US3798247A - Oil soluble aliphatic acid derivatives of molecular weight mannich condensation products - Google Patents

Oil soluble aliphatic acid derivatives of molecular weight mannich condensation products Download PDF

Info

Publication number
US3798247A
US3798247A US00054558A US3798247DA US3798247A US 3798247 A US3798247 A US 3798247A US 00054558 A US00054558 A US 00054558A US 3798247D A US3798247D A US 3798247DA US 3798247 A US3798247 A US 3798247A
Authority
US
United States
Prior art keywords
molecular weight
acid
oil
high molecular
mole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00054558A
Inventor
E Piasek
R Karll
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BP Corp North America Inc
Original Assignee
Standard Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Standard Oil Co filed Critical Standard Oil Co
Application granted granted Critical
Publication of US3798247A publication Critical patent/US3798247A/en
Assigned to AMOCO CORPORATION reassignment AMOCO CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: STANDARD OIL COMPANY
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/12Reaction products
    • C10M159/16Reaction products obtained by Mannich reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • C08F8/32Introducing nitrogen atoms or nitrogen-containing groups by reaction with amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/06Well-defined aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/026Butene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/34Esters having a hydrocarbon substituent of thirty or more carbon atoms, e.g. substituted succinic acid derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/062Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings containing hydroxy groups bound to the aromatic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
    • C10M2215/08Amides [having hydrocarbon substituents containing less than thirty carbon atoms]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
    • C10M2215/08Amides [having hydrocarbon substituents containing less than thirty carbon atoms]
    • C10M2215/082Amides [having hydrocarbon substituents containing less than thirty carbon atoms] containing hydroxyl groups; Alkoxylated derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
    • C10M2215/12Partial amides of polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/221Six-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/223Five-membered rings containing nitrogen and carbon only
    • C10M2215/224Imidazoles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • C10M2215/226Morpholines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
    • C10M2215/24Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions having hydrocarbon substituents containing thirty or more carbon atoms, e.g. nitrogen derivatives of substituted succinic acid
    • C10M2215/26Amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
    • C10M2215/24Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions having hydrocarbon substituents containing thirty or more carbon atoms, e.g. nitrogen derivatives of substituted succinic acid
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
    • C10M2215/24Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions having hydrocarbon substituents containing thirty or more carbon atoms, e.g. nitrogen derivatives of substituted succinic acid
    • C10M2215/30Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/02Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/028Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a nitrogen-containing hetero ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/042Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds between the nitrogen-containing monomer and an aldehyde or ketone
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/043Mannich bases
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/046Polyamines, i.e. macromoleculars obtained by condensation of more than eleven amine monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/06Macromolecular compounds obtained by functionalisation op polymers with a nitrogen containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/044Sulfonic acids, Derivatives thereof, e.g. neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/02Unspecified siloxanes; Silicones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/05Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/12Inhibition of corrosion, e.g. anti-rust agents or anti-corrosives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • C10N2040/042Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for automatic transmissions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • C10N2040/044Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for manual transmissions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • C10N2040/046Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/251Alcohol-fuelled engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines
    • C10N2040/28Rotary engines

Definitions

  • This invention relates to improved lubricating oils and particularly concerns automobile and diesel crankcase lubricating oil formulations containing a minor amount of a new class of oil-soluble addition agents which improve the performance of the oil, particularly its dispersantdetergent function thus enabling lubricating oils to provide a high degree of protection of the lubrication parts of internal combustion engines.
  • crankcase lubricating oils present-day automobile and diesel engines have been designed for higher power output, lower combustion products emission and longer in-service periods of use of crankcase lubricating oils. These design changes have resulted in such severe operating conditions as to necessitate devising higher efiiciency lubricating oils that will, under the increased severity of in-service use, afford proper prot ction against corrosion and the accumulation or deposition of sludge, varnish and resinous materials on the surface of engine parts which rapidly accelerate decrease in both operating efficiency and life of the engine.
  • the principal ingredient of crankcase lubricants is a base lubricating oil, a mixture of hydrocarbons derived from petroleum.
  • a lubricant base oil Even when highly refined by removal of deleterious components, such as polymerizable components, acid formers, waxes, etc., a lubricant base oil still requires the addition of a number of oil-soluble chemical additives to enable the oil to resist oxidation, deposition of sludge and varnish on, and corrosion of, the lubricated metal parts, and to provide added lubricity and regulated viscosity change from low to high temperature. These ingredients are commonly known as anti-oxidants, dispersantdetergents, pour point dispersants, etc.
  • Combustion products from the burning of fuel and thermal degradation of lubricating oils and addition agents tend to concentrate in the crankcase oil with the attendant formation of oil-insoluble deposit-forming products, that either surface coat the engine parts (varnish or lacquer-like films) or settle out on the engine parts as viscous (sludge) deposits or form solid ash-like or carbonaceous deposits. Any of such deposits can restrict, and even plug, grooves, channels and holes provided for lubricant flow to the moving surfaces of the engine requiring lubrication thus accelerating the wear and thus reducing the efiiciency of the engine. In addition, acidic combustion products corrode the lubricated metal surfaces.
  • crankcase oil formulations not only to reduce thermal decomposition of the oil and addition agents (antioxidants) but also to keep in suspension (as a dispersant) and to resuspend (as a detergent) insoluble combustion and degradation products as well as to neutralize acidic products (anti-corrosion agents).
  • a separate additive is usually added for each improvement to be effected.
  • R is a divalent alkylene hydrocarbon radical and R is an alkyl group containing from 2 to 20 carbon atoms.
  • Still others have been prepared by reacting C -C alkylphenols, formaldehyde and alkylene polyamines of the formula wherein A is a divalent alkylene radical of 2 to 6 carbon atoms and n is an integer from 1 to 10, in the ratio of from 0.5 to 2 moles each of C -C alkylphenol and formaldehyde for each nitrogen group contained in the alkylene polyamine reagent.
  • the molar reactant ratio range of C -C alkylphenol, amine and formaldehyde used to form such products is 1-20: 1.0: 1-20.
  • US. Pat. No. 3,036,- 003 exemplifies such products, which usually are formed with ethylene polyamines, according to the above formula in which A is CH CH and n is 2, 3 and 4.
  • an inert stripping gas such as nitrogen, carbon doxide, etc.
  • the exactly neutralized or overbased alkaline earth metal salts (alkaline earth metal phenates) of those prior low molecular weight Mannich condensation products have been suggested for use in providing lubricating oils with a combination of detergent-inhibitor properties in one addition agent.
  • the exactly neutralized alkaline earth metal salts have one equivalent of alkaline earth metal for each hydroxy group present.
  • the overbased salts have, for each hydroxy group present, more than one equivalent of alkaline earth metal in the form of a hydroxy metaloxy, alkoxy metaloxy and even alkaline earth metal carbonate complex with hydroxy metaloxy on each benzene group as a replacement for the phenol hydroxy group.
  • said addition agents form objectionable metal ash deposits and have other performance deficiencies.
  • an aliphatic acid having suitably from about 6 carbon atoms to about 30 carbon atoms, desirably at least 10 carbon atoms and preferably 16 or more carbon atoms per carboxylic acid group.
  • the aliphatic acid can be used as an initial reactant, reacted with the hazy high molecular weight Mannich condensation product before its filtration or added to the filtered product before it goes to storage.
  • Such uses of the aliphatic acid require only small amounts, in the range of 0.1-10.0 weight percent to eliminate those drawbacks and provide an improved product.
  • This invention pertains to a new class of compounds useful as multifunctional addition agents for lubricating oils, particularly such oils used in internal combustion engines in which they function as highly eflicient dispersant-detergent and oxidation inhibitor agents.
  • the new class of compounds which comprise our invention are oil-soluble high molecular aliphatic acid modified weight Mannich condensation products. They can be prepared either by condensing in the usual manner under Mannich-Reaction conditions:
  • An alkyl-substituted hydroxyaromatic compound whose alkyl-substituent has a 600-l00,000 fin, preferably a polyalkylphenol whose polyalkyl substituent is derived from l-mono-olefin polymers having a fin of about 850-2500;
  • An amine containing at least one NH group preferably an alkylene polyamine of the formula wherein A is a divalent alkylene radical having 2 to 6 carbon atoms and x is an integer from 1 to 10; and
  • aldehyde preferably formaldehyde followed by reaction with (4) aliphatic acid before or after filtration. Or they can be prepared by using all four reactants at one time under the general Mannich Reaction conditions.
  • the foregoing high molecular weight products of this invention are preferably prepared according to the conventional methods heretofore employed for the preparation of Mannich condensation products, using the abovenamed reactants in the respective molar ratios of high molecular weight alkyl-substituted hydroxyaromatic compound, amine, aldehyde and aliphatic acid of approximately 1.0:0.1-l:1.0-10:0.014-1.0.
  • Suitable as a condensation procedure involves adding at a temperature of from room temperatures to about 200 F. the formaldehyde reagent (e.-g.
  • the preferred additives according to this invention are high molecular weight bis-Mannich condensation products formed by reacting (1) a 850-2500 Mn polyalkylphenol; (2) an ethylene polyamine, as amine reactant; (3) formaldehyde and (4) an aliphatic acid in the respective molar ratio of 1.0:0.7-1.0:1.5-2.1:0.014-0.62.
  • novel addition agents according to our invention are the high molecular weight aliphatic acid modified Mannich condensation products of 1) high molecular weight alkyl-substituted phenol whose alkyl substituent has a fin of GOO-100,000, a compound having at least one HN group, an aldehyde and an aliphatic acid wherein the respective molar ratio of the reactants is l.0:0.1-10:l.0-l0:0.0l40.62.
  • Preferred addition agents are those obtained by condensing (1) an alkylphenol whose alkyl substituent is derived from l-mono-olefin polymers having a 850-2500 Mn; (2) an alkylene polyamine having the formula H N(A--NH),,H wherein A is a divalent saturated hydrocarbon radical having 2 to 6 carbon atoms and n is an integer from 1 to 10, (3) a formaldehyde yielding reactant and (4) an aliphatic acid having 10-20 carbon atoms per carboxylic acid group used in the respective molar ratio of reactants is 1:0.7- 1.0:1.5-2.1:0.014-0.62.
  • the high molecular weight products of this invention are exceptionally useful addition agents for lubricating oils imparting thereto dispersant-detergent and anti-oxidant properties at relatively low concentrations of the addition agent, e.g., 0.05 to 10 weight percent in formulated crankcase lubricating oil. Higher concentrations, e.g., 10 to 70 weight percent, are useful concentrates of the preparation of those formulated crankcase lubricating oils and the fortification of crankcase oil in use prior to the scheduled complete drain.
  • High molecular weight alkyl-substituted hydroxyarornatics are polypropylphenol, polybutylphenol and other polyalkylphenols. These polyalkylphenols may be obtained by the alkylation, in the presence of an alkylating catalyst, such as BF of phenol with high molecular weight polypropylene, polybutylene and other polyalkylene compounds to give alkyl substituents on the benzene ring of phenol having an average GOO-100,000 fin.
  • an alkylating catalyst such as BF of phenol with high molecular weight polypropylene, polybutylene and other polyalkylene compounds to give alkyl substituents on the benzene ring of phenol having an average GOO-100,000 fin.
  • the 600 fin and higher fin alkyl-substituents on the hydroxyaromatic compounds may be derived from high molecular weight polypropylenes, polybutenes and other polymers of mono-olefins, principally l-mono-olefins. Also useful are copolymers of mono-olefins with monomers copolymerizable therewith wherein the copolymer molecule contains at least by weight, of monoolefin units. Specific examples are copolymers of butenes (butene-l, butene-2 and isobutylene) with monomers copolymerizable therewith wherein the copolymer molecule contains at least 90%, by weight, of propylene and butene units, respectively.
  • Said monomers copolymerizable with propylene or said butenes include monomers containing a small proportion of unreactive polar groups such as chloro, bromo, keto, ethereal, aldehyde, which do appreciably lower the oil-solubility of the polymer.
  • the comonomers polymerized with propylene or said butenes may be aliphatic and can also contain non-aliphatic groups, e.g.,
  • others which may be used include those which have been used to prepare prior low molecular weight Mannich condensation products, e.g., high molecular weight alkyl-substituted derivatives of resorcinol, hydroquinone, cresol, catechol, xylenol, hydroxy diphenyl, benzylphenol, phenethylphenol, naphthol, tolylnaphthol, among others.
  • Mannich condensation products e.g., high molecular weight alkyl-substituted derivatives of resorcinol, hydroquinone, cresol, catechol, xylenol, hydroxy diphenyl, benzylphenol, phenethylphenol, naphthol, tolylnaphthol, among others.
  • Preferred for the preparation of the before mentioned preferred bis Mannich condensation products are the polyalkylphenol reactants, e.g., polypropylphenol and polybutylphenol whose alkyl group has an average number molecular weight of 600-3000, the most preferred being polybutylphenol whose alkyl group has an average number molecular weight of 850-2500.
  • polyalkylphenol reactants e.g., polypropylphenol and polybutylphenol whose alkyl group has an average number molecular weight of 600-3000, the most preferred being polybutylphenol whose alkyl group has an average number molecular weight of 850-2500.
  • HN group containing reactants Representative of this class of reactants are alkylene polyamines, principally polyethylene polyamines.
  • Other representative organic compounds containing at least one HN group suitable for use in the preparation of Mannich condensation products are well known and include the mono and di-amino alkanes and their substituted analogs, e.g., ethylamine and diethanol amine; aromatic diamines, e.g., phenylene diamine, diamino naphthalenes; heterocyclic amines, e.g., morpholine, pyrrole, pyrrolidine, imidazole, imidazolidine, and piperidine; melamine and their substituted analogs.
  • Suitable alkylene polyamide reactants include ethylenediamine, diethylene triamine, triethylene tetramine, tetraethylene pentamine, pentaethylene hexamine, hexaethylene hepta-amine, heptaethylene octamine, octaethylene nonamine, nonaethylene decamine and decaethylene undecamine and mixture of such amines having nitrogen contents corresponding to the alkylene polyamines, in the formula H N(A-NH),,H, mentioned before, A is divalent ethylene and n is l to of the foregoing formula.
  • propylene polyamines such as propylene diamine and di-, tri-, tetra-, penta-propylene tri-, tetra-, pentaand hexa-arnines are also suitable reactants.
  • the alkylene polyamines are usually obtained by the reaction of ammonia and dihalo alkanes, such as dichloro alkanes.
  • the alkylene polyamines obtained from the reaction of 2 to 11 moles of ammonia with 1 to 10 moles of 'dichloro alkanes having 2 to 6 carbon atoms and the chlorines on dififerent carbons are suitable alkylene polyamine reactants.
  • Aldehyde reactants Representative of this aldehyde class of reactants for use in the preparation of the high molecular products of this invention include the aliphatic aldehydes such as formaldehyde (also as paraformaldehyde and formalin), acctaldehyde and aldol (b-hydroxybutyraldehyde). We prefer to use formaldehyde or a formaldehyde yielding reactants.
  • Aliphatic acid reactants The aliphatic acid reactant of this invention has a carbon atom content of a total (including the carbon of the canboxylic acid group) of from about six to about 30 and consists of the alkanoic (satu rated) and alkenoic (mono-unsaturated) acids. The upper limit of the carbon content is restricted only by the largest carbon atom content of such acids available or capable of feasible preparation.
  • Such aliphatic acids can be natural and synthetic mono-, di and tri-carboxylic acids. Suitable natural aliphatic acids are the natural fatty acids obtainable by known hydrolysis (acid and alkaline) of vegetable and animal oils and fats and wax esters.
  • Suitable synthetic acids can be derived from oxidation of the alcohol moiety of the wax ester where such alcohol moiety has at least six carbon atoms; from the polymerization of unsaturated natural acids having two or three carbon to carbon double bonds (dimer and trimer acids) and the hydrogenation of residual carbon to carbon double bonds in such polymer acids.
  • the polymer acids obtained from oleic acid, euric acid, linoleic acid and linolenic acid and other unsaturated acids; and from oxidation or other reactions of polypropenes and polybutenes (e.g. polyisobutenes) which introduce one or more carboxylic acid group on the polymer chain.
  • oxidation stability test (Union Pacific Oxidation Test) there are tested oil formulations containing equivalent amounts of high molecular weight Mannich Product (a polybutyl-, hydroxybenzyl-substituted tetraethylene pentamine having a number average molecular weight of 3600) and the same Mannich Product modified with 0.125 mole (0.8 weight percent) of each of oleic acid, isostearic acid, a mixture of C and C monounsaturated alkenoic acids and a mixture of C and C saturated alkanoic acids.
  • Mannich Product a polybutyl-, hydroxybenzyl-substituted tetraethylene pentamine having a number average molecular weight of 3600
  • Mannich Product modified with 0.125 mole (0.8 weight percent) of each of oleic acid, isostearic acid, a mixture of C and C monounsaturated alkenoic acids and a mixture of C and C saturated alkanoic acids.
  • Pentane insolu- Additive Acid modifier bles, gms.
  • Suitable alkanoic acids having 6 or more total carbon atoms are those obtainable from the glycerides: vegetable oils and animal fats and the wax esters by the known hydrolysis or saponification-acidification or acid treatment processing of said oil and fat glycerides and the wax esters (i.e. natural waxes), the oxidation of the mono-alcohol obtainable from the simple ester of the wax esters and known acid synthesis.
  • suitable alkonic acids i.e.
  • R groups of 6 to 30 carbon atoms include caproic acid, caprylic acid, capric acid, hendecylic acid, lauric acid, tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, margaric acid, stearic acid, nonadecylic acid, arachidic acid, medullic acid, behenic acid, lignoceric acid, pentacosoic acid, cerotic acid, heptacosoic acid, monocosoic acid, montanic acid, and melissic acid.
  • alkanoic acids are obtained first in mixtures of two, three or more alkanoic acids of different carbon contents from said glycerides and wax esters said mixtures can be used in this invention in place of a single alkanoic acid reactant.
  • said mixtures of alkanoic acids also contain unsaturated acids it is preferred that such mixture of acids be reduced to a product which is substantially free of unsaturation.
  • Suitable alkenoic acids having a total of at least six carbon atoms include those from hexenoic, heptenoic, octenoic, etc. acids up to oleic (C and erucic (C acids. Also suitable are the dimer acid of linoleic and its saturated dimer analog; dimer and trimer acids of linolenic acid and the saturated dimer and trimer analogs. Other polymeric acids, e.g. co-dimers of oleic and linoleic or linolenic acids and the saturated analogs of those dimer acids are also suitable.
  • Such enhancement is achieved with relatively small amounts of the aliphatic acid relatively small, for example in the range of 0.01 to 0.03 mole aliphatic acid per mole of high molecular Weight alkyl-substituted hydroxy aromatic compound before described as reactant (1).
  • H N- and HN groups are separated by two or three carbon atoms as in molety derived from ethylene diamine, ethyl- (e.g. stearic wherein R has 17 carbon atoms) and N-(2- hydroxy--polybutylbenzyl)ethylene and propylene diamines wherein Z is said 2-hydroxy-5-polybutylbenzyl group in the following equation:
  • the cyclic product of Equation I is 1-(2-hydroxy-5-polybutylbenzyl)-2-n-heptadecylimidazoline and of Equation 2 is 1-(2-hydroxy-S-polybutylbenzyl)-2-n-heptadecyl 1,4,5, -tetrahydropyrimidine.
  • Such specific compounds can be present in the reaction mixture resulting from the reaction of (1) polybutylphenol, (2) ethylene diamine or 1,3- propylene diamine, (3) formaldehyde and (4) stearic acid in the respective reactant mole ration of 1.0:1.0:1.0:1.0 but other related products can also be and are, in general, also present in admixture thereof.
  • EXAMPLE I There were combined, with stirring, at a temperature of 180 F., 2300 grams (0.66 mole) of a 1600 molecular weight polybutyl substituted phenol (46% polybutyl phenol, 54% polybutene and 690 grams of a solvent-extracted 5W mineral oil) 115 grams (0.61 mole) tetraethylene pentamine, and 93 grams (0.33 mole; equivalent 0.5 mole per mole polybutyl phenol) oleic acid. Thereafter, 90 ccs. (1.2 moles) formaldehyde were slowly added, and the temperature raised to 300 F., with nitrogen bubbled through the mixture at the rate of 2 cubic feet per hour (c.f.h.). After heating at 300 F. for three hours, a filteraid, such as Celite, was added and the mixture filtered. The recovered filtrate had a nitrogen content of 1.24%, a SSU viscosity at 210 F. of 677, and was crystal clear.
  • a filteraid such as
  • Example II The method of Example I was repeated, except that 1540 grams (0.444 mole) of the polybutyl phenol, 460 grams of the mineral oil, 77 (0.41 mole) grams of tetraethylene pentamine, 62 grams (0.220 mole; equivalent 0.5 mole per mole polybutyl phenol) oleic acid, and 60 ccs. (0.816 mole) formaldehyde were used.
  • the recovered filtrate was crystal clear, contained 1.2% nitrogen and had a SSU viscosity at 210 F. of 679.
  • EXAMPLE III 400 grams (0.111 mole) of a 1600 molecular weight polybutyl substituted phenol (44.5% polybutyl phenol, 55.5% polybutene and 86 grams of a solvent-extracted 5W mineral oil) 8 grams (0.028 mole; equivalent 0.25 mole per mole polybutyl phenol) oleic acid, and 19.3 grams (0.102 mole) tetraethylene pentamine were admixed at 180 F. 15 ccs. (0.204 mole) formaldehyde were then added, the temperature raised to 320 F., and maintained at said temperature for three hours, While introducing nitrogen at the rate of 0.5 c.f.h. A filter-aid was added and the product filtered. The recovered filtrate was crystal clear, contained 1.15% nitrogen, and had a SSU viscosity at 210 F. of 827.
  • EXAMPLE IV 2395 grams (0.666 mole) of a polybutyl phenol, as used in Example III, 328 grams of a solvent-extracted 5W mineral oil, 24 grams (0.084 mole; equivalent to 0.125 mole per mole of the polybutyl phenol) oleic acid, and 116 grams (0.612 mole) tetraethylene pentamine were mixed at a temperature of 180 F., and then ccs. (1.21 moles) formaldehyde were added. The reaction mixture was then heated to 340-360 F., and maintained at such temperature for 4 hours, while nitrogen at the rate of 0.5 c.f.h. was bubbled through the reaction mixture. A filter-aid was added, and the mixture filtered. The recovered filtrate was crystal clear, contained 1.4% nitrogen, and had a SSU viscosity at 210 F. of 1070.
  • EXAMPLE V 476 grams (0.132 mole) of a polybutyl phenol, as used in Example III, 84 grams of a solvent-extracted 5W mineral oil, 19 grams (0.066 mole; equivalent to 0.5 mole per mole of the polybutyl phenol) stearic acid, and 23 grams (0.122 mole) tetraethylene pentamine were admixed at 180 F. and then 18 ccs. (0.24 mole) formaldehyde added. The reaction mixture was then heated to 300 F. and reacted at said temperature for 3 hours, while nitrogen at the rate of 0.5 c.f.h. Filter-aid was then added and the mixture filtered. The recovered filtrate was clear, contained 1.22% nitrogen and had a SSU viscosity at 210 F. of 957.
  • EXAMPLE VI 238 grams (0.066 mole) of a polybutyl phenol, as used in Example III, 37 grams of a solvent extracted 5W mineral oil, 5.7 grams (0.033 mole; equivalent to 0.5 mole per mole of the polybutyl phenol) capric acid, and 11.5 grams (0.061 mole) tetraethylene pentamine were mixed at 180 F., and then 9.0 ccs. (0.12 mole) formaldehyde added. The reaction temperature was raised to 300 F. and maintained at said temperature for 3 hours while blowing with nitrogen at the rate of 0.5 c.f.h. Filter-aid was added, and the reaction mass filtered. The recovered filtrate was crystal clear, contained 1.48% nitrogen, and had a SSU viscosity at 210 F. of 978.
  • EXAMPLE VII Same procedure as used in Example VI, but using 7.5 grams (0.033 mole; equivalent to 0.5 mole per mole of the polybutyl phenol) myristic acid (in place of capric acid) and 40 grams of the mineral oil. The recovered filtrate was crystal clear, contained 1.4% nitrogen, and had a SSU viscosity at 210 F. of 967.
  • Example III 84 grams of a solvent-extracted mineral oil, 18.6 Fatty acid modified product of ExampleI 4.00 grams (equivalent to 0.5 mole per 111016 of the polybutyl 5 Magnellum suifqnate phenol) of a mixture of fatty acids, consisting principally Zinc dlaikyi dithlophisphaie of C and C monobasic acids, marked as Emery 894 fil i f by Emery Industries, Inc., and 23 grams of tetraethylene S1 lcone p0 ymer 0am agent pentamine were mixed together and heated to 170 F.
  • a solvent-extracted mineral oil 18.6 Fatty acid modified product of ExampleI 4.00 grams (equivalent to 0.5 mole per 111016 of the polybutyl 5 Magnellum suifqnate phenol) of a mixture of fatty acids, consisting principally Zinc dlaikyi dithlophisphaie of C and C monobasic acids, marked as Emery 894 fil i
  • This test a 480 hour test, con- Acryiolci IIPPIOVer and Pour-Point Agent ducted with a high-speed, super-changed Caterpillar diesel f y h mofiliied Product of Example II engine, is designed to measure the high temperature de- Zinc dlaikyi dlihlophosPhaie L10 tergency properties of a crankcase lubricating oil for Magnesium Suifonaie qualification under Army ordinahce specificaii on The result of the 289 Ford Test using the above for- 210413- T pefformhnce of Candidate hibrlcatmg P mulation is shown in the following Table III.
  • Varnish in the second Solvent-extracted 20 oil 93.22 groove and on the first land should not exceed 50%. Unmodified high molecular weight Mannich con- Below this the piston must be clean. densation product 5 .00
  • the following oil formulation was used in the Cater- Zinc dialkyl dithiophosphate 0.78 pillar 1-H Test: Magnesium sulfonate 1,00
  • Oil pump relief valve 9. 8 (9. 3) Plugging of oil rings None (None) Piston ring sticking None (None) Oil consumption (qts.) 5.35 (5. 22)
  • Such lubricating oils can be any normally liquid oleaginous lubricant, such as hydrocarbon oils, both natural, i.e. petroleum oils, and synthetic oils, for example, those obtained by the polymeriztion of olefins, as well as synthetic lubricating oils of the alkylene oxide type, and the polycarboxylic acid ester type, such as the oil-soluble esters of adipic acid, sebacic acid, azelaic acid, etc.
  • a method of preparing the oil-soluble acid modified high molecular weight Mannich Reaction product as solute in hydrocarbon diluent solvent consisting essentially of aliphatic hydrocarbon of 600-100,000 average molecular weight and mineral lubricating oil which comprises reacting at a temperature in the range of 275-375 F.
  • the reactants (a) a high molecular weight alkyl-substituted phenol wherein the alkyl-substituent has an average molecular weight of from about 600 to about 100,000; (b) an alkylene polyamine; (0) formaldehyde; and (d) a saturated or unsaturated aliphatic monocarboxylic acid containing from 10 to 20 carbon atoms, dimers or trimer of such unsaturated acids in the respective reactant molar ratio of 1.010.1-10:1.010:0.14l.0, wherein the amount of said diluent solvent provides 10-70 weight percent of the acid modified Mannich Reaction product.
  • hydrocarbon diluent solvent is polybutenyl derived hydrocarbon of about 1500 number average molecular weight and SAE- 5W oil
  • reactant (a) is about 1500 number average molecular weight poly butyl-substituted phenol
  • (b) is tetraethylenepentamine
  • (c) is formaldehyde
  • (d) is oleic acid and the amount of diluent solvent provides 40 weight percent of said Mannich product as solute.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Lubricants (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

NOVEL ALIPHATIC ACID DERIVATIVES OF HIGH MOLECULAR WEIGHT MANNICH CONDENSATION PRODUCTS OF (1) HIGH MOLECULAR WEIGHT ALKYL-SULBSTITUTED HYDROXY AROMATIC COMPOUNDS WHOSE ALKYL-SUBSTITUENT HAS A NUMBER AVERAGE MOLECULAR WEIGHT ($N) FROM ABOUT 600-100,000, (2) A COMPOUND CONTAINING AT LEAST ONE HN< GROUP, (3) AN ALDEHYDE IN THE RESPECTIVE MOLAR REACTANT RATIO OF 1:0.1-10-1.0, AND (4) 0.1-10.0 WEIGHT PERCENT OF AN ALIPHATIC ACID HAVING AT LEAST 6 CARBON ATOMS ARE OIL SOLUBLE AND IMPART HIGHLY EFFICIENT ASHLESS TYPE (METAL FREE) DISPERSANT-DETERGENT PROPERTIES TO LUBRICANT OIL ADDITION AGENTS. LUBRICATING OILS CONTAINING THESE COMPOSITIONS PROVIDE A HIGH DEGREE OF PROTECTION AGENTS THE DEPOSITION OF SLUDGE AND VARNISH AND CORROSION WHEN USED AS CRANKCASE LUBRICANTS.

Description

United States PatentOi 3,798,247 Patented Mar. 19, 1974 3,798,247 OIL SOLUBLE ALIPHATIC ACID DERIVATIVES OF MOLECULAR WEIGHT MANNICH CONDENSA- TION PRODUCTS Edmund J. Piasek, Chicago, Ill., and Robert E. Karl], Munster, Ind., assignors to Standard Oil Company, Chicago, Ill. No Drawing. Filed July 13, 1970, Ser. No. 54,558 Int. Cl. C09f 7/00 US. Cl. 260-4045 2 Claims ABSTRACT OF THE DISCLOSURE Novel aliphatic acid derivatives of high molecular weight Mannich condensation products of (1) high molecular Weight alkyl-substituted hydroxy aromatic compounds whose alkyl-substituent has a number average molecular weight (fin) from about 600-100,000, (2) a compound containing at least one HN group, (3) an aldehyde in the respective molar reactant ratio of 1:0.l-l0:1.010, and (4) 0.1-l0.0 weight percent of an aliphatic acid having at least 6 carbon atoms are oil soluble and impart highly efficient ashless type (metal free) dispersant-detergent properties to lubricant oil addition agents. Lubricating oils containing these compositions provide a high degree of protection against the deposition of sludge and varnish and corrosion when used as crankcase lubricants.
BACKGROUND OF THE INVENTION This invention relates to improved lubricating oils and particularly concerns automobile and diesel crankcase lubricating oil formulations containing a minor amount of a new class of oil-soluble addition agents which improve the performance of the oil, particularly its dispersantdetergent function thus enabling lubricating oils to provide a high degree of protection of the lubrication parts of internal combustion engines.
Present-day automobile and diesel engines have been designed for higher power output, lower combustion products emission and longer in-service periods of use of crankcase lubricating oils. These design changes have resulted in such severe operating conditions as to necessitate devising higher efiiciency lubricating oils that will, under the increased severity of in-service use, afford proper prot ction against corrosion and the accumulation or deposition of sludge, varnish and resinous materials on the surface of engine parts which rapidly accelerate decrease in both operating efficiency and life of the engine. The principal ingredient of crankcase lubricants is a base lubricating oil, a mixture of hydrocarbons derived from petroleum. Even when highly refined by removal of deleterious components, such as polymerizable components, acid formers, waxes, etc., a lubricant base oil still requires the addition of a number of oil-soluble chemical additives to enable the oil to resist oxidation, deposition of sludge and varnish on, and corrosion of, the lubricated metal parts, and to provide added lubricity and regulated viscosity change from low to high temperature. These ingredients are commonly known as anti-oxidants, dispersantdetergents, pour point dispersants, etc.
Combustion products from the burning of fuel and thermal degradation of lubricating oils and addition agents tend to concentrate in the crankcase oil with the attendant formation of oil-insoluble deposit-forming products, that either surface coat the engine parts (varnish or lacquer-like films) or settle out on the engine parts as viscous (sludge) deposits or form solid ash-like or carbonaceous deposits. Any of such deposits can restrict, and even plug, grooves, channels and holes provided for lubricant flow to the moving surfaces of the engine requiring lubrication thus accelerating the wear and thus reducing the efiiciency of the engine. In addition, acidic combustion products corrode the lubricated metal surfaces. Chemical additives are blended in crankcase oil formulations not only to reduce thermal decomposition of the oil and addition agents (antioxidants) but also to keep in suspension (as a dispersant) and to resuspend (as a detergent) insoluble combustion and degradation products as well as to neutralize acidic products (anti-corrosion agents). A separate additive is usually added for each improvement to be effected.
Various ingredients have been developed for the purpose of providing the dispersant-detergent function. Neutral and overbased metallo-organic compounds, such as the alkaline earth metal salts of sulfonic acids and hydrocarbon-P S reaction products were the first addition agents used for this purpose. Their in-service drawbacks included the formation of metal-ash thermal decomposition products which deposited on engine parts; they could not efficiently disperse or resuspend lacquer or varnish formers or sludge formers; and they lost their dispersant-detergent function when their alkaline earth metal component had been consumed in neutralizing acidic products of combustion.
As performance levels increased and the recommended periods between oil drains lengthened for both automobile and railway diesel engines, more efiicient dispersancy and detergency performance as well as acid neutralization and lower ash forming tendency were demanded for lubricating oil formulations. During the past several years, a great deal of time and effort has been directed at providing addition agents for lubricants capable of satisfying such performance demands. When high molecular weight polybutene polymers became commercially available in the early l940s, research workers in various laboratories devised, for this dispersant-detergent function, a series of derivatives of polybutene-phosphorus pentasulfide reaction products, e.g., alkaline earth metal salts, alkylene polyamine and alkylene oxide derivatives, in which the high molecular weight of the polybutene group greatly enhanced their effectiveness. Others devised amine salts, amides, imides and amidines of polybutenyl-substituted polycarboxylic acids and polymeric compounds having pendant or grafted-on polar groups. Still others suggested combinations of alkaline earth metal sulfonates and Mannich condensation products of a low molecular weight alkyl (C -C substituted hydroxyaromatic compound, an amine having at least one replaceable hydrogen on a nitrogen and an aldehyde and alkaline earth metal salts (phenoates) of those Mannich condensation products but without notable success. The later compositions still possessed the objectionable feature of forming harmful metal-ash deposits, and were incapable of providing the increased dispersancydetergency service demanded for long drain service of present-day engine requirements.
Mannich condensation products derived from alkyl-substituted hydroxyaromatic compounds having a relatively low molecular weight alkyl substituent, i.e., 2 to 20 carbon atoms in the alkyl substituent and chlorinated Wax US. Pat. Nos. 2,403,453; 2,353,491; 2,363,134; 2,459,112;
2,984,550 and 3,036,003. However, none of such prior Mannich condensation products are suitable for use as dispersant-detergent addition agents for present-day long drain oil interval in-service use.
One known type (US. Pat. No. 2,363,134) has been prepared by reacting, under Mannich reaction conditions, equimolar quantities of a C -C alkyl-substituted phenol and other hydroxy aromatic compounds, and N,N-di-subwherein R is an alkyl group having between 2 and carbon atoms and R and R may be alkyl, cycloalkyl, aryl or aralkyl radicals.
Other prior low molecular weight Mannich condensation products formed by condensing a C to C alkylsubstituted phenol, an alkylene diamine and an aldehyde in the respective molar ratios of 2:1:2, have been illustrated by the following structural formula:
OH ?H r CHz-N-R-N-CHI wherein R is a divalent alkylene hydrocarbon radical and R is an alkyl group containing from 2 to 20 carbon atoms.
Still others have been prepared by reacting C -C alkylphenols, formaldehyde and alkylene polyamines of the formula wherein A is a divalent alkylene radical of 2 to 6 carbon atoms and n is an integer from 1 to 10, in the ratio of from 0.5 to 2 moles each of C -C alkylphenol and formaldehyde for each nitrogen group contained in the alkylene polyamine reagent. The molar reactant ratio range of C -C alkylphenol, amine and formaldehyde used to form such products is 1-20: 1.0: 1-20. US. Pat. No. 3,036,- 003 exemplifies such products, which usually are formed with ethylene polyamines, according to the above formula in which A is CH CH and n is 2, 3 and 4.
The foregoing prior (D -C alkyl-substituted Mannich condensation products commonly are prepared by the conventional technique of adding the aliphatic aldehyde to a heated mixture of the alkylhydroxy-aromatic and amine reagents, in the presence or absence of a solvent, and then heating the resultant mixture to a temperature between 100 350 F. until dehydration is complete. A solvent such as benzene, toluene, xylene, methanol and others easily separated from the reaction mixture are light mineral oils, such as those used in blending stocks to prepare lubricating oil formulations in which the product is formed as a mineral oil concentrate are usually used. The water by-product is removed by heating the reaction mixture to a temperature sufiiciently high, at least during the last part of the process, to drive off the water alone, or as an azeotropic mixture with the aromatic solvent,
usually by the aid of an inert stripping gas, such as nitrogen, carbon doxide, etc.
The exactly neutralized or overbased alkaline earth metal salts (alkaline earth metal phenates) of those prior low molecular weight Mannich condensation products have been suggested for use in providing lubricating oils with a combination of detergent-inhibitor properties in one addition agent. The exactly neutralized alkaline earth metal salts have one equivalent of alkaline earth metal for each hydroxy group present. The overbased salts have, for each hydroxy group present, more than one equivalent of alkaline earth metal in the form of a hydroxy metaloxy, alkoxy metaloxy and even alkaline earth metal carbonate complex with hydroxy metaloxy on each benzene group as a replacement for the phenol hydroxy group. As noted above, said addition agents form objectionable metal ash deposits and have other performance deficiencies.
US. Pat. No. 3,235,484 issued Feb. 15, 1966 (now Reissue No. 26,330) describes the addition agents of certain disclosed compositions to refinery hydrocarbon feed stocks for the purpose of inhibiting the accumulation of carbonaceous deposits in refinery cracking units. The primary inhibitors disclosed are mixtures of amides, imides and amine salt formed by reacting an ethylene polyamine with hydrocarbon substituted succinic acids or anhydride, whose hydrocarbon substituent has at least about 50 carbon atoms. As an adjunct for each primary carbonaceous deposit inhibitors there is disclosed in said patent Mannich condensation products formed by reacting (1) alkylphenol, (2) an amine and (3) formaldehyde in the ratio of one mole alkylphenol and from 0.1-10 mole formaldehyde for each active nitrogen group contained in the amine reactant. Alkylphenols whose alkyl group has a molecular weight as high as 50,000 and contains from monoalkylphenols whose alkyl group contains 4-30 carbon atoms are stated to be the preferred alkylphenol reactants.
US. Pat. No. 3,368,972 issued Feb. 13, 1968, describes as dispersant-detergent addition agents for lubricating oils high molecular weight Mannich condensation products from (1) high molecular weight alkyl-substituted hydroxyaromatic compounds whose alkyl-substituent has a molecular weight in the range of 600-3000, (2) a compound containing at least one HN group and (3) an aldehyde in the respective molar ratio of 1.0:0.1- 102121.0-10.
Said high molecular weight Mannich condensation products of either US. Pat. No. 3,235,484 or No. 3,368,- 972 have a drawback in their large-scale preparation and in their extended service use as lubricant addition agents used under high temperature conditions such as encountered in diesel engines. In the large-scale or plant preparation of such high molecular weight condensation products, especially in light mineral oil solvents, the resulting oil concentrate solution of the condensation product either has or develops during storage a haze which is believed to be caused by undissolved or border-line soluble by-products which not only are not only substantially incapable of removal by filtration but also severely restrict product filtration rate. When used in diesel engine crankcase lubricant oils and subject to high temperature in service use, piston ring groove carbonaceous deposits and skirt varnish tend to build up sufiiciently rapidly and prevent desirable long in service use of such lubricant oils.
We have discovered that both of those drawbacks can be overcome by the use of an aliphatic acid having suitably from about 6 carbon atoms to about 30 carbon atoms, desirably at least 10 carbon atoms and preferably 16 or more carbon atoms per carboxylic acid group. The aliphatic acid can be used as an initial reactant, reacted with the hazy high molecular weight Mannich condensation product before its filtration or added to the filtered product before it goes to storage. Such uses of the aliphatic acid require only small amounts, in the range of 0.1-10.0 weight percent to eliminate those drawbacks and provide an improved product.
5 BRIEF SUMMARY OF THE INVENTION This invention pertains to a new class of compounds useful as multifunctional addition agents for lubricating oils, particularly such oils used in internal combustion engines in which they function as highly eflicient dispersant-detergent and oxidation inhibitor agents.
The new class of compounds which comprise our invention are oil-soluble high molecular aliphatic acid modified weight Mannich condensation products. They can be prepared either by condensing in the usual manner under Mannich-Reaction conditions:
1) An alkyl-substituted hydroxyaromatic compound, whose alkyl-substituent has a 600-l00,000 fin, preferably a polyalkylphenol whose polyalkyl substituent is derived from l-mono-olefin polymers having a fin of about 850-2500;
(2) An amine containing at least one NH group, preferably an alkylene polyamine of the formula wherein A is a divalent alkylene radical having 2 to 6 carbon atoms and x is an integer from 1 to 10; and
(3) An aldehyde, preferably formaldehyde followed by reaction with (4) aliphatic acid before or after filtration. Or they can be prepared by using all four reactants at one time under the general Mannich Reaction conditions.
The foregoing high molecular weight products of this invention are preferably prepared according to the conventional methods heretofore employed for the preparation of Mannich condensation products, using the abovenamed reactants in the respective molar ratios of high molecular weight alkyl-substituted hydroxyaromatic compound, amine, aldehyde and aliphatic acid of approximately 1.0:0.1-l:1.0-10:0.014-1.0. Suitable as a condensation procedure involves adding at a temperature of from room temperatures to about 200 F. the formaldehyde reagent (e.-g. formalin) to a mixture of reagents (1), (2) and (4) above or in an easily removed organic solvent, such as benzene, xylene or toluene or in solvent refined neutral oil and then heating the reaction at an elevated temperature (275-375 F.) preferably blowing with an inert stripping gas, such as nitrogen, carbon dioxide, etc. until dehydration is complete.
The preferred additives according to this invention are high molecular weight bis-Mannich condensation products formed by reacting (1) a 850-2500 Mn polyalkylphenol; (2) an ethylene polyamine, as amine reactant; (3) formaldehyde and (4) an aliphatic acid in the respective molar ratio of 1.0:0.7-1.0:1.5-2.1:0.014-0.62.
The novel addition agents according to our invention are the high molecular weight aliphatic acid modified Mannich condensation products of 1) high molecular weight alkyl-substituted phenol whose alkyl substituent has a fin of GOO-100,000, a compound having at least one HN group, an aldehyde and an aliphatic acid wherein the respective molar ratio of the reactants is l.0:0.1-10:l.0-l0:0.0l40.62. Preferred addition agents are those obtained by condensing (1) an alkylphenol whose alkyl substituent is derived from l-mono-olefin polymers having a 850-2500 Mn; (2) an alkylene polyamine having the formula H N(A--NH),,H wherein A is a divalent saturated hydrocarbon radical having 2 to 6 carbon atoms and n is an integer from 1 to 10, (3) a formaldehyde yielding reactant and (4) an aliphatic acid having 10-20 carbon atoms per carboxylic acid group used in the respective molar ratio of reactants is 1:0.7- 1.0:1.5-2.1:0.014-0.62.
The high molecular weight products of this invention are exceptionally useful addition agents for lubricating oils imparting thereto dispersant-detergent and anti-oxidant properties at relatively low concentrations of the addition agent, e.g., 0.05 to 10 weight percent in formulated crankcase lubricating oil. Higher concentrations, e.g., 10 to 70 weight percent, are useful concentrates of the preparation of those formulated crankcase lubricating oils and the fortification of crankcase oil in use prior to the scheduled complete drain.
EMBODIMENTS OF THE INVENTION Representative high molecular weight aliphatic acid modified Mannich condensation products contemplated by this invention can be prepared from the following representative reactants of the classes before defined.
(1) High molecular weight alkyl-substituted hydroxyarornatics Representative of these high molecular weight alkylsubstituted hydroxyaromatic compounds are polypropylphenol, polybutylphenol and other polyalkylphenols. These polyalkylphenols may be obtained by the alkylation, in the presence of an alkylating catalyst, such as BF of phenol with high molecular weight polypropylene, polybutylene and other polyalkylene compounds to give alkyl substituents on the benzene ring of phenol having an average GOO-100,000 fin. Their preparations using a BB, phenol catalyst is described and claimed in our copending application Ser. No. 484,758, filed Sept. 2, 1965, now abandoned.
The 600 fin and higher fin alkyl-substituents on the hydroxyaromatic compounds may be derived from high molecular weight polypropylenes, polybutenes and other polymers of mono-olefins, principally l-mono-olefins. Also useful are copolymers of mono-olefins with monomers copolymerizable therewith wherein the copolymer molecule contains at least by weight, of monoolefin units. Specific examples are copolymers of butenes (butene-l, butene-2 and isobutylene) with monomers copolymerizable therewith wherein the copolymer molecule contains at least 90%, by weight, of propylene and butene units, respectively. Said monomers copolymerizable with propylene or said butenes include monomers containing a small proportion of unreactive polar groups such as chloro, bromo, keto, ethereal, aldehyde, which do appreciably lower the oil-solubility of the polymer. The comonomers polymerized with propylene or said butenes may be aliphatic and can also contain non-aliphatic groups, e.g.,
styrene, methylstyrene, p-dimethylstyrene, divinyl benzene and the like. From the foregoing limitation placed on the monomer copolymerized with propylene or said butenes, it is abundantly clear that said polymers and copolymers of propylene and said butenes are substantially aliphatic hydrocarbon polymers. Thus the resulting alkylated phenols contain substantially alkyl hydrocarbon substituents having fin upward from 600.
In addition to these high molecular weight hydroxyaromatic compounds others which may be used include those which have been used to prepare prior low molecular weight Mannich condensation products, e.g., high molecular weight alkyl-substituted derivatives of resorcinol, hydroquinone, cresol, catechol, xylenol, hydroxy diphenyl, benzylphenol, phenethylphenol, naphthol, tolylnaphthol, among others. Preferred for the preparation of the before mentioned preferred bis Mannich condensation products are the polyalkylphenol reactants, e.g., polypropylphenol and polybutylphenol whose alkyl group has an average number molecular weight of 600-3000, the most preferred being polybutylphenol whose alkyl group has an average number molecular weight of 850-2500.
(2) HN group containing reactants Representative of this class of reactants are alkylene polyamines, principally polyethylene polyamines. Other representative organic compounds containing at least one HN group suitable for use in the preparation of Mannich condensation products are well known and include the mono and di-amino alkanes and their substituted analogs, e.g., ethylamine and diethanol amine; aromatic diamines, e.g., phenylene diamine, diamino naphthalenes; heterocyclic amines, e.g., morpholine, pyrrole, pyrrolidine, imidazole, imidazolidine, and piperidine; melamine and their substituted analogs.
Suitable alkylene polyamide reactants include ethylenediamine, diethylene triamine, triethylene tetramine, tetraethylene pentamine, pentaethylene hexamine, hexaethylene hepta-amine, heptaethylene octamine, octaethylene nonamine, nonaethylene decamine and decaethylene undecamine and mixture of such amines having nitrogen contents corresponding to the alkylene polyamines, in the formula H N(A-NH),,H, mentioned before, A is divalent ethylene and n is l to of the foregoing formula. Corresponding propylene polyamines such as propylene diamine and di-, tri-, tetra-, penta-propylene tri-, tetra-, pentaand hexa-arnines are also suitable reactants. The alkylene polyamines are usually obtained by the reaction of ammonia and dihalo alkanes, such as dichloro alkanes. Thus the alkylene polyamines obtained from the reaction of 2 to 11 moles of ammonia with 1 to 10 moles of 'dichloro alkanes having 2 to 6 carbon atoms and the chlorines on dififerent carbons are suitable alkylene polyamine reactants.
Aldehyde reactants: Representative of this aldehyde class of reactants for use in the preparation of the high molecular products of this invention include the aliphatic aldehydes such as formaldehyde (also as paraformaldehyde and formalin), acctaldehyde and aldol (b-hydroxybutyraldehyde). We prefer to use formaldehyde or a formaldehyde yielding reactants.
Aliphatic acid reactants: The aliphatic acid reactant of this invention has a carbon atom content of a total (including the carbon of the canboxylic acid group) of from about six to about 30 and consists of the alkanoic (satu rated) and alkenoic (mono-unsaturated) acids. The upper limit of the carbon content is restricted only by the largest carbon atom content of such acids available or capable of feasible preparation. Such aliphatic acids can be natural and synthetic mono-, di and tri-carboxylic acids. Suitable natural aliphatic acids are the natural fatty acids obtainable by known hydrolysis (acid and alkaline) of vegetable and animal oils and fats and wax esters. Of those natural acids for the purposes of this invention the preferred acids have from 10 to about total carbon atoms per carboxylic acid group. Suitable synthetic acids can be derived from oxidation of the alcohol moiety of the wax ester where such alcohol moiety has at least six carbon atoms; from the polymerization of unsaturated natural acids having two or three carbon to carbon double bonds (dimer and trimer acids) and the hydrogenation of residual carbon to carbon double bonds in such polymer acids. For example the polymer acids obtained from oleic acid, euric acid, linoleic acid and linolenic acid and other unsaturated acids; and from oxidation or other reactions of polypropenes and polybutenes (e.g. polyisobutenes) which introduce one or more carboxylic acid group on the polymer chain.
It might be expected that the high molecular weight Mannich product modified by an unsaturated aliphatic carboxylic acid such as oleic acid or its C unsaturated homolog would have less oxidation stability than for example such Mannich products modified by a saturated aliphatic acid such as stearic acid. But this, somewhat unexpectedly, is not the case. For example, in a standard oxidation stability test (Union Pacific Oxidation Test) there are tested oil formulations containing equivalent amounts of high molecular weight Mannich Product (a polybutyl-, hydroxybenzyl-substituted tetraethylene pentamine having a number average molecular weight of 3600) and the same Mannich Product modified with 0.125 mole (0.8 weight percent) of each of oleic acid, isostearic acid, a mixture of C and C monounsaturated alkenoic acids and a mixture of C and C saturated alkanoic acids.
The pentane insolubles content of these tests, indicative of oxidation stability, is measured and is as follows:
Pentane insolu- Additive Acid modifier bles, gms.
Mannich None 1. 5
product.
Do. Oleic acid 2.5
Do. Isostearic acid 3. 0
Do. Ola-C18 mixtures of monounsaturated acids... 3. 0
Do. C t-Cm mixture of saturated acids 0 Suitable alkanoic acids having 6 or more total carbon atoms are those obtainable from the glycerides: vegetable oils and animal fats and the wax esters by the known hydrolysis or saponification-acidification or acid treatment processing of said oil and fat glycerides and the wax esters (i.e. natural waxes), the oxidation of the mono-alcohol obtainable from the simple ester of the wax esters and known acid synthesis. Such suitable alkonic acids, i.e. having R groups of 6 to 30 carbon atoms, include caproic acid, caprylic acid, capric acid, hendecylic acid, lauric acid, tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, margaric acid, stearic acid, nonadecylic acid, arachidic acid, medullic acid, behenic acid, lignoceric acid, pentacosoic acid, cerotic acid, heptacosoic acid, monocosoic acid, montanic acid, and melissic acid. Many of said alkanoic acids are obtained first in mixtures of two, three or more alkanoic acids of different carbon contents from said glycerides and wax esters said mixtures can be used in this invention in place of a single alkanoic acid reactant. When said mixtures of alkanoic acids also contain unsaturated acids it is preferred that such mixture of acids be reduced to a product which is substantially free of unsaturation.
Suitable alkenoic acids having a total of at least six carbon atoms include those from hexenoic, heptenoic, octenoic, etc. acids up to oleic (C and erucic (C acids. Also suitable are the dimer acid of linoleic and its saturated dimer analog; dimer and trimer acids of linolenic acid and the saturated dimer and trimer analogs. Other polymeric acids, e.g. co-dimers of oleic and linoleic or linolenic acids and the saturated analogs of those dimer acids are also suitable.
The foregoing, while not an exhaustive listing of all suitable aliphatic acid reactants of the class before defined, will provide adequate guidance for the chemist skilled in this art and also bring to mind other suitable aliphatic acids within the scope before defined.
At this point an explanation of various products possible within our invention is in order. In general, the reaction under Mannich condensation conditions, like other chemical reactions, does not go to theoretical completion and some portion of the reactants, generally the amine, remains unreacted or only partially reacted as a coproduct. Thus even when a portion of a mono-functional amine reactant (one having only one HN group) is used either the portion of unreacted amine or its partial reaction product (co-product) there appears to be a sufiiciently reactive amlne species to react with the aliphatic acid to form a stable oil soluble product that appears to enhance the total product in the manner before mentioned. Such enhancement is achieved with relatively small amounts of the aliphatic acid relatively small, for example in the range of 0.01 to 0.03 mole aliphatic acid per mole of high molecular Weight alkyl-substituted hydroxy aromatic compound before described as reactant (1).
Under conditions at which water splits out, the aliphatic acid reacts with such H N and/or HN groups to form an amide linkage. An imidazo:
Nd=N
linkage is possible. For example when the aliphatic acid reacts with two H N groups, or one each of H N- and HN groups are separated by two or three carbon atoms as in molety derived from ethylene diamine, ethyl- (e.g. stearic wherein R has 17 carbon atoms) and N-(2- hydroxy--polybutylbenzyl)ethylene and propylene diamines wherein Z is said 2-hydroxy-5-polybutylbenzyl group in the following equation:
The cyclic product of Equation I is 1-(2-hydroxy-5-polybutylbenzyl)-2-n-heptadecylimidazoline and of Equation 2 is 1-(2-hydroxy-S-polybutylbenzyl)-2-n-heptadecyl 1,4,5, -tetrahydropyrimidine. Such specific compounds can be present in the reaction mixture resulting from the reaction of (1) polybutylphenol, (2) ethylene diamine or 1,3- propylene diamine, (3) formaldehyde and (4) stearic acid in the respective reactant mole ration of 1.0:1.0:1.0:1.0 but other related products can also be and are, in general, also present in admixture thereof. Mixtures of related products do generally form when the four classes of reactants (l), (2), (3) and (4) before defined are used broadly in the respective molar ratio of reactants 1.0: 1.0- :1.0-10:0.0110.0. Hence the products of this invention cannot be properly characterized with preciseness by chemical structural formula but rather must be characterized as reaction products.
The following examples are illustrative of preformed embodiments of the present invention.
EXAMPLE I There were combined, with stirring, at a temperature of 180 F., 2300 grams (0.66 mole) of a 1600 molecular weight polybutyl substituted phenol (46% polybutyl phenol, 54% polybutene and 690 grams of a solvent-extracted 5W mineral oil) 115 grams (0.61 mole) tetraethylene pentamine, and 93 grams (0.33 mole; equivalent 0.5 mole per mole polybutyl phenol) oleic acid. Thereafter, 90 ccs. (1.2 moles) formaldehyde were slowly added, and the temperature raised to 300 F., with nitrogen bubbled through the mixture at the rate of 2 cubic feet per hour (c.f.h.). After heating at 300 F. for three hours, a filteraid, such as Celite, was added and the mixture filtered. The recovered filtrate had a nitrogen content of 1.24%, a SSU viscosity at 210 F. of 677, and was crystal clear.
EXAMPLE II The method of Example I was repeated, except that 1540 grams (0.444 mole) of the polybutyl phenol, 460 grams of the mineral oil, 77 (0.41 mole) grams of tetraethylene pentamine, 62 grams (0.220 mole; equivalent 0.5 mole per mole polybutyl phenol) oleic acid, and 60 ccs. (0.816 mole) formaldehyde were used. The recovered filtrate was crystal clear, contained 1.2% nitrogen and had a SSU viscosity at 210 F. of 679.
EXAMPLE III 400 grams (0.111 mole) of a 1600 molecular weight polybutyl substituted phenol (44.5% polybutyl phenol, 55.5% polybutene and 86 grams of a solvent-extracted 5W mineral oil) 8 grams (0.028 mole; equivalent 0.25 mole per mole polybutyl phenol) oleic acid, and 19.3 grams (0.102 mole) tetraethylene pentamine were admixed at 180 F. 15 ccs. (0.204 mole) formaldehyde were then added, the temperature raised to 320 F., and maintained at said temperature for three hours, While introducing nitrogen at the rate of 0.5 c.f.h. A filter-aid was added and the product filtered. The recovered filtrate was crystal clear, contained 1.15% nitrogen, and had a SSU viscosity at 210 F. of 827.
EXAMPLE IV 2395 grams (0.666 mole) of a polybutyl phenol, as used in Example III, 328 grams of a solvent-extracted 5W mineral oil, 24 grams (0.084 mole; equivalent to 0.125 mole per mole of the polybutyl phenol) oleic acid, and 116 grams (0.612 mole) tetraethylene pentamine were mixed at a temperature of 180 F., and then ccs. (1.21 moles) formaldehyde were added. The reaction mixture was then heated to 340-360 F., and maintained at such temperature for 4 hours, while nitrogen at the rate of 0.5 c.f.h. was bubbled through the reaction mixture. A filter-aid was added, and the mixture filtered. The recovered filtrate was crystal clear, contained 1.4% nitrogen, and had a SSU viscosity at 210 F. of 1070.
EXAMPLE V 476 grams (0.132 mole) of a polybutyl phenol, as used in Example III, 84 grams of a solvent-extracted 5W mineral oil, 19 grams (0.066 mole; equivalent to 0.5 mole per mole of the polybutyl phenol) stearic acid, and 23 grams (0.122 mole) tetraethylene pentamine were admixed at 180 F. and then 18 ccs. (0.24 mole) formaldehyde added. The reaction mixture was then heated to 300 F. and reacted at said temperature for 3 hours, while nitrogen at the rate of 0.5 c.f.h. Filter-aid was then added and the mixture filtered. The recovered filtrate was clear, contained 1.22% nitrogen and had a SSU viscosity at 210 F. of 957.
EXAMPLE VI 238 grams (0.066 mole) of a polybutyl phenol, as used in Example III, 37 grams of a solvent extracted 5W mineral oil, 5.7 grams (0.033 mole; equivalent to 0.5 mole per mole of the polybutyl phenol) capric acid, and 11.5 grams (0.061 mole) tetraethylene pentamine were mixed at 180 F., and then 9.0 ccs. (0.12 mole) formaldehyde added. The reaction temperature was raised to 300 F. and maintained at said temperature for 3 hours while blowing with nitrogen at the rate of 0.5 c.f.h. Filter-aid was added, and the reaction mass filtered. The recovered filtrate was crystal clear, contained 1.48% nitrogen, and had a SSU viscosity at 210 F. of 978.
EXAMPLE VII Same procedure as used in Example VI, but using 7.5 grams (0.033 mole; equivalent to 0.5 mole per mole of the polybutyl phenol) myristic acid (in place of capric acid) and 40 grams of the mineral oil. The recovered filtrate was crystal clear, contained 1.4% nitrogen, and had a SSU viscosity at 210 F. of 967.
EXAMPLE V-III Same procedure as used in Example VI, but using 8.5 grams (0.033 mole; equivalent to 0.5 mole per mole of the polybutyl phenol) palmitic acid (in place of capric acid), and 41 grams of the mineral oil. The recovered filtrate was crystal clear, had a nitrogen content of 1.32%, and had a SSU viscosity at 210 F. of 975.
1 1 EXAMPLE IX 476 grams of a polybutyl phenol, as used in Example Percent (vol.) Solvent-extracted SAES oil 23.02 Solvent-extracted SAElO oil 70.00
III, 84 grams of a solvent-extracted mineral oil, 18.6 Fatty acid modified product of ExampleI 4.00 grams (equivalent to 0.5 mole per 111016 of the polybutyl 5 Magnellum suifqnate phenol) of a mixture of fatty acids, consisting principally Zinc dlaikyi dithlophisphaie of C and C monobasic acids, marked as Emery 894 fil i f by Emery Industries, Inc., and 23 grams of tetraethylene S1 lcone p0 ymer 0am agent pentamine were mixed together and heated to 170 F. alkyiated naphthalene- Eighteen cubic centimeters formaldehyde were then added The results f the c i 1 Test using the and the mix ur heat d to miland blown With above formulation is shown in the following Table II. nitrogen at the rate Of 0.5 C.f.h. for tWO hours. A filter-aid For comparison, values obtained with a lubricating oil was added and the mixture filtered. The recovered filtrate composition containing an unmodified high molecular was crystal clear, and had an SSU viscosity at 210 F. of Weight Mannich condensation product are indicated in 7 parentheses. The formulation of this oil composition was The resistance to haze formation exhibited by the fatty as follows: acid modified high molecular weight Mannich condensa- Percent tion products of the present invention is demonstrated by Mmeral, lubnqatmg 011 base the data in Table I below. In this storage stability test the Unnlfidlfied g t molecular welght Manmch Comm 5 samples Stored at for fourteen days and hi: Zd2haaaar13331333313312333: 3:7 observed for their clarity. Barium sulfonate 1.3
TABLE II 240 hours Grooves: T fin 2 5 iii"::::'":::::"":::: olhfi'ri /h 153K 52: Ir-'11:: diafi iz'z iif 3 Clean (clean) Clean (clean). 4 do Do. i i Clean (12% AL, LAL14%) Clean (2% BIL, 21 AL, 17% LAL, 60% clean).
2 C p Clealgrb Undercrown deposits 50% Light-Very light Amber Lacquer gig: g g fi gg i gg Pass (Fail).
1 AL-Amber Lacquer. LAL-Light Amber Lacquer. BlL-Black Lacquer.
TABLE I Another lubricating oil composition containing the fatty acid modified high molecular weight Mannich condensa- Clamy tion product described in Example II, supra, was tested in 14 day the so-called 289 Ford Test. This test, made in a Ford sample Add Moles Initial 289 cubic inch displacement engine, is conducted in the Example: 0 5 7 7 same manner as the so-called Lincoln MSV Test Se- 1: 11:: 2 7 7 quence, described in US. Pat. No. 3,442,808, except VII.. 0.5 7 7 for the apparent difference in the test engines. The 289 8:? Z 3 Ford Test is more severe with respect to both sludge and x... 0.5 7 7 varnish formation and deposition since the test is con- CODtl'OH 7 7 ducted vapors from the crankcase being introduced ;%oi s or aoi pa: {ntflg tgii ggugl 11 1 1 are into the engine fuel intake system by means of a positive High iii l egiilgr vseight Mannich condznsatio product prepared crankcase i P System- I withouttatty acid modifier. The following 011 formulation was used 111 the 289 Ford Test: l Percent (vol.) A lubricating oil composition containing a fatty acid Solvent-extracted 5W i 37-15 modifi d hi h molecular weight Mannich condensation soiveni'eXiracied 10W 011 47-00 product of the present invention was submitted to the poiybuiene Improvm' Caterpiller 1-H Test. This test, a 480 hour test, con- Acryiolci IIPPIOVer and Pour-Point Agent ducted with a high-speed, super-changed Caterpillar diesel f y h mofiliied Product of Example II engine, is designed to measure the high temperature de- Zinc dlaikyi dlihlophosPhaie L10 tergency properties of a crankcase lubricating oil for Magnesium Suifonaie qualification under Army ordinahce specificaii on The result of the 289 Ford Test using the above for- 210413- T pefformhnce of Candidate hibrlcatmg P mulation is shown in the following Table III. For comfofmlliatloll is determined y Inspection of Plsion P flng parison, the values obtained with a lubricating oil comgl'ooves Carbon deposit which is measured and Percent position containing an unmodified high molecular weight filling determined The extent of varnish lacquer deposit Mannich condensation product are indicated in paren- 011 Piston lands and ill the lower grooves is evaluated- T0 theses. The formulation of this oil composition was as quality, a lubricating oil formulation test should result f ll in no more than, and desirably, less than 30% carbon Percent (VOL) deposit in the top ring groove. Varnish in the second Solvent-extracted 20 oil 93.22 groove and on the first land should not exceed 50%. Unmodified high molecular weight Mannich con- Below this the piston must be clean. densation product 5 .00 The following oil formulation was used in the Cater- Zinc dialkyl dithiophosphate 0.78 pillar 1-H Test: Magnesium sulfonate 1,00
TABLE III Varnish Sludge Piston varnish 8. 5 (8. 2) Rocker arm cover 9. 8 (7. 5) Rocker arm cover 9. (9. 0) Intake manifold 9. 8 (8. 0) Lifter body- 6. 0 Oil screen 10. 0 (10) Cylinder walls 8. 9 (6.8) Oil pan 9. 8 (7. 3) Oil pan 9. 8 (9. 4) Valve deck 9. 8 (7. 7) Push rod chamber 9. 8 (7. 8) Timing gear cover 9. 8 (7. 7)
Total varnish 42. 2 (39. 2) Total sludge 49. 1 (39.
Oil pump relief valve 9. 8 (9. 3) Plugging of oil rings None (None) Piston ring sticking None (None) Oil consumption (qts.) 5.35 (5. 22)
Lifter deposits, plunger Intake valve tip wear Mm Intake valve tulip depo In the above test the engine components are examined visually and rated on a scale of 1 to 10, a value of being a perfect rating indicating no sludge or varnish. A rating of 50 for total sludge and for total varnish is considered perfect; a rating of 60 or lower is considered passing for screen plugging; and a rating of 50 or lower is considered passing for ring plugging. From the data in Table III it is evident that the fatty acid modified high molecular weight Mannich condensation products of the present invention are more effective than the unmodified products, and are free of the haze drawbacks.
As noted hereinbefore the products of the present invention are useful addition agents for lubricating oils. Such lubricating oils can be any normally liquid oleaginous lubricant, such as hydrocarbon oils, both natural, i.e. petroleum oils, and synthetic oils, for example, those obtained by the polymeriztion of olefins, as well as synthetic lubricating oils of the alkylene oxide type, and the polycarboxylic acid ester type, such as the oil-soluble esters of adipic acid, sebacic acid, azelaic acid, etc.
Percentages given herein and in the appended claims are weight percentages unless otherwise stated.
Although the present invention has been described with reference to specific preferred embodiments thereof, the invention is not limited thereto, but includes within its scope such modifications and variations as come within the scope and spirit ofthe appended claims.
What is claimed is:
1. A method of preparing the oil-soluble acid modified high molecular weight Mannich Reaction product as solute in hydrocarbon diluent solvent consisting essentially of aliphatic hydrocarbon of 600-100,000 average molecular weight and mineral lubricating oil which comprises reacting at a temperature in the range of 275-375 F. and in the presence of said diluent solvent the reactants: (a) a high molecular weight alkyl-substituted phenol wherein the alkyl-substituent has an average molecular weight of from about 600 to about 100,000; (b) an alkylene polyamine; (0) formaldehyde; and (d) a saturated or unsaturated aliphatic monocarboxylic acid containing from 10 to 20 carbon atoms, dimers or trimer of such unsaturated acids in the respective reactant molar ratio of 1.010.1-10:1.010:0.14l.0, wherein the amount of said diluent solvent provides 10-70 weight percent of the acid modified Mannich Reaction product.
2. The method of claim 1 wherein the hydrocarbon diluent solvent is polybutenyl derived hydrocarbon of about 1500 number average molecular weight and SAE- 5W oil, reactant (a) is about 1500 number average molecular weight poly butyl-substituted phenol, (b) is tetraethylenepentamine, (c) is formaldehyde and (d) is oleic acid and the amount of diluent solvent provides 40 weight percent of said Mannich product as solute.
References Cited UNITED STATES PATENTS 3,326,801 6/ 1967 Schlobohm et a1. 260-4045 3,368,972 2/1968 Otto 252-515 R 3,442,808 5/1969 Traise et al. 252-515 A 3,216,936 11/1965 LeSuer 260-4045 2,276,309 3/ 1942 Hummel et al 260-4045 3,280,097 10/ 1966 Cizek 260-4045 3,036,003 5/1962 Verdol 252-515 R 2,992,230 7/1961 Lescisin 260-4045 2,765,325 10/1965 Niederhauser 260-4045 3,701,640 10/ 1972 Lease et al 260-4045 GLENNON H. HOLLRAH, Primary Examiner US. Cl. X.R.
252-515 R, 51.5 A; 260-247.7, 249.6, 251 R, 293.89, 293.9, 309, 309.6, 309.7, 326.5, 326.8, 404, 561 R, 561 N, 562 R, 562 P
US00054558A 1970-07-13 1970-07-13 Oil soluble aliphatic acid derivatives of molecular weight mannich condensation products Expired - Lifetime US3798247A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US5455870A 1970-07-13 1970-07-13

Publications (1)

Publication Number Publication Date
US3798247A true US3798247A (en) 1974-03-19

Family

ID=21991936

Family Applications (1)

Application Number Title Priority Date Filing Date
US00054558A Expired - Lifetime US3798247A (en) 1970-07-13 1970-07-13 Oil soluble aliphatic acid derivatives of molecular weight mannich condensation products

Country Status (11)

Country Link
US (1) US3798247A (en)
JP (1) JPS5342761B1 (en)
BE (1) BE769904A (en)
CA (1) CA967698A (en)
DE (1) DE2134918C3 (en)
FR (1) FR2098379B1 (en)
GB (1) GB1358877A (en)
LU (1) LU63518A1 (en)
NL (1) NL168237C (en)
PL (1) PL70101B1 (en)
SU (2) SU520910A3 (en)

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3985802A (en) * 1965-10-22 1976-10-12 Standard Oil Company (Indiana) Lubricating oils containing high molecular weight Mannich condensation products
US4396517A (en) * 1981-08-10 1983-08-02 Mobil Oil Corporation Phenolic-containing mannich bases and lubricants containing same
EP0256863A3 (en) * 1986-08-20 1989-01-25 Texaco Development Corporation Precoupled mono-succinimide lubricating oil dispersants and viton seal additives
US4844827A (en) * 1988-01-25 1989-07-04 Amoco Corporation Lubricating oil additive
US4889646A (en) * 1987-06-30 1989-12-26 Amoco Corporation Nitrogen containing dispersants treated with mineral acids
EP0399764A1 (en) 1989-05-22 1990-11-28 Ethyl Petroleum Additives Limited Lubricant compositions
US5124055A (en) * 1988-03-31 1992-06-23 Ethyl Petroleum Additives, Inc. Lubricating oil composition
EP0537865A3 (en) * 1988-02-29 1993-06-23 Exxon Chemical Patents Inc. Polyanhydride modified dispersants
US5259968A (en) * 1988-02-29 1993-11-09 Exxon Chemical Patents Inc. Dispersant additive comprising the reaction product of a polyanhydride and a mannich condensation product
EP0683220A2 (en) 1994-05-18 1995-11-22 Ethyl Corporation Lubricant additive compositions
US5498809A (en) * 1992-12-17 1996-03-12 Exxon Chemical Patents Inc. Polymers derived from ethylene and 1-butene for use in the preparation of lubricant dispersant additives
EP0713908A1 (en) 1994-11-22 1996-05-29 Ethyl Corporation Power transmission fluids
US5554310A (en) * 1992-12-17 1996-09-10 Exxon Chemical Patents Inc. Trisubstituted unsaturated polymers
US5565128A (en) * 1994-10-12 1996-10-15 Exxon Chemical Patents Inc Lubricating oil mannich base dispersants derived from heavy polyamine
WO1998047989A1 (en) 1997-04-21 1998-10-29 Exxon Chemical Patents Inc. Power transmission fluids containing alkyl phosphonates
EP1193307A1 (en) * 2000-09-29 2002-04-03 Chevron Oronite Company LLC Fuel additive compositions containing a mannich condensation product, a poly(oxyalkylene) monool, a polyolefin, and a carboxylic acid
EP1193308A1 (en) * 2000-09-29 2002-04-03 Chevron Oronite Company LLC Fuel additive compositions containing a mannich condensation product, a poly(oxyalkylene)monool, and a carboxylic acid
EP1193245A1 (en) * 2000-09-29 2002-04-03 Chevron Oronite Company LLC Method for the removal of excess amounts of water-soluble amines from mannich condensation products.
US20030173251A1 (en) * 2000-12-22 2003-09-18 Antonio Gutierrez Hydroxy aromatic mannich base condensation products and the use thereof as soot dispersants in lubricating oil compositions
US20030172582A1 (en) * 2001-12-21 2003-09-18 Carabell Kevin D. Fuel additive compositions containing a mannich condensation product, a poly (oxyalkylene) monool, and a carboxylic acid
US6627584B2 (en) 2002-01-28 2003-09-30 Ethyl Corporation Automatic transmission fluid additive comprising reaction product of hydrocarbyl acrylates and dihydrocarbyldithiophosphoric acids
US20040000089A1 (en) * 2002-06-18 2004-01-01 Carabell Kevin D. Method of improving the compatibility of a fuel additive composition containing a mannich condensation product
US20040147410A1 (en) * 2003-01-15 2004-07-29 Milner Jeffrey L Extended drain, thermally stable, gear oil formulations
US20050065043A1 (en) * 2003-09-23 2005-03-24 Henly Timothy J. Power transmission fluids having extended durability
US20050070446A1 (en) * 2003-09-25 2005-03-31 Ethyl Petroleum Additives, Inc. Boron free automotive gear oil
US20050101496A1 (en) * 2003-11-06 2005-05-12 Loper John T. Hydrocarbyl dispersants and compositions containing the dispersants
US20050101494A1 (en) * 2003-11-10 2005-05-12 Iyer Ramnath N. Lubricant compositions for power transmitting fluids
US20050143265A1 (en) * 2003-12-31 2005-06-30 Loper John T. Hydrocarbyl dispersants including pendant polar functional groups
US20050181959A1 (en) * 2004-02-17 2005-08-18 Esche Carl K.Jr. Lubricant and fuel additives derived from treated amines
EP1568759A2 (en) 2004-02-27 2005-08-31 Afton Chemical Corporation Power transmission fluids
US20050202979A1 (en) * 2004-03-10 2005-09-15 Ethyl Petroleum Additives, Inc. Power transmission fluids with enhanced extreme pressure characteristics
US20050250656A1 (en) * 2004-05-04 2005-11-10 Masahiro Ishikawa Continuously variable transmission fluid
US20050268538A1 (en) * 2004-06-03 2005-12-08 Malfer Dennis J Reaction of phenols with intermediate triazines
US20060003905A1 (en) * 2004-07-02 2006-01-05 Devlin Cathy C Additives and lubricant formulations for improved corrosion protection
US20060025314A1 (en) * 2004-07-28 2006-02-02 Afton Chemical Corporation Power transmission fluids with enhanced extreme pressure and antiwear characteristics
EP1640440A1 (en) 2004-09-22 2006-03-29 Infineum International Limited Friction and/or wear reduction in manual or automated manual transmissions
US20060217273A1 (en) * 2005-03-23 2006-09-28 Nubar Ozbalik Lubricating compositions
US20060223716A1 (en) * 2005-04-04 2006-10-05 Milner Jeffrey L Tractor fluids
US20060264339A1 (en) * 2005-05-19 2006-11-23 Devlin Mark T Power transmission fluids with enhanced lifetime characteristics
US20070111906A1 (en) * 2005-11-12 2007-05-17 Milner Jeffrey L Relatively low viscosity transmission fluids
US20080015125A1 (en) * 2006-07-14 2008-01-17 Devlin Mark T Lubricant compositions
US20080015127A1 (en) * 2006-07-14 2008-01-17 Loper John T Boundary friction reducing lubricating composition
US20080051305A1 (en) * 2006-08-28 2008-02-28 Devlin Mark T Lubricant composition
US20080119377A1 (en) * 2006-11-22 2008-05-22 Devlin Mark T Lubricant compositions
US20080274921A1 (en) * 2007-05-04 2008-11-06 Ian Macpherson Environmentally-Friendly Lubricant Compositions
US20090011963A1 (en) * 2007-07-06 2009-01-08 Afton Chemical Corporation Truck fleet fuel economy by the use of optimized engine oil, transmission fluid, and gear oil
US20090031614A1 (en) * 2007-08-01 2009-02-05 Ian Macpherson Environmentally-Friendly Fuel Compositions
US20090042752A1 (en) * 2007-08-09 2009-02-12 Malcolm Waddoups Lubricant Compositions with Reduced Phosphorous Content for Engines having Catalytic Converters
EP2025737A1 (en) 2007-08-01 2009-02-18 Afton Chemical Corporation Environmentally-friendly fuel compositions
US20090156445A1 (en) * 2007-12-13 2009-06-18 Lam William Y Lubricant composition suitable for engines fueled by alternate fuels
US20090233822A1 (en) * 2008-03-11 2009-09-17 Afton Chemical Corporation Ultra-low sulfur clutch-only transmission fluids
US20090233823A1 (en) * 2008-03-11 2009-09-17 Volkswagen Aktiengesellschaft Method for lubricating a clutch-only automatic transmission component requiring lubrication
DE102009012567A1 (en) 2008-03-11 2009-10-01 Afton Chemical Corp. Clutch-only transmission fluid useful for lubrication comprises oil formulated with additive components having metal detergent, phosphorus-based wear preventative, phosphorylated and boronated dispersant, sulfurized extreme pressure agent
WO2010147993A1 (en) 2009-06-16 2010-12-23 Chevron Phillips Chemical Company Lp Oligomerization of alpha olefins using metallocene-ssa catalyst systems and use of the resultant polyalphaolefins to prepare lubricant blends
WO2011022347A1 (en) 2009-08-18 2011-02-24 The Lubrizol Corporation Antiwear composition and method of lubricating an internal combustion engine
US7902133B2 (en) 2006-07-14 2011-03-08 Afton Chemical Corporation Lubricant composition
WO2011102836A1 (en) 2010-02-19 2011-08-25 Infineum International Limited Wet friction clutch-lubricant systems providing high dynamic coefficients of friction through the use of borated detergents
WO2011102835A1 (en) 2010-02-19 2011-08-25 Toyota Jidosha Kabushiki Kaisha Wet friction clutch-lubricant systems providing high dynamic coefficients of friction through the use of sodium detergents

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3787458A (en) * 1970-08-31 1974-01-22 Standard Oil Co Oil-soluble aliphatic acid modified high molecular weight mannich condensation products
FR2370786A2 (en) * 1976-11-12 1978-06-09 Lubrizol Corp IMPROVED AND COMBUSTIBLE DISPERSING AGENTS, LUBRICATING OILS AND CONCENTRATES CONTAINING THEM
JPS5565072U (en) * 1978-10-30 1980-05-06
JPS5587553U (en) * 1978-12-09 1980-06-17
JPS6066386U (en) * 1983-10-11 1985-05-11 森産業株式会社 Emoji matching card

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3368972A (en) * 1965-01-06 1968-02-13 Mobil Oil Corp High molecular weight mannich bases as engine oil additives
US3442808A (en) * 1966-11-01 1969-05-06 Standard Oil Co Lubricating oil additives

Cited By (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3985802A (en) * 1965-10-22 1976-10-12 Standard Oil Company (Indiana) Lubricating oils containing high molecular weight Mannich condensation products
US4396517A (en) * 1981-08-10 1983-08-02 Mobil Oil Corporation Phenolic-containing mannich bases and lubricants containing same
EP0256863A3 (en) * 1986-08-20 1989-01-25 Texaco Development Corporation Precoupled mono-succinimide lubricating oil dispersants and viton seal additives
US4889646A (en) * 1987-06-30 1989-12-26 Amoco Corporation Nitrogen containing dispersants treated with mineral acids
US4844827A (en) * 1988-01-25 1989-07-04 Amoco Corporation Lubricating oil additive
EP0537865A3 (en) * 1988-02-29 1993-06-23 Exxon Chemical Patents Inc. Polyanhydride modified dispersants
US5259968A (en) * 1988-02-29 1993-11-09 Exxon Chemical Patents Inc. Dispersant additive comprising the reaction product of a polyanhydride and a mannich condensation product
US5306313A (en) * 1988-02-29 1994-04-26 Exxon Chemical Patents Inc. Dispersant additive comprising the reaction product of a polyanhydride and a mannich condensation product
US5124055A (en) * 1988-03-31 1992-06-23 Ethyl Petroleum Additives, Inc. Lubricating oil composition
EP0399764A1 (en) 1989-05-22 1990-11-28 Ethyl Petroleum Additives Limited Lubricant compositions
US5663130A (en) * 1992-12-17 1997-09-02 Exxon Chemical Patents Inc Polymers derived from ethylene and 1-butene for use in the preparation of lubricant dispersant additives
US5554310A (en) * 1992-12-17 1996-09-10 Exxon Chemical Patents Inc. Trisubstituted unsaturated polymers
US5498809A (en) * 1992-12-17 1996-03-12 Exxon Chemical Patents Inc. Polymers derived from ethylene and 1-butene for use in the preparation of lubricant dispersant additives
US6030930A (en) * 1992-12-17 2000-02-29 Exxon Chemical Patents Inc Polymers derived from ethylene and 1-butene for use in the preparation of lubricant disperant additives
EP0683220A2 (en) 1994-05-18 1995-11-22 Ethyl Corporation Lubricant additive compositions
US5565128A (en) * 1994-10-12 1996-10-15 Exxon Chemical Patents Inc Lubricating oil mannich base dispersants derived from heavy polyamine
EP0713908A1 (en) 1994-11-22 1996-05-29 Ethyl Corporation Power transmission fluids
WO1998047989A1 (en) 1997-04-21 1998-10-29 Exxon Chemical Patents Inc. Power transmission fluids containing alkyl phosphonates
EP1193308A1 (en) * 2000-09-29 2002-04-03 Chevron Oronite Company LLC Fuel additive compositions containing a mannich condensation product, a poly(oxyalkylene)monool, and a carboxylic acid
EP1193307A1 (en) * 2000-09-29 2002-04-03 Chevron Oronite Company LLC Fuel additive compositions containing a mannich condensation product, a poly(oxyalkylene) monool, a polyolefin, and a carboxylic acid
EP1193245A1 (en) * 2000-09-29 2002-04-03 Chevron Oronite Company LLC Method for the removal of excess amounts of water-soluble amines from mannich condensation products.
US6511519B1 (en) 2000-09-29 2003-01-28 Chevron Oronite Company Llc Fuel additive compositions containing a mannich condensation product, a poly(oxyalkylene) monool, and a carboxylic acid
US6511518B1 (en) 2000-09-29 2003-01-28 Chevron Oronite Company Llc Fuel additive compositions containing a mannich condensation product, a poly(oxyalkylene) monool, a polyolefin, and a carboxylic acid
US6531571B1 (en) 2000-09-29 2003-03-11 Chevron Oronite Company Llc Method for the removal of excess amounts of water-soluble amines from mannich condensation products
US20030173251A1 (en) * 2000-12-22 2003-09-18 Antonio Gutierrez Hydroxy aromatic mannich base condensation products and the use thereof as soot dispersants in lubricating oil compositions
US6855674B2 (en) 2000-12-22 2005-02-15 Infineum International Ltd. Hydroxy aromatic Mannich base condensation products and the use thereof as soot dispersants in lubricating oil compositions
US20030172582A1 (en) * 2001-12-21 2003-09-18 Carabell Kevin D. Fuel additive compositions containing a mannich condensation product, a poly (oxyalkylene) monool, and a carboxylic acid
US6749651B2 (en) 2001-12-21 2004-06-15 Chevron Oronite Company Llc Fuel additive compositions containing a mannich condensation product, a poly (oxyalkylene) monool, and a carboxylic acid
EP1323814A3 (en) * 2001-12-21 2004-01-07 Chevron Oronite Company LLC Fuel additive compositions containing a Mannich condensation product, a poly(oxyalkylene) monool, and a carboxylic acid
US6627584B2 (en) 2002-01-28 2003-09-30 Ethyl Corporation Automatic transmission fluid additive comprising reaction product of hydrocarbyl acrylates and dihydrocarbyldithiophosphoric acids
US20040000089A1 (en) * 2002-06-18 2004-01-01 Carabell Kevin D. Method of improving the compatibility of a fuel additive composition containing a mannich condensation product
EP1375629A3 (en) * 2002-06-18 2004-01-14 Chevron Oronite Company LLC A method of improving the compatibility of a fuel additive composition containing a Mannich condensation product
US6733551B2 (en) 2002-06-18 2004-05-11 Chevron Oronite Company Llc Method of improving the compatibility of a fuel additive composition containing a Mannich condensation product
US7888299B2 (en) 2003-01-15 2011-02-15 Afton Chemical Japan Corp. Extended drain, thermally stable, gear oil formulations
US20040147410A1 (en) * 2003-01-15 2004-07-29 Milner Jeffrey L Extended drain, thermally stable, gear oil formulations
US20050065043A1 (en) * 2003-09-23 2005-03-24 Henly Timothy J. Power transmission fluids having extended durability
US20050070446A1 (en) * 2003-09-25 2005-03-31 Ethyl Petroleum Additives, Inc. Boron free automotive gear oil
US20070054813A1 (en) * 2003-09-25 2007-03-08 Chip Hewette Boron free automotive gear oil
US20050101496A1 (en) * 2003-11-06 2005-05-12 Loper John T. Hydrocarbyl dispersants and compositions containing the dispersants
US20050101494A1 (en) * 2003-11-10 2005-05-12 Iyer Ramnath N. Lubricant compositions for power transmitting fluids
US20080009426A1 (en) * 2003-11-10 2008-01-10 Iyer Ramnath N Lubricant Compositions and Methods Comprising Dispersant and Detergent
EP2230292A1 (en) 2003-11-10 2010-09-22 Afton Chemical Corporation Methods of lubricating transmissions
US20100279901A1 (en) * 2003-11-10 2010-11-04 Iyer Ramnath N Methods for providing steel-on-steel friction and/or steel-on-paper friction with lubricant compositions for power transmitting fluids
US9267093B2 (en) 2003-11-10 2016-02-23 Afton Chemical Corporation Methods for providing steel-on-steel friction and/or steel-on-paper friction with lubricant compositions for power transmitting fluids
US7214649B2 (en) 2003-12-31 2007-05-08 Afton Chemical Corporation Hydrocarbyl dispersants including pendant polar functional groups
US20050143265A1 (en) * 2003-12-31 2005-06-30 Loper John T. Hydrocarbyl dispersants including pendant polar functional groups
US20050181959A1 (en) * 2004-02-17 2005-08-18 Esche Carl K.Jr. Lubricant and fuel additives derived from treated amines
US7645728B2 (en) 2004-02-17 2010-01-12 Afton Chemical Corporation Lubricant and fuel additives derived from treated amines
US7947636B2 (en) 2004-02-27 2011-05-24 Afton Chemical Corporation Power transmission fluids
EP1568759A2 (en) 2004-02-27 2005-08-31 Afton Chemical Corporation Power transmission fluids
US20050192185A1 (en) * 2004-02-27 2005-09-01 Saathoff Lee D. Power transmission fluids
US20050202979A1 (en) * 2004-03-10 2005-09-15 Ethyl Petroleum Additives, Inc. Power transmission fluids with enhanced extreme pressure characteristics
US20050250656A1 (en) * 2004-05-04 2005-11-10 Masahiro Ishikawa Continuously variable transmission fluid
US7384434B2 (en) * 2004-06-03 2008-06-10 Afton Chemical Corporation Reaction of phenols with intermediate triazines
US20050268538A1 (en) * 2004-06-03 2005-12-08 Malfer Dennis J Reaction of phenols with intermediate triazines
US20060003905A1 (en) * 2004-07-02 2006-01-05 Devlin Cathy C Additives and lubricant formulations for improved corrosion protection
US20060025314A1 (en) * 2004-07-28 2006-02-02 Afton Chemical Corporation Power transmission fluids with enhanced extreme pressure and antiwear characteristics
EP1640440A1 (en) 2004-09-22 2006-03-29 Infineum International Limited Friction and/or wear reduction in manual or automated manual transmissions
US20060217273A1 (en) * 2005-03-23 2006-09-28 Nubar Ozbalik Lubricating compositions
US8557752B2 (en) 2005-03-23 2013-10-15 Afton Chemical Corporation Lubricating compositions
US20060223716A1 (en) * 2005-04-04 2006-10-05 Milner Jeffrey L Tractor fluids
US20060264339A1 (en) * 2005-05-19 2006-11-23 Devlin Mark T Power transmission fluids with enhanced lifetime characteristics
US20070111906A1 (en) * 2005-11-12 2007-05-17 Milner Jeffrey L Relatively low viscosity transmission fluids
US7879775B2 (en) 2006-07-14 2011-02-01 Afton Chemical Corporation Lubricant compositions
US20080015125A1 (en) * 2006-07-14 2008-01-17 Devlin Mark T Lubricant compositions
US20080015127A1 (en) * 2006-07-14 2008-01-17 Loper John T Boundary friction reducing lubricating composition
US7902133B2 (en) 2006-07-14 2011-03-08 Afton Chemical Corporation Lubricant composition
US20080051305A1 (en) * 2006-08-28 2008-02-28 Devlin Mark T Lubricant composition
US7833953B2 (en) 2006-08-28 2010-11-16 Afton Chemical Corporation Lubricant composition
US20080119377A1 (en) * 2006-11-22 2008-05-22 Devlin Mark T Lubricant compositions
EP2017329A1 (en) 2007-05-04 2009-01-21 Afton Chemical Corporation Environmentally-Friendly Lubricant Compositions
EP2420553A1 (en) 2007-05-04 2012-02-22 Afton Chemical Corporation Environmentally-Friendly Lubricant Compositions
US20080274921A1 (en) * 2007-05-04 2008-11-06 Ian Macpherson Environmentally-Friendly Lubricant Compositions
US20100152078A1 (en) * 2007-05-04 2010-06-17 Ian Macpherson Environmentally-friendly lubricant compositions
US20090011963A1 (en) * 2007-07-06 2009-01-08 Afton Chemical Corporation Truck fleet fuel economy by the use of optimized engine oil, transmission fluid, and gear oil
US20090031614A1 (en) * 2007-08-01 2009-02-05 Ian Macpherson Environmentally-Friendly Fuel Compositions
EP2025737A1 (en) 2007-08-01 2009-02-18 Afton Chemical Corporation Environmentally-friendly fuel compositions
EP2031045A1 (en) 2007-08-09 2009-03-04 Infineum International Limited Lubricant compositions with reduced phosphorous content for engines having catalytic converters
US20090042752A1 (en) * 2007-08-09 2009-02-12 Malcolm Waddoups Lubricant Compositions with Reduced Phosphorous Content for Engines having Catalytic Converters
EP2072611A1 (en) 2007-12-13 2009-06-24 Afton Chemical Corporation Lubricant composition suitable for engines fueled by alternate fuels
US20090156445A1 (en) * 2007-12-13 2009-06-18 Lam William Y Lubricant composition suitable for engines fueled by alternate fuels
US8703669B2 (en) 2008-03-11 2014-04-22 Afton Chemical Corporation Ultra-low sulfur clutch-only transmission fluids
DE102009012567A1 (en) 2008-03-11 2009-10-01 Afton Chemical Corp. Clutch-only transmission fluid useful for lubrication comprises oil formulated with additive components having metal detergent, phosphorus-based wear preventative, phosphorylated and boronated dispersant, sulfurized extreme pressure agent
DE102009001301A1 (en) 2008-03-11 2009-09-24 Volkswagen Ag Method for lubricating a component only for the clutch of an automatic transmission, which requires lubrication
US20090233823A1 (en) * 2008-03-11 2009-09-17 Volkswagen Aktiengesellschaft Method for lubricating a clutch-only automatic transmission component requiring lubrication
US20090233822A1 (en) * 2008-03-11 2009-09-17 Afton Chemical Corporation Ultra-low sulfur clutch-only transmission fluids
US8546311B2 (en) 2008-03-11 2013-10-01 Volkswagen Aktiengesellsschaft Method for lubricating a clutch-only automatic transmission component requiring lubrication
WO2010147993A1 (en) 2009-06-16 2010-12-23 Chevron Phillips Chemical Company Lp Oligomerization of alpha olefins using metallocene-ssa catalyst systems and use of the resultant polyalphaolefins to prepare lubricant blends
EP3587458A1 (en) 2009-06-16 2020-01-01 Chevron Phillips Chemical Company LP Compositions comprising polyalphaolefins
WO2011022347A1 (en) 2009-08-18 2011-02-24 The Lubrizol Corporation Antiwear composition and method of lubricating an internal combustion engine
WO2011102835A1 (en) 2010-02-19 2011-08-25 Toyota Jidosha Kabushiki Kaisha Wet friction clutch-lubricant systems providing high dynamic coefficients of friction through the use of sodium detergents
US9365794B2 (en) 2010-02-19 2016-06-14 Infineum International Limited Wet friction clutch—lubricant systems providing high dynamic coefficients of friction through the use of borated detergents
WO2011102836A1 (en) 2010-02-19 2011-08-25 Infineum International Limited Wet friction clutch-lubricant systems providing high dynamic coefficients of friction through the use of borated detergents

Also Published As

Publication number Publication date
FR2098379B1 (en) 1975-08-29
BE769904A (en)
DE2134918B2 (en) 1981-03-19
DE2134918A1 (en) 1972-01-27
NL168237C (en) 1982-03-16
CA967698A (en) 1975-05-13
LU63518A1 (en) 1971-11-16
DE2134918C3 (en) 1982-01-28
SU458135A3 (en) 1975-01-25
PL70101B1 (en) 1974-02-28
NL7109677A (en) 1972-01-17
FR2098379A1 (en) 1972-03-10
SU520910A3 (en) 1976-07-05
JPS5342761B1 (en) 1978-11-14
GB1358877A (en) 1974-07-03
NL168237B (en) 1981-10-16

Similar Documents

Publication Publication Date Title
US3798247A (en) Oil soluble aliphatic acid derivatives of molecular weight mannich condensation products
US3803039A (en) Oil solution of aliphatic acid derivatives of high molecular weight mannich condensation product
US3798165A (en) Lubricating oils containing high molecular weight mannich condensation products
US3985802A (en) Lubricating oils containing high molecular weight Mannich condensation products
US3793202A (en) Oil solution of aliphatic acid and aliphatic aldehyde modified high molecular weight mannich reaction products
US4664822A (en) Metal-containing lubricant compositions
US3367943A (en) Process for preparing oil soluble additives which comprises reacting a c2 to c5 alkylene oxide with (a) reaction product of an alkenylsuccinic anhydride and an aliphaticpolyamine (b) reaction product of alkenylsuccinic anhydride, a c1 to c30 aliphatic hydrocarbon carboxylic acid and an aliphatic polyamine
US4767551A (en) Metal-containing lubricant compositions
US3539633A (en) Di-hydroxybenzyl polyamines
US4328111A (en) Modified overbased sulfonates and phenates
US3366569A (en) Lubricating compositions containing the reaction product of a substituted succinic acid-producing compound, an amino compound, and an alkenyl cyanide
US3704308A (en) Boron-containing high molecular weight mannich condensation
US3751365A (en) Concentrates and crankcase oils comprising oil solutions of boron containing high molecular weight mannich reaction condensation products
US3872019A (en) Oil-soluble lubricant bi-functional additives from mannich condensation products of oxidized olefin copolymers, amines and aldehydes
US4025316A (en) Mannich base reaction products useful as liquid hydrocarbon additives
US3864268A (en) Oil-soluble aminated oxidized olefin copolymers
CA1190216A (en) Succinimide lubricating oil dispersant
US4142980A (en) Mannich reaction products made with alkyphenol substituted aliphatic unsaturated carboxylic acids
JPH0260719B2 (en)
US3787458A (en) Oil-soluble aliphatic acid modified high molecular weight mannich condensation products
US4410437A (en) Amine substituted hydrocarbon polymer dispersant lubricating oil additives
US3377281A (en) Lubricating composition
US4925579A (en) Lubricating oil containing hydroperoxidized ethylene copolymers and terpolymers as dispersants and V.I. improvers
US4152276A (en) Process of making olefin copolymer lubricant additives by permanganate oxidation of olefin terpolymers
US3732167A (en) Motor oil composition

Legal Events

Date Code Title Description
AS Assignment

Owner name: AMOCO CORPORATION,ILLINOIS

Free format text: CHANGE OF NAME;ASSIGNOR:STANDARD OIL COMPANY;REEL/FRAME:005300/0377

Effective date: 19850423

Owner name: AMOCO CORPORATION

Free format text: CHANGE OF NAME;ASSIGNOR:STANDARD OIL COMPANY;REEL/FRAME:005300/0377

Effective date: 19850423