US3795810A - Fluid analyzer - Google Patents

Fluid analyzer Download PDF

Info

Publication number
US3795810A
US3795810A US00309796A US3795810DA US3795810A US 3795810 A US3795810 A US 3795810A US 00309796 A US00309796 A US 00309796A US 3795810D A US3795810D A US 3795810DA US 3795810 A US3795810 A US 3795810A
Authority
US
United States
Prior art keywords
sample
light
chamber
improvement
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00309796A
Inventor
J Conley
D Belden
R Terhune
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fram Corp
Original Assignee
Fram Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fram Corp filed Critical Fram Corp
Application granted granted Critical
Publication of US3795810A publication Critical patent/US3795810A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1826Organic contamination in water
    • G01N33/1833Oil in water

Definitions

  • centration in water featuring a sample chamber through which a liquid sample flows continuously, a source of infra-red light having a frequency at half peak intensity no less than 7,500 Angstroms passing through windows in the sample tube, and a photodetector arranged to receive the light transmitted through the sample and to provide an output signal dependent upon the intensity of the received light.
  • This invention relates to measuring hydrocarbon pollutant (particularly oil) concentration in water.
  • the invention provides an improved optical system.
  • the invention provides for continuous, direct, accurate readout of hydrocarbon concentration, over a wide concentration range, independent of the nature or color of the hydrocarbon, and independent of suspended solids turbidity, with reliable, self-cleaning apparatus.
  • the invention features a sample chamber through which a liquid sample flows continuously, at
  • a source of infra-red light having a frequency at half peak intensity no less than 7,500 Angstroms passing through windows in the sample tube, and a photodetector arranged to receive the light transmitted through the sample and to provide an output signal dependent upon the intensity of the received light.
  • a high speed centrifugal pump is used to disperse the hydrocarbon in the sample and to pump the sample through the chamber, and a flow divertor defines restricted passages upstream of and adjacent the surfaces of the windows to cause cleansing curtains of liquid to flow rapidly over the window surfaces, preventing oil film build-up thereupon.
  • FIG 1 is a semi-schematic, partially broken away dia gram of a treatment system
  • FIG. 2 is an enlarged sectional view through 22 of FIG. 1.
  • the preconditioned stream passes from outlet 28 through inlet 32 into conventional gravity separator 34 which, with the aid of tilted plates 36, allows the free and entrained hydrocarbons to float to the top for removal through outlet 38, while the water, now containing substantially only emulsified hydrocarbon, discharges at the bottom through outlet 40 for passage to inlet 42 of emulsion breaker 44.
  • Emulsion breaker 44 is designed to separate from the water stream any remaining traces of free hydrocarbon, and any emulsified hydrocarbon. It contains in housing 46 an annular cartridge 48 having an inner stage 50 of pleated sheet medium (l-5 micron rating, preferably less than 10 micron, to effectively break the emulsion) between perforated cylindrical shells, including natural and polyester fibers impregnated with melamine or similar resins, the polyester and resins being preferentially wettable by hydrocarbon to provide high wet strength and low pressure drop in the presence of oilwater emulsion, the natural fibers serving to tighten the medium to achieve the needed micron rating; and an outer stage 52 consisting of a polyester batt.
  • pleated sheet medium l-5 micron rating, preferably less than 10 micron, to effectively break the emulsion
  • perforated cylindrical shells including natural and polyester fibers impregnated with melamine or similar resins, the polyester and resins being preferentially wettable by hydrocarbon to provide high wet strength and low pressure drop in
  • the batt is also preferentially oil-wettable, further enhances separation, and removes from the oil droplets any water bubbles surrounding them after the emulsion is broken.
  • Flow through the cartridge is radial from inside to outside. Separated oil is discharged at the top through outlet 54, and water at the bottom through outlet 56.
  • the cartridge is strong enough to withstand cleaning by back-washing through valve 58.
  • Interface controls 60 and 62 continuously sense the emulsion breaker 44, respectively, e.g., employing displacer members which are sensitive to changes in buoyto receive flow passing from inlet 24 to the outer surface of the cartridge, through the cartridge radially to its central passage 26, and then out through outlet 28.
  • Cartridge 20 provides a porous polyester fiber matrix which (due to the preferential affinity of the fibers for ancy. These controls provide output signals to equal percentage throttling valves for adjustment of hydrocarbon and water discharge rates to reverse any changes in interface position.
  • control'60 is connected to valve 64 which controls oil flow through outlet 38, and to valve 66 which controls water flow through outlet 56 and, since the entire system is pressurized, through outlet 40 of separator 34 as well. Should the interface in separator 34 rise toward outlet 38 due to a decrease in hydrocarbon concentration in the incoming stream, control 60 will partially (or fully, if needed) close valve 64, reducing the oil discharge rate, and correspondingly open valve 66, increasing the water discharge rate, both adjustments working to lower the interface and prevent water discharge through oil outlet 38.
  • control 60 Conversely, should the interface drop toward water outlet 40, due to, e.g., a slug of oil in the incoming stream, control 60 will open valve 64 and close valve 66, protecting water outlet 40 from oil discharge. Control 62 acts similarly with respect to valve 66 and valve 68 controlling oil flow rate through outlet 54 of the emulsion breaker. Thus, the system continues effective operation despite wide variation in hydrocarbon concentration in the incoming stream, automatically compensating for that variation.
  • Fluid analyzer 70 continuously samples the water effluent from downstream of valve 66 and returns the sample through line 72 for flow with the rest of the effluent through three-way valve 74, providing a direct readout in parts per million of oil concentration in the stream. In the event oil concentration in the effluent is greater than a first threshold the analyzer actuates valve 74 to recycle the effluent to reservoir 16, while sill continuing to sample; in the event the oil concentration reaches a second threshold the system is shut down.
  • Analyzer 70 includes a 3600 RPM centrifugal pump 80 driven by motor 82, and draws a sample at 25 gallons/minute and highly disperses any oil throughout the sample.
  • the sample is pumped through tube 84 (square cross-section) having opposing windows 86 and 88 through which shines a light beam from bulb 90 to photo-diode 29.
  • Infra-red filter 94 limits the light passing through the sample so that the wavelength at half peakdifehsityis prefa'ab ly '56 less than 7500A:rigsirens (the preferred filter having a peak 028000 Angstrorns with a half pear bandwidth of 375 Angstroms); as a result the light intensity sensed by diode 94 is largely independent of turbidity due to solids suspended in the water, thus providing a reading accurately reflecting hydrocarbon concentration, independent of the nature or color of the hydrocarbon.
  • tapered flow divertor 96 defines restricted passages 98 and 100 respectively below the windows, dividing the sample stream in two, and forcing all the liquid to flow through the passages. The resulting fast moving curtains of liquid flowing past the windows prevent accumulation of oil film thereon.
  • apparatus for measuring hydrocarbon pollutant concentration in water comprising a sample chamber through which asample flows continuously, a light source, and a photodetector for measuring the intensity of light from the source transmitted through the sample in the chamber to provide an output signal dependent upon that intensity, that improvement comprising means for effectively limiting the light reaching said detector so that the wavelength at half peak intensity is no less than 7,500 Angstroms, and wherein said chamber is a tube with opposing windows for transmitting said light and with flow divertor means therein defining with the walls of said tube restricted passages upstream of and adjacent the surfaces of said windows for causing cleansing curtains of liquid to flow, rapidly over said surfaces for preventing oil film build-up thereupon.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Apparatus for measuring hydrocarbon pollutant concentration in water featuring a sample chamber through which a liquid sample flows continuously, a source of infra-red light having a frequency at half peak intensity no less than 7,500 Angstroms passing through windows in the sample tube, and a photodetector arranged to receive the light transmitted through the sample and to provide an output signal dependent upon the intensity of the received light.

Description

[ Mar. 5, 1974 United States Patent [1 1 Conley et a1.
2,998,520 8/1961 Lanford 250/435 R 3,510,648 3,581,085 3,710,111
[ FLUID ANALYZER 5/1970 Legcr......
5/1971 Barrett 250 435 R 1 1973 Collura 250 43 s R [75] Inventors: James D. Conley, Tulsa; Donald E.
Belden, Sand Springs; Ralph D. Terhune, Tulsa, all of Okla.
[73] Assignee: Fram Corporation, East Providence,
Primary ExaminerArchie R. Borchelt Assistant Examiner-C. E. Church Nov. 27, 1972 21 'Appl. No.: 309,796
[ ABSTRACT aratus for measuring hydrocarbon pollutant con- [22] Filed:
centration in water featuring a sample chamber through which a liquid sample flows continuously, a source of infra-red light having a frequency at half peak intensity no less than 7,500 Angstroms passing through windows in the sample tube, and a photodetector arranged to receive the light transmitted through the sample and to provide an output signal dependent upon the intensity of the received light.
4 Claims, 2 Drawing Figures 7 250/339, 250/343 Int. Cl. G01n 21/26 [58] Field of 250 435 R.
[56] References Cited UNITED STATES PATENTS 5/1960 Schmidt 9/1970 McCurdy...............
FLUID ANALYZER BACKGROUND OF THE INVENTION This invention relates to measuring hydrocarbon pollutant (particularly oil) concentration in water.
Generally speaking such measurements have in the past been made by chemical, mechanical, optical, and other techniques. The invention provides an improved optical system.
SUMMARY OF THE INVENTION The invention provides for continuous, direct, accurate readout of hydrocarbon concentration, over a wide concentration range, independent of the nature or color of the hydrocarbon, and independent of suspended solids turbidity, with reliable, self-cleaning apparatus.
In general the invention features a sample chamber through which a liquid sample flows continuously, at
source of infra-red light having a frequency at half peak intensity no less than 7,500 Angstroms passing through windows in the sample tube, and a photodetector arranged to receive the light transmitted through the sample and to provide an output signal dependent upon the intensity of the received light. In preferred embodiments a high speed centrifugal pump is used to disperse the hydrocarbon in the sample and to pump the sample through the chamber, and a flow divertor defines restricted passages upstream of and adjacent the surfaces of the windows to cause cleansing curtains of liquid to flow rapidly over the window surfaces, preventing oil film build-up thereupon.
Other advantages and features of the invention will be apparent from thedescription and drawings herein of a preferred embodiment thereof.
BRIEF DESCRIPTION OF THE DRAWINGS FIG 1 is a semi-schematic, partially broken away dia gram of a treatment system; and
FIG. 2 is an enlarged sectional view through 22 of FIG. 1.
DESCRIPTION OF THE PREFERRED EMBODIMENT rated centertube, or (as shown) a pleated sheet medium.
The preconditioned stream passes from outlet 28 through inlet 32 into conventional gravity separator 34 which, with the aid of tilted plates 36, allows the free and entrained hydrocarbons to float to the top for removal through outlet 38, while the water, now containing substantially only emulsified hydrocarbon, discharges at the bottom through outlet 40 for passage to inlet 42 of emulsion breaker 44.
Emulsion breaker 44 is designed to separate from the water stream any remaining traces of free hydrocarbon, and any emulsified hydrocarbon. It contains in housing 46 an annular cartridge 48 having an inner stage 50 of pleated sheet medium (l-5 micron rating, preferably less than 10 micron, to effectively break the emulsion) between perforated cylindrical shells, including natural and polyester fibers impregnated with melamine or similar resins, the polyester and resins being preferentially wettable by hydrocarbon to provide high wet strength and low pressure drop in the presence of oilwater emulsion, the natural fibers serving to tighten the medium to achieve the needed micron rating; and an outer stage 52 consisting of a polyester batt. The batt is also preferentially oil-wettable, further enhances separation, and removes from the oil droplets any water bubbles surrounding them after the emulsion is broken. Flow through the cartridge is radial from inside to outside. Separated oil is discharged at the top through outlet 54, and water at the bottom through outlet 56. The cartridge is strong enough to withstand cleaning by back-washing through valve 58.
Interface controls 60 and 62 continuously sense the emulsion breaker 44, respectively, e.g., employing displacer members which are sensitive to changes in buoyto receive flow passing from inlet 24 to the outer surface of the cartridge, through the cartridge radially to its central passage 26, and then out through outlet 28.
Cartridge 20 provides a porous polyester fiber matrix which (due to the preferential affinity of the fibers for ancy. These controls provide output signals to equal percentage throttling valves for adjustment of hydrocarbon and water discharge rates to reverse any changes in interface position. Thus, control'60 is connected to valve 64 which controls oil flow through outlet 38, and to valve 66 which controls water flow through outlet 56 and, since the entire system is pressurized, through outlet 40 of separator 34 as well. Should the interface in separator 34 rise toward outlet 38 due to a decrease in hydrocarbon concentration in the incoming stream, control 60 will partially (or fully, if needed) close valve 64, reducing the oil discharge rate, and correspondingly open valve 66, increasing the water discharge rate, both adjustments working to lower the interface and prevent water discharge through oil outlet 38. Conversely, should the interface drop toward water outlet 40, due to, e.g., a slug of oil in the incoming stream, control 60 will open valve 64 and close valve 66, protecting water outlet 40 from oil discharge. Control 62 acts similarly with respect to valve 66 and valve 68 controlling oil flow rate through outlet 54 of the emulsion breaker. Thus, the system continues effective operation despite wide variation in hydrocarbon concentration in the incoming stream, automatically compensating for that variation.
Fluid analyzer 70 continuously samples the water effluent from downstream of valve 66 and returns the sample through line 72 for flow with the rest of the effluent through three-way valve 74, providing a direct readout in parts per million of oil concentration in the stream. In the event oil concentration in the effluent is greater than a first threshold the analyzer actuates valve 74 to recycle the effluent to reservoir 16, while sill continuing to sample; in the event the oil concentration reaches a second threshold the system is shut down.
Analyzer 70 includes a 3600 RPM centrifugal pump 80 driven by motor 82, and draws a sample at 25 gallons/minute and highly disperses any oil throughout the sample. The sample is pumped through tube 84 (square cross-section) having opposing windows 86 and 88 through which shines a light beam from bulb 90 to photo-diode 29. Infra-red filter 94 limits the light passing through the sample so that the wavelength at half peakdifehsityis prefa'ab ly '56 less than 7500A:rigsirens (the preferred filter having a peak 028000 Angstrorns with a half pear bandwidth of 375 Angstroms); as a result the light intensity sensed by diode 94 is largely independent of turbidity due to solids suspended in the water, thus providing a reading accurately reflecting hydrocarbon concentration, independent of the nature or color of the hydrocarbon.
To avoid clouding of windows 86 and 88, tapered flow divertor 96 defines restricted passages 98 and 100 respectively below the windows, dividing the sample stream in two, and forcing all the liquid to flow through the passages. The resulting fast moving curtains of liquid flowing past the windows prevent accumulation of oil film thereon.
Shut-off valves 102 and sample valves 104 are provided where shown.
The details of the emulsion breaker disclosed herein are the joint invention of Ralph D. Terhune and James C. Duke.
Other embodiments are within the following claims.
We claim:
1. In apparatus for measuring hydrocarbon pollutant concentration in water and comprising a sample chamber through which asample flows continuously, a light source, and a photodetector for measuring the intensity of light from the source transmitted through the sample in the chamber to provide an output signal dependent upon that intensity, that improvement comprising means for effectively limiting the light reaching said detector so that the wavelength at half peak intensity is no less than 7,500 Angstroms, and wherein said chamber is a tube with opposing windows for transmitting said light and with flow divertor means therein defining with the walls of said tube restricted passages upstream of and adjacent the surfaces of said windows for causing cleansing curtains of liquid to flow, rapidly over said surfaces for preventing oil film build-up thereupon.
2. The improvement of claim 1 wherein said light reaching said detector has a peak intensity wavelength of 8000 Angstroms and a half peak bandwidth of 375 Angstroms.
3. The improvement of claim 1 further comprising a centrifugal pump for dispersing hydrocarbon throughout said sample and then pumping said sample through said chamber.
4. The improvement of claim 1 wherein said divertor contacts said walls between said passages to divide said sample into two streams flowing through said passages.

Claims (4)

1. In apparatus for measuring hydrocarbon pollutant concentration in water and comprising a sample chamber through which a sample flows continuously, a light source, and a photodetector for measuring the intensity of light from the source transmitted through the sample in the chamber to provide an output signal dependent upon that intensity, that improvement comprising means for effectively limiting the light reaching said detector so that the wavelength at half peak intensity is no less than 7,500 Angstroms, and wherein said chamber is a tube with opposing windows for transmitting said light and with flow divertor means therein defining with the walls of said tube restricted passages upstream of and adjacent the surfaces of said windows for causing cleansing curtains of liquid to flow rapidly over said surfaces for preventing oil film build-up thereupon.
2. The improvement of claim 1 wherein said light reaching said detector has a peak intensity wavelength of 8000 Angstroms and a half peak bandwidth of 375 Angstroms.
3. The improvement of claim 1 further comprising a centrifugal pump for dispersing hydrocarbon throughout said sample and then pumping said sample through said chamber.
4. The improvement of claim 1 wherein said divertor contacts said walls between said passages to divide said sample into two streams flowing through said passages.
US00309796A 1972-11-27 1972-11-27 Fluid analyzer Expired - Lifetime US3795810A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US30979672A 1972-11-27 1972-11-27

Publications (1)

Publication Number Publication Date
US3795810A true US3795810A (en) 1974-03-05

Family

ID=23199705

Family Applications (1)

Application Number Title Priority Date Filing Date
US00309796A Expired - Lifetime US3795810A (en) 1972-11-27 1972-11-27 Fluid analyzer

Country Status (1)

Country Link
US (1) US3795810A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4122817A (en) * 1975-05-01 1978-10-31 Trw Inc. Internal combustion valve having an iron based hard-facing alloy contact surface
US4707603A (en) * 1984-03-23 1987-11-17 Sahkoliikkeiden Oy Procedure for measuring contents of hydrocarbons in liquids containing such
US5581086A (en) * 1995-08-02 1996-12-03 S.C.R. Engineers Ltd. Infrared light chamber for fluid measurement
US9322779B2 (en) * 2013-10-16 2016-04-26 Baker Hughes Incorporated Methods of measuring the fouling tendency of hydrocarbon fluids
US9404906B2 (en) 2013-12-19 2016-08-02 Chevron U.S.A. Inc. Underwater vehicle and sensor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2938117A (en) * 1956-03-23 1960-05-24 Petroleum Service And Res Corp Analysis determinative of gas or oil producing strata
US2998520A (en) * 1958-07-25 1961-08-29 Gen Dynamics Corp Fluid flow regulator
US3510648A (en) * 1967-04-25 1970-05-05 Honeywell Inc Apparatus employing ultraviolet radiation for measuring the amount of fluorescent material in a continuously flowing fluid stream
US3526462A (en) * 1967-08-17 1970-09-01 Univ Delaware Radiant energy absorption cell with a transversely movable wedge-shaped spacer block therein
US3581085A (en) * 1967-05-26 1971-05-25 Sonja I Barrett Ultraviolet fluorescent analyzer for monitoring of oil in discharge ballast
US3710111A (en) * 1970-12-28 1973-01-09 Dreyfus E Dynamically calibrated oil content meter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2938117A (en) * 1956-03-23 1960-05-24 Petroleum Service And Res Corp Analysis determinative of gas or oil producing strata
US2998520A (en) * 1958-07-25 1961-08-29 Gen Dynamics Corp Fluid flow regulator
US3510648A (en) * 1967-04-25 1970-05-05 Honeywell Inc Apparatus employing ultraviolet radiation for measuring the amount of fluorescent material in a continuously flowing fluid stream
US3581085A (en) * 1967-05-26 1971-05-25 Sonja I Barrett Ultraviolet fluorescent analyzer for monitoring of oil in discharge ballast
US3526462A (en) * 1967-08-17 1970-09-01 Univ Delaware Radiant energy absorption cell with a transversely movable wedge-shaped spacer block therein
US3710111A (en) * 1970-12-28 1973-01-09 Dreyfus E Dynamically calibrated oil content meter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4122817A (en) * 1975-05-01 1978-10-31 Trw Inc. Internal combustion valve having an iron based hard-facing alloy contact surface
US4707603A (en) * 1984-03-23 1987-11-17 Sahkoliikkeiden Oy Procedure for measuring contents of hydrocarbons in liquids containing such
US5581086A (en) * 1995-08-02 1996-12-03 S.C.R. Engineers Ltd. Infrared light chamber for fluid measurement
US9322779B2 (en) * 2013-10-16 2016-04-26 Baker Hughes Incorporated Methods of measuring the fouling tendency of hydrocarbon fluids
US9404906B2 (en) 2013-12-19 2016-08-02 Chevron U.S.A. Inc. Underwater vehicle and sensor

Similar Documents

Publication Publication Date Title
US3878094A (en) System for separating hydrocarbons from water
US3865732A (en) Emulsion breaker
US4995974A (en) Separator element
US4184952A (en) Measurement of BSW in crude oil streams
GB752029A (en) Device for removing free water and solid contaminant from liquid hydrocarbons
US3795810A (en) Fluid analyzer
US3199676A (en) Coalescing and filtering apparatus
US4190538A (en) Pump seal flush
WO2009148817A2 (en) Filtration testing system
US5769539A (en) Backflush system for a filter membrane located upstream of a hydrocarbon analyzer apparatus
JPS6230503A (en) Separation chamber for pressure filtering and reverse osmosis
US4622143A (en) Double-ended hollow fiber permeator
US3581085A (en) Ultraviolet fluorescent analyzer for monitoring of oil in discharge ballast
US4010891A (en) Vapor removal apparatus for oil/water separator
US3189180A (en) Cyclone-centrifuge separator
CA1328229C (en) Apparatus for filtering a reagent
RU2324780C2 (en) Separation device
US3485260A (en) Fluid drainage
US6248243B1 (en) Solids monitoring filter meter
KR840009137A (en) Apparatus and method for measuring hydrocarbon content in liquids
US2790560A (en) Liquid separator
KR20220009398A (en) Continuous Phase Separation System and Apparatus by Membrane Suitable for Low Flow Flow
US2976761A (en) Apparatus for use in analyzing fluids
SU1343312A1 (en) Nephelometer for liquid media
SU869796A1 (en) Apparatus for cleaning gas being transported