US3798895A - Rolling diaphragm seal separating gas and liquid with means for removing and recovering gas diffused through said seal into the liquid - Google Patents

Rolling diaphragm seal separating gas and liquid with means for removing and recovering gas diffused through said seal into the liquid Download PDF

Info

Publication number
US3798895A
US3798895A US00136261A US13626171A US3798895A US 3798895 A US3798895 A US 3798895A US 00136261 A US00136261 A US 00136261A US 13626171 A US13626171 A US 13626171A US 3798895 A US3798895 A US 3798895A
Authority
US
United States
Prior art keywords
liquid
space
gas
rolling diaphragm
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00136261A
Inventor
H Fokker
A Dros
R Meijer
C Beukering
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Philips Corp
Original Assignee
US Philips Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Philips Corp filed Critical US Philips Corp
Priority to US00136261A priority Critical patent/US3798895A/en
Application granted granted Critical
Publication of US3798895A publication Critical patent/US3798895A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/053Component parts or details
    • F02G1/0535Seals or sealing arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/053Component parts or details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2253/00Seals
    • F02G2253/10Piston with rolling membranes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2253/00Seals
    • F02G2253/50Liquid seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2253/00Seals
    • F02G2253/60Sealing of the lubrication circuit

Definitions

  • FIGS ROLLING DIAPHRAGM SEAL SEPARATING GAS AND LIQUID WITH MEANS FOR REMOVING AND RECOVERING GAS DIFFUSED THROUGH SAID SEAL INTO THE LIQUID
  • the invention relates to a device constituting a seal constructed as a rolling diaphragm between two coaxially arranged elements which are movable relative to one another, the said seal separating two spaces, one of the said spaces being filled with a liquid and the other space being filled with a gas.
  • Examples of known devices of the type to which the present invention relates are hot-gas reciprocating engines, compressors and expansion machines.
  • the rolling diaphragm is provided as a seal between the piston and the cylinder and forms with its one side part of the boundary of the working space. With its other side the rolling diaphragm engages liquid which serves as a support for the rolling diaphragm. It is desirable in these cases that the said liquid is at least substantially incompressible.
  • a principle object of the invention is to provide a solution to the above described problem in which the concentration of dissolved gas in the liquid space remains below the saturation concentration and the gas diffused by the rolling diaphragm is not lost.
  • the device according to the invention is characterized in that it includes a separator to remove and receive gas diffused through the rolling diaphragm out of the liquid.
  • the gas separated out of the liquid can subsequently be supplied again to the working space.
  • One embodiment of the device according to the invention comprises a separator that is formed by at least part of the wall of the space which contains the liquid, which part of the wall is manufactured from a material which permits diffusion of the gas concerned, the said part of the wall making a boundary with its side remote from the liquid space a storage container in which a pressure prevails which is lower than the pressure in the liquid space.
  • the gas diffused from the working space, through the rolling diaphragm will then leave the liquid space through the said part of the wall.
  • the end in view, namely recovery of diffused medium is achieved with an extremely simple construction.
  • the part of the wall which permits diffusion may be constituted by a second rolling diaphragm which faces the liquid space with its concave side.
  • a further embodiment of the device according to the invention in which at least one liquid supply duct and at least one liquid exhaust duct communicate with the liquid space, comprises a separator which is constituted by a container consisting of at least two parts, the parts being separated from one another by a wall permitting diffusion of the gas concerned, the liquid exhaust duct communicating with the first part of the container which is provided with a further duct which communicates, if required, through a control mechanism with the supply duct to the liquid space.
  • a pumping device is further provided for transporting liquid out of the first part of the container back to the liquid space and a pressure prevails in the second part of the container which is lower than the pressure in the first part of the container.
  • liquid is always circulated by pumping, in which the pump need overcome only the resistance to flow of the ducts in question.
  • the pump need overcome only the resistance to flow of the ducts in question.
  • Another embodiment of the device according to the invention which meets the above described requirement comprises a further duct which communicates the first part of the container with its other end and opens into a liquid storage container which communicates, through a control mechanism, with the liquid space and in which a pressure prevails that is higher than the pressure in the liquid space below the rolling diaphragm.
  • a certain buffer store of liquid is formed from which liquid can be transported to the liquid space below the rolling diaphragm when the pressure level in the working space varies.
  • the space on the side of the rolling diaphragm remote from the liquid space contains hydrogen gas, the part of the wall permitting diffusion is manufactured from palladium.
  • a further embodiment of the device according to the invention comprises a structure in which the ends of the liquid exhaust duct and liquid supply duct remote from the liquid space open into a liquid storage container in which at least on an average a lower pressure prevails than in the liquid space below the rolling diaphragm, the opening of the said liquid supply duct in the storage container being separated from the opening of the liquid exhaust duct in the said container by one or more wire gauzes.
  • the gas dissolved in the liquid will separate in bubble form. Before the liquid is returned to the liquid space, however, it must pass the wire gauzes, the gas bubbles appearing in the wire gauze and escaping out of the liquid along the wire gauze.
  • Another embodiment of the device according to the invention in which the rolling diaphragm engages the liquid with its concave side comprises a structure in which a pressure prevails in the storage container which at least substantially corresponds to the average pressure which. prevails in the space on the side of the rolling diaphragm remote from the liquid space, a control valve being provided in the liquid exhaust duct and a pumping device being provided in the liquid supply duct.
  • a higher pressure will prevail in the liquid space than in the space on the other side of the rolling diaphragm.
  • the liquid from that space will be reduced in pressure when it passes the control valve, the diffused gas being released in bubble form.
  • a pressure prevails in the storage container which is at least substantially equal to the minimum pressure occurring in the space on the side of the rolling diaphragm remote from the liquid space, a control valve being arranged in the liquid exhaust duct and a pumping device being provided in the liquid supply duct.
  • the device means are provided to bring the liquid in the first part of the container or in the storage container in which the wire gauzes are arranged at a temperature and/or pressure such that the saturation concentration of the gas in question in the liquid concerned is lower than the saturation concentration associated with the temperature and pressure which prevails in the liquid space below the rolling diaphragm.
  • the device comprises one or more heating elements which can heat the liquid in the first part of the container or in the storage container provided with wire gauzes. As a result of the said heating the saturation concentration decreases which means that more gas escapes out of the liquid in bubble form so that a cleaner liquid is supplied to the liquid space.
  • FIG. 1 diagrammatically shows a piston-cylinder combination in which a rolling diaphragm is used as a seal and in which part of the'wall of the liquid space below the rolling diaphragm is manufactured from a material which permits diffusion of gas,
  • FIGS. 2 and 3 show diagrammatically two pistoncylinder combinations in which a rolling diaphragm is used as a seal and in which further means are provided for circulating liquid from the liquid space below the rolling diaphragm along a separator consisting of two containers separated by a wall permitting diffusion of
  • FIGS. 4 and 5 show diagrammatically two pistoncylinder combinations in which a rolling diaphragm is used as a seal and in which further a liquid storage container with wire gauzes is provided for separating and receiving gas diffused through the rolling diaphragm.
  • reference numeral 1 denotes a cylinder in which a piston 2 reciprocates.
  • the piston 2 is connected through a piston rod 3 to a driving mechanism (not shown).
  • the seal between the piston and the cylinder is formed by a rolling diaphragm 4 which with its one side also bounds a working space 5 and with its other side engages liquid contained in a space 6.
  • the space 6 has a constant volume when the piston 2 moves in the cylinder. This means that a differential pressure across the rolling diaphragm 4 which is once adjusted is thereby maintained.
  • the rolling diaphragm 4 is manufactured from a flexible substance, for example a polyurethene rubber.
  • This substance in general permits a certain diffusion of the gas in the working space 5 to the working space 6.
  • the gas diffused through the rolling diaphragm will dissolve in the liquid until the saturation concentration is reached. Then the gas will appear as bubbles in the liquid.
  • a part 8 of the walls of the space 6 is manufactured from a material which permits diffusion of the gas in question.
  • This part of the wall may be manufactured from the same material as the rolling diaphragm.
  • the part of the wall may be manufactured, for example from palladium.
  • the part 8 of the wall forms a boundary with its side remote from the space 6 of a container 10. This container communicates, through a duct 12 and a check valve 14 arranged therein, with the working space 5. This means that in the container 10 at most the minimum pressure can prevail which occurs in the working space.
  • FIG. 2 again shows a piston-cylinder combination as shown in FIG. 1.
  • the corresponding components have like reference numerals.
  • the walls of the liquid space 6, however, in this case are manufactured from a material which permits no diffusion.
  • the liquid space 6 communicates with a liquid exhaust duct 15 which, with its other end communicates with a part 16 of a container 17.
  • the container 17 is separated into the parts 16 and 19 by a partition 18 permitting diffusion.
  • the part 16 again communicates with thevliquid space 6 through a further duct 20 which includes a pump and a control device 21.
  • the control device 21 comprises three spaces 22, 23 and 24.
  • the space 22 communicates through a narrow duct with the working space 5 so that in that space the same average pressure prevails as in the working space.
  • the space 23 also communicates through a narrow duct with the liquid space 6 so that in that space the same average pressure prevails as in the liquid space 8.
  • the spaces 22 and 23 are separated from one another by a diaphragm 25 to which the valve spindle of a valve 26 is connected.
  • a pressure spring 27 is provided in order to maintain a given differential pressure between the spaces 5 and 6 and 22 and 23 respectively.
  • the device further comprises an additional liquid pump 29 which supplies liquid to the space 6 through a duct 30.
  • an additional liquid pump 29 which supplies liquid to the space 6 through a duct 30.
  • the space 16 includes a heating element 32 which heats the liquid in that space. As a result of the heating of the liquid the saturation concentration of the gas in question in the liquid will become lower as a result of which more gas will diffuse through the partition 18. The liquid flows back to the liquid space 6 out of the space 16 through duct 20. As a result of the seal between the piston 2 and the cylinder 1, some liquid may leak away under conditions out of the space 6 into the pump.
  • the liquid pump 29 supplies liquid to the space 6 to compensate for the leak losses. In practice the pump 29 will supply more liquid than has leaked away.
  • FIG. 3 shows the same piston-cylinder combination as disclosed in FIG. 2.
  • a storage container 35 is provided in the duct 20 between the space 16 and the control device 21.
  • the said storage container communicates through a narrow duct 46 with the working space 5 so that the average pressure of the working space 5 will prevail in the storage container 35.
  • the liquid and the gas are separated from one another by a light-weight piston-shaped body 36 which permits no diffusion.
  • the operating condition of the said piston-shaped body 36 is determined by an exhaust 37.
  • the storage container contains a comparatively large quantity of liquid which enables the pressure level in the device to vary comparatively rapidly without the rolling diaphragm 4 being adversely influenced by it.
  • FIG. 4 shows a piston-cylinder combination in which the rolling diaphragm 4 serves as a seal facing the working space 5 with its convex side.
  • a liquid exhaust duct 40 which includes a control device 21 communicates with the liquid space.
  • the said control device is similar to the control device shown in FIGS. 2 and 3 as far as structure and operation are concerned, with the understanding that in this embodiment the spring 27 is constructed as a tension spring as a result of the fact that the rolling diaphragm faces the working space with its convex side.
  • the result of this arrangement is that the average liquid pressure in the spaces 6 and 23 now is higher by a certain amount than the average pressure prevailing in the working space.
  • the duct 40 communicates with a liquid container 41 through a control valve.
  • the vapor space of the said container communicates through a narrow duct with the working space 5 so that in that container the average pressure prevails which prevails in the working space 5.
  • One or more walls 42 of wire gauze are arranged in the container 41.
  • the container further comprises a liquid exhaust duct 43 which opens inside the wall of wire gauze 42.
  • the exhaust duct 43 includes a pump 44 which brings the liquid to the pressure prevailing in the space 6. Therefore the liquid is circulated by pumping of the pump 44. In this case a reduction in pressure occurs across the valve 26 from the average liquid pressure to the average gas pressure. Gas, if any, dissolved in the liquid will separate'in hub form.
  • a heating element 32 is included in the liquid container.
  • FIG. 5 shows a device which corresponds to the device shown in FIG. 4.
  • the rolling diaphragm 4 faces the working space 5 with its concave side.
  • the minimum pressure which occurs in the working space S prevails in the container 41.
  • the liquid is reduced in pressure across the valve 26 which entails a reduction of the saturation concentration.
  • a further reduction of the saturation concentration is obtained by raising the liquid to a higher temperature. In this manner a great quantity of the gas in the liquid is separated with extremely simple means.
  • the liquid which is directed back to the liquid space only contains so little gas that there exists no danger for surpassing the saturation concentration associated with the pressure and temperature prevailing in the space 6.
  • Apparatus comprising: a cylinder; a piston reciprocally movable within the cylinder; a rolling diaphragm seal secured between the cylinder and piston, thereby separating a first space for containing liquid from a second space for containing gas, a quantity of the gas being diffusible through the seal and being soluble in the liquid, means in communication with said gas and liquid for maintaining a pressure differential across said seal, and a separator in communication with said liquid and including means for separating said dissolved gas from the liquid and a control means operatively communicating with said liquid and gas for maintaining the pressure differential across the seal, said separator means comprising a liquid storage chamber having at least one wire gauze therein, liquid in the lower part thereof and gas in the upper part, a gas duct interconnecting the upper part and said second space, and liquid supply and exhaust ducts, each connected at one end to said first space and at their other ends to said storage chamber, the average liquid pressure in the storage chamger being lower than the prevailing pressure in said first space, the inlet and outlet
  • Apparatus as defined in claim 1 further comprising a heater associated with the storage chamber for heating liquid therein, to thereby reduce the saturation concentration of the liquid and remove a greater quantity of gas therefrom.
  • Apparatus as defined in claim 1 further providing a control valve in said liquid exhaust duct and a pump in said liquid supply duct, said rolling diaphragm seal engaging said liquid with its concave side, the pressure prevailing in said liquid storage container being substantially the same as the average pressure which prevails on the side of the rolling diaphragm seal remote from said liquid space.
  • Apparatus as defined in claim 1 further providing a control valve in said liquid exhaust duct and a pump in said liquid supply duct, said rolling diaphragm seal engaging said liquid with its convex side, the pressure prevailing in said liquid storage container being at least substantially equal to the minimum pressure which occurs in the space on the side of said rolling diaphragm seal remote from said liquid space.
  • Apparatus as defined in claim 1 further comprising means to bring the liquid in said first part of said container and in said liquid storage container at a temperature such that the saturation concentration of said gas in the liquid is lower than the saturation concentration associated with the temperature and pressure which prevails in the liquid space below said rolling diaphragm.

Abstract

For use in a hot gas engine, compressor, or expansion machine, a partition wall permitting diffusion for removing and recovering gas diffused through a rolling diaphragm seal into a liquid diaphragm-supporting column. The device includes an apparatus for maintaining a pressure differential across the diaphragm seal, a liquid storage chamber, and wire gauzes as a separator in a liquid container.

Description

United States Patent [1 1 I [111 3,798,895
Meijer et al. Mar. 26, 1974 ROLLING DIAPHRAGM SEAL SEPARATING GAS AND LIQUID WITH [56] References Cited MEANS FOR REMOVING AND UNITED STATES PATENTS RECOVERING GAS DIFFUSED THROUGH 2,616,243 11/1952 Van Weenen 60/24 SAID SEAL INTO THE LIQUID 2,616,244 11/1952 Veldhuyzen 60/24 [75] Inventors: Roelf Jan Meijer; l-lenricus Cornelis 25,81,632 2/1957 50/24 Johannes Beukering; Herman 3,302,392 2/1967 Folcker et al. 60/24 Fokker; Albert August Dros, all of Emmasingel, Eindhoven Przmary Examiner-Edgar W. Geoghegan Netherlands Assistant Examiner-H. Burks, Sr. Attorney, Agent, or Firm-Frank R. Trifari [73] Assignee: U.S. Philips Corporation, New
57 ABSTRACT [22] Flled: 1971 For use in a hot gas engine, compressor, or expansion [21] App]. No.: 136,261 machine, a partition wall permitting diffusion for re- Relaed U S Application Data moving and recovering gas diffused through a rolling diaphragm seal into a liquid diaphragm-supporting column. The device includes an apparatus for maintaining a pressure differential across the diaphragm seal, a liquid storage chamber, and wire gauzes as a [52] US. Cl. 60/24 Separator in a liquid Container [51] Int. Cl. F03g 7/06 58 Field of Search 60/24 5 Claims, 5 Drawing Figures [62] Division of Ser. No. 871,189, Oct. 16, 1969, Pat. No.
slveasss PATENTEU MR2 6 I974 SHEET 1 BF 3 FIG.1
FIG.2
PATENTEDHARZB m4 3; 798 895 sum 3 BF 3 FIGS ROLLING DIAPHRAGM SEAL SEPARATING GAS AND LIQUID WITH MEANS FOR REMOVING AND RECOVERING GAS DIFFUSED THROUGH SAID SEAL INTO THE LIQUID This is a divisional application from Parent Application having Ser. No. 871,189 which issued as Pat. No. 3,626,81 1, which was a continuation from the original filed application, Ser. No. 514,293 filed Dec. 16, 1965 now abandoned, and claims priority on Netherlands application No. 6,600,403 filed Jan. 14, 1965.
The invention relates to a device constituting a seal constructed as a rolling diaphragm between two coaxially arranged elements which are movable relative to one another, the said seal separating two spaces, one of the said spaces being filled with a liquid and the other space being filled with a gas.
Examples of known devices of the type to which the present invention relates are hot-gas reciprocating engines, compressors and expansion machines. In these machines the rolling diaphragm is provided as a seal between the piston and the cylinder and forms with its one side part of the boundary of the working space. With its other side the rolling diaphragm engages liquid which serves as a support for the rolling diaphragm. It is desirable in these cases that the said liquid is at least substantially incompressible.
It has been found that during operation a certain diffusion of gas occurs out of the working space through the rolling diaphragm into the liquid. This diffusion greatly increases as the temperature rises. After some time if no preventative measures are taken, the concentration of the gas dissolved in the liquid exceeds the saturation concentration. This results in bubble formation meaning that the liquid no longer is incompressible. As a consequence even at a constant differential pressure across the rolling diaphragm the said rolling diaphragm will nevertheless vary in length. This, of course, adversely influences the life of the rolling diaphragm.
To prevent the occurrence of bubble formation in the liquid it is known to regularly refresh the liquid in the space under the rolling diaphragm. In this case a certain stream of liquid which contains little or no dissolved gas is continuously supplied to the space while simultaneously the same stream of liquid but now with a higher concentration of dissolved gas, is directed away from said space. In this manner the concentration of dissolved gas can be kept below the saturation concentration. However, a disadvantage of the said method is that the gas diffused through the rolling diaphragm is lost. The cost may be considerable particularly in case of more expensive types of gas.
A principle object of the invention is to provide a solution to the above described problem in which the concentration of dissolved gas in the liquid space remains below the saturation concentration and the gas diffused by the rolling diaphragm is not lost.
The device according to the invention is characterized in that it includes a separator to remove and receive gas diffused through the rolling diaphragm out of the liquid.
The gas separated out of the liquid can subsequently be supplied again to the working space.
One embodiment of the device according to the invention comprises a separator that is formed by at least part of the wall of the space which contains the liquid, which part of the wall is manufactured from a material which permits diffusion of the gas concerned, the said part of the wall making a boundary with its side remote from the liquid space a storage container in which a pressure prevails which is lower than the pressure in the liquid space.
The gas diffused from the working space, through the rolling diaphragm will then leave the liquid space through the said part of the wall. In this manner the end in view, namely recovery of diffused medium, is achieved with an extremely simple construction. Under certain circumstances the part of the wall which permits diffusion may be constituted by a second rolling diaphragm which faces the liquid space with its concave side.
A further embodiment of the device according to the invention, in which at least one liquid supply duct and at least one liquid exhaust duct communicate with the liquid space, comprises a separator which is constituted by a container consisting of at least two parts, the parts being separated from one another by a wall permitting diffusion of the gas concerned, the liquid exhaust duct communicating with the first part of the container which is provided with a further duct which communicates, if required, through a control mechanism with the supply duct to the liquid space. A pumping device is further provided for transporting liquid out of the first part of the container back to the liquid space and a pressure prevails in the second part of the container which is lower than the pressure in the first part of the container.
In said further embodiment liquid is always circulated by pumping, in which the pump need overcome only the resistance to flow of the ducts in question. When the liquid space is constructed so that the volume of that space remains constant when the elements move relative to one another and no leakage occurs, no further control devices or liquid supplementing device need be provided. However, in practice some leakage along the piston will always occur so that the liquid will have to be augmented. Since the additional liquid is always more than the leak, a control device also will be required to ensure that the differentialpressure across the rolling diaphragm does not vary.
When the pressure level in the working space is controllable, measures are taken to rapidly adapt the quantity of liquid in the liquid space below the rolling diaphragm to rapid variations of the pressure level.
Another embodiment of the device according to the invention which meets the above described requirement comprises a further duct which communicates the first part of the container with its other end and opens into a liquid storage container which communicates, through a control mechanism, with the liquid space and in which a pressure prevails that is higher than the pressure in the liquid space below the rolling diaphragm. In this manner a certain buffer store of liquid is formed from which liquid can be transported to the liquid space below the rolling diaphragm when the pressure level in the working space varies.
When in a further embodiment of the device the space on the side of the rolling diaphragm remote from the liquid space contains hydrogen gas, the part of the wall permitting diffusion is manufactured from palladium.
A further embodiment of the device according to the invention comprises a structure in which the ends of the liquid exhaust duct and liquid supply duct remote from the liquid space open into a liquid storage container in which at least on an average a lower pressure prevails than in the liquid space below the rolling diaphragm, the opening of the said liquid supply duct in the storage container being separated from the opening of the liquid exhaust duct in the said container by one or more wire gauzes.
Because the liquid in the storage container is under a lower pressure, the gas dissolved in the liquid will separate in bubble form. Before the liquid is returned to the liquid space, however, it must pass the wire gauzes, the gas bubbles appearing in the wire gauze and escaping out of the liquid along the wire gauze.
Another embodiment of the device according to the invention in which the rolling diaphragm engages the liquid with its concave side comprises a structure in which a pressure prevails in the storage container which at least substantially corresponds to the average pressure which. prevails in the space on the side of the rolling diaphragm remote from the liquid space, a control valve being provided in the liquid exhaust duct and a pumping device being provided in the liquid supply duct. To hold the rolling diaphragm taut, a higher pressure will prevail in the liquid space than in the space on the other side of the rolling diaphragm. The liquid from that space will be reduced in pressure when it passes the control valve, the diffused gas being released in bubble form. These bubbles deposit on the wire gauze and escapeout of the liquid. The deposited gas can be returned again to the gas space.
In another embodiment of the device according to the invention in which the rolling diaphragm engages the liquid with its convex side, a pressure prevails in the storage container which is at least substantially equal to the minimum pressure occurring in the space on the side of the rolling diaphragm remote from the liquid space, a control valve being arranged in the liquid exhaust duct and a pumping device being provided in the liquid supply duct.
According to a further embodiment of the device means are provided to bring the liquid in the first part of the container or in the storage container in which the wire gauzes are arranged at a temperature and/or pressure such that the saturation concentration of the gas in question in the liquid concerned is lower than the saturation concentration associated with the temperature and pressure which prevails in the liquid space below the rolling diaphragm. According to a further embodiment the device comprises one or more heating elements which can heat the liquid in the first part of the container or in the storage container provided with wire gauzes. As a result of the said heating the saturation concentration decreases which means that more gas escapes out of the liquid in bubble form so that a cleaner liquid is supplied to the liquid space.
In order that the invention may readily be carried into effect a few embodiments thereof will now be described in greater detail, by way of example, with reference to the accompanying drawings, in which FIG. 1 diagrammatically shows a piston-cylinder combination in which a rolling diaphragm is used as a seal and in which part of the'wall of the liquid space below the rolling diaphragm is manufactured from a material which permits diffusion of gas,
FIGS. 2 and 3 show diagrammatically two pistoncylinder combinations in which a rolling diaphragm is used as a seal and in which further means are provided for circulating liquid from the liquid space below the rolling diaphragm along a separator consisting of two containers separated by a wall permitting diffusion of FIGS. 4 and 5 show diagrammatically two pistoncylinder combinations in which a rolling diaphragm is used as a seal and in which further a liquid storage container with wire gauzes is provided for separating and receiving gas diffused through the rolling diaphragm.
In FIG. 1 reference numeral 1 denotes a cylinder in which a piston 2 reciprocates. The piston 2 is connected through a piston rod 3 to a driving mechanism (not shown). The seal between the piston and the cylinder is formed by a rolling diaphragm 4 which with its one side also bounds a working space 5 and with its other side engages liquid contained in a space 6. Because the piston 2 and the cylinder 1 have stepped constructions, the space 6 has a constant volume when the piston 2 moves in the cylinder. This means that a differential pressure across the rolling diaphragm 4 which is once adjusted is thereby maintained. The rolling diaphragm 4 is manufactured from a flexible substance, for example a polyurethene rubber. This substance in general permits a certain diffusion of the gas in the working space 5 to the working space 6. The gas diffused through the rolling diaphragm will dissolve in the liquid until the saturation concentration is reached. Then the gas will appear as bubbles in the liquid. This has the disadvantage that the liquid becomes more or less compressible so that at a fluctuating pressure in the working space 5 the rolling diaphragm will show variations in length.
In order to prevent the occurrence of gas bubbles in the liquid, a part 8 of the walls of the space 6 is manufactured from a material which permits diffusion of the gas in question. This part of the wall may be manufactured from the same material as the rolling diaphragm. When the working space contains hydrogen, the part of the wall may be manufactured, for example from palladium. The part 8 of the wall forms a boundary with its side remote from the space 6 of a container 10. This container communicates, through a duct 12 and a check valve 14 arranged therein, with the working space 5. This means that in the container 10 at most the minimum pressure can prevail which occurs in the working space. When the gas has diffused through the rolling diaphragm 4 to the liquid space 6, this diffused gas will diffuse through the part 8 of the wall to the container 10 as a result of the average higher pressure in the space 6 with respect to the pressure in the container 10. The gas may then be returned to the working space 5 out of the said container 10. In this relatively simple manner it has been achieved that no gas bubbles are formed in the liquid while the diffused gas is also recovered.
FIG. 2 again shows a piston-cylinder combination as shown in FIG. 1. The corresponding components have like reference numerals. The walls of the liquid space 6, however, in this case are manufactured from a material which permits no diffusion. In this embodiment the liquid space 6 communicates with a liquid exhaust duct 15 which, with its other end communicates with a part 16 of a container 17. The container 17 is separated into the parts 16 and 19 by a partition 18 permitting diffusion. The part 16 again communicates with thevliquid space 6 through a further duct 20 which includes a pump and a control device 21.
The control device 21 comprises three spaces 22, 23 and 24. The space 22 communicates through a narrow duct with the working space 5 so that in that space the same average pressure prevails as in the working space. The space 23 also communicates through a narrow duct with the liquid space 6 so that in that space the same average pressure prevails as in the liquid space 8. The spaces 22 and 23 are separated from one another by a diaphragm 25 to which the valve spindle of a valve 26 is connected. In order to maintain a given differential pressure between the spaces 5 and 6 and 22 and 23 respectively, a pressure spring 27 is provided.
The device further comprises an additional liquid pump 29 which supplies liquid to the space 6 through a duct 30. As a result of the action of the liquid pump in the duct liquid flows out of the space 6 into the part 16 of the container 17.
Since a pressure is maintained in the space 19 which is lower than the liquid pressure, gas in the space 16 will diffuse through the partition 18 which permits diffusion into the space 19. The gas diffused to the space 19 can be conducted away through duct 31. The space 16 includes a heating element 32 which heats the liquid in that space. As a result of the heating of the liquid the saturation concentration of the gas in question in the liquid will become lower as a result of which more gas will diffuse through the partition 18. The liquid flows back to the liquid space 6 out of the space 16 through duct 20. As a result of the seal between the piston 2 and the cylinder 1, some liquid may leak away under conditions out of the space 6 into the pump. The liquid pump 29 supplies liquid to the space 6 to compensate for the leak losses. In practice the pump 29 will supply more liquid than has leaked away. The excess liquid has to be conducted away again since otherwise the differential pressure across the rolling diaphragm 4 may vary. In order to ensure a constant differential pressure across the rolling diaphragm 4 a control device 21 is provided. When the pressure in the liquid space 6 becomes higher than corresponds to the desired differential pressure, the diaphragm will show a deflection upwards, as a result of which the valve 26 is lifted and liquid can flow back to the sump out of the space 24 through the duct 33.
In this manner it is achieved again that the liquid in the space 6 remains incompressible in which the gas diffused through the rolling diaphragm is not lost.
FIG. 3 shows the same piston-cylinder combination as disclosed in FIG. 2. The difference is that in this embodiment a storage container 35 is provided in the duct 20 between the space 16 and the control device 21. On its upper side the said storage container communicates through a narrow duct 46 with the working space 5 so that the average pressure of the working space 5 will prevail in the storage container 35. In the storage container the liquid and the gas are separated from one another by a light-weight piston-shaped body 36 which permits no diffusion. The operating condition of the said piston-shaped body 36 is determined by an exhaust 37. The storage container contains a comparatively large quantity of liquid which enables the pressure level in the device to vary comparatively rapidly without the rolling diaphragm 4 being adversely influenced by it.
FIG. 4 shows a piston-cylinder combination in which the rolling diaphragm 4 serves as a seal facing the working space 5 with its convex side. A liquid exhaust duct 40 which includes a control device 21 communicates with the liquid space. The said control device is similar to the control device shown in FIGS. 2 and 3 as far as structure and operation are concerned, with the understanding that in this embodiment the spring 27 is constructed as a tension spring as a result of the fact that the rolling diaphragm faces the working space with its convex side. The result of this arrangement is that the average liquid pressure in the spaces 6 and 23 now is higher by a certain amount than the average pressure prevailing in the working space. The duct 40 communicates with a liquid container 41 through a control valve. The vapor space of the said container communicates through a narrow duct with the working space 5 so that in that container the average pressure prevails which prevails in the working space 5. One or more walls 42 of wire gauze are arranged in the container 41. The container further comprises a liquid exhaust duct 43 which opens inside the wall of wire gauze 42. The exhaust duct 43 includes a pump 44 which brings the liquid to the pressure prevailing in the space 6. Therefore the liquid is circulated by pumping of the pump 44. In this case a reduction in pressure occurs across the valve 26 from the average liquid pressure to the average gas pressure. Gas, if any, dissolved in the liquid will separate'in hub form. When passing the wire gauzes the said bubbles are retained on the wire gauzes in the liquid container and rise upwards. In this manner they again reach the working space. To obtain a reduction of the saturation concentration a heating element 32 is included in the liquid container.
FIG. 5 shows a device which corresponds to the device shown in FIG. 4. However, in this embodiment the rolling diaphragm 4 faces the working space 5 with its concave side. To obtain a differential pressure across the valve 26 the minimum pressure which occurs in the working space S prevails in the container 41. This can be achieved by communicating the vapor space with the working space 5 through a duct having a check valve 52 and further communicating the vapor space with a supplement container in which the minimum gas pressure prevails. As a result of this structure the liquid is reduced in pressure across the valve 26 which entails a reduction of the saturation concentration. A further reduction of the saturation concentration is obtained by raising the liquid to a higher temperature. In this manner a great quantity of the gas in the liquid is separated with extremely simple means. The liquid which is directed back to the liquid space only contains so little gas that there exists no danger for surpassing the saturation concentration associated with the pressure and temperature prevailing in the space 6.
What is claimed is:
1. Apparatus comprising: a cylinder; a piston reciprocally movable within the cylinder; a rolling diaphragm seal secured between the cylinder and piston, thereby separating a first space for containing liquid from a second space for containing gas, a quantity of the gas being diffusible through the seal and being soluble in the liquid, means in communication with said gas and liquid for maintaining a pressure differential across said seal, and a separator in communication with said liquid and including means for separating said dissolved gas from the liquid and a control means operatively communicating with said liquid and gas for maintaining the pressure differential across the seal, said separator means comprising a liquid storage chamber having at least one wire gauze therein, liquid in the lower part thereof and gas in the upper part, a gas duct interconnecting the upper part and said second space, and liquid supply and exhaust ducts, each connected at one end to said first space and at their other ends to said storage chamber, the average liquid pressure in the storage chamger being lower than the prevailing pressure in said first space, the inlet and outlet'of the storage chamber being separated by a gauze, whereby gas dissolved in the liquid in said storage chamber, will separate in the form of bubbles onto said gauze and rise to the gas space therein.
2. Apparatus as defined in claim 1 further comprising a heater associated with the storage chamber for heating liquid therein, to thereby reduce the saturation concentration of the liquid and remove a greater quantity of gas therefrom.
3. Apparatus as defined in claim 1 further providing a control valve in said liquid exhaust duct and a pump in said liquid supply duct, said rolling diaphragm seal engaging said liquid with its concave side, the pressure prevailing in said liquid storage container being substantially the same as the average pressure which prevails on the side of the rolling diaphragm seal remote from said liquid space.
4. Apparatus as defined in claim 1 further providing a control valve in said liquid exhaust duct and a pump in said liquid supply duct, said rolling diaphragm seal engaging said liquid with its convex side, the pressure prevailing in said liquid storage container being at least substantially equal to the minimum pressure which occurs in the space on the side of said rolling diaphragm seal remote from said liquid space.
5. Apparatus as defined in claim 1 further comprising means to bring the liquid in said first part of said container and in said liquid storage container at a temperature such that the saturation concentration of said gas in the liquid is lower than the saturation concentration associated with the temperature and pressure which prevails in the liquid space below said rolling diaphragm.

Claims (5)

1. Apparatus comprising: a cylinder; a piston reciprocally movable within the cylinder; a rolling diaphragm seal secured between the cylinder and piston, thereby separating a first space for containing liquid from a second space for containing gas, a quantity of the gas being diffusible through the seal and being soluble in the liquid, means in communication with said gas and liquid for maintaining a pressure differential across said seal, and a separator in communication with said liquid and including means for separating said dissolved gas from the liquid and a control means operatively communicating with said liquid and gas for maintaining the pressure differential across the seal, said separator means comprising a liquid storage chamber having at least one wire gauze therein, liquid in the lower part thereof and gas in the upper part, a gas duct interconnecting the upper part and said second space, and liquid supply and exhaust ducts, each connected at one end to said first space and at their other ends to said storage chamber, the average liquid pressure in the storage chamger being lower than the prevailing pressure in said first space, the inlet and outlet of the storage chamber being separated by a gauze, whereby gas dissolved in the liquid in said storage chamber, will separate in the form of bubbles onto said gauze and rise to the gas space therein.
2. Apparatus as defined in claim 1 further comprising a heater associated with the storage chamber for heating liquid therein, to thereby reduce the saturation concentration of the liquid and remove a greater quantity of gas therefrom.
3. Apparatus as defined in claim 1 further providing a control valve in said liquid exhaust duct and a pump in said liquid supply duct, said rolling diaphragm seal engaging said liquid with its concave side, the pressure prevailing in said liquid storage container being substantially the same as the average pressure which prevails on the side of the rolling diaphragm seal remote from said liquid space.
4. Apparatus as defined in claim 1 further providing a control valve in said liquid exhaust duct and a pump in said liquid supply duct, said rolling diaphragm seal engaging said liquid with its convex side, the pressure prevailing in said liquid storage container being at least substantially equal to the minimum pressure which occurs in the space on the side of said rolling diaphragm seal remote from said liquid space.
5. Apparatus as defined in claim 1 further comprising means to bring the liquid in said first part of said container and in said liquid storage container at a temperature such that the saturation concentration of said gAs in the liquid is lower than the saturation concentration associated with the temperature and pressure which prevails in the liquid space below said rolling diaphragm.
US00136261A 1971-04-21 1971-04-21 Rolling diaphragm seal separating gas and liquid with means for removing and recovering gas diffused through said seal into the liquid Expired - Lifetime US3798895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00136261A US3798895A (en) 1971-04-21 1971-04-21 Rolling diaphragm seal separating gas and liquid with means for removing and recovering gas diffused through said seal into the liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00136261A US3798895A (en) 1971-04-21 1971-04-21 Rolling diaphragm seal separating gas and liquid with means for removing and recovering gas diffused through said seal into the liquid

Publications (1)

Publication Number Publication Date
US3798895A true US3798895A (en) 1974-03-26

Family

ID=22472066

Family Applications (1)

Application Number Title Priority Date Filing Date
US00136261A Expired - Lifetime US3798895A (en) 1971-04-21 1971-04-21 Rolling diaphragm seal separating gas and liquid with means for removing and recovering gas diffused through said seal into the liquid

Country Status (1)

Country Link
US (1) US3798895A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0167407A2 (en) * 1984-07-06 1986-01-08 Mitsubishi Denki Kabushiki Kaisha A stirling engine
US20080110194A1 (en) * 2006-11-15 2008-05-15 Toby Whitaker Liquid dispensing apparatus and method
US20090133430A1 (en) * 2007-11-28 2009-05-28 General Electric Company Dispensing system and method for dispensing fluid in an appliance
US20140047823A1 (en) * 2011-05-31 2014-02-20 Korea Institute Of Energy Research Microactuator using bubble growth and destruction
US20140165551A1 (en) * 2007-04-23 2014-06-19 New Power Concepts Llc Stirling Cycle Machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2616243A (en) * 1948-05-11 1952-11-04 Hartford Nat Bank & Trust Co Regulating device for varying the amount of working medium in hot-gas engines
US2616244A (en) * 1948-07-02 1952-11-04 Hartford Nat Bank & Trust Co Device for varying the quantity of working medium in hot-gas reciprocating engines
US2781632A (en) * 1949-09-21 1957-02-19 Hartford Nat Bank & Trust Co Device for circulating a medium in a reciprocating engine
US3302392A (en) * 1964-05-29 1967-02-07 Philips Corp Device comprising at least one sealing element between two coaxially arranged elements which are movable with respect to each other

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2616243A (en) * 1948-05-11 1952-11-04 Hartford Nat Bank & Trust Co Regulating device for varying the amount of working medium in hot-gas engines
US2616244A (en) * 1948-07-02 1952-11-04 Hartford Nat Bank & Trust Co Device for varying the quantity of working medium in hot-gas reciprocating engines
US2781632A (en) * 1949-09-21 1957-02-19 Hartford Nat Bank & Trust Co Device for circulating a medium in a reciprocating engine
US3302392A (en) * 1964-05-29 1967-02-07 Philips Corp Device comprising at least one sealing element between two coaxially arranged elements which are movable with respect to each other

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0167407A2 (en) * 1984-07-06 1986-01-08 Mitsubishi Denki Kabushiki Kaisha A stirling engine
EP0167407A3 (en) * 1984-07-06 1987-02-04 Mitsubishi Denki Kabushiki Kaisha A stirling engine
US20080110194A1 (en) * 2006-11-15 2008-05-15 Toby Whitaker Liquid dispensing apparatus and method
US8266922B2 (en) * 2006-11-15 2012-09-18 General Electric Company Liquid dispensing apparatus and method
US20140165551A1 (en) * 2007-04-23 2014-06-19 New Power Concepts Llc Stirling Cycle Machine
US9752532B2 (en) * 2007-04-23 2017-09-05 New Power Concepts Llc Stirling cycle machine
US11448158B2 (en) 2007-04-23 2022-09-20 New Power Concepts Llc Stirling cycle machine
US20090133430A1 (en) * 2007-11-28 2009-05-28 General Electric Company Dispensing system and method for dispensing fluid in an appliance
US20140047823A1 (en) * 2011-05-31 2014-02-20 Korea Institute Of Energy Research Microactuator using bubble growth and destruction
US9103360B2 (en) * 2011-05-31 2015-08-11 Korea Institute Of Energy Research Microactuator using bubble growth and destruction

Similar Documents

Publication Publication Date Title
US3620652A (en) Compressor with rolling diaphragm seal
KR100694151B1 (en) Ink circulation apparatus having degassing function
US3487751A (en) Rolling diaphragm seal means for removing and recovering diffused gas
US3524714A (en) Pneumatic bellows pump
US3559398A (en) Hot-gas piston engine
US3798895A (en) Rolling diaphragm seal separating gas and liquid with means for removing and recovering gas diffused through said seal into the liquid
US3667348A (en) Seals between coaxial elements
US3314594A (en) Apparatus for compressing or expanding a medium, which apparatus includes a control device for regulating the amount of dead space
US3372539A (en) Hot-gas reciprocating engine
US3216651A (en) Seal
US5938207A (en) Heat engine rod seal system
US3277795A (en) Piston cylinder means with fluid-coupled drive means and rolling diaphragm seal
US3182895A (en) Synchronizing devices for twin-cylinder heat engines having two opposed pistons in each cylinder
US3783745A (en) Gas-supported rolling diaphragm seal for piston and cylinder assembly
US4036112A (en) Rolling diaphragm sealing devices
JPH10299609A (en) Pulsation reducing damper
US3626811A (en) Rolling diaphragm seal means for removing and recovering diffused gas
US4873913A (en) Dry roughing pump having a gas film bearing
US3131713A (en) Pump for cryogenic liquids
US4207034A (en) Pump without motoric drive
US3609061A (en) Automatic liquid level control system
US3886744A (en) Power-control system for stirling engines
US2452194A (en) Free piston machine
US3748970A (en) Device with rolling diaphragm seal separating gas and liquid
USH928H (en) Liquid compressing gas system