US3795810A - Fluid analyzer - Google Patents
Fluid analyzer Download PDFInfo
- Publication number
- US3795810A US3795810A US00309796A US3795810DA US3795810A US 3795810 A US3795810 A US 3795810A US 00309796 A US00309796 A US 00309796A US 3795810D A US3795810D A US 3795810DA US 3795810 A US3795810 A US 3795810A
- Authority
- US
- United States
- Prior art keywords
- sample
- light
- chamber
- improvement
- intensity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000012530 fluid Substances 0.000 title description 4
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 20
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 20
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 17
- 239000007788 liquid Substances 0.000 claims abstract description 8
- 230000001419 dependent effect Effects 0.000 claims abstract description 5
- 239000003344 environmental pollutant Substances 0.000 claims abstract description 5
- 231100000719 pollutant Toxicity 0.000 claims abstract description 5
- 238000011144 upstream manufacturing Methods 0.000 claims description 3
- 238000005086 pumping Methods 0.000 claims description 2
- 239000000839 emulsion Substances 0.000 description 7
- 239000000835 fiber Substances 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- RNAMYOYQYRYFQY-UHFFFAOYSA-N 2-(4,4-difluoropiperidin-1-yl)-6-methoxy-n-(1-propan-2-ylpiperidin-4-yl)-7-(3-pyrrolidin-1-ylpropoxy)quinazolin-4-amine Chemical compound N1=C(N2CCC(F)(F)CC2)N=C2C=C(OCCCN3CCCC3)C(OC)=CC2=C1NC1CCN(C(C)C)CC1 RNAMYOYQYRYFQY-UHFFFAOYSA-N 0.000 description 1
- 241001527902 Aratus Species 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 235000014443 Pyrus communis Nutrition 0.000 description 1
- 241000364021 Tulsa Species 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000011001 backwashing Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000003760 hair shine Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002569 water oil cream Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/18—Water
- G01N33/1826—Organic contamination in water
- G01N33/1833—Oil in water
Definitions
- centration in water featuring a sample chamber through which a liquid sample flows continuously, a source of infra-red light having a frequency at half peak intensity no less than 7,500 Angstroms passing through windows in the sample tube, and a photodetector arranged to receive the light transmitted through the sample and to provide an output signal dependent upon the intensity of the received light.
- This invention relates to measuring hydrocarbon pollutant (particularly oil) concentration in water.
- the invention provides an improved optical system.
- the invention provides for continuous, direct, accurate readout of hydrocarbon concentration, over a wide concentration range, independent of the nature or color of the hydrocarbon, and independent of suspended solids turbidity, with reliable, self-cleaning apparatus.
- the invention features a sample chamber through which a liquid sample flows continuously, at
- a source of infra-red light having a frequency at half peak intensity no less than 7,500 Angstroms passing through windows in the sample tube, and a photodetector arranged to receive the light transmitted through the sample and to provide an output signal dependent upon the intensity of the received light.
- a high speed centrifugal pump is used to disperse the hydrocarbon in the sample and to pump the sample through the chamber, and a flow divertor defines restricted passages upstream of and adjacent the surfaces of the windows to cause cleansing curtains of liquid to flow rapidly over the window surfaces, preventing oil film build-up thereupon.
- FIG 1 is a semi-schematic, partially broken away dia gram of a treatment system
- FIG. 2 is an enlarged sectional view through 22 of FIG. 1.
- the preconditioned stream passes from outlet 28 through inlet 32 into conventional gravity separator 34 which, with the aid of tilted plates 36, allows the free and entrained hydrocarbons to float to the top for removal through outlet 38, while the water, now containing substantially only emulsified hydrocarbon, discharges at the bottom through outlet 40 for passage to inlet 42 of emulsion breaker 44.
- Emulsion breaker 44 is designed to separate from the water stream any remaining traces of free hydrocarbon, and any emulsified hydrocarbon. It contains in housing 46 an annular cartridge 48 having an inner stage 50 of pleated sheet medium (l-5 micron rating, preferably less than 10 micron, to effectively break the emulsion) between perforated cylindrical shells, including natural and polyester fibers impregnated with melamine or similar resins, the polyester and resins being preferentially wettable by hydrocarbon to provide high wet strength and low pressure drop in the presence of oilwater emulsion, the natural fibers serving to tighten the medium to achieve the needed micron rating; and an outer stage 52 consisting of a polyester batt.
- pleated sheet medium l-5 micron rating, preferably less than 10 micron, to effectively break the emulsion
- perforated cylindrical shells including natural and polyester fibers impregnated with melamine or similar resins, the polyester and resins being preferentially wettable by hydrocarbon to provide high wet strength and low pressure drop in
- the batt is also preferentially oil-wettable, further enhances separation, and removes from the oil droplets any water bubbles surrounding them after the emulsion is broken.
- Flow through the cartridge is radial from inside to outside. Separated oil is discharged at the top through outlet 54, and water at the bottom through outlet 56.
- the cartridge is strong enough to withstand cleaning by back-washing through valve 58.
- Interface controls 60 and 62 continuously sense the emulsion breaker 44, respectively, e.g., employing displacer members which are sensitive to changes in buoyto receive flow passing from inlet 24 to the outer surface of the cartridge, through the cartridge radially to its central passage 26, and then out through outlet 28.
- Cartridge 20 provides a porous polyester fiber matrix which (due to the preferential affinity of the fibers for ancy. These controls provide output signals to equal percentage throttling valves for adjustment of hydrocarbon and water discharge rates to reverse any changes in interface position.
- control'60 is connected to valve 64 which controls oil flow through outlet 38, and to valve 66 which controls water flow through outlet 56 and, since the entire system is pressurized, through outlet 40 of separator 34 as well. Should the interface in separator 34 rise toward outlet 38 due to a decrease in hydrocarbon concentration in the incoming stream, control 60 will partially (or fully, if needed) close valve 64, reducing the oil discharge rate, and correspondingly open valve 66, increasing the water discharge rate, both adjustments working to lower the interface and prevent water discharge through oil outlet 38.
- control 60 Conversely, should the interface drop toward water outlet 40, due to, e.g., a slug of oil in the incoming stream, control 60 will open valve 64 and close valve 66, protecting water outlet 40 from oil discharge. Control 62 acts similarly with respect to valve 66 and valve 68 controlling oil flow rate through outlet 54 of the emulsion breaker. Thus, the system continues effective operation despite wide variation in hydrocarbon concentration in the incoming stream, automatically compensating for that variation.
- Fluid analyzer 70 continuously samples the water effluent from downstream of valve 66 and returns the sample through line 72 for flow with the rest of the effluent through three-way valve 74, providing a direct readout in parts per million of oil concentration in the stream. In the event oil concentration in the effluent is greater than a first threshold the analyzer actuates valve 74 to recycle the effluent to reservoir 16, while sill continuing to sample; in the event the oil concentration reaches a second threshold the system is shut down.
- Analyzer 70 includes a 3600 RPM centrifugal pump 80 driven by motor 82, and draws a sample at 25 gallons/minute and highly disperses any oil throughout the sample.
- the sample is pumped through tube 84 (square cross-section) having opposing windows 86 and 88 through which shines a light beam from bulb 90 to photo-diode 29.
- Infra-red filter 94 limits the light passing through the sample so that the wavelength at half peakdifehsityis prefa'ab ly '56 less than 7500A:rigsirens (the preferred filter having a peak 028000 Angstrorns with a half pear bandwidth of 375 Angstroms); as a result the light intensity sensed by diode 94 is largely independent of turbidity due to solids suspended in the water, thus providing a reading accurately reflecting hydrocarbon concentration, independent of the nature or color of the hydrocarbon.
- tapered flow divertor 96 defines restricted passages 98 and 100 respectively below the windows, dividing the sample stream in two, and forcing all the liquid to flow through the passages. The resulting fast moving curtains of liquid flowing past the windows prevent accumulation of oil film thereon.
- apparatus for measuring hydrocarbon pollutant concentration in water comprising a sample chamber through which asample flows continuously, a light source, and a photodetector for measuring the intensity of light from the source transmitted through the sample in the chamber to provide an output signal dependent upon that intensity, that improvement comprising means for effectively limiting the light reaching said detector so that the wavelength at half peak intensity is no less than 7,500 Angstroms, and wherein said chamber is a tube with opposing windows for transmitting said light and with flow divertor means therein defining with the walls of said tube restricted passages upstream of and adjacent the surfaces of said windows for causing cleansing curtains of liquid to flow, rapidly over said surfaces for preventing oil film build-up thereupon.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Apparatus for measuring hydrocarbon pollutant concentration in water featuring a sample chamber through which a liquid sample flows continuously, a source of infra-red light having a frequency at half peak intensity no less than 7,500 Angstroms passing through windows in the sample tube, and a photodetector arranged to receive the light transmitted through the sample and to provide an output signal dependent upon the intensity of the received light.
Description
[ Mar. 5, 1974 United States Patent [1 1 Conley et a1.
2,998,520 8/1961 Lanford 250/435 R 3,510,648 3,581,085 3,710,111
[ FLUID ANALYZER 5/1970 Legcr......
5/1971 Barrett 250 435 R 1 1973 Collura 250 43 s R [75] Inventors: James D. Conley, Tulsa; Donald E.
Belden, Sand Springs; Ralph D. Terhune, Tulsa, all of Okla.
[73] Assignee: Fram Corporation, East Providence,
Primary ExaminerArchie R. Borchelt Assistant Examiner-C. E. Church Nov. 27, 1972 21 'Appl. No.: 309,796
[ ABSTRACT aratus for measuring hydrocarbon pollutant con- [22] Filed:
centration in water featuring a sample chamber through which a liquid sample flows continuously, a source of infra-red light having a frequency at half peak intensity no less than 7,500 Angstroms passing through windows in the sample tube, and a photodetector arranged to receive the light transmitted through the sample and to provide an output signal dependent upon the intensity of the received light.
4 Claims, 2 Drawing Figures 7 250/339, 250/343 Int. Cl. G01n 21/26 [58] Field of 250 435 R.
[56] References Cited UNITED STATES PATENTS 5/1960 Schmidt 9/1970 McCurdy...............
FLUID ANALYZER BACKGROUND OF THE INVENTION This invention relates to measuring hydrocarbon pollutant (particularly oil) concentration in water.
Generally speaking such measurements have in the past been made by chemical, mechanical, optical, and other techniques. The invention provides an improved optical system.
SUMMARY OF THE INVENTION The invention provides for continuous, direct, accurate readout of hydrocarbon concentration, over a wide concentration range, independent of the nature or color of the hydrocarbon, and independent of suspended solids turbidity, with reliable, self-cleaning apparatus.
In general the invention features a sample chamber through which a liquid sample flows continuously, at
source of infra-red light having a frequency at half peak intensity no less than 7,500 Angstroms passing through windows in the sample tube, and a photodetector arranged to receive the light transmitted through the sample and to provide an output signal dependent upon the intensity of the received light. In preferred embodiments a high speed centrifugal pump is used to disperse the hydrocarbon in the sample and to pump the sample through the chamber, and a flow divertor defines restricted passages upstream of and adjacent the surfaces of the windows to cause cleansing curtains of liquid to flow rapidly over the window surfaces, preventing oil film build-up thereupon.
Other advantages and features of the invention will be apparent from thedescription and drawings herein of a preferred embodiment thereof.
BRIEF DESCRIPTION OF THE DRAWINGS FIG 1 is a semi-schematic, partially broken away dia gram of a treatment system; and
FIG. 2 is an enlarged sectional view through 22 of FIG. 1.
DESCRIPTION OF THE PREFERRED EMBODIMENT rated centertube, or (as shown) a pleated sheet medium.
The preconditioned stream passes from outlet 28 through inlet 32 into conventional gravity separator 34 which, with the aid of tilted plates 36, allows the free and entrained hydrocarbons to float to the top for removal through outlet 38, while the water, now containing substantially only emulsified hydrocarbon, discharges at the bottom through outlet 40 for passage to inlet 42 of emulsion breaker 44.
Cartridge 20 provides a porous polyester fiber matrix which (due to the preferential affinity of the fibers for ancy. These controls provide output signals to equal percentage throttling valves for adjustment of hydrocarbon and water discharge rates to reverse any changes in interface position. Thus, control'60 is connected to valve 64 which controls oil flow through outlet 38, and to valve 66 which controls water flow through outlet 56 and, since the entire system is pressurized, through outlet 40 of separator 34 as well. Should the interface in separator 34 rise toward outlet 38 due to a decrease in hydrocarbon concentration in the incoming stream, control 60 will partially (or fully, if needed) close valve 64, reducing the oil discharge rate, and correspondingly open valve 66, increasing the water discharge rate, both adjustments working to lower the interface and prevent water discharge through oil outlet 38. Conversely, should the interface drop toward water outlet 40, due to, e.g., a slug of oil in the incoming stream, control 60 will open valve 64 and close valve 66, protecting water outlet 40 from oil discharge. Control 62 acts similarly with respect to valve 66 and valve 68 controlling oil flow rate through outlet 54 of the emulsion breaker. Thus, the system continues effective operation despite wide variation in hydrocarbon concentration in the incoming stream, automatically compensating for that variation.
Analyzer 70 includes a 3600 RPM centrifugal pump 80 driven by motor 82, and draws a sample at 25 gallons/minute and highly disperses any oil throughout the sample. The sample is pumped through tube 84 (square cross-section) having opposing windows 86 and 88 through which shines a light beam from bulb 90 to photo-diode 29. Infra-red filter 94 limits the light passing through the sample so that the wavelength at half peakdifehsityis prefa'ab ly '56 less than 7500A:rigsirens (the preferred filter having a peak 028000 Angstrorns with a half pear bandwidth of 375 Angstroms); as a result the light intensity sensed by diode 94 is largely independent of turbidity due to solids suspended in the water, thus providing a reading accurately reflecting hydrocarbon concentration, independent of the nature or color of the hydrocarbon.
To avoid clouding of windows 86 and 88, tapered flow divertor 96 defines restricted passages 98 and 100 respectively below the windows, dividing the sample stream in two, and forcing all the liquid to flow through the passages. The resulting fast moving curtains of liquid flowing past the windows prevent accumulation of oil film thereon.
Shut-off valves 102 and sample valves 104 are provided where shown.
The details of the emulsion breaker disclosed herein are the joint invention of Ralph D. Terhune and James C. Duke.
Other embodiments are within the following claims.
We claim:
1. In apparatus for measuring hydrocarbon pollutant concentration in water and comprising a sample chamber through which asample flows continuously, a light source, and a photodetector for measuring the intensity of light from the source transmitted through the sample in the chamber to provide an output signal dependent upon that intensity, that improvement comprising means for effectively limiting the light reaching said detector so that the wavelength at half peak intensity is no less than 7,500 Angstroms, and wherein said chamber is a tube with opposing windows for transmitting said light and with flow divertor means therein defining with the walls of said tube restricted passages upstream of and adjacent the surfaces of said windows for causing cleansing curtains of liquid to flow, rapidly over said surfaces for preventing oil film build-up thereupon.
2. The improvement of claim 1 wherein said light reaching said detector has a peak intensity wavelength of 8000 Angstroms and a half peak bandwidth of 375 Angstroms.
3. The improvement of claim 1 further comprising a centrifugal pump for dispersing hydrocarbon throughout said sample and then pumping said sample through said chamber.
4. The improvement of claim 1 wherein said divertor contacts said walls between said passages to divide said sample into two streams flowing through said passages.
Claims (4)
1. In apparatus for measuring hydrocarbon pollutant concentration in water and comprising a sample chamber through which a sample flows continuously, a light source, and a photodetector for measuring the intensity of light from the source transmitted through the sample in the chamber to provide an output signal dependent upon that intensity, that improvement comprising means for effectively limiting the light reaching said detector so that the wavelength at half peak intensity is no less than 7,500 Angstroms, and wherein said chamber is a tube with opposing windows for transmitting said light and with flow divertor means therein defining with the walls of said tube restricted passages upstream of and adjacent the surfaces of said windows for causing cleansing curtains of liquid to flow rapidly over said surfaces for preventing oil film build-up thereupon.
2. The improvement of claim 1 wherein said light reaching said detector has a peak intensity wavelength of 8000 Angstroms and a half peak bandwidth of 375 Angstroms.
3. The improvement of claim 1 further comprising a centrifugal pump for dispersing hydrocarbon throughout said sample and then pumping said sample through said chamber.
4. The improvement of claim 1 wherein said divertor contacts said walls between said passages to divide said sample into two streams flowing through said passages.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US30979672A | 1972-11-27 | 1972-11-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3795810A true US3795810A (en) | 1974-03-05 |
Family
ID=23199705
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00309796A Expired - Lifetime US3795810A (en) | 1972-11-27 | 1972-11-27 | Fluid analyzer |
Country Status (1)
Country | Link |
---|---|
US (1) | US3795810A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4122817A (en) * | 1975-05-01 | 1978-10-31 | Trw Inc. | Internal combustion valve having an iron based hard-facing alloy contact surface |
US4707603A (en) * | 1984-03-23 | 1987-11-17 | Sahkoliikkeiden Oy | Procedure for measuring contents of hydrocarbons in liquids containing such |
US5581086A (en) * | 1995-08-02 | 1996-12-03 | S.C.R. Engineers Ltd. | Infrared light chamber for fluid measurement |
US9322779B2 (en) * | 2013-10-16 | 2016-04-26 | Baker Hughes Incorporated | Methods of measuring the fouling tendency of hydrocarbon fluids |
US9404906B2 (en) | 2013-12-19 | 2016-08-02 | Chevron U.S.A. Inc. | Underwater vehicle and sensor |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2938117A (en) * | 1956-03-23 | 1960-05-24 | Petroleum Service And Res Corp | Analysis determinative of gas or oil producing strata |
US2998520A (en) * | 1958-07-25 | 1961-08-29 | Gen Dynamics Corp | Fluid flow regulator |
US3510648A (en) * | 1967-04-25 | 1970-05-05 | Honeywell Inc | Apparatus employing ultraviolet radiation for measuring the amount of fluorescent material in a continuously flowing fluid stream |
US3526462A (en) * | 1967-08-17 | 1970-09-01 | Univ Delaware | Radiant energy absorption cell with a transversely movable wedge-shaped spacer block therein |
US3581085A (en) * | 1967-05-26 | 1971-05-25 | Sonja I Barrett | Ultraviolet fluorescent analyzer for monitoring of oil in discharge ballast |
US3710111A (en) * | 1970-12-28 | 1973-01-09 | Dreyfus E | Dynamically calibrated oil content meter |
-
1972
- 1972-11-27 US US00309796A patent/US3795810A/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2938117A (en) * | 1956-03-23 | 1960-05-24 | Petroleum Service And Res Corp | Analysis determinative of gas or oil producing strata |
US2998520A (en) * | 1958-07-25 | 1961-08-29 | Gen Dynamics Corp | Fluid flow regulator |
US3510648A (en) * | 1967-04-25 | 1970-05-05 | Honeywell Inc | Apparatus employing ultraviolet radiation for measuring the amount of fluorescent material in a continuously flowing fluid stream |
US3581085A (en) * | 1967-05-26 | 1971-05-25 | Sonja I Barrett | Ultraviolet fluorescent analyzer for monitoring of oil in discharge ballast |
US3526462A (en) * | 1967-08-17 | 1970-09-01 | Univ Delaware | Radiant energy absorption cell with a transversely movable wedge-shaped spacer block therein |
US3710111A (en) * | 1970-12-28 | 1973-01-09 | Dreyfus E | Dynamically calibrated oil content meter |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4122817A (en) * | 1975-05-01 | 1978-10-31 | Trw Inc. | Internal combustion valve having an iron based hard-facing alloy contact surface |
US4707603A (en) * | 1984-03-23 | 1987-11-17 | Sahkoliikkeiden Oy | Procedure for measuring contents of hydrocarbons in liquids containing such |
US5581086A (en) * | 1995-08-02 | 1996-12-03 | S.C.R. Engineers Ltd. | Infrared light chamber for fluid measurement |
US9322779B2 (en) * | 2013-10-16 | 2016-04-26 | Baker Hughes Incorporated | Methods of measuring the fouling tendency of hydrocarbon fluids |
US9404906B2 (en) | 2013-12-19 | 2016-08-02 | Chevron U.S.A. Inc. | Underwater vehicle and sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3878094A (en) | System for separating hydrocarbons from water | |
US3865732A (en) | Emulsion breaker | |
US4995974A (en) | Separator element | |
US4184952A (en) | Measurement of BSW in crude oil streams | |
GB752029A (en) | Device for removing free water and solid contaminant from liquid hydrocarbons | |
US3795810A (en) | Fluid analyzer | |
US3199676A (en) | Coalescing and filtering apparatus | |
US4190538A (en) | Pump seal flush | |
WO2009148817A2 (en) | Filtration testing system | |
US5769539A (en) | Backflush system for a filter membrane located upstream of a hydrocarbon analyzer apparatus | |
JPS6230503A (en) | Separation chamber for pressure filtering and reverse osmosis | |
US4622143A (en) | Double-ended hollow fiber permeator | |
US3581085A (en) | Ultraviolet fluorescent analyzer for monitoring of oil in discharge ballast | |
US4010891A (en) | Vapor removal apparatus for oil/water separator | |
US3189180A (en) | Cyclone-centrifuge separator | |
CA1328229C (en) | Apparatus for filtering a reagent | |
RU2324780C2 (en) | Separation device | |
US3485260A (en) | Fluid drainage | |
US6248243B1 (en) | Solids monitoring filter meter | |
KR840009137A (en) | Apparatus and method for measuring hydrocarbon content in liquids | |
US2790560A (en) | Liquid separator | |
KR20220009398A (en) | Continuous Phase Separation System and Apparatus by Membrane Suitable for Low Flow Flow | |
US2976761A (en) | Apparatus for use in analyzing fluids | |
SU1343312A1 (en) | Nephelometer for liquid media | |
SU869796A1 (en) | Apparatus for cleaning gas being transported |