US3797261A - Single-stage fractionation of natural gas containing nitrogen - Google Patents
Single-stage fractionation of natural gas containing nitrogen Download PDFInfo
- Publication number
- US3797261A US3797261A US00142299A US3797261DA US3797261A US 3797261 A US3797261 A US 3797261A US 00142299 A US00142299 A US 00142299A US 3797261D A US3797261D A US 3797261DA US 3797261 A US3797261 A US 3797261A
- Authority
- US
- United States
- Prior art keywords
- nitrogen
- natural gas
- fraction
- distillation zone
- stages
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/028—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of noble gases
- F25J3/029—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of noble gases of helium
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C7/00—Purification; Separation; Use of additives
- C07C7/04—Purification; Separation; Use of additives by distillation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0204—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
- F25J3/0209—Natural gas or substitute natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0233—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0257—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/02—Processes or apparatus using separation by rectification in a single pressure main column system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/50—Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/74—Refluxing the column with at least a part of the partially condensed overhead gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/02—Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2235/00—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
- F25J2235/60—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being (a mixture of) hydrocarbons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/02—Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
- F25J2240/12—Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/02—Internal refrigeration with liquid vaporising loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/04—Internal refrigeration with work-producing gas expansion loop
- F25J2270/06—Internal refrigeration with work-producing gas expansion loop with multiple gas expansion loops
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/12—External refrigeration with liquid vaporising loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/60—Closed external refrigeration cycle with single component refrigerant [SCR], e.g. C1-, C2- or C3-hydrocarbons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/66—Closed external refrigeration cycle with multi component refrigerant [MCR], e.g. mixture of hydrocarbons
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S62/00—Refrigeration
- Y10S62/927—Natural gas from nitrogen
Definitions
- ABSTRACT Separation of natural gas containing nitrogen into a low-nitrogen fraction and a high-nitrogen fraction is achieved in a single distillation column in which reflux is provided by expanding the high-nitrogen fraction with the performance of work and using the resulting refrigeration to condense vapor in the upper section of the column while additional reflux is provided by vaporizing a recycle medium in heat exchange relation with vapor in the column.
- Incoming natural gas is passed in heat exchange relation with liquid in the column bottom, further cooled and expanded into the middle section of the column.
- a helium-rich fraction may be separated from the high-nitrogen fraction.
- This invention relates to a process for separating natural gas containing nitrogen into a low-nitrogen and a high-nitrogen fraction by low-temperature distillation in a single column.
- natural gas contains different percentages of nitrogen, carbon dioxide, and heavy hydrocarbons. If the contents of noncombustible components are substantial, it becomes necessary or expedient to separate the noncombustible components prior to transportation or utilization.
- the customary method for removal of nitrogen is the distillation of natural gas at low temperatures. However, this method is subject to difficulties due to the carbon dioxide in the natural gas.
- Carbon dioxide has a triple point of "566C and a very low solubility at low temperatures. Therefore, depending on the method, the carbon dioxide may become solid at low temperatures. In known processes, carbon dioxide is therefore separated before the natural gas enters the low-temperature plant. This separation is costly since, for instance, special carbon dioxide adsorbers with regeneration facilities must be provided, and additional energy is required.
- the reflux required for the distillation is produced'by work-performing expansion of at least the greater part of the high-nitrogen fraction and using the refrigeration produced by this expansion and by vaporization of a recycle medium to condense vapor in the column.
- the pressure for this process is between IO and 35 ata (atmospheres absolute? and a pressure of approximately 28 ata is preferred. Methane is a preferred recycle medium.
- the process becomes particularly favorable if the high-nitrogen fraction is expanded in several stages with inter-stage heating.
- the natural gas entering the plant at high pressure is utilized to heat the column sump before it is expanded into the middle section of the distillation column.
- the natural gas is also brought into heat exchange relation with vapor in the lower section of the column before being expanded into the column; thus, the reflux,
- the process of the invention is very well suited for recovering a helium-rich fraction from natural gas containing a worthwhile percentage, say over 0.1 percent, of helium.
- the head product of the distillation which contains helium, is enriched in two nitrogen condensing stages; in the first stage fractional condensation is carried out by heat exchange with highnitrogen fraction boiling at high pressure, and in the second stage with cold gaseous high-nitrogen fraction at approximately atmospheric pressure from the workperforming expansion of the high-nitrogen fraction. Refrigeration for the second stage can also be supplied by nitrogen evaporating at low pressure. If necessary, the low-nitrogen liquid fraction from the sump of the distillation column may be pumped to higher pressure before being vaporized and heated to ambient temperature.
- FIG. 1 is a flow diagram of an embodiment of the invention utilizing two-stage expansion of the highnitrogen fraction
- FIG. 2 is similar to FIG. 1 with additional features for helium recovery.
- natural gas enters the low-temperature plant through line 1 after removal of moisture in a drier (not shown).
- the natural gas contains about 43% by volume of nitrogen and 56% by volume of methane, the remainder consisting of heavy hydrocarbons 0.4%m helium 0.4% and carbon dioxide 0.2%.
- the gas pressure is 55 ata.
- the natural gas is cooled by counter-current flow to the separation fractions. Then it flows through vaporizer 3 in the bottom of distillation column 4 and thus .it provides part of the vapor upflow required in column 4.
- the natural gas is then further cooled by flowing through subcooler 5 and coil .6 in. the lower section of column 4 where it produces more vapor upflow and thus improves the rectification conditions. Finally, the subcooled natural gas is expanded through expansion valve 7 into the middle section of column 4 to a pressure of 28 ata.
- distillation column 4 the natural gas is separated into a high-nitrogen mixture at the head of column 4 and a low-nitrogen mixture at the bottom of column 4.
- the high-nitrogen mixture is withdrawn in gaseous state through line 8, somewhat heated in heat exchanger 9, and! expanded in workperforming turbine 10 to a medium pressure of about 6 ata. Then it is reheated in heat exchanger 11 against condensing vapors of the high-nitrogen mixture, further expanded in turbine 12 to about atmospheric pressure and once again heated in heat exchanger 13 against condensing vapors of the high-nitrogen mixture. After further heating in heat exchangers 9, 5, and 2, the high-nitrogen fraction is finally available at the plant outlet at ambient temperature.
- Liquid high-nitrogen mixture from the column head can be expanded through line 14 into storage vessel 15 where it is separated into a liquid and a gaseous phase.
- the gaseous phase is withdrawn through line 18 and fed through valve 19 into the discharge line of turbine 10.
- the liquid phase is Withdrawn through line 16 and expanded through expansion valve 17 into the discharge line of turbine 12. This is necessary only in case of a sudden need for refrigeration in column 4, for instance in case of a sudden rise in pressure in column 4.
- the liquid from storage vessel 15 will then supply the necessary additional refrigeration.
- the low-nitrogen mixture is withdrawn from the sump of column 4 through line 20, pressurized by pump 21 to the inlet pressure of 55 ata of the natural gas and heated in heat exchanger 2 to ambient temperature.
- the refrigeration supplied by expansion of the gas in turbines l0, 12 is not enough to produce sufficient reflux for the complete fractionation of the natural gas. Therefore, a recycle medium is provided to improve the reflux conditions.
- the preferred recycle medium or gas is methane; however a mixture of nitrogen and light hydrocarbons may also be used.
- the recycle gas is compressed froin a'pr'e'sgur'bfabom 2 ata t o apressii re which is higher than the pressure of distillation column Since, in the present example, the recycle medium is also to take refrigeration from the returning lownitrogen fraction in line 20, it is compressed to 55 ata.
- the recycle gas After flowing through after-cooler 23, it is cooled in heat exchanger 2 against itself and the returning fractions. Then, in heat exchanger 24, the recycle gas heats the liquid in the column sump, and in heat exchangers 5 and 9 it is subcooled. After expansion to 2 ata in expansion valve 25, it evaporates in heat exchanger 236, at least to a great extent. Consequently, with heat exchanger 26, the recycle medium also produces reflux in column 4. In heat exchangers 9, 5 and 2, the recycle gas is reheated to approximately ambient temperature. Since expansion of the high-nitrogen fraction in workperforming turbines 10 and 12 supplies a lot of refrigeration, the recycle gas may be discharged from the lowtemperature plant at a relatively low temperature. In compressor 22, the recycle gas may then be compressed cold, i.e., with less energy consumption. Preferably, the recycle gas is fed into compressor 22 at a temperature of about 35C since, at that temperature, it is not necessary to use special materials for compressor 22.
- FIG. 2 illustrates the process with the additional recovery of helium.
- Identical plant components have been marked with identical reference numerals from FIG. 1 and the process will be described only insofar as it differs from the process shown in FIG. 1.
- the head of distillation column 4 is provided with an additional condenser 27 where the highnitrogen vapor mixture rising from heat exchanger 11 is extensively liquefied.
- the gas withdrawn above condenser 27 through line 28 already contains 5 to 10 percent by volume of helium.
- this vapor mixture is further concentrated by partial condensation to 80 to 90 percent by volume of helium.
- the helium vapor concentrate is withdrawn through line 30, while the nitrogen condensate is returned to column 4 by line 32.
- the concentration of helium is accomplished in two stages.
- the refrigeration for first-stage condenser 27 is supplied by evaporating the high-nitrogen liquid mixture which is withdrawn from column 4 through line 14, expanded to 24 ata in expansion valve 31 and discharged into condenser 27.
- the resulting high-nitrogen vapor mixture is then conducted through turbines l0 and 12 as already described for FIG. 1.
- the refrigeration for the concentration second-stage heat exchanger 29 is supplied by the cold high-nitrogen vapor mixture from turbine 12, which is subsequently heated to ambient temperature as described for FIG. 1.
- the refrigeration for the second concentration stage may also be supplied by high-nitrogen liquid mixture evaporating at low pressure.
- Heat exchangers 24, 3, 6, 26, 13 and 11 may also be located outside column 4 as plate heat exchangers.
- the process of this invention avoids very low temperatures for the natural gas and for the low-nitrogen product fraction. Furthermore, the natural gas evaporates at high pressure. Thus, it is possible to tolerate higher percentages of heavy hydrocarbons in the natural gas without entailing deposits and plugging. Conditions are similar where carbon dioxide is concerned. The carbon dioxide passes through the plant without being deposited anywhere. The costly pre-puriflcation of the natural gas is thus avoided.
- a process for the separation of natural gas containing nitrogen into a low-nitrogen fraction and a highnitrogen fraction in a single distillation Zone which comprises expanding at least the greater part of said high-nitrogen fraction with the performance of work, using the resulting refrigeration to condense vapor of the upper section of said distillation zone to provide reflux in said distillation zone, and providing additional reflux below the aforesaid reflux by vaporizing a closed recycle liquefied gas in indirect heat exchange relation with vapor of said distillation zone after said recycle gas has been passed in indirect heat exchange relation with liquid while the said liquid is at the bottom of said distillation zone.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Water Supply & Treatment (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
Separation of natural gas containing nitrogen into a lownitrogen fraction and a high-nitrogen fraction is achieved in a single distillation column in which reflux is provided by expanding the high-nitrogen fraction with the performance of work and using the resulting refrigeration to condense vapor in the upper section of the column while additional reflux is provided by vaporizing a recycle medium in heat exchange relation with vapor in the column. Incoming natural gas is passed in heat exchange relation with liquid in the column bottom, further cooled and expanded into the middle section of the column. A helium-rich fraction may be separated from the high-nitrogen fraction.
Description
United States Patent I191 J uncker et a1.
[ Mar. 19, 1974 [73] Assignee: Linde Aktiengesellschaft,
Wiesbaden, Germany 22 Filed: May 11,1971,
21 Appl. No.: 142,299
[30] Foreign Application Priority Data 1 May 12, 1970 Germany 2022954 [52] US. Cl 62/40, 62/28, 62/39, 62/41 [51] Int. Cl. F25j l/02, F25j 3/02 [58] Field of Search 62/22, 23, 24, 27, 28, 62/39, 41, 40, 38
[56] References Cited UNITED STATES PATENTS 3,507,127 4/1970 DeMarco 62/28 NATURAL GAS men 44 FRACTION Low N2 FRACTION 2,823,523 2/1958 Eakin 62/39 2,583,090 l/l952 Cost 62/39 2,677,945 5/1954 Miller 62/39 2,658,360 11/1953 Miller 62/39 2,713,781 7/1955 Williams 62/39 3,420,068 l/1969 Petit v 62/41 3,512,368 5/1970 Harper 1. 62/27 3,607,733 9/1971 Harper 62/28 Primary Examiner-Norman Yudkoff Assistant Examiner-Arthur F. Purcell Attorney, Agent, or Firm-Paul W. Garbo [57] ABSTRACT Separation of natural gas containing nitrogen into a low-nitrogen fraction and a high-nitrogen fraction is achieved in a single distillation column in which reflux is provided by expanding the high-nitrogen fraction with the performance of work and using the resulting refrigeration to condense vapor in the upper section of the column while additional reflux is provided by vaporizing a recycle medium in heat exchange relation with vapor in the column. Incoming natural gas is passed in heat exchange relation with liquid in the column bottom, further cooled and expanded into the middle section of the column. A helium-rich fraction may be separated from the high-nitrogen fraction.
8 Claims, 2 Drawing Figures Pmminmww 3.7971261 g1 24 i F20 HIGH FRACTION LOW- N2 FRACTION NATURAL GAS INVENTORS FRIEDRICH JUNCKER JOHANNES KRANZ MARTIN STREICH HEINER TANZ GERD VGLLRATH AGENT PAIENTEMR 19 1974 SHEET 8 BF 2 on 2285: I0;
2955 Z I2: 225:: Z 2:
SINGLE-STAGE FRACTIONATION OF NATURAL GAS CONTAINING NITROGEN BACKGROUND OF THE INVENTION This invention relates to a process for separating natural gas containing nitrogen into a low-nitrogen and a high-nitrogen fraction by low-temperature distillation in a single column.
Depending on the location of the well, natural gas contains different percentages of nitrogen, carbon dioxide, and heavy hydrocarbons. If the contents of noncombustible components are substantial, it becomes necessary or expedient to separate the noncombustible components prior to transportation or utilization. The customary method for removal of nitrogen is the distillation of natural gas at low temperatures. However, this method is subject to difficulties due to the carbon dioxide in the natural gas.
Carbon dioxide has a triple point of "566C and a very low solubility at low temperatures. Therefore, depending on the method, the carbon dioxide may become solid at low temperatures. In known processes, carbon dioxide is therefore separated before the natural gas enters the low-temperature plant. This separation is costly since, for instance, special carbon dioxide adsorbers with regeneration facilities must be provided, and additional energy is required.
The process of copending application Ser. No. 849,439, filed Aug. 12, 1969, by Martin Streich, avoids carbon dioxide removal by separating the natural gas containing nitrogen into a high-nitrogen and a lownitrogen fraction prior to two-stage distillation as such. This process is advantageous if the natural gas contains little nitrogen, i.e. up to approximately percent. However, with this process too, the low-pressure col umn must remain free of carbon dioxide and low in heavy hydrocarbons.
It is the object of this invention to provide a process for the separation of natural gas containing nitrogen into a low-nitrogen and a high-nitrogen fraction by single-stage distillation without the aforesaid shortcomings and limitations regarding carbon dioxide removal.
SUMMARY OF THE INVENTION According to this invention, the reflux required for the distillation is produced'by work-performing expansion of at least the greater part of the high-nitrogen fraction and using the refrigeration produced by this expansion and by vaporization of a recycle medium to condense vapor in the column.
Advantageously, the pressure for this process is between IO and 35 ata (atmospheres absolute? and a pressure of approximately 28 ata is preferred. Methane is a preferred recycle medium. The process becomes particularly favorable if the high-nitrogen fraction is expanded in several stages with inter-stage heating. In the known manner, the natural gas entering the plant at high pressure is utilized to heat the column sump before it is expanded into the middle section of the distillation column. In an advantageous form of this process, the natural gas is also brought into heat exchange relation with vapor in the lower section of the column before being expanded into the column; thus, the reflux,
conditions in the column are improved.
The process of the invention is very well suited for recovering a helium-rich fraction from natural gas containing a worthwhile percentage, say over 0.1 percent, of helium. For this purpose, the head product of the distillation, which contains helium, is enriched in two nitrogen condensing stages; in the first stage fractional condensation is carried out by heat exchange with highnitrogen fraction boiling at high pressure, and in the second stage with cold gaseous high-nitrogen fraction at approximately atmospheric pressure from the workperforming expansion of the high-nitrogen fraction. Refrigeration for the second stage can also be supplied by nitrogen evaporating at low pressure. If necessary, the low-nitrogen liquid fraction from the sump of the distillation column may be pumped to higher pressure before being vaporized and heated to ambient temperature.
BRIEF DESCRIPTION OF THE DRAWINGS Further advantages of the invention will become apparent from the description of the accompanying drawings of which:
FIG. 1 is a flow diagram of an embodiment of the invention utilizing two-stage expansion of the highnitrogen fraction; and
FIG. 2 is similar to FIG. 1 with additional features for helium recovery.
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the process shown in FIG. 1, natural gas enters the low-temperature plant through line 1 after removal of moisture in a drier (not shown). The natural gas contains about 43% by volume of nitrogen and 56% by volume of methane, the remainder consisting of heavy hydrocarbons 0.4%m helium 0.4% and carbon dioxide 0.2%. The gas pressure is 55 ata.
In heat exchanger 2, the natural gas is cooled by counter-current flow to the separation fractions. Then it flows through vaporizer 3 in the bottom of distillation column 4 and thus .it provides part of the vapor upflow required in column 4.
The natural gas is then further cooled by flowing through subcooler 5 and coil .6 in. the lower section of column 4 where it produces more vapor upflow and thus improves the rectification conditions. Finally, the subcooled natural gas is expanded through expansion valve 7 into the middle section of column 4 to a pressure of 28 ata.
In distillation column 4, the natural gas is separated into a high-nitrogen mixture at the head of column 4 and a low-nitrogen mixture at the bottom of column 4. At the head of column 4, the high-nitrogen mixture is withdrawn in gaseous state through line 8, somewhat heated in heat exchanger 9, and! expanded in workperforming turbine 10 to a medium pressure of about 6 ata. Then it is reheated in heat exchanger 11 against condensing vapors of the high-nitrogen mixture, further expanded in turbine 12 to about atmospheric pressure and once again heated in heat exchanger 13 against condensing vapors of the high-nitrogen mixture. After further heating in heat exchangers 9, 5, and 2, the high-nitrogen fraction is finally available at the plant outlet at ambient temperature.
Liquid high-nitrogen mixture from the column head can be expanded through line 14 into storage vessel 15 where it is separated into a liquid and a gaseous phase. The gaseous phase is withdrawn through line 18 and fed through valve 19 into the discharge line of turbine 10. The liquid phase is Withdrawn through line 16 and expanded through expansion valve 17 into the discharge line of turbine 12. This is necessary only in case of a sudden need for refrigeration in column 4, for instance in case of a sudden rise in pressure in column 4. The liquid from storage vessel 15 will then supply the necessary additional refrigeration.
The low-nitrogen mixture is withdrawn from the sump of column 4 through line 20, pressurized by pump 21 to the inlet pressure of 55 ata of the natural gas and heated in heat exchanger 2 to ambient temperature.
If the average nitrogen content of the natural gas is about 40 to SOpercent by volume, the refrigeration supplied by expansion of the gas in turbines l0, 12 is not enough to produce sufficient reflux for the complete fractionation of the natural gas. Therefore, a recycle medium is provided to improve the reflux conditions. The preferred recycle medium or gas is methane; however a mixture of nitrogen and light hydrocarbons may also be used. In compressor 22, the recycle gas is compressed froin a'pr'e'sgur'bfabom 2 ata t o apressii re which is higher than the pressure of distillation column Since, in the present example, the recycle medium is also to take refrigeration from the returning lownitrogen fraction in line 20, it is compressed to 55 ata. After flowing through after-cooler 23, it is cooled in heat exchanger 2 against itself and the returning fractions. Then, in heat exchanger 24, the recycle gas heats the liquid in the column sump, and in heat exchangers 5 and 9 it is subcooled. After expansion to 2 ata in expansion valve 25, it evaporates in heat exchanger 236, at least to a great extent. Consequently, with heat exchanger 26, the recycle medium also produces reflux in column 4. In heat exchangers 9, 5 and 2, the recycle gas is reheated to approximately ambient temperature. Since expansion of the high-nitrogen fraction in workperforming turbines 10 and 12 supplies a lot of refrigeration, the recycle gas may be discharged from the lowtemperature plant at a relatively low temperature. In compressor 22, the recycle gas may then be compressed cold, i.e., with less energy consumption. Preferably, the recycle gas is fed into compressor 22 at a temperature of about 35C since, at that temperature, it is not necessary to use special materials for compressor 22.
FIG. 2 illustrates the process with the additional recovery of helium. Identical plant components have been marked with identical reference numerals from FIG. 1 and the process will be described only insofar as it differs from the process shown in FIG. 1. As compared to FIG. 1, the head of distillation column 4 is provided with an additional condenser 27 where the highnitrogen vapor mixture rising from heat exchanger 11 is extensively liquefied. The gas withdrawn above condenser 27 through line 28 already contains 5 to 10 percent by volume of helium. In heat exchanger 29, this vapor mixture is further concentrated by partial condensation to 80 to 90 percent by volume of helium. The helium vapor concentrate is withdrawn through line 30, while the nitrogen condensate is returned to column 4 by line 32.
The concentration of helium is accomplished in two stages. The refrigeration for first-stage condenser 27 is supplied by evaporating the high-nitrogen liquid mixture which is withdrawn from column 4 through line 14, expanded to 24 ata in expansion valve 31 and discharged into condenser 27. The resulting high-nitrogen vapor mixture is then conducted through turbines l0 and 12 as already described for FIG. 1. The refrigeration for the concentration second-stage heat exchanger 29 is supplied by the cold high-nitrogen vapor mixture from turbine 12, which is subsequently heated to ambient temperature as described for FIG. 1. The refrigeration for the second concentration stage may also be supplied by high-nitrogen liquid mixture evaporating at low pressure.
The process of this invention avoids very low temperatures for the natural gas and for the low-nitrogen product fraction. Furthermore, the natural gas evaporates at high pressure. Thus, it is possible to tolerate higher percentages of heavy hydrocarbons in the natural gas without entailing deposits and plugging. Conditions are similar where carbon dioxide is concerned. The carbon dioxide passes through the plant without being deposited anywhere. The costly pre-puriflcation of the natural gas is thus avoided.
What is claimed is:
l. A process for the separation of natural gas containing nitrogen into a low-nitrogen fraction and a highnitrogen fraction in a single distillation Zone which comprises expanding at least the greater part of said high-nitrogen fraction with the performance of work, using the resulting refrigeration to condense vapor of the upper section of said distillation zone to provide reflux in said distillation zone, and providing additional reflux below the aforesaid reflux by vaporizing a closed recycle liquefied gas in indirect heat exchange relation with vapor of said distillation zone after said recycle gas has been passed in indirect heat exchange relation with liquid while the said liquid is at the bottom of said distillation zone.
2. The process of claim 1 wherein the distillation zone is maintained at a pressure in the range of about 10 to 35 ata.
3. The process of claim 1 wherein the nitrogen content of the natural gas is over 20 percent by volume and the expansion of high-nitrogen fraction with the performance of work is conducted in several stages with the resulting refrigeration of each stage being used to condense vapor at different levels of the upper section of the distillation zone.
4. The process of claim 1 wherein the natural gas containing nitrogen is passed in indirect heat exchange relation with liquid at the bottom of the distillation zone, then with the expanded high-nitrogen fraction and again with liquid at an intermediate level of said distillation zone, is expanded to a pressure in the range of about 10 to 35 ata and is discharged into the middle section of said distillation zone.
5. The process of claim 1 wherein the recycle liquefied gas is methane, the nitrogen content of the natural gas is at least 40 percent by volume, and the distillation zone is maintained at a pressure of about 28 ata.
6. The process of claim 1 wherein the natural gas containing nitrogen also contains helium and a heliumrich fraction is recovered by partially condensing nitrogen in the vapor withdrawn from the top of the distillation zone in two condensation stages, for refrigeration for the first of said stages being provided by evaporating at reduced high pressure liquid withdrawn from the top of said distillation zone and the refrigeration for the second of said stages being provided by the highnitrogen fraction expanded with the performance of work to nearly atmospheric pressure.
7. The process of claim 4 wherein the nitrogen content of the natural gas is over percent by volume, the expansion of high-nitrogen fraction with the performance of work is conducted in two stages, the discharge pressure of the second of said stages being nearly atmospheric, and the resulting refrigeration of each of said stages is used to condence vapor, at different levelsof the upper section of the distillation zone.
8. The process of claim 7 wherein the natural gas work to nearly atmospheric pressure.
Claims (7)
- 2. The process of claim 1 wherein the distillation zone is maintained at a pressure in the range of about 10 to 35 ata.
- 3. The process of claim 1 wherein the nitrogen content of the natural gas is over 20 percent by volume and the expansion of high-nitrogen fraction with the performance of work is conducted in several stages with the resulting refrigeration of each stage being used to condense vapor at different levels of the upper section of the distillation zone.
- 4. The process of claim 1 wherein the natural gas containing nitrogen is passed in indirect heat exchange relation with liquid at the bottom of the distillation zone, then with the expanded high-nitrogen fraction and again with liquid at an intermediate level of said distillation zone, is expanded to a pressure in the range of about 10 to 35 ata and is discharged into the middle section of said distillation zone.
- 5. The process of claim 1 wherein the recycle liquefied gas is methane, the nitrogen content of the natural gas is at least 40 percent by volume, and the distillation zone is maintained at a pressure of about 28 ata.
- 6. The process of claim 1 wherein the natural gas containing nitrogen also contains helium and a helium-rich fraction is recovered by partially condensing nitrogen in the vapor withdrawn from the top of the distillation zone in two condensation stages, for refrigeration for the first of said stages being provided by evaporating at reduced high pressure liquid withdrawn from the top of said distillation zone and the refrigeration for the second of said stages being provided by the high-nitrogen fraction expanded with the performance of work to nearly atmospheric pressure.
- 7. The process of claim 4 wherein the nitrogen content of the natural gas is over 20 percent by volume, the expansion of high-nitrogen fraction with the performance of work is conducted in two stages, the discharge pressure of the second of said stages being nearly atmospheric, and the resulting refrigeration of each of said stages is used to condence vapor at different levels of the upper section of the distillation zone.
- 8. The process of claim 7 wherein the natural gas containing nitrogen also contains helium and a helium-rich fraction is recovered by partially condensing nitrogen in the vapor withdrawn from the top of the distillation zone in two condensation stages, the refrigeration for the first of said stages being provided by evaporating at reduced high pressure liquid withdrawn fRom the top of said distillation zone and the refrigeration for the second of said stages being provided by the high-nitrogen fraction expanded with the performance of work to nearly atmospheric pressure.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2022954A DE2022954C3 (en) | 1970-05-12 | 1970-05-12 | Process for the decomposition of nitrogenous natural gas |
Publications (1)
Publication Number | Publication Date |
---|---|
US3797261A true US3797261A (en) | 1974-03-19 |
Family
ID=5770782
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00142299A Expired - Lifetime US3797261A (en) | 1970-05-12 | 1971-05-11 | Single-stage fractionation of natural gas containing nitrogen |
Country Status (3)
Country | Link |
---|---|
US (1) | US3797261A (en) |
JP (1) | JPS4926682B1 (en) |
DE (1) | DE2022954C3 (en) |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4017283A (en) * | 1971-11-17 | 1977-04-12 | Sulzer Brothers Limited | Method and plant for making up nitrogen vaporization losses in nitrogen-containing liquified natural gas carrying tankers |
US4251249A (en) * | 1977-01-19 | 1981-02-17 | The Randall Corporation | Low temperature process for separating propane and heavier hydrocarbons from a natural gas stream |
US4400188A (en) * | 1981-10-27 | 1983-08-23 | Air Products And Chemicals, Inc. | Nitrogen generator cycle |
US4411677A (en) * | 1982-05-10 | 1983-10-25 | Air Products And Chemicals, Inc. | Nitrogen rejection from natural gas |
EP0131128A1 (en) * | 1983-06-01 | 1985-01-16 | Air Products And Chemicals, Inc. | Nitrogen rejection from natural gas integrated with NGL recovery |
US4592767A (en) * | 1985-05-29 | 1986-06-03 | Union Carbide Corporation | Process for separating methane and nitrogen |
US4662919A (en) * | 1986-02-20 | 1987-05-05 | Air Products And Chemicals, Inc. | Nitrogen rejection fractionation system for variable nitrogen content natural gas |
US4680041A (en) * | 1985-12-30 | 1987-07-14 | Phillips Petroleum Company | Method for cooling normally gaseous material |
US4732598A (en) * | 1986-11-10 | 1988-03-22 | Air Products And Chemicals, Inc. | Dephlegmator process for nitrogen rejection from natural gas |
US5041149A (en) * | 1990-10-18 | 1991-08-20 | Union Carbide Industrial Gases Technology Corporation | Separation of nitrogen and methane with residue turboexpansion |
US5329775A (en) * | 1992-12-04 | 1994-07-19 | Praxair Technology, Inc. | Cryogenic helium production system |
US6199403B1 (en) | 1998-02-09 | 2001-03-13 | Exxonmobil Upstream Research Company | Process for separating a multi-component pressurizied feed stream using distillation |
US6223557B1 (en) | 1998-10-22 | 2001-05-01 | Exxonmobil Upstream Research Company | Process for removing a volatile component from natural gas |
US20040182109A1 (en) * | 2002-11-19 | 2004-09-23 | Oakey John Douglas | Nitrogen rejection method and apparatus |
US20110226014A1 (en) * | 2010-03-31 | 2011-09-22 | S.M.E. Products Lp | Hydrocarbon Gas Processing |
US20110226012A1 (en) * | 2009-02-17 | 2011-09-22 | S.M.E. Products Lp | Hydrocarbon Gas Processing |
US20110226013A1 (en) * | 2010-03-31 | 2011-09-22 | S.M.E. Products Lp | Hydrocarbon Gas Processing |
US20110226011A1 (en) * | 2010-03-31 | 2011-09-22 | S.M.E. Products Lp | Hydrocarbon Gas Processing |
US20110232328A1 (en) * | 2010-03-31 | 2011-09-29 | S.M.E. Products Lp | Hydrocarbon Gas Processing |
US20140318177A1 (en) * | 2011-10-06 | 2014-10-30 | Rustam H. Sethna | Integration of a liquefied natural gas liquefier with the production of liquefied natural gas |
US9021831B2 (en) | 2009-02-17 | 2015-05-05 | Ortloff Engineers, Ltd. | Hydrocarbon gas processing |
US9080811B2 (en) | 2009-02-17 | 2015-07-14 | Ortloff Engineers, Ltd | Hydrocarbon gas processing |
US9637428B2 (en) | 2013-09-11 | 2017-05-02 | Ortloff Engineers, Ltd. | Hydrocarbon gas processing |
US9783470B2 (en) | 2013-09-11 | 2017-10-10 | Ortloff Engineers, Ltd. | Hydrocarbon gas processing |
US9790147B2 (en) | 2013-09-11 | 2017-10-17 | Ortloff Engineers, Ltd. | Hydrocarbon processing |
US9933207B2 (en) | 2009-02-17 | 2018-04-03 | Ortloff Engineers, Ltd. | Hydrocarbon gas processing |
US9939196B2 (en) | 2009-02-17 | 2018-04-10 | Ortloff Engineers, Ltd. | Hydrocarbon gas processing including a single equipment item processing assembly |
US9939195B2 (en) | 2009-02-17 | 2018-04-10 | Ortloff Engineers, Ltd. | Hydrocarbon gas processing including a single equipment item processing assembly |
US20180274854A1 (en) * | 2015-12-18 | 2018-09-27 | Bechtel Hydrocarbon Technology Solution, Inc. | Systems and Methods for Recovering Desired Light Hydrocarbons from Refinery Waste Gas Using a Back-End Turboexpander |
US10215488B2 (en) | 2016-02-11 | 2019-02-26 | Air Products And Chemicals, Inc. | Treatment of nitrogen-rich natural gas streams |
US10533794B2 (en) | 2016-08-26 | 2020-01-14 | Ortloff Engineers, Ltd. | Hydrocarbon gas processing |
US10551118B2 (en) | 2016-08-26 | 2020-02-04 | Ortloff Engineers, Ltd. | Hydrocarbon gas processing |
US10551119B2 (en) | 2016-08-26 | 2020-02-04 | Ortloff Engineers, Ltd. | Hydrocarbon gas processing |
US11428465B2 (en) | 2017-06-01 | 2022-08-30 | Uop Llc | Hydrocarbon gas processing |
US11543180B2 (en) | 2017-06-01 | 2023-01-03 | Uop Llc | Hydrocarbon gas processing |
US11686528B2 (en) | 2019-04-23 | 2023-06-27 | Chart Energy & Chemicals, Inc. | Single column nitrogen rejection unit with side draw heat pump reflux system and method |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2772896B1 (en) * | 1997-12-22 | 2000-01-28 | Inst Francais Du Petrole | METHOD FOR THE LIQUEFACTION OF A GAS, PARTICULARLY A NATURAL GAS OR AIR COMPRISING A MEDIUM PRESSURE PURGE AND ITS APPLICATION |
US11221176B2 (en) * | 2018-08-14 | 2022-01-11 | Air Products And Chemicals, Inc. | Natural gas liquefaction with integrated nitrogen removal |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2583090A (en) * | 1950-12-29 | 1952-01-22 | Elliott Co | Separation of natural gas mixtures |
US2658360A (en) * | 1946-05-08 | 1953-11-10 | Chemical Foundation Inc | Transportation of natural gas |
US2677945A (en) * | 1948-01-21 | 1954-05-11 | Chemical Foundation Inc | Transportation of natural gas |
US2713781A (en) * | 1953-10-26 | 1955-07-26 | Mississippi River Fuel Corp | Variable reversible rectification process |
US2823523A (en) * | 1956-03-26 | 1958-02-18 | Inst Gas Technology | Separation of nitrogen from methane |
US3420068A (en) * | 1966-09-13 | 1969-01-07 | Air Liquide | Process for the production of a fluid rich in methane from liquefied natural gas under a low initial pressure |
US3507127A (en) * | 1967-12-26 | 1970-04-21 | Phillips Petroleum Co | Purification of nitrogen which contains methane |
US3512368A (en) * | 1968-01-02 | 1970-05-19 | Phillips Petroleum Co | Helium and nitrogen containing fuel product recovery |
US3607733A (en) * | 1969-04-25 | 1971-09-21 | Phillips Petroleum Co | Controlled evaporation in heat exchange zones |
-
1970
- 1970-05-12 DE DE2022954A patent/DE2022954C3/en not_active Expired
- 1970-12-01 JP JP45106256A patent/JPS4926682B1/ja active Pending
-
1971
- 1971-05-11 US US00142299A patent/US3797261A/en not_active Expired - Lifetime
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2658360A (en) * | 1946-05-08 | 1953-11-10 | Chemical Foundation Inc | Transportation of natural gas |
US2677945A (en) * | 1948-01-21 | 1954-05-11 | Chemical Foundation Inc | Transportation of natural gas |
US2583090A (en) * | 1950-12-29 | 1952-01-22 | Elliott Co | Separation of natural gas mixtures |
US2713781A (en) * | 1953-10-26 | 1955-07-26 | Mississippi River Fuel Corp | Variable reversible rectification process |
US2823523A (en) * | 1956-03-26 | 1958-02-18 | Inst Gas Technology | Separation of nitrogen from methane |
US3420068A (en) * | 1966-09-13 | 1969-01-07 | Air Liquide | Process for the production of a fluid rich in methane from liquefied natural gas under a low initial pressure |
US3507127A (en) * | 1967-12-26 | 1970-04-21 | Phillips Petroleum Co | Purification of nitrogen which contains methane |
US3512368A (en) * | 1968-01-02 | 1970-05-19 | Phillips Petroleum Co | Helium and nitrogen containing fuel product recovery |
US3607733A (en) * | 1969-04-25 | 1971-09-21 | Phillips Petroleum Co | Controlled evaporation in heat exchange zones |
Cited By (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4017283A (en) * | 1971-11-17 | 1977-04-12 | Sulzer Brothers Limited | Method and plant for making up nitrogen vaporization losses in nitrogen-containing liquified natural gas carrying tankers |
US4251249A (en) * | 1977-01-19 | 1981-02-17 | The Randall Corporation | Low temperature process for separating propane and heavier hydrocarbons from a natural gas stream |
US4400188A (en) * | 1981-10-27 | 1983-08-23 | Air Products And Chemicals, Inc. | Nitrogen generator cycle |
US4411677A (en) * | 1982-05-10 | 1983-10-25 | Air Products And Chemicals, Inc. | Nitrogen rejection from natural gas |
EP0094062A2 (en) * | 1982-05-10 | 1983-11-16 | Air Products And Chemicals, Inc. | Nitrogen rejection from natural gas |
EP0094062A3 (en) * | 1982-05-10 | 1985-01-30 | Air Products And Chemicals, Inc. | Nitrogen rejection from natural gas |
EP0131128A1 (en) * | 1983-06-01 | 1985-01-16 | Air Products And Chemicals, Inc. | Nitrogen rejection from natural gas integrated with NGL recovery |
US4504295A (en) * | 1983-06-01 | 1985-03-12 | Air Products And Chemicals, Inc. | Nitrogen rejection from natural gas integrated with NGL recovery |
US4592767A (en) * | 1985-05-29 | 1986-06-03 | Union Carbide Corporation | Process for separating methane and nitrogen |
US4680041A (en) * | 1985-12-30 | 1987-07-14 | Phillips Petroleum Company | Method for cooling normally gaseous material |
US4662919A (en) * | 1986-02-20 | 1987-05-05 | Air Products And Chemicals, Inc. | Nitrogen rejection fractionation system for variable nitrogen content natural gas |
US4732598A (en) * | 1986-11-10 | 1988-03-22 | Air Products And Chemicals, Inc. | Dephlegmator process for nitrogen rejection from natural gas |
US5041149A (en) * | 1990-10-18 | 1991-08-20 | Union Carbide Industrial Gases Technology Corporation | Separation of nitrogen and methane with residue turboexpansion |
US5329775A (en) * | 1992-12-04 | 1994-07-19 | Praxair Technology, Inc. | Cryogenic helium production system |
US6199403B1 (en) | 1998-02-09 | 2001-03-13 | Exxonmobil Upstream Research Company | Process for separating a multi-component pressurizied feed stream using distillation |
US6223557B1 (en) | 1998-10-22 | 2001-05-01 | Exxonmobil Upstream Research Company | Process for removing a volatile component from natural gas |
US20040182109A1 (en) * | 2002-11-19 | 2004-09-23 | Oakey John Douglas | Nitrogen rejection method and apparatus |
US7059152B2 (en) * | 2002-11-19 | 2006-06-13 | The Boc Group Plc | Nitrogen rejection method and apparatus |
US9052137B2 (en) * | 2009-02-17 | 2015-06-09 | Ortloff Engineers, Ltd. | Hydrocarbon gas processing |
US20110226012A1 (en) * | 2009-02-17 | 2011-09-22 | S.M.E. Products Lp | Hydrocarbon Gas Processing |
US9939195B2 (en) | 2009-02-17 | 2018-04-10 | Ortloff Engineers, Ltd. | Hydrocarbon gas processing including a single equipment item processing assembly |
US9939196B2 (en) | 2009-02-17 | 2018-04-10 | Ortloff Engineers, Ltd. | Hydrocarbon gas processing including a single equipment item processing assembly |
US9933207B2 (en) | 2009-02-17 | 2018-04-03 | Ortloff Engineers, Ltd. | Hydrocarbon gas processing |
US9080811B2 (en) | 2009-02-17 | 2015-07-14 | Ortloff Engineers, Ltd | Hydrocarbon gas processing |
US9021831B2 (en) | 2009-02-17 | 2015-05-05 | Ortloff Engineers, Ltd. | Hydrocarbon gas processing |
US9057558B2 (en) * | 2010-03-31 | 2015-06-16 | Ortloff Engineers, Ltd. | Hydrocarbon gas processing including a single equipment item processing assembly |
US20110232328A1 (en) * | 2010-03-31 | 2011-09-29 | S.M.E. Products Lp | Hydrocarbon Gas Processing |
US20110226014A1 (en) * | 2010-03-31 | 2011-09-22 | S.M.E. Products Lp | Hydrocarbon Gas Processing |
US9068774B2 (en) * | 2010-03-31 | 2015-06-30 | Ortloff Engineers, Ltd. | Hydrocarbon gas processing |
US9074814B2 (en) * | 2010-03-31 | 2015-07-07 | Ortloff Engineers, Ltd. | Hydrocarbon gas processing |
US9052136B2 (en) * | 2010-03-31 | 2015-06-09 | Ortloff Engineers, Ltd. | Hydrocarbon gas processing |
US20110226013A1 (en) * | 2010-03-31 | 2011-09-22 | S.M.E. Products Lp | Hydrocarbon Gas Processing |
US20110226011A1 (en) * | 2010-03-31 | 2011-09-22 | S.M.E. Products Lp | Hydrocarbon Gas Processing |
US20140318177A1 (en) * | 2011-10-06 | 2014-10-30 | Rustam H. Sethna | Integration of a liquefied natural gas liquefier with the production of liquefied natural gas |
US9790147B2 (en) | 2013-09-11 | 2017-10-17 | Ortloff Engineers, Ltd. | Hydrocarbon processing |
US9927171B2 (en) | 2013-09-11 | 2018-03-27 | Ortloff Engineers, Ltd. | Hydrocarbon gas processing |
US10227273B2 (en) | 2013-09-11 | 2019-03-12 | Ortloff Engineers, Ltd. | Hydrocarbon gas processing |
US9783470B2 (en) | 2013-09-11 | 2017-10-10 | Ortloff Engineers, Ltd. | Hydrocarbon gas processing |
US9637428B2 (en) | 2013-09-11 | 2017-05-02 | Ortloff Engineers, Ltd. | Hydrocarbon gas processing |
US10793492B2 (en) | 2013-09-11 | 2020-10-06 | Ortloff Engineers, Ltd. | Hydrocarbon processing |
US20180274854A1 (en) * | 2015-12-18 | 2018-09-27 | Bechtel Hydrocarbon Technology Solution, Inc. | Systems and Methods for Recovering Desired Light Hydrocarbons from Refinery Waste Gas Using a Back-End Turboexpander |
AU2015417433B2 (en) * | 2015-12-18 | 2019-08-22 | Bechtel Hydrocarbon Technology Solutions, Inc. | Systems and methods for recovering desired light hydrocarbons from refinery waste gas using a back-end turboexpander |
RU2703249C1 (en) * | 2015-12-18 | 2019-10-15 | Бектел Гидрокарбон Текнолоджи Солушенз, Инк. | Systems and methods for extracting target light hydrocarbons from gaseous refining wastes using turbine expander in systems end part |
CN108883342A (en) * | 2015-12-18 | 2018-11-23 | 贝克特尔碳氢技术解决方案股份有限公司 | System and method for using rear end turbo-expander to recycle desired light hydrocarbon from refinery flares |
US10215488B2 (en) | 2016-02-11 | 2019-02-26 | Air Products And Chemicals, Inc. | Treatment of nitrogen-rich natural gas streams |
US10533794B2 (en) | 2016-08-26 | 2020-01-14 | Ortloff Engineers, Ltd. | Hydrocarbon gas processing |
US10551118B2 (en) | 2016-08-26 | 2020-02-04 | Ortloff Engineers, Ltd. | Hydrocarbon gas processing |
US10551119B2 (en) | 2016-08-26 | 2020-02-04 | Ortloff Engineers, Ltd. | Hydrocarbon gas processing |
US11428465B2 (en) | 2017-06-01 | 2022-08-30 | Uop Llc | Hydrocarbon gas processing |
US11543180B2 (en) | 2017-06-01 | 2023-01-03 | Uop Llc | Hydrocarbon gas processing |
US11686528B2 (en) | 2019-04-23 | 2023-06-27 | Chart Energy & Chemicals, Inc. | Single column nitrogen rejection unit with side draw heat pump reflux system and method |
Also Published As
Publication number | Publication date |
---|---|
DE2022954A1 (en) | 1971-12-02 |
DE2022954B2 (en) | 1977-09-01 |
JPS4926682B1 (en) | 1974-07-11 |
DE2022954C3 (en) | 1978-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3797261A (en) | Single-stage fractionation of natural gas containing nitrogen | |
US3347055A (en) | Method for recuperating refrigeration | |
RU2215952C2 (en) | Method of separation of pressurized initial multicomponent material flow by distillation | |
US3780534A (en) | Liquefaction of natural gas with product used as absorber purge | |
US3818714A (en) | Process for the liquefaction and subcooling of natural gas | |
JP5015674B2 (en) | LNG-based liquefier capacity enhancement system in air separation process | |
RU2355960C1 (en) | Two-step removal of nitrogen from liquefied natural gas | |
US3210951A (en) | Method for low temperature separation of gaseous mixtures | |
US4372764A (en) | Method of producing gaseous oxygen and a cryogenic plant in which said method can be performed | |
US3721099A (en) | Fractional condensation of natural gas | |
US4715873A (en) | Liquefied gases using an air recycle liquefier | |
US3886758A (en) | Processes for the production of nitrogen and oxygen | |
US3401531A (en) | Heat exchange of compressed nitrogen and liquid oxygen in ammonia synthesis feed gas production | |
US5735142A (en) | Process and installation for producing high pressure oxygen | |
US5509271A (en) | Process and installation for the separation of a gaseous mixture | |
JPH06117753A (en) | High-pressure low-temperature distilling method of air | |
US7464568B2 (en) | Cryogenic distillation method and system for air separation | |
US4331461A (en) | Cryogenic separation of lean and rich gas streams | |
US5428962A (en) | Process and installation for the production of at least one gaseous product under pressure and at least one liquid by distillation of air | |
US5412953A (en) | Process and installation for the production of gaseous oxygen and/or gaseous nitrogen under pressure by distillation of air | |
US4586942A (en) | Process and plant for the cooling of a fluid and in particular the liquefaction of natural gas | |
US4704147A (en) | Dual air pressure cycle to produce low purity oxygen | |
CN106595221A (en) | Oxygen production system and oxygen production method | |
KR20000052974A (en) | Method and device for producing compressed nitrogen | |
MXPA02004856A (en) | Nitrogen rejection method. |