at the beginning of the test and has no combustion chamber deposits. By means of a Beckman flame ionization detector (FID), the amount of hydrocarbon emissions in the exhaust at the start of the test is determined for the fuel being tested. The engine is run on this fuel until equilibrium is reached as evidenced by no change in the amount of hydrocarbons in the exhaust. The increase in hydorcarbon emissions at equilibrium over the initial hydrocarbon emissions is recorded and expressed in parts per million (p.p.m.).
  • FID Beckman flame ionization detector
  • CLEAN-UP HYDROCARBON EMISSION TEST The test is run on a clean CLR single cylinder test engine having no combustion chamber deposits.
  • the initial fuel is a base fuel containing 3 ml. of TEL/gallon.
  • the engine is run on the base fuel until equilibrium is reached.
  • the in crease in hydrocarbon emissions at equilibrium relative to the initial hydrocarbon emissions in the exhaust is determined (FID) and expressed in p.p.m.
  • the engine is then switched to a fuel containing the additive of this invention and run for another 75 hours. At this time the amount of hydrocarbons in the exhaust is again determined and the change relative to the equilibrium hydrocarbon emissions recorded in p.p.m.
  • EXAMPLE II Gasoline compositions are prepared by dissolving various amounts of a cocktail having the composition of that described in Example I in a base gasoline containing 3 ml. of TEL/gal. and the compositions are subjected to the carburetor detergency test.
  • a base leaded gasoline containing no other additive than 3 ml. of TEL/gal. and leaded (3 ml. of TEL/gal.) gasoline compositions containing various levels of a commercially available multi-functional additive, i.e., DMA-4 manufactured by the Du Pont Company and containing percent of active ingredient
  • EXAMPLE lII Fuel compositions are prepared by dissolving various amounts of a cocktail having the composition of that described in Example 1 in a high volatility fuel comprising a blend of isooctane and precipitation naphtha containing 1.5 ml. of TEL/gal. and the compositions are subjected to the carburetor anti-icing test.
  • a base fuel containing no other additive than 1.5 ml. of TEL/gal. and base fuel compositions containing various levels of the commercial multifunctional additive DMA-4 are also subjected to the carburetor anti-icing test.
  • the make-up of each fuel composition and its percent effectiveness are given in Table II. The percent effectiveness for each composition is determined by averaging the times for 1.5 inch and 2.0 inch manifold vacuum increases and comparing the average time to the average time for a fuel composition containing 15 PTB of DMA-4 which has been assigned an effectiveness of 100 percent.
  • EXAMPLE IV The data in Table III illustrate the excellent rust inhibiting properties imparted to a fuel composition by the incorporation therein of an additive of this invention.
  • EXAMPLE vn A number of gasoline compositions are evaluated in a CLR single cylinder engine to determine the increase in hydrocarbon emissions at equilibrium relative to initial hydrocarbon emissions in a clean engine.
  • a flame ionization detector PD
  • the engine is run to equilibrium as indicated by a stabilization of the hydrocarbon emissions.
  • the increase in hydrocarbon emissions at equilibrium, expressed in p.p.m., and the time to reach equilibrium are recorded.
  • a gasoline composition is prepared by dissolving an additive cocktail having the composition of that described in Example I in a base gasoline composition containing 3 ml. of TEL/gal. and evaluated. For comparison, a base leaded gasoline containing no additive other than 3 ml.
  • composition containing multi-functional additive TABLE IV Concentration, pH of Water Tolerance Ratings PTB Water Gasoline Water Additive Phase Phase Interface DMA-4 l5.0 6.0 C C 0 DMA4 15.0 7.0 C C 0 DMA-4 15.0 9.0 C C 0 Additive Cocktail 33.0 5.0 C C 0+ Additive "Cocktail” 33.0 6.0 C C 0 Additive "Cocktail” 33.0 9.0 C C 0+
  • the data in TabIe IV show the excellent water 16E ance of gasoline compositions containing a cocktail of an additive of this invention.
  • EXAMPLE VI Gasoline compositions are prepared containing different levels of an additive cocktail having the same composition as that described in Example I, and the gasoline compositions are subjected to the multiple contact emulsion test using water of various pH levels. A gasoline composition containing multi-functional additive DMA-4 is also subjected to the test for comparison purposes. The make-up of each composition, the pH of the water used, and the interface rating after the tenth contact are shown in Table V.
  • Table VI shows the make-up of the gasoline compositions, the increase in hydrocarbon emissions in the exhaust at equilibrium,
  • EXAMPLE VIII The hydrocarbon emission reducing properties of an additive of this invention are determined as follows. A clean CLR engine is run on a base gasoline composition containing 3 ml. of TEL/gal. until equilibrium hydrocarbon emission is reached after approximately 95 hours. The increase in hydrocarbon emission at equilibrium relative to initial hydrocarbon emission is determined (FID) and expressed in p.p.m. The engine is then switched to a leaded (3 ml. of TEL/gal.) test fuel containing an additive cocktail having the composition of that described in Example I and run for an additional 75 hours. The hydrocarbon emission is again determined (FID) and the difference relative to the equilibrium hydrocarbon emission is recorded, expressed in p.p.m.
  • a A hydrocarbon emission indicates an increase and a A hydrocarbon emission indicates a decrease in the hydrocarbon emission.
  • Table VII shows the concentration of the additive cocktail" in the test fuel, the A hydrocarbon emission at equilibrium, and the A hydrocarbon emission after 75 hours of running on test fuel. Each of the three runs is made on a different CLR engine.
  • EXAMPLE IX A 9 car fleet test is run using identical 1970 Chevrolets having 350 cubic inch displacement engines. The test involves 10,000 miles of urban-suburban consumer type driving. Three cars are run on a base gasoline containing only 3 ml. of TEL/gal; 3 cars are run on leaded (3 ml. of TEL/gal.) gasoline containing 15 PTB of DMA-4; and 3 cars are run on leaded (3 ml. of TEL/- gal.) gasoline containing 20 PTB of an additive cocktail having the composition of that of Example I. At the end of 10,000 miles, each car is rated in the following tests:
  • CARBURETOR RATING The cleanliness of each carburetor is given a numerical rating on a scale ofO to 10, with 10 being the clean- 5 est and 0 the dirtiest.
  • the hydrocarbon emission level is determined by means of nondispersive infrared (NDIR) and by means of a flame ionization detector (FID).
  • NDIR nondispersive infrared
  • FID flame ionization detector
  • the hydrocarbon level in the exhaust is expressed in p.p.m.
  • OCTANE REQUIREMENT INCREASE (ORI) The difference in octane number requirement of each car at the end of the test relative to the octane number requirement at the start, using a full boiling range reference fuel, is determined.
  • Table VIII contains the results of the foregoing tests.
  • EXAMPLE X Leaded (3 ml. of TEL/gal.) gasoline compositions may be prepared containing 4 PTB, I0 PTB, 30 PTB,
  • gasoline compositions will be found to have good carburetor detergency and carburetor anti-icing properties as well as good water tolerance and rust inhibiting characteristics. Engines run on the gasoline compositions will exhibit reduced deposit build-up and reduced hydrocarbon emissions in the exhaust.
  • EXAMPLE xii EXAMPLE X111 7 Leaded (3 ml. TEL/gal.) gasoline compositions containing the additives of this invention may be prepared by dissolving the additives in a base leaded gasoline.
  • Such gasoline compositions may, for example, contain 500 PTB of additive b; PTB of additive n; 1 PTB of additive m; 350 PTB of additive l; PTB of additive a; 8 PTB of additive f; 37 PTB of additive g; 10 PTB of a cocktail containing weight percent of additive k; 900 PTB of a cocktail containing 50 weight percent of additive e; PTB of a cocktail containing 40 weight percent of additive h; PTB of a cocktail containing 45 weight percent of additive i; or 7 PTB of a cocktail containing 45 weight percent of additive j.
  • the gasoline compositions will be found to have good carburetor detergency and anti-icing properties as well as good water tolerance and rust inhibiting characteristics. In addition, engines run on these
  • Suitable unleaded gasoline compositions may be prepared by dissolving the additives of our invention in a base unleaded gasoline.
  • Exemplary compositions may contain 50 PTB of additive c; 425 PTB of additive i; 4 PTB of additive d; 130 PTB of additive j; 18 PTB of additive h; 40 PTB of additive k; 27 PTB of additive e; PTB of a cocktail containing 50 weight percent of additive m; 70 PTB of a cocktail containing weight percent of additive a; 1,000 PTB ofa cocktail containing 50 weight percent of additive l; 300 PTB of a cocktail containing 60 weight percent of additive k; 50 PTB of a cocktail containing weight percent of additive c; or 20 PTB of a cocktail containing 45 weight percent of additive b.
  • the gasoline compositions will have good carburetor detergency and antiicing properties in addition to good rust inhibiting and water tolerance characteristics. Furthermore, spark ignition engines run on these fuel compositions will be characterized by lessened hydrocarbon emissions in the
  • Diesel fuel compositions containing the additives of this invention can be prepared. Suitable compositions contain, for instance, 1 PTB of additive b; 35 PTB of additive k; 6 PTB of additive d; 400 PTB of additive l; 30 PTB of a cocktail containing weight percent 'of additive n; 850 PTB of a cocktail containing weight percent of additive i; 95 PTB of a cocktail" containing 45 weight percent of additive m; 15 PTB of a cocktailcontaining 50 weight percent of additive g; or PTB ofa cocktail" containing 45 weight percent of additive e.
  • These diesel fuel compositions will be found to have good water tolerance and rust inhibiting properties. Furthermore, engines run on the above fuel compositions will have cleaner fuel intake systems than engines run on base fuel containing no additive.
  • the jet fuel compositions will be found to have good rust inhibiting properties and pass the water tolerance tests. As a result of the good water tolerance characteristics, jet fuel compositions containing the additives of this invention will not tend to pick up water. Hence there will be a reduced tendency toward ice formation and fuel filter plugging.
  • EXAMPLE XVII A test to determine intake system deposit build-up is carried out. Initially clean 6 cylinder, 230 cubic inch engines are run for 1 15 hours under a simulated suburban driving schedule. One engine is run on a base gasoline containing 3 ml. of TEL/gal. and one engine is run on a leaded (3 ml. of TEL/gal.) gasoline containing 20 PTB of the cocktail described in Example I. In each case, the hydrocarbon emissions are determined (NDIR) at the start and at the end of the test. In addition, the amount of combustion chamber deposits in each engine is determined. The results of the test are given in Table XI.
  • a normally liquid hydrocarbon fuel composition comprising a major proportion of a normally liquid hydrocarbon fuel and about 1 to about 500 PTB of an additive comprising a hydrocarbyl hydrogen phosphate salt of a compound having the formula R" 0 0 R h [R'I I("J:ln R l:-i JI IR'-NR"2:L
  • R is a multivalent hydrocarbon group of about 2 to about 52 carbons
  • R is a hydrocarbylene group of about 2 to about 12 carbons
  • R is selected from the group consisting of hydrogen and hydrocarbyl groups of about 1 to about 30 carbons
  • R is a hydrocarbyl group of about 2 to about 12 carbons, and at least about 10 percent of the amino groups contained therein are converted to the hydrocarbyl hydrogen phosphate salt.
  • a normally liquid hydrocarbon fuel composition comprising a major proportion of a normally liquid hydrocarbon fuel and from about 1 to about 500 PTB of the additive of claim 1 wherein R is a multivalent hydrocarbon group of about 4 to about 34 carbons, R is a hydrocarbylene group of about 2 to about 6 carbons,
  • R" is selected from the group consisting of hydrogen and hydrocarbyl groups of about 3 to about 24 carbons, R is a hydrocarbyl group of about 2 to about 6 carbons, and about 50 percent to about 90 percent of the amino groups contained therein are converted to the hydrocarbyl hydrogen phosphate salt.
  • the normally liquid hydrocarbon fuel composition of claim 2 wherein the normally liquid hydrocarbon fuel is selected from the group consisting of gasoline, diesel fuel, and jet fuel.
  • a normally liquid hydrocarbon fuel composition selected from the group consisting of gasoline, diesel fuel, and jet fuel compositions containing from about 4 to about 50 PTB of the additive of claim 2 wherein n is zero, in is 2, and the salt-forming hydrocarbyl hydrogen phosphate is an alkyl hydrogen orthophosphate.
  • R is the C hydrocarbylene portion of the dimer of a polyunsaturated C monocarboxylic fatty acid, R is tallowyl, and about 50 percent to about percent of the amino groups are converted to the hydrocarbyl hydrogen orthophosphate salt.
  • a gasoline composition comprising gasoline and about 4 to about 50 PTB of the additive of claim 5 wherein the salt-forming hydrocarbyl hydrogen orthophosphate is a mixture of isooctyl dihydrogen orthophosphate and diisooctyl hydrogen orthophosphate.
  • a gasoline composition comprising a major proportion of gasoline and from about 13 to about 20 PTB of a mixture comprising about 45 weight percent of the additive of claim 6 wherein the salt-forming hydrocarbyl hydrogen orthophosphate comprises about 65 weight percent of diisooctyl hydrogen orthophosphate and about 35 weight percent of issooctyl dihydrogen orthophosphate, about 48.6 weight percent of toluene, about 4.5 weight percent of methanol, and about 1.9 weight percent of a demulsifying agent.
  • NDIR FID ment Increase shou1d read Average Hydrocarbon Octane Emission p.p.m. Requirement NDIR FID Increase C01umns 17 and 18, Tab1e IX, the fo11owing items shou1 d be added:
  • pyrome11itic 1 4-diaminopencadecy1 .80 e acid hexane dihydrogen orthophosphate 1 ,18-dicarboxyv hexamethy1enedipheny1 40 f octadecane diamine hydrogen orthophosphate g1utaric acid N,N-dibuty1 diisooc'ty1 hydrogen 100 g ethy1enediamine orthopiicsphate 1 ,4-cyc10hex- N-(10-pheny1 hepty1 dihydrogen 10 h ane-dicarboxsteary1)-1,3- orthophospha-te y1 ic acid propy1 enediamine Versadyme propy1enediamine triethy1 hydrogen 30 i 216 dimer acid pyrophosphate Signed and sealed this 29th day of October 1974.
  • NDIR FID ment I Increase shouId read I Average Hydrocarbon Octane Emission p.p m. Requirement NDIR FIDI Increase CoI umns I7; and I8, TabIe IX the foi'iowing iterrs shoui d be added:

Abstract

Hydrocarbyl acid phosphate salts of polyamides having at least one amino group and hydrocarbon fuel compositions containing same. The salts are formed by neutralizing with a hydrocarbyl acid phosphate at least 10 percent of the amino groups of a polyamide containing from about 2 to about 6 amide groups and at least one amino group. Hydrocarbon fuel compositions containing these salts exhibit desirable properties such as enhanced carburetor detergency and carburetor anti-icing characteristics, improved water tolerance, excellent rust inhibition, and cleaner engine operation while engines operated thereon exhibit reduced hydrocarbon content in the exhaust.

Description

United States Patent [191 Robinson et al.
Brunswick; Ernest Jamieson, Highland Park, all of NJ.
Assignee: Cities Service OilCompany, New
York, N.Y.
Filed: Oct. 14, 1971 Appl. No.: 189,413
Related US. Application Data Division of Ser. No. 77,040, Sept. 30, 1970.
US. Cl. 44/66, 44/63, 44/71,
44/DIG. 1, 44/D1G. 4, 252/392 Int. Cl C101 1/26 Field of Search 44/66, 71, 63, DIG. 1,
44/DIG. 4; 260/404.5; 252/392 References Cited UNITED STATES PATENTS 4/1972 Jamieson 44/66 [451 Apr. 16, 1974 Primary Examiner-Daniel E. Wyman Assistant Examiner-Y. H. Smith [5 7] ABSTRACT Hydrocarbyl acid phosphate salts of polyamides having at least one amino group and hydrocarbon fuel compositions containing samejThe salts are formed by neutralizing with a hydrocarbyl acid phosphate at least 10 percent of the amino groups of a polyamide containing from about 2 to about 6 amide groups and at least one amino group. Hydrocarbon fuel compositions containing these salts exhibit desirable properties such as enhanced carburetor detergency and carburetor anti-icing characteristics, improved water tolerance, excellent rust inhibition, and cleaner engine operation while engines operated thereon exhibit reduced hydrocarbon content in the exhaust.
7 Claims, No Drawings IIYDROCARBON FUEL COMPOSITIONS CONTAINING I-IYDROCARBYL ACID PHOSPHATE SALTS OF AMINO POLYAMIDES CROSS-REFERENCE TO RELATED APPLICATION This application is a division of co-pending application Ser. No. 77,040, filed Sept. 30, 1970.
This application is related to co-pending application, Ser. No. 829,143 filed May 29', 1969, now U.S. Pat. No. 3,655,351 and entitled GASOLINE COMPOSI- TION, which was assigned to the assignee of the present application.
BACKGROUND OF THE INVENTION Normally liquid hydrocarbon fuels often require additives to improve their performance characteristics. Thus, in fuels such as gasoline, diesel fuel and jet fuel, various additives are employed to assist in maintaining cleanliness in the carburetor and fuel intake system and to prevent carburetor icing as well as to inhibit rust. The additives vary in effectiveness, and it is often necessary to use a number of additives in a single composition.
Many additives for hydrocarbon fuels are only marginally soluble in hydrocarbons. Furthermore, they are often employed in concentrations that approach their limits of solubility. As a result, hydrocarbon compositions containing such additives often exhibit poor stability and, as a result, on standing the additive may precipitate.
In addition, many additives for hydrocarbon fuels have poor water tolerance. When fuel compositions containing such additives come in contact with water as, for example, in storage tanks, water enters the hydrocarbon phase. This is particularly deleterious in jet fuels. The temperatures at high altitudes where jet aircraft operate are well below freezing. Hence, water in the fuel crystallizes and plugs fuel filters, thereby cutting off the flow of fuel to the engines. To combat this, fuel tank heaters and additives to prevent ice formation are employed.
A serious problem relating to internal combustion engines is environmental pollution as, for example, air pollution by exhaust emissions from internal combustion engines. A component of the exhaust from internal combustion engines is unburned hydrocarbons. Various methods have been used to reduce the hydrocarbons in engine exhausts, for example, catalytic mufflers and positive crank case ventilation systems.
SUMMARY OF THE INVENTION Desirable properties such as carburetor detergency, good carburetor anti-icing characteristics, and good rust inhibiting properties are imparted to normally liquid hydrocarbon fuels by the incorporation therein of hydrocarbon fuel-soluble organic compounds containing at least two amide linkages. A particularly efficacious type of compound of this class is compounds containing at least two amide linkages and having in addition at least one free amino group. It has been found that when these polyamides containing at least one free amino group are converted to the hydrocarbyl hydrogen phosphate salts, incorporation thereof into normally liquid hydrocarbon fuels not only favors improved carburetor detergency, carburetor anti-icing,
and rust inhibiting properties but also results in other desirable properties. For example, hydrocarbon fuels containing hydrocarbyl hydrogen phosphate salts of polyamides having at least one amino group also have excellent stability and water tolerance and, in addition, engines operated thereon are characterized by reduced hydrocarbon emissions in the exhaust.
It is therefore an object of this invention to provide additives which, when incorporated in normally liquid hydrocarbon fuels, impart desirable properties thereto.
It is another object of this invention to provide additives which are readily soluble in normally liquid hydrocarbon fuels to produce stable solutions.
Yet another object of this invention is to provide normally liquid hydrocarbon fuel compositions having enhanced carburetor and fuel intake system detergency properties as well as superior carburetor anti-icing characteristics.
It is still another object of this invention to provide normally liquid hydrocarbon fuel compositions having improved water tolerance and rust inhibiting properties.
Yet another object of this invention is to provide normally liquid hydrocarbon fuel compositions which are characterized by reduced hydrocarbon content in the exhaust of internal combustion engines operated thereon.
Still other objects will appear hereinafter.
The foregoing objects are attained in accordance with this invention. In general, this invention comprises a hydrocarbyl hydrocarbon phosphate salt of a compound having the general formula wherein m is at least 1 and the sum of n plus m is from 2 to about 6, R is a multivalent hydrocarbon group of about 2 to about 52 carbons, R is a hydrocarbylene group of about 2 to about 12 carbons, R is selected from the group consisting of hydrogen and hydrocarbyl groups of about 1 to about 30 carbons, R' is a hydrocarbyl group of from about 2 to about 12 carbons, and at least 10 percent of the amino groups contained therein are converted to the hydrocarbyl hydrogen phosphate salt; and normally liquid hydrocarbon fuel compositions comprising a major proportion of a normally liquid hydrocarbon fuel and a minor proportion of the above additive.
Normally liquid hydrocarbon fuel compositions containing the additive compounds of this invention exhibit such desirable properties as enhanced carburetor and fuel intake system detergency properties as well as superior carburetor anti-icing characteristics. In addition, hydrocarbon fuel compositions containing our additives have good water tolerance which favors dry fuel, and -they also have good rust inhibiting properties. A particularly favorable aspect of hydrocarbon fuel compositions containing the additive compounds of this invention is that internal combustion engines operated thereon exhibit markedly reduced hydrocarbon emissions in the exhaust. Furthermore, the good solubility of the additives of this invention in liquid hydrocarbon fuels ensures stability with little tendency toward gum formation. Another advantage of our additives is their ability to impart desirable properties to liquid hydrocarbon fuels when used at low concentrations which makes them economically attractive. Other advantages of this invention will be apparent from the following description.
DESCRIPTION OF THE PREFERRED EMBODIMENTS The normally liquid hydrocarbon fuel compositions of this invention are prepared by incorporating into a major proportion of a normally liquid hydrocarbon fuel a minor proportion of an additive which is a hydrocarbon fuel-soluble organic compound containing at least two amide linkages. The additives useful in the present invention have the following general structures:
wherein R, is a hydrogen or a hydrocarbyl group of about 1 to about 30 carbons and preferably about to about 25 carbons, e.g., an alkyl group, an aryl group, an aralkyl group, an alkaryl group, a cycloparaffin group, a cycloolefin group, or an aliphatic olefin group; R R and R are polyvalent hydrocarbyl groups of about 2 to about 65 carbons and preferably about 3 to about 55 carbons, e.g., polyvalent aryl groups or olefinically saturated or unsaturated polyvalent alkyl groups, aralkyl groups, alkaryl groups, and naphthyl groups; x is equal to or greater than one; and y is such that the total number of amide linkages in the molecule is two or more. One or more hydrogens on hydrocarbyl groups R,, R R and R may be replaced by a heterocyclic group such as an imidazolyl group or by a functional group such as halide, hydroxyl, carboxyl, carbonyl, ester, mercaptyl, amino, substituted amino, or amide. R R R or R may be the same or different whenever they occur more than once in any one molecule. R and R may be the same or different in compounds represented by structure II. When at is greater than I in compounds represented by structure III, the portion of the molecule within brackets may be attached to the same or different carbons in R Polyamides of the type represented by structure I may be prepared, for example, by condensing amino acids with one another through-their respective amino and carboxyl groups. Polyamides of the type represented by structure I! may be prepared, for example, by condensing dicarboxylic acids with diamines. Polyamides of the type represented by structure III may be prepared by condensing a polycarboxylic acid with ammonia or an amine. The amine may be selected from primary and secondary amines as well as compounds containing two or more amino groups.
Another class of amines that finds use in the practice of this invention is aminoalkyl substituted imidazolines of the general structure:
Bi (EH.
wherein x is l to 8 and R is a hydrocarbyl group. When this class of amine is condensed with, for example, a dicarboxylic acid, the following type of diamide is produced:
wherein X represents the non-carboxyl portion of the dicarboxylic acid.
It has been found that a particularly satisfactory class of amines is derived from l,3-propylenediamine. Of these, N-( l O-phenylstearyl)-l ,3-propylenediamine and N-tallowyl-l,3-propylenediamine are especially efficacious. When a l,3-propylemediamine l5 condensed with a dicarboxylic acid, in addition to diamide, some low molecular weight polyamide-type polymer of about 2 to 15 repeating units may be formed. It is also possible that the free amino groups of the diamide may react with the carbonyl oxygens of the amide groups to split out water and cyclize to form a tetrahydropyrimidine.
In addition to the dicarboxylic acids used to form amides represented by structure III when x is 1, acids containing three, four or more carboxyl groups may be converted to amides and used successfully in the practice of this invention. An example is a trimer acid designated as Empol 1040 and which is manufactured by Emery Industries, Inc. This is the trimer of a polyunsaturated C monocarboxylic fatty acid, being a C tricarboxylic acid.
In addition to forming a polyamide by condensing a specific amine with a specific polycarboxylic acid, it is possible to condense mixtures of amines with mixtures of acids. An example of a useful mixture of acids is Empol 1022 which is comprised of about three parts of 4 the dimer and about one part of the trimer of a polyunsaturated C monocarboxylic fatty acid. An example of a suitable mixture of amines is two parts of 10- phenylstearylamine and one part of N-( lO-phenylstearyl )-l ,3-propylenediamine.
The polyamides of this invention may be prepared by adding one mole of the amine to each equivalent of the polycarboxylic acid in a suitable solvent and heating the mixture. Water formed as a by-product of the condensation reaction is removed from the reaction mixture, for example by azeotropic distillation. It is convenient when using an aromatic solvent such as toluene or xylene to employ a water separator to collect the byproduct water. On completion of the reaction, removal of the solvent as, for example, by distillation leaves the polyamide.
The preferred normally liquid hydrocarbon fuel com positions of this invention are prepared by incorporating into a major proportion of a normally liquid hydro- The novel additives of this invention are prepared by reacting a hydrocarbyl hydrogen phosphate with a polyamide containing from 2 to about 6 amide groups and at least 1 amino group whereby at least about 10% of the amino groups are converted to the hydrocarbyl hydrogen phosphate salt. The polyamides are prepared by condensing a polycarboxylic acid having from 2 to about 6 carboxyl groups with an amine or amines to convert each carboxyl group to the corresponding N- substituted amide group. It is critical that at least one N-substituted amide group in every molecule contain an amino group on the substituent. Thus at least one carboxyl group of the polycarboxylic acid must be condensed with a polyamine, preferably a diamine, while the remainder of the carboxyl groups may be condensed with either a monoamine or a polyamine. However, it is preferred that each carboxyl group be condensed with a diamine. The preferred acids are dicarboxylic acids. Hence the preferred polyamides are diamino-diamides having the general formula wherein R is a hydrocarbylene group of about 2 '56 about 52 carbons and preferably about 4 to about 34 carbons, R is a hydrocarbylene group of about 2 to about 12 carbons and preferably about 2 to about 6 carbons, and R is selected from the group consisting of hydrogen and hydrocarbyl groups of about 1 to about 30 carbons and preferably about 3 to about 24 carbons.
The hydrocarbyl hydrogen phosphate which is reacted with the polyamide containing one or more amino groups to form the salt is preferably a hydrocarbyl hydrogen orthophosphate. The hydrocarbyl hydrogen orthophosphate may be a dihydrocarbyl hydrogen orthophosphate, a hydrocarbyl dihydrogen orthophosphate, or preferably a mixture of a dihydrocarbyl hydrogen orthophosphate and a hydrocarbyl dihydrogen orthophosphate. The hydrocarbyl portions contain from about 1 to about 15 carbons and preferably from about 3 to about 10 carbons. In the case of dihydrocarbyl hydrogen orthophosphates and mixtures of dihydrocarbyl hydrogen orthophosphates and hydrocarbyl dihydrogen orthophosphates, the hydrocarbyl groups may be the same of different. The hydrocarbyl portions may be aliphatic, aromatic, or naphthenic or they may contain various mixtures of aliphatic, aromatic and naphthenic segments. Aliphatic and naphthenic segments may be either saturated or unsaturated. The ratio of hydrocarbyl hydrogen orthophosphate to the polyamide containing one or more amino groups is I such that at least about 10 percent of the amino groups are converted to the hydrocarbyl hydrogen orthophosphate salt. While about 10 percent to about lOO percent of the amino groups may be converted to the hydrocarbyl hydrogen orthophosphate salt, it is preferred that about 50 percent to about 90 percent of the amino groups be converted to the salt since the presence of some free amino groups is usually desirable. However, an excess of hydrocarbyl hydrogen orthophosphate may be present in the case where 100 percent of the amino groups are converted to the salt.
As stated above, the polyamide containing from 2 to about 6 amide groups and at least 1 amino group has the general formula wherein R is a m ultivalent hydrocarbon group of about 2 to about 52, and preferably about 4 to about 34, carbons, and m is at least 1 and the sum of n plus m is from 2 to about 6. The polycarboxylic acid from which the polyamide is made therefore has the general formula wherin'li is iiiii'li'ivalnthydrocarbdn grou of about 2 to about 52 carbons and preferably about 4 to about 34 carbons. R may be aliphatic, aromatic or naphthenic, or it may contain various mixtures of aliphatic, aromatic and naphthenic segments. Aliphatic and naphthenic segments may be either saturated or unsaturated. While the sum of m plus n may be from 2 to about 6, it is preferred that the sum of m plus n be 2, i.e., a dicarboxylic acid. Examples of suitable polycarboxylic acids are succinic acid; glutaric acid; adipic acid; terephthalic acid; l,4-cyclohexanedicarboxylic acid; pyromellitic acid, 1,1 S-dicarboxyoctadecane; and trimer acid which is the trimer of a polyunsaturated C monocarboxylic fatty acid, being a C tricarboxylic acid of uncertain structure. The preferred polycarboxylic acid is a dimer acid produced by the dimerization of a polyunsaturated C monocarboxylic fatty acid to produce an unsaturated C dicarboxylic acid whose exact structure is not known with certainty. Such a dimer acid is produced by General Mills under the trade name of Versadyme 216.
The amine which is condensed with the polycarboxylic acid to form the polyamide is selected from the group consisting of monoamines and polyamines, preferably diamines, having the general formulas 30 carbons and preferably about 3 to about 24 carbons,
and R is a hydrocarbyl group of about 2 to about 12 carbons and preferably about 2 to about 6 carbons. R, R', and R" when it is a hydrocarbyl group may be aliphatic, aromatic or naphthenic or they may contain various mixtures of aliphatic, naphthenic and aromatic segments. Aliphatic and naphthenic segments may be either saturated or unsaturated. Examples of suitable monoamines are diethylamine, dodecylamine, cyclohexylamine, methylbutylamine and propylamine. Examples of suitable diamines are ethylenediamine; propylenediamine; 1,12-diaminododecane; hexamethylene; N-methyl-N '-propyl-l ,3-propylenediamine; N,N-dibutylenediamine; 1,4-diaminohexane; N-oleyl- 1,3-propylenediamine; N-cyclohexylethylenediamine; and N-( l0-phenylstearyl)-l ,3-propylenediamine. The preferred amine is N-tallowyl-l,3 propylenediamine.
Examples of hydrocarbyl hydrogen phosphates are triethyl hydrogen pyrophosphate, methylphenyl dihydrogen pyrophosphate, cyclohexy] dihydrogen orthophosphate, diphenyl hydrogen orthophosphate, methyldecyl hydrogen orthophosphate, pentadecyl dihydrogen orthophosphate, dipropyl hydrogen orthophosphate, heptyl dihydrogen orthophosphate, isooctyl dihydrogen orthophosphate, and diisooctyl hydrogen orthosphosphate. The preferred hydrocarbyl hydrogen phosphate is a mixture of isooctyl dihydrogen orthophosphate and diisooctyl hydrogen orthophosphate.
In order that the additive of our invention have the necessary solubility in hydrocarbon fuels, it is necessary that the polyamide containing from 2 to about 6 amide groups and at least one amino group contain about 24 to about 100, and preferably about 30 to about 90, carbons. Since the preferred acid for amide formation is dimer acid, the preferred amine is N-tallowyl-l,3-propylenediamine, and the preferred hydrocarbyl hydrogen phosphate for salt formation is a mixture of isooctyl dihydrogen orthophosphate and diisooctyl hydrogen orthophosphate, the preferred additive of our invention is a mixture of isooctyl dihydrogen orthophosphate and diisooctyl hydrogen orthophosphate salts of the diamide obtained by condensing one mole of dimer acid with 2 moles of N-tallowyl-l,3- propylenediamine. It will be understood that when the dimer acid condenses with the diamine to form the diamino-diamide, either amino group may condense with a carboxyl group and the product is therefore a wherein R is the C hydrocarbylene portion of the dimer acid and R is a tallowyl group. The ratio of the mixture of isooctyl hydrogen orthophosphates to the diamino-diamide to form our preferred additive is such as to convert from about percent to about 100 percent, and preferably about 50 percent to about 90 percent, of the amino groups of the diamino-diamide to the corresponding isooctyl hydrogen orthophosphate salts. In the case where 100 percent of the amino groups are converted to the salt, it is contemplated that an excess of the mixture of isooctyl hydrogen orthophosphates may be present.
A particularly advantageous method of incorporating the additive of this invention into a normally liquid hydrocarbon fuel is to form a cocktail of the additive with other ingredients which, for example, enhance the ease of solution of the additive in the fuel and the handling characteristics of the additive itself. An especially desirable cocktail contains 45 weight percent of the preferred additive of this invention, the additive being prepared by reacting about 3 parts by weight of the condensation product of 1 mole of dimer acid and 2 moles of N-tallowyl-1,3-propylenediamine with about 1 part by weight of a mixture of about 65 weight percent diisooctyl hydrogen orthophosphate and about 35 weight percent of isooctyl dihydrogen orthophosphate. Thus about 80-90 percent of the amino groups of the diamino-diamide are neutralized by the mixture of isooctyl hydrogen orthophosphates. The remainder of the cocktail comprises 48.6 weight percent toluene, 4.5 weight percent methanol, and 1.9 weight percent of a demulsifying agent, advantageously DS-4l5 manufactured by Petrolite Corporation.
Cocktails of additives of this invention with other ingredients which, for example, enhance the solubility of the additive will vary depending on a number of factors. The concentration of the additive in the cocktail will generally be as high as possible commensurate with ready solubility of the cocktail in the hydrocarbon fuel. Generally, the concentration of additive in the cocktail is about 40-60 weight percent. The other components of the cocktail will generally be solvents or mixtures of solvents that readily dissolve the additive and which are miscible with the hydrocarbon fuel, as well as materials such as demulsifying agents.
containing from about 4 to about 50 PTB of additive are preferred.
In the case of the cocktail described above which contains about 40-60 weight percent of an additive of this invention, its concentration in the normally liquid hydrocarbon fuel composition may vary from about 5 to about 1000, and preferably from about 10 to about 100, PTB of said cocktail. When the normally liquid hydrocarbon fuel is gasoline, a particularly desirable gasoline composition contains about 13 to about 20 PTB of said cocktail.
The efficacy of our additives in hydrocarbon fuel compositions is determined by subjecting the compositions to one or more of the following tests. The tests and their procedures are as follows:
CARBURETOR DETERGENCY TEST Engine blow-by contaminants are generated in an engine and collected in a flask. At the end of the collection period the water phase is separated from the fuel phase, the latter being discarded. The water phase of the contaminants is used for the carburetor detergency evaluations.
The carburetor detergency test is run on a Cooperative Lubricants Research (CLR) engine, a single cylinder research engine manufactured by Laboratory Equipment Company. The contaminants are injected into the carburetor throttle body of aC L R engine running with a rich mixture and on which the throttle plate has been removed and a 200 mesh stainless steel specimen screen installed at the entrance to the intake manifold. The amount of deposits accumulated on the screen after 3 hours of engine operation indicates the detergency performance of the fuel. Experimental fuels and reference fuels are tested with the same batch of contaminants.
At the conclusion of the 3 hour run, the 200 mesh screen is removed and evaluated for contaminant accumulation. The reflectance of the screen, determined by means of a reflectance meter, is a measure of the amount of deposits accumulated on the screen. The higher the reflectance, the cleaner the screen, i.e., the lower the accumulation of deposits.
The effectiveness of an additive is represented as the ratio, expressed as a percentage, of the average screen reflectance for the fuel containing the additive to the average screen reflectance for a reference fuel containing a commercially available carburetor detergent additive at a concentration of pounds per thousand barrels (PTB). Thus an experimental additive that equals the performance of the reference fuel will have an effectiveness of 100 percent, and an experimental additive that performs at a lower lever than the reference fuel will have an effectiveness of less than 100 percent, and an experimental additive that performs at a higher level than the reference fuel will have an effectiveness of greater than 100 percent.
CARBURETOR ANTI-ICING TEST The test is run on a CLR single cyclinder engine coupled to a speed control dynamometer. The engine is fitted with a special, thermally-isolated carburetor with external float bowls; no idle fuel system is used. The carburetor has an adjustable main jet and the throttle body is constructed of glass or clear plastic so icing can be confirmed by visual inspection. A temperature and humidity control system supplies inlet air to the carburetor at the desired conditions and also to a glass or clear plastic box enclosing the carburetor.
All anti-icing additives are evaluated in a blended base fuel composed of volume percent of ASTM isoby a choking of the engine by the ice formation. The
time in seconds for the manifold vacuum to increase 1.5 and 2.0 inches of mercury are recorded as time to ice with the fuel which is being evaluated. An increase in manifold vacuum of 1.5 inches of mercury is defined as trace ice and an increase in manifold vacuum of 2.0
inches of mercury is defined as severe ice.
Engine operating conditions are set so as to cause a reference fuel, i.e., a base fuel containing a reference 7 anti-icing additive, to ice sufficiently to cause a 2.0 inch manifold vacuum increase in to seconds. When these conditions are set, the base fuel containing no anti-icing additives will ice to the same extent in 18 to 20 seconds. Once these operating conditions have been achieved, the anti-icing characteristics of base fuel con- 5 taining the experimental additives can be evaluated.
In running the test on a fuel composition containing an experimental additive, once ice severe enough to, raise the manifold vacuum 20 inches of mercury has formed, the carburetor is switched to the purge fuel which removes the ice. After 50 seconds to allow for ice removal and engine stabilization, the carburetor is switched back to the experimental fuel. The above pro-T WATER TOLERANCE TEST Into an 8 oz. bottle are poured 100 ml. of the fuel composition to be tested plus 20 ml. of water of a given pH. The bottle is capped and hand-shaken with an updown motion for 2.5 minutes, approximately 180 to 200 times. The mixture is stored in the dark on a vibration-free table for 24 hours and is then rated. The interface is rated numerically according to accumulations of skin, dirt, bubbles and emulsion, and the numbers range from O to 7. A rating of 0 denotes a clean break at the interface with no accumulations of any kind. A rating of 7 denotes that the water phase is occupied completely by emulsion. Various degrees of accumulations at the interface are thus assigned numerical values ranging from O for no accumulation to 7 for the poorest rating. Finer variations in the ratings may be denoted by and signs after the numerical rating. Thus a rating of 2- is slightly better than a rating of 2 while a rat-' ing of 5+ is slightly poorer than a rating of 5. In addition, both the fuel phase and the water phase are rated for clarity as follows:
C very clear, no haze SH slightly hazy H hazy Vl-I very hazy E emulsion.
Passing ratings for a fuel composition are an interface rating of 0 to 2 and fuel and water phase clarity rating of C.
MULTIPLE CONTACT EMULSION TEST In an 8 oz. narrow-necked bottle are placed 100 ml. of the fuel to be tested and 10 ml. ofwater of a given pH. The mixture is shaken by hand for 2.5 minutes. The bottle is stored in an upright position in the dark and at the end of 24 hours the appearance of the fuel layer, oil-water interface and water layer are noted. The fuel layer is siphoned off and replaced with a fresh 100 ml. sample of the fuel to be tested. This procedure is re peated for a total of 10 times or until such time as the water layer is completely emulsified after the 24 hour setting period. At the end of each 24 hour period, the sample is rated according to a scale ranging from O to 1 l. A rating of 0 denotes clean separation of fuel and iwater while the poorest rating of 11 indicates a completely solid emulsion. As in the case of the water tolerance test described above, plus and minus signs are applied to the numerical ratings to indicate finer varia-'\ tions therein.
RUST TEST A 350 ml. sample of the normally liquid hydrocarbon fuel composition to be tested is extracted by shaking 1 fhydrocarbon fuel composition to be tested. The stirred cedure is repeated until five on the experimental fmixture is heated to F. A steel test specimen is infuel have been made, the times for manifold vacuum increases of 1.5 and 2.0 inches of mercury being noted. The times of the five runs are then averaged for each manifold vacuum increase. Either a base fuel or a refer- "serted into the stirred, heatedmixture and the mixture is stirred at 100F for 20 hours. The steel specimen is then removed, allowed to.drain and then washed with :precipitation naphtha or isooctane. The percent of the ence fuel is run after every two experimental a d 5 'fl surface of the steel test specimen that is covered by rust runs.
1. 11s determined.
EQUlLlBRlUM HYDROCARBON EMISSION TEST The test is run using a CLR single cylinder test engine. The engine is clean at the beginning of the test and has no combustion chamber deposits. By means of a Beckman flame ionization detector (FID), the amount of hydrocarbon emissions in the exhaust at the start of the test is determined for the fuel being tested. The engine is run on this fuel until equilibrium is reached as evidenced by no change in the amount of hydrocarbons in the exhaust. The increase in hydorcarbon emissions at equilibrium over the initial hydrocarbon emissions is recorded and expressed in parts per million (p.p.m.).
CLEAN-UP HYDROCARBON EMISSION TEST The test is run on a clean CLR single cylinder test engine having no combustion chamber deposits. The initial fuel is a base fuel containing 3 ml. of TEL/gallon. Using the procedure described above, the engine is run on the base fuel until equilibrium is reached. The in crease in hydrocarbon emissions at equilibrium relative to the initial hydrocarbon emissions in the exhaust is determined (FID) and expressed in p.p.m. The engine is then switched to a fuel containing the additive of this invention and run for another 75 hours. At this time the amount of hydrocarbons in the exhaust is again determined and the change relative to the equilibrium hydrocarbon emissions recorded in p.p.m.
The following specific examples will serve to better illustrate our invention.
EXAMPLE I To a solution of 147.5 g. (0.25 mole) of Versadyme 216 dimer acid in 200 ml. of toluene are added 178.0 g. (0.5 mole) of N-tallowyl-l ,3-propylenediamine. The reaction mixture, in a flask fitted with a stirrer, a Dean- Stark trap and a reflux condenser, is stirred while heated under reflux for 13.5 hours. At the end of this time, 9.0 ml. of water, the theoretical amount for formation of the mixture of isomeric diamino-diamides, have been collected in the Dean-Stark trap. The solvent is removed by distillation under reduced pressure to yield 319.0 g. of the mixture of isomeric diaminodiamides having a basic nitrogen content of 3.06 weight percent.
To 100 g. of the mixture of isomeric diaminodiamides are added 36.2 g. of an approximately equimolar mixture of diisooctyl hydrogen orthophosphate and isooctyl dihydrogen orthophosphate containing a small amount of orthophosphate acid and having an equivalent weight of 184. The mixture of isooctyl hydrogen orthophosphates is sufficient to react with 90 percent of the amino groups of the diamino-diamides to form the corresponding salts. To the reaction mixture are added 5.68 g. of Petrolite DS-415, a demulsifying agent manufactured by Petrolite Corporation. The mixture is stirred and the temperature rises to 52C. A portion of this mixture is mixed with toluene and methanol to form a cocktail having the composition:
EXAMPLE II Gasoline compositions are prepared by dissolving various amounts of a cocktail having the composition of that described in Example I in a base gasoline containing 3 ml. of TEL/gal. and the compositions are subjected to the carburetor detergency test. For comparison purposes, a base leaded gasoline containing no other additive than 3 ml. of TEL/gal. and leaded (3 ml. of TEL/gal.) gasoline compositions containing various levels of a commercially available multi-functional additive, i.e., DMA-4 manufactured by the Du Pont Company and containing percent of active ingredient and 20 percent kerosene, are also subjected to the carburetor detergency test. The make-up of each gasoline composition and its percent effectiveness as determined by the average screen reflectance are given in Table 1. The gasoline composition containing 15 PTB of DMA-4 has been assigned an effectiveness of percent and all results are relative to this reference. Each result is the average of a number of determinations.
It is seen from Table I that gasoline compositions con taining a cocktail" of an additive of this invention, said cocktail having the composition of that described in Example I, have excellent carburetor detergency properties.
EXAMPLE lII Fuel compositions are prepared by dissolving various amounts of a cocktail having the composition of that described in Example 1 in a high volatility fuel comprising a blend of isooctane and precipitation naphtha containing 1.5 ml. of TEL/gal. and the compositions are subjected to the carburetor anti-icing test. For comparison purposes, a base fuel containing no other additive than 1.5 ml. of TEL/gal. and base fuel compositions containing various levels of the commercial multifunctional additive DMA-4 are also subjected to the carburetor anti-icing test. The make-up of each fuel composition and its percent effectiveness are given in Table II. The percent effectiveness for each composition is determined by averaging the times for 1.5 inch and 2.0 inch manifold vacuum increases and comparing the average time to the average time for a fuel composition containing 15 PTB of DMA-4 which has been assigned an effectiveness of 100 percent.
The data in Table ll show that fuel compositions containing a cocktail of an additive of this invention have improved carburetor anti-icing properties com-.
pared to a base fuel and that they compare favorably to fuel compositions containing a commercially available additive.
EXAMPLE IV The data in Table III illustrate the excellent rust inhibiting properties imparted to a fuel composition by the incorporation therein of an additive of this invention.
EXAMPLE V Gasoline compositions containing an additive cocktail" having the composition of that described in Example I and gasoline compositions containing multifunctional additive DMA-4 are subjected to the water tolerance test using water of various pH. The make-up of each composition, the pH of the water used, and the re- TABLE V Additive ConcentrapH of Water Interface tion, PTB Rating After 10th Contact Additive Cocktail" 13.0 5.0 2+ do. do. 13.0 6.0 2+ do. do. 13.0 10.0 1+ do. do. 27.0 5.0 2+ do. do. 27.0 6.0 2+ do. do. 27.0 10.0 2+ DMA-4 15.0 5.0 3- DMA-4 l5.0 6.0 3 DMA-4 15.0 10.0 3-
From the results of the test as shown in Table V it is seen that gasoline compositions containing a cocktail of an additive of this invention have a water tolerance somewhat better than gasoline compositions containing the commercial additive.
EXAMPLE vn A number of gasoline compositions are evaluated in a CLR single cylinder engine to determine the increase in hydrocarbon emissions at equilibrium relative to initial hydrocarbon emissions in a clean engine. As described above, a flame ionization detector (PD) is used to determine the initial hydrocarbon emissions in the exhaust of a clean CLR engine. The engine is run to equilibrium as indicated by a stabilization of the hydrocarbon emissions. The increase in hydrocarbon emissions at equilibrium, expressed in p.p.m., and the time to reach equilibrium are recorded. A gasoline composition is prepared by dissolving an additive cocktail having the composition of that described in Example I in a base gasoline composition containing 3 ml. of TEL/gal. and evaluated. For comparison, a base leaded gasoline containing no additive other than 3 ml. of TEL/gal. and a leaded (3 ml. of TEL/gal.) gasoline sults of the test are given in Table IV. composition containing multi-functional additive TABLE IV Concentration, pH of Water Tolerance Ratings PTB Water Gasoline Water Additive Phase Phase Interface DMA-4 l5.0 6.0 C C 0 DMA4 15.0 7.0 C C 0 DMA-4 15.0 9.0 C C 0 Additive Cocktail 33.0 5.0 C C 0+ Additive "Cocktail" 33.0 6.0 C C 0 Additive "Cocktail" 33.0 9.0 C C 0+ The data in TabIe IV show the excellent water 16E ance of gasoline compositions containing a cocktail of an additive of this invention.
EXAMPLE VI Gasoline compositions are prepared containing different levels of an additive cocktail having the same composition as that described in Example I, and the gasoline compositions are subjected to the multiple contact emulsion test using water of various pH levels. A gasoline composition containing multi-functional additive DMA-4 is also subjected to the test for comparison purposes. The make-up of each composition, the pH of the water used, and the interface rating after the tenth contact are shown in Table V.
BMA are also evaluated in the test. Table VI shows the make-up of the gasoline compositions, the increase in hydrocarbon emissions in the exhaust at equilibrium,
The data in Table VI show that hydrocarbon emissions in engines operated on gasoline compositions containing an additive of this invention surprisingly do not appreciably increase with time as is the case with a base fuel and a fuel composition containing the commercially available additive.
EXAMPLE VIII The hydrocarbon emission reducing properties of an additive of this invention are determined as follows. A clean CLR engine is run on a base gasoline composition containing 3 ml. of TEL/gal. until equilibrium hydrocarbon emission is reached after approximately 95 hours. The increase in hydrocarbon emission at equilibrium relative to initial hydrocarbon emission is determined (FID) and expressed in p.p.m. The engine is then switched to a leaded (3 ml. of TEL/gal.) test fuel containing an additive cocktail having the composition of that described in Example I and run for an additional 75 hours. The hydrocarbon emission is again determined (FID) and the difference relative to the equilibrium hydrocarbon emission is recorded, expressed in p.p.m. A A hydrocarbon emission indicates an increase and a A hydrocarbon emission indicates a decrease in the hydrocarbon emission. Table VII shows the concentration of the additive cocktail" in the test fuel, the A hydrocarbon emission at equilibrium, and the A hydrocarbon emission after 75 hours of running on test fuel. Each of the three runs is made on a different CLR engine.
TABLE VII Concentration of A Hydrocarbon A Hydrocarbon Additive "Cocktail" Emission at Emission After 75 Hours in Test Fuel, PTB Equilibrium on Base on Test Fuel, p.p.m.
Fuel, p.p.m.
EXAMPLE IX A 9 car fleet test is run using identical 1970 Chevrolets having 350 cubic inch displacement engines. The test involves 10,000 miles of urban-suburban consumer type driving. Three cars are run on a base gasoline containing only 3 ml. of TEL/gal; 3 cars are run on leaded (3 ml. of TEL/gal.) gasoline containing 15 PTB of DMA-4; and 3 cars are run on leaded (3 ml. of TEL/- gal.) gasoline containing 20 PTB of an additive cocktail having the composition of that of Example I. At the end of 10,000 miles, each car is rated in the following tests:
CARBURETOR RATING The cleanliness of each carburetor is given a numerical rating on a scale ofO to 10, with 10 being the clean- 5 est and 0 the dirtiest.
I-IYDROCARBON EMISSION The hydrocarbon emission level is determined by means of nondispersive infrared (NDIR) and by means of a flame ionization detector (FID). The hydrocarbon level in the exhaust is expressed in p.p.m.
OCTANE REQUIREMENT INCREASE (ORI) The difference in octane number requirement of each car at the end of the test relative to the octane number requirement at the start, using a full boiling range reference fuel, is determined.
Table VIII contains the results of the foregoing tests.
3 ml. TEL/gal. and I5 PTB of DMA-4 It is seen from the data in Table VIII that engines run on a fuel composition containing a cocktail of an additive of this invention have cleaner carburetors and lower hydrocarbon emissions than engines run on a base fuel or a gasoline composition containing a commercially available multi-purpose additive. In addition, the octane requirement increase for engines run on the fuel composition containing the inventive additive is no more than that for engines run on base fuel and is considerably less than that for engines run on gasoline containing the commercial additive.
EXAMPLE X Leaded (3 ml. of TEL/gal.) gasoline compositions may be prepared containing 4 PTB, I0 PTB, 30 PTB,
or 50 PTB, respectively, of the mixture of isooctyl dihydrogen orthophosphate and diisooctyl hydrogen orthophosphate salts of the diamide obtained by condensing 1 mole of dimer acid with 2 moles of N-talIowyl-l,3- propylenendiamine. The gasoline compositions will be found to have good carburetor detergency and carburetor anti-icing properties as well as good water tolerance and rust inhibiting characteristics. Engines run on the gasoline compositions will exhibit reduced deposit build-up and reduced hydrocarbon emissions in the exhaust.
EXAMPLE x1 By the procedure of Example I, various polycarboxylic acids may be condensed with various diamines so that each carboxyl group of the acid condenses with one amino group of the diamine to form the N- substituted polyamide wherein each of the substituent groups contains the unreacted amino group. The reaction is represented as follows 2]m+n (m 'IIJHZO wherein R, R, R", m, and n are as defined above. Each of the polyamino-polyamides can be reacted according to the procedure of Example I with a hydrocarbyl acid phosphate so that at least percent of the amino groups in the polyamino-polyamides are converted to the hydrocarbyl acid phosphate salt. Table [X lists the various amide-forming polycarboxylic acids, the di- Table lX Salt-Forming Amino Groups Additive Polycarboxylic Hydrocarbyl Converted Product Acid Diamine Acid Phosphate to Salt succinic acid N-oleyl-1,3- triethyl hydrogen 70 a propylenediamine pyrophosphate adipic acid 1,12-diaminododecane diphenyl hydrogen 100 b orthophosphate terephthalic acid N-cyclohexylcyclohexyl dihydrogen 60 c ethylenediamine orthophosphate trimer acid ethylenediamine methylphenyl dihydrogen 90 d pyrophosphate TABLE X Salt-Forming Amino Additive Dicarboxylic Monoamine Diamine Hydrocarbyl Groups Product Acid Acid Phosphate Converted to Salt Versadyme 216 Diethylamine ethylenediamine cyclohexyl dihydrogen 50 j dimer acid orthophosphate l.l8-dicarboxymethylbutyl- N-methyl-N -propyl diisooctyl hydrogen 90 k octadecane amine LEI-propylenediamine orthophosphate terephthalic cyclohexyl- N-oleyl-l ,3- isooctyLdihydrogen 10 1 acid amine propylenediamine orthophosphate l,4-cyclohexanepropylamine N-(l0-phenylstearyl)- diphenyl hydrogen 100 m dicarboxylic acid Lil-propylenediamine orthophosphate adipic acid dodecylamine N-oIeyl-l,3- triethyl hydrogen 75 n propylenediamine pyrophosphate amines, the salt-forming hydrocarbyl acid phosphates, the percent of the amino groups of the polyaminopolyamides converted to the hydrocarbyl acid phoshphate salts, and the letter designation assigned to each additive product.
EXAMPLE xii EXAMPLE X111 7 Leaded (3 ml. TEL/gal.) gasoline compositions containing the additives of this invention may be prepared by dissolving the additives in a base leaded gasoline. Such gasoline compositions may, for example, contain 500 PTB of additive b; PTB of additive n; 1 PTB of additive m; 350 PTB of additive l; PTB of additive a; 8 PTB of additive f; 37 PTB of additive g; 10 PTB of a cocktail containing weight percent of additive k; 900 PTB of a cocktail containing 50 weight percent of additive e; PTB of a cocktail containing 40 weight percent of additive h; PTB of a cocktail containing 45 weight percent of additive i; or 7 PTB of a cocktail containing 45 weight percent of additive j. The gasoline compositions will be found to have good carburetor detergency and anti-icing properties as well as good water tolerance and rust inhibiting characteristics. In addition, engines run on these fuel compositions will exhibit reduced hydrocarbon emissions.
EXAMPLE XIV Suitable unleaded gasoline compositions may be prepared by dissolving the additives of our invention in a base unleaded gasoline. Exemplary compositions may contain 50 PTB of additive c; 425 PTB of additive i; 4 PTB of additive d; 130 PTB of additive j; 18 PTB of additive h; 40 PTB of additive k; 27 PTB of additive e; PTB of a cocktail containing 50 weight percent of additive m; 70 PTB of a cocktail containing weight percent of additive a; 1,000 PTB ofa cocktail containing 50 weight percent of additive l; 300 PTB of a cocktail containing 60 weight percent of additive k; 50 PTB of a cocktail containing weight percent of additive c; or 20 PTB of a cocktail containing 45 weight percent of additive b. The gasoline compositions will have good carburetor detergency and antiicing properties in addition to good rust inhibiting and water tolerance characteristics. Furthermore, spark ignition engines run on these fuel compositions will be characterized by lessened hydrocarbon emissions in the exhaust.
EXAMPLE XV Diesel fuel compositions containing the additives of this invention can be prepared. Suitable compositions contain, for instance, 1 PTB of additive b; 35 PTB of additive k; 6 PTB of additive d; 400 PTB of additive l; 30 PTB of a cocktail containing weight percent 'of additive n; 850 PTB of a cocktail containing weight percent of additive i; 95 PTB of a cocktail" containing 45 weight percent of additive m; 15 PTB of a cocktailcontaining 50 weight percent of additive g; or PTB ofa cocktail" containing 45 weight percent of additive e. These diesel fuel compositions will be found to have good water tolerance and rust inhibiting properties. Furthermore, engines run on the above fuel compositions will have cleaner fuel intake systems than engines run on base fuel containing no additive.
EXAM PLE XVI weight percent of additive f; 93 PTB of a cocktail" containing 45 weight percent of additive b; or 42 PTB of a cocktail containing 50 weight percent of additive d. The jet fuel compositions will be found to have good rust inhibiting properties and pass the water tolerance tests. As a result of the good water tolerance characteristics, jet fuel compositions containing the additives of this invention will not tend to pick up water. Hence there will be a reduced tendency toward ice formation and fuel filter plugging.
EXAMPLE XVII A test to determine intake system deposit build-up is carried out. Initially clean 6 cylinder, 230 cubic inch engines are run for 1 15 hours under a simulated suburban driving schedule. One engine is run on a base gasoline containing 3 ml. of TEL/gal. and one engine is run on a leaded (3 ml. of TEL/gal.) gasoline containing 20 PTB of the cocktail described in Example I. In each case, the hydrocarbon emissions are determined (NDIR) at the start and at the end of the test. In addition, the amount of combustion chamber deposits in each engine is determined. The results of the test are given in Table XI.
TABLE XI Base Fuel Base Fuel Containing The data in Table XI show the much smaller increase in hydrocarbon emissions with time for an engine mm on gasoline containing a cocktail of the additive of this invention relative to the increase in hydrocarbon emissions for an engine run on base leaded gasoline. It is also shown that the engine run on gasoline containing our additive has reduced combustion chamber deposits.
While the invention has been described above with respect to certain preferred embodiments thereof, it will be understood by those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the invention.
We claim:
1. A normally liquid hydrocarbon fuel composition comprising a major proportion of a normally liquid hydrocarbon fuel and about 1 to about 500 PTB of an additive comprising a hydrocarbyl hydrogen phosphate salt of a compound having the formula R" 0 0 R h [R'I I("J:ln R l:-i JI IR'-NR"2:L
wherein m is at least l and the sum of n plus m is from 2 to about 6, R is a multivalent hydrocarbon group of about 2 to about 52 carbons, R is a hydrocarbylene group of about 2 to about 12 carbons, R is selected from the group consisting of hydrogen and hydrocarbyl groups of about 1 to about 30 carbons, R is a hydrocarbyl group of about 2 to about 12 carbons, and at least about 10 percent of the amino groups contained therein are converted to the hydrocarbyl hydrogen phosphate salt.
2. A normally liquid hydrocarbon fuel composition comprising a major proportion of a normally liquid hydrocarbon fuel and from about 1 to about 500 PTB of the additive of claim 1 wherein R is a multivalent hydrocarbon group of about 4 to about 34 carbons, R is a hydrocarbylene group of about 2 to about 6 carbons,
R" is selected from the group consisting of hydrogen and hydrocarbyl groups of about 3 to about 24 carbons, R is a hydrocarbyl group of about 2 to about 6 carbons, and about 50 percent to about 90 percent of the amino groups contained therein are converted to the hydrocarbyl hydrogen phosphate salt.
3. The normally liquid hydrocarbon fuel composition of claim 2 wherein the normally liquid hydrocarbon fuel is selected from the group consisting of gasoline, diesel fuel, and jet fuel.
4. A normally liquid hydrocarbon fuel composition selected from the group consisting of gasoline, diesel fuel, and jet fuel compositions containing from about 4 to about 50 PTB of the additive of claim 2 wherein n is zero, in is 2, and the salt-forming hydrocarbyl hydrogen phosphate is an alkyl hydrogen orthophosphate.
and mixtures thereof wherein R is the C hydrocarbylene portion of the dimer of a polyunsaturated C monocarboxylic fatty acid, R is tallowyl, and about 50 percent to about percent of the amino groups are converted to the hydrocarbyl hydrogen orthophosphate salt. 1
6. A gasoline composition comprising gasoline and about 4 to about 50 PTB of the additive of claim 5 wherein the salt-forming hydrocarbyl hydrogen orthophosphate is a mixture of isooctyl dihydrogen orthophosphate and diisooctyl hydrogen orthophosphate.
7. A gasoline composition comprising a major proportion of gasoline and from about 13 to about 20 PTB of a mixture comprising about 45 weight percent of the additive of claim 6 wherein the salt-forming hydrocarbyl hydrogen orthophosphate comprises about 65 weight percent of diisooctyl hydrogen orthophosphate and about 35 weight percent of issooctyl dihydrogen orthophosphate, about 48.6 weight percent of toluene, about 4.5 weight percent of methanol, and about 1.9 weight percent of a demulsifying agent.
237 3 UNIITED scares PATENT with Q'HHCAT F CRREQTWN Patent: No 3,804,605 Dated 4/16/74 Inventofls) Frank1 in H; Robinson Marvin S. Rakow Ernest Jamieson It is certified that error appeere in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
- ""1 F- C01 umn 3, Formu1a III, the portion of the formu1a reading "=R shou1d read Co1umn 4, 1ine 23, "15" shou1d read is c01umn 4, 11nes 36 and 4 1 "Empo1 shou1d read Empo1- C01 umn 6 1ine 32; co1umn 11 1 ine 35; ano1 umn 17 Table X, first item, "Versadyme" sh0u1d read Versadyme C01 umn 16, Tab1e VIII the headings reading Average Octane Hydrocarbon Emission Requirep.p.m.
NDIR FID ment Increase shou1d read Average Hydrocarbon Octane Emission p.p.m. Requirement NDIR FID Increase C01umns 17 and 18, Tab1e IX, the fo11owing items shou1 d be added:
pyrome11itic 1 4-diaminopencadecy1 .80 e acid hexane dihydrogen orthophosphate 1 ,18-dicarboxyv hexamethy1enedipheny1 40 f octadecane diamine hydrogen orthophosphate g1utaric acid N,N-dibuty1 diisooc'ty1 hydrogen 100 g ethy1enediamine orthopiicsphate 1 ,4-cyc10hex- N-(10-pheny1 hepty1 dihydrogen 10 h ane-dicarboxsteary1)-1,3- orthophospha-te y1 ic acid propy1 enediamine Versadyme propy1enediamine triethy1 hydrogen 30 i 216 dimer acid pyrophosphate Signed and sealed this 29th day of October 1974.
(SEAL) :test:
MQGGY M. GIBSOTT JR. C0 MARSHALL DANN (meeting Officer Cemmissioner of Patents jgf gr x I I UNITED STATES PATIENT orrlce *CERTIFICATE@F CQRRECTIIQN Patent No 3,804,605 Dated 4/1 6N4 I IInventm-(sIi-ran'kI in H. Robinaon Marvin S. Rakow Ernest Jamieson I It is certified that error appeere in the above-identified patent and thateaid Lettere Patent are hereby corrected ae shown below:
I CoI umn 3, FormuIa III, the portion of the formuIa reading "=R shouI dI read "I C0] umn 4, Iine 23 "I 5" shouI d read is I 1 I I no] umn 4 I1nes 36 and M "EmpoI shouI ci read EmpoI CoI umn 6 I Iine 32; c0] umn I I I Iine 35;, and (:01 umn I 7 Tab'ie X, first item, "Versa dyme'f shouI d read Ilersadyme CoI umn I6, TabIe VIII the headings reading I I Average Octane I Hydrocarbon Emission Requirep.p.m..
NDIR FID ment I Increase shouId read I Average Hydrocarbon Octane Emission p.p m. Requirement NDIR FIDI Increase CoI umns I7; and I8, TabIe IX the foi'iowing iterrs shoui d be added:
pyromeIIitic I I I i-diaminw pentadecyi .180 e acid I I hexane dihydrngen I orthophosphate I ,I8-diceirboxyhexamethyiene- I dipheny'i 40 f octadecane I I diamine hydrogen I orthophosphate gIutaric acid I N,N-dibutyi diisoocizyI hydrogen I 00 g II I y I ethyIenediamine orthnpheaphaize I ,4-cycIohex- N-(I O-phenyI heptyI dihydrogen IO n ane dicarboxsteam/I I orthophosphate yI ic acid I propyI enediamine Versadyme propyIenediamine triethyi hydrogen 30 i 216 dimer acid r pyrophosphace I I I Signed and eealed this 29th day of October I974.
(SEAL) i :cest
MQEIIIY M. 615801" JR. C, MARSHALL DANN In: testing Offirzer I Commissioner of Patents

Claims (6)

  1. 2. A normally liquid hydrocarbon fuel composition comprising a major proportion of a normally liquid hydrocarbon fuel and from about 1 to about 500 PTB of the additive of claim 1 wherein R is a multivalent hydrocarbon group of about 4 to about 34 carbons, R'' is a hydrocarbylene group of about 2 to about 6 carbons, R'''' is selected from the group consisting of hydrogen and hydrocarbyl groups of about 3 to about 24 carbons, R'''''' is a hydrocarbyl group of about 2 to about 6 carbons, and about 50 percent to about 90 percent of the amino groups contained therein are converted to the hydrocarbyl hydrogen phosphate salt.
  2. 3. The normally liquid hydrocarbon fuel composition of claim 2 wherein the normally liquid hydrocarbon fuel is selected from the group consisting of gasoline, diesel fuel, and jet fuel.
  3. 4. A normally liquid hydrocarbon fuel composition selected from the group consisting of gasoline, diesel fuel, and jet fuel compositions containing from about 4 to about 50 PTB of the additive of claim 2 wherein n is zero, m is 2, and the salt-forming hydrocarbyl hydrogen phosphate is an alkyl hydrogen orthophosphate.
  4. 5. A gasoline composition comprising gasoline and about 1 to about 50 PTB of an additive comprising a hydrocarbyl hydrogen orthophosphate salt of a compound selected from the group consisting of
  5. 6. A gasoline composition comprising gasoline and about 4 to about 50 PTB of the additive of claim 5 wherein the salt-forming hydrocarbyl hydrogen orthophosphate is a mixture of isooctyl dihydrogen orthophosphate and diisooctyl hydrogen orthophosphate.
  6. 7. A gasoline composition comprising a major proportion of gasoline and from about 13 to about 20 PTB of a mixture comprising about 45 weight percent of the additive of claim 6 wherein the salt-forming hydrocarbyl hydrogen orthophosphate comprises about 65 weight percent of diisooctyl hydrogen orthophosphate and about 35 weight percent of issooctyl dihydrogen orthophosphate, about 48.6 weight percent of toluene, about 4.5 weight percent of methanol, and about 1.9 weight percent of a demulsifying agent.
US00189413A 1970-09-30 1971-10-14 Hydrocarbon fuel compositions containing hydrocarbyl acid phosphate salts of amino polyamides Expired - Lifetime US3804605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00189413A US3804605A (en) 1970-09-30 1971-10-14 Hydrocarbon fuel compositions containing hydrocarbyl acid phosphate salts of amino polyamides

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US05/077,040 US3946053A (en) 1970-09-30 1970-09-30 Hydrocarbyl hydrogen phosphate salts of amino-amides
US00189413A US3804605A (en) 1970-09-30 1971-10-14 Hydrocarbon fuel compositions containing hydrocarbyl acid phosphate salts of amino polyamides

Publications (1)

Publication Number Publication Date
US3804605A true US3804605A (en) 1974-04-16

Family

ID=26758813

Family Applications (1)

Application Number Title Priority Date Filing Date
US00189413A Expired - Lifetime US3804605A (en) 1970-09-30 1971-10-14 Hydrocarbon fuel compositions containing hydrocarbyl acid phosphate salts of amino polyamides

Country Status (1)

Country Link
US (1) US3804605A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4746328A (en) * 1985-07-19 1988-05-24 Kao Corporation Stabilized fuel oil containing a dispersant

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3256073A (en) * 1963-03-22 1966-06-14 Cities Service Oil Co Liquid hydrocarbon compositions having antistatic properties
US3303007A (en) * 1963-09-03 1967-02-07 Union Oil Co Motor fuel composition
US3427141A (en) * 1967-02-09 1969-02-11 Lubrizol Corp Nitrogen- and phosphorus-containing gasoline compositions
US3623851A (en) * 1970-03-02 1971-11-30 Cities Service Oil Co Distillate hydrocarbon fuel oil compositions with anti-corrosion properties
US3647694A (en) * 1969-05-29 1972-03-07 Cities Service Oil Co Lubricating oil composition
US3655351A (en) * 1969-05-29 1972-04-11 Cities Service Oil Co Gasoline composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3256073A (en) * 1963-03-22 1966-06-14 Cities Service Oil Co Liquid hydrocarbon compositions having antistatic properties
US3303007A (en) * 1963-09-03 1967-02-07 Union Oil Co Motor fuel composition
US3427141A (en) * 1967-02-09 1969-02-11 Lubrizol Corp Nitrogen- and phosphorus-containing gasoline compositions
US3647694A (en) * 1969-05-29 1972-03-07 Cities Service Oil Co Lubricating oil composition
US3655351A (en) * 1969-05-29 1972-04-11 Cities Service Oil Co Gasoline composition
US3623851A (en) * 1970-03-02 1971-11-30 Cities Service Oil Co Distillate hydrocarbon fuel oil compositions with anti-corrosion properties

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4746328A (en) * 1985-07-19 1988-05-24 Kao Corporation Stabilized fuel oil containing a dispersant

Similar Documents

Publication Publication Date Title
US4236020A (en) Carbamate deposit control additives
US3894849A (en) Gasoline
US4039300A (en) Gasoline fuel composition and method of using
JPS6220590A (en) Maleic anhydride/polyether/polyamide reaction product and composition for car fuel containing the same
JPH0354130B2 (en)
JPH0237958B2 (en)
US3228758A (en) Fuels containing amine salts of alkyl acid phosphates
US3873278A (en) Gasoline
US3655351A (en) Gasoline composition
US3884947A (en) Hydrocarbon fuel compositions
US3615294A (en) Detergent motor fuel containing substituted ureas
CA1117547A (en) Primary aliphatic hydrocarbon amino alkylene-substituted asparagine and a motor fuel composition containing same
US3039861A (en) Glycine alkenyl succinamic acids in distillate fuels
US3946053A (en) Hydrocarbyl hydrogen phosphate salts of amino-amides
US3701640A (en) Composition
US2961308A (en) Gasoline containing a tetrahydropyrimidine to reduce carburetor deposits
US3804605A (en) Hydrocarbon fuel compositions containing hydrocarbyl acid phosphate salts of amino polyamides
CA1138201A (en) Detergent gasoline composition
US3055746A (en) Adducts of aliphatic monocarboxylic acids and aliphatic amines in gasoline
US3765850A (en) Hydrocarbon fuel compositions
US3844957A (en) Lubricant and fuel compositions
US3838991A (en) Gasoline compositions containing bisamide additives
CA1039302A (en) Motor fuel composition
US3427141A (en) Nitrogen- and phosphorus-containing gasoline compositions
US4396399A (en) Detergent and corrosion inhibitor and motor fuel composition containing same

Legal Events

Date Code Title Description
AS Assignment

Owner name: CITGO PETROLEUM CORPORATION, A CORP OF DE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:CITIES SERVICE COMPANY;REEL/FRAME:004225/0709

Effective date: 19830830

AS Assignment

Owner name: CITIES SERVICE COMPANY A CORP. OF DE.

Free format text: MERGER;ASSIGNOR:CITIES SERVICE OIL COMPANY;REEL/FRAME:004561/0817

Effective date: 19781220