US3794944A - Reed switches and process for making them - Google Patents

Reed switches and process for making them Download PDF

Info

Publication number
US3794944A
US3794944A US00290113A US3794944DA US3794944A US 3794944 A US3794944 A US 3794944A US 00290113 A US00290113 A US 00290113A US 3794944D A US3794944D A US 3794944DA US 3794944 A US3794944 A US 3794944A
Authority
US
United States
Prior art keywords
section
reed
envelope
sealing
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00290113A
Other languages
English (en)
Inventor
V Morrill
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bank of America Illinois
MOREX Inc
Original Assignee
MOREX Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MOREX Inc filed Critical MOREX Inc
Application granted granted Critical
Publication of US3794944A publication Critical patent/US3794944A/en
Assigned to CONTINENTAL BANK N.A., 231 SOUTH LASALLE ST., CHICAGO, IL 60697, A NATIONAL BANKING ASSOCIATION reassignment CONTINENTAL BANK N.A., 231 SOUTH LASALLE ST., CHICAGO, IL 60697, A NATIONAL BANKING ASSOCIATION ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: THETA-J CORPORATION
Anticipated expiration legal-status Critical
Assigned to C.P. CLARE CORPORATION reassignment C.P. CLARE CORPORATION RELEASE Assignors: BANK OF AMERICA ILLINOIS
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H11/00Apparatus or processes specially adapted for the manufacture of electric switches
    • H01H11/005Apparatus or processes specially adapted for the manufacture of electric switches of reed switches
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49105Switch making

Definitions

  • ABSTRACT A reed switch is provided preferably with an envelope non-circular and in particular a flattened oval in cross section. Reed switch elements, each having a reed section, a sealing section and a lead section are sealed into the envelope along a part less than the total length of the sealing section, the unsealed part of the sealing section being in close engagement with the inner wall of the envelope.
  • a method of making a reed switch wherein reed switch elements each including a reed section, a sealing section and a lead section are inserted into a tube, preferably noncircular, the sealing section of the elements and the interior of the tube being so closely dimensioned as to permit them to locate the reed sections with respect to one another before and during a sealing process.
  • a multiplicity of pairs of switch elements are inserted in a glass tube of oval cross section, lengthwise of the tube, and sealed in place in a horizontal position, providing symmetrical sealed joints, and thereafter the tube offal between the switches is removed.
  • glass encapsulated reed switches are made by holding and positioning two metalreed members and a short length of glass tubing, in which the reed members fit loosely, in fixtures, vertically.
  • the reed members of present day commercial reed switches are made up of a flat reed section and round uniformly sized sealing and electrode or lead sections, the sealing section being defined with respect to the lead section only by its being sealed to the glass tubing in the finished switch and being directly connected to the reed section.
  • the flat reed sections essentially elongatedly rectangular in plan, have six ways in which their relative positions and orientations must be controlled: three translational ways or degrees, lengthwise (amount of overlap), heightwise (amount of gap at the overlap), and lateral offset, and three rotational degrees which might be thought of as pitch, roll and yaw.
  • one of the reed members is sealed through one end of the glass tubing which fixes its position relative to the tube.
  • the other reed member is located lengthwise for overlap, laid flat against the first to ensure againstrotational disorientation (roll), then moved away from the fixed reed member a predetermined distance, to establish the desired gap, and then sealed through the other end of the glass tubing.
  • the presently used assembly fixtures are not only of such relatively large physical dimensions but also of such complexity that it is mechanically impractical to reduce their dimensions to a point at which they could successfully assemble and seal truly miniaturized reed switch parts.
  • the scaling factor of such complex devices is such that holding and positioning of small parts to a few millionths of an inch is beyond practical mechanical consideration.
  • an inert gas atmosphere inside the glass reed switch body is generally desirable to seal an inert gas atmosphere inside the glass reed switch body. This is commonly achieved by either flushing the reed assembly with inert gas while it is in the holding and positioning fixture and before sealing, or surrounding the holding and positioning fixture with a gas tight jacket so that the ambient atmosphere can be removed from the unsealed reed assembly and replaced by inert gas before the seals are made.
  • infrared radiant heat energy is used to produce the glassmetal seals.
  • Standard lead glass commonly used for electronic devices has a low infrared absorption characteristic and therefore when infrared radiant heat is used the glass requires a long time to heat to scaling temperatures.
  • special glass compositions that are more infrared absorbent are used to make present-day commercial reed switches. These special glass compositions are several times more expensive than standard lead glass. The need to use special glass and for expensive infrared heat sources and the slow,
  • high precision hollow glass tubing is cut into lengths to accomodate the elements of a plurality and preferably a multiplicity of reed switches.
  • the tubing is preferably non-circular in cross section, and is formed to sufficiently close dimensions to serve as a fixture for elements of the reed switches.
  • the elements are shoved into the tubing to exactly predetermined positions lengthwise of the tubing.
  • the individual switch members themselves have a reed section, a sealing section and an electrode or lead section.
  • each member has at least one face offset from the center line of the sealing section, whereby when two such members are positioned in the tube facing and slightly overlapping one another with one rotated l80 with respect to the other, the facing ends of the reed sections are spaced by the amount of the offsets.
  • the offset of the reed section from the sealing section takes the form of a step, whereby the reed sections are parallel to one another throughout their length and parallel to the center line of the sealing sections
  • the reed sections can be offset by introducing a controlled amount of pitch to the reed sections, so that while the broad faces of the reed sections may lie in parallel planes, they are not necessarily parallel to the center lines of the sealing sections.
  • the sealing section is dimensioned to fit closely enough within the tubing to establish the desired lateral spacing of the free ends of the reed sections, and the sealing section is sufficiently long relative to the zone of heating during the sealing process so that the parts of the sealing section which extend beyond the softening zone at any moment and bear against the unsoftened area of the tube serve to. maintain the alignment and spacing of the reeds during the sealing process. All of the seals are made, and the tubing is then cut to define each individual switch assembly. The offal between switches, previously housing the lead sections, is discarded.
  • the sealing can be done in a horizontal position, and the great length of the tubing, and the fact that no elaborate individual fixtures are needed to hold the separate switch elements during the sealing process make it easy to avoid contamination even without the use of a clean room.”
  • the resulting finished reed switch is symmetrical
  • the reed sections bear lightly against a straight, undistorted inner wall of the reed section of the envelope where they are most sensitive to an external magnetic field.
  • the bearing of the reed section against the inner wall not only increases the sensitivity, but serves to damp vibration of the reed, known in the art as bounce.
  • the sealing joints are also superior to those known heretofore because the fit between the sealing sections and the glass'tubing is so close that it requires that less glass be melted to obtain a seal, and the softened glass cannot sag into undesirable configurations.
  • the method of thisinvention permits the commercial manufacture of reed switches smaller than any known heretofore, and accordingly makes possibleminiaturization of circuits involving reed switches.
  • One of the objects of this invention is to provide a method of making reed switches which is faster, simpler, and more economical than methods known heretofore.
  • Another object is to provide reed switches which are more responsive, versatile, uniform and reliable and less expensive than reed switches known heretofore.
  • Still another object is to provide reed switches smaller than reed switches known heretofore.
  • FIG. 1 is a view in perspective, much enlarged, of a singlereed switch assembly illustrating the cooperationbetween the sealing section of a reed element and a the tubing of which the envelope is made;
  • FIG. 2 is a view in perspective, also much enlarged, of a section of non-circular glass tubing
  • FIG. 3 is a view in perspective showing two sets of pairs of reed switch elements located inside a long noncircular glass tube;
  • FIG. 4 is a somewhat schematic view in perspective showing metal reed switch elements in the process of being heat sealed in the glass tube;
  • FIG. 5 is a somewhat schematic view in perspective illustrating the removal of offal glass tubing and show ing finished reed switch assemblies
  • FIG. 6 is a view in side elevation showing a multiplicity of reed switch elements sealed within a single envelope to form a unitary assembly'of series-connected reed switches;
  • FIG. 7 is a view in side elevation of still another embodiment of reed switch assembly corresponding to the assembly shown in FIG. 6, in that successive lead sections are connected in'serics.
  • reference numeral 1 indicates a completed switch, made up of an envelope 2, and reed switch elements 3 and 4.
  • reed switch elements 3 and 4 are identical, and include a reed section 10, a sealing section 11 and an electrode or lead section '12.
  • the reed sections 10 are offset from the longitudinal center of the sealing section 11, and one of the elements 3 and 4 is rotated and translated 180 with respect to the other in each reed switch so that the reed sections 10 face one another and are spaced heightwise by the sum of their offsets when the sealing sections of the two elements are aligned longitudinally.
  • the ends of the reed switches of the elements 3 and 4 overlap slightly, in a way conventional to reed switches.
  • the sealing section 11 is sized to fit closely within the non-circular tube, and is of a length to ensure against misalignment in five of the; six degrees of freedom which must be controlled, leaving only the-lengthwise (overlap) position to be determined and controlled.
  • the sealing section cooperating with the inner wall of the envelope itself, is also the locating and positioning means in five of the six degreesof freedom.
  • the sealing section 11 of each of the elements 3 and 4 is bonded in a glass-to-metal bond through a part but less than the full longitudinal reach of thesealing section.
  • the reed switch elements 3 and 4 are in some respects conventional in that they are made of any of a number of well known alloys that are both ferromagnetic and have a coefficient of expansion comparable with the glass of the tubing, typically lead glass.
  • the reed section 10 is generally plated as in conventional reed switches, and the sealing section is selectively oxidized to ensure proper bonding, in the conventional way.
  • the bore of the tubing 13 is preferably non-circular in cross section and generally symmetrically oval.
  • oval is used broadly to embrace non-circular shapes of a generally elliptical or flattened elliptical type such as is exemplified by the shape of the tube 13 and its bore 14 in the illustrative embodiment shown.
  • reed switch elements are pushed into a tube 13 of a length'sufficient to accommodate a plurality and preferably a multiplicity of sets of pairs of elements 3 and 4.
  • FIG. 3 for convenience of illustration, two sets'are illustrated, but as many as 80 or more may be inserted by means of push rods, the travel of which is precisely determinable.
  • the travel of the push rods determines the amount of overlap of the reed sections the fit of the sealing sections 11 and the amount of offset of the reed sections from the sealing sections determines the heightwise spacing of the ends of the reed sections.
  • reed elements are inserted simultaneously in a multiplicity of tubes.
  • the tube 13 is either loaded while on or is loaded and then placed on a support 25, as shown particularly in FIG. 4.
  • the loaded tube 13 may be flushed with inert gas and one end sealed initially or a stream of inert gas may be directed through the bore 14, from one end 15, and a first seal made by softening the glass of the tube 13 by flames 17 at. the sealing section 11 of the element closest to the end through which the inert gas is being introduced.
  • the area of the tube heated by the flames 17' is narrower than the length of the sealing section 11. Because the sealing section]! is in such close contact with the inner wall of the tube 13, a seal between the sealing section 11 and the glass tube is accomplished quickly and easily.
  • the switches are preferably sealed in ahorizontal position
  • the system also permits sealing in a vertical position to obtain substantially symmetrical switches, both because no different treatment must be accorded the two ends in the process, as distinguished from the conventional method, and because the close fit off the sealingsection permits the sealing to be'accomplished with a minimum of distortion.
  • the sealed assemblies are now annealed and cooled, and thereafter offal sections 21 are removed, as by nicking and bending, leaving discrete finished reed switches 1 as indicated in FIG. 5.
  • the support 25 is a series of bands 16 forming part of'a conveyor.
  • the bands 16 are spaced to permit flame from a burner beneath the bands to supply flames 17, l8, l9 and 20 from below to balance flames from above, as indicated in FIG. 4.
  • sealing sections 26 produced by the flames l7, l8, l9 and 20 are narrow compared with the length of the sealing sections 11 of the elements, the sealing sections continue to serve their locating function during the sealing process. It is apparent that once the sealing has been accomplished and the seal cooled sufficiently to maintain the relative positions of the elements, any additional area of the sealing section or of the lead section, for that matter, can be sealed in or bonded to tubing without affecting the critical position of the reed sections.
  • the tubing can be made of a standard lead or flint glass as distinguished from the special colored glasses commonly utilized in present machines in which infrared energy is used to produce the glass-metal seals.
  • Kimble glass Type KG12 or-Corning type 0120 lead glass of initially round cross section is formed on a metal mandrel by well known vacuum forming methods so that the resulting glass will have very closely controlled dimensions.
  • Oval tubing with aninternal cross section of 0.0202 inch :t0.000l inch for the minor axis and 0.05 l0 inch 10.0002 inch for the major axis A and a wall thickness of 0.012 inch :t0.00l inch is selected from the vacuum formed stock.
  • Metal reed members with a minor axis of 0.0200 inch i 0.0001 inch and a major axis of 0.0500 inch i0.0005 inch in the sealing area and a reed length of 0. 1 88 inch, seal length of 0.
  • l 88 inch and electrode length of 0.300 inch are made from any of a number of glass sealing alloys such as Westinghouse 52, Driver-Harris 152, or Carpenter Technology 52 by well known stamping and coining methods
  • a 12 inch length of vacuum formed glass tubing is selected and'oneend is flared by heating with a gas torch and forming the tubing in a fixture 'while hot so that after cooling the metal reeds can be easily inserted into the flared end of the tubing without causing chipping of the glass or scoring of the metal reed member.
  • each reed member is inserted in the flared end of the tubing one at a time while a stream of inert gas is flushed through the glass tubing and each reed member is positioned by a round push rod of the proper dimensions to fit easily in the minor axis of the glass tube and of such a length as to properly position the reed members so that eight switches are developed in accordance with my previous explanation.
  • Each reed mem ber has a slight bend between the sealing section and the outer end of the electrode portion so that as it is pushed into the tube a slight frictional engagement develops between the glass and reed thereby preventing any change of position lengthwise during subsequent handling.
  • each pair of reeds overlap each other at the contact ends a total of 0.006 inch in the plane parallel to the flat portion of the reeds and the gap between reeds is 0.002 inch in a plane 90 to the flat portion of the reeds.
  • the assembly is put in a sealing fixture as previously outlined and seals are made progressively, starting at the sealed end opposite the flare and progressing one at a time toward the open flared end by a plurality of very small hydrogen and oxygenfires 0.010 inch in diameter located in a vertical plane around the seal areas.
  • Inert gas is continuously flooded around the open end of the glass tube so that air cannot get into the assembly during sealing.
  • a small amount of inert gas which was previously flushed into the tubing will be expelled toward the open end due to expansion of the trapped inert gas from heating at the joint. This small flow of gas will pass between the major axis of the reed'members and the inner glass wall. Continuous flooding of the open end of the tube 'with inert gas assures that no air will be drawn into the tubing.
  • the glass temperature at the sealing area is l,775 F. during the sealing operation and the time for each seal is 5 seconds.
  • the assembly After annealing, the assembly is cut by scoring and cracking the glass at proper intervals of 0.600 inch and 0.900 inches to produce finished switches with an overall length of 1.346 inch and a glass length of 0.600 inch.
  • FIGS. 6 and 7 illustrate two illustrative embodiments of such series-connected switch assemblies.
  • FIG. 4 the burner heads for the sealing steps are indicated as being aligned and simply actuated serially, but in practice the burner heads may be spaced laterally as well as stepped lengthwise and the tubes moved under successive constantly burning flames. While the oval tubing described is preferred, other non-circular sections can be used. Even circular tubing may be employed with some of the steps of this invention to provide methods of production and switches which are superior to those now known, though inferior to the preferred embodiments of this invention. When round tubing is used, some means must be provided for controlling the roll of the switch. elements relative to one another, such, forexample, as the maintenance of a magnetic field during the positioning and sealing steps.
  • the reed section of one of the elemen ts'm'ak ing up the switch can be made shorter than the other, moving the contact area toward one end of the envelope.
  • the one reed element can be shortened even to the extent of serving essentially as a fixed contact at one end of the envelope.
  • Two reed elements with short reed sections stepped in opposite directions can be insulated from one another and inserted at one end with a long reed section positioned between them to form a double throw switch.
  • the lead or electrode section can be positioned symmetrically with respect to the sealing section, for example, and can be made of any desired cross-sectional shape, as long as it does not interfere with the insertion of the reed elements into the tube.
  • An advantage of the configuration of the reed elements of the preferred embodiment is that a very slight bending of the lead section in a direction toward the contiguous surface of the tubing provides the frictional engagement desired to ensure against unwanted lengthwise displacement of the positioned reed elements before and during the sealing process.
  • a reed switch having a fusible glass envelope non-circular in cross section, and switch elements sealed in opposite ends of said envelope in fused sealing areas of said envelope each of said switch elements including a reed section and a sealing section, the improvement comprising said sealing section being of greater effective cross-sectional area than the said reed section and bearing against the inner wall of the said envelope in an unfused area of said envelope beyond the said sealing area.
  • a reed switch having a fusible glass envelope non-circular in cross setion, and switch elements sealed in opposite ends of said envelope in sealing areas of said envelope each of said switch elements having a reed section, a sealing section, and a lead section, the improvement comprising said sealing section being of greater cross-sectional area than the said reed section,
  • a reed switch assembly comprising a multiplicity of reed elements, pairs of which form separatereed switches, each of said reed elements having a reed section and a sealing section, sealing sections of successive ones of said switches being integrally connected, said integrally connected said sealing sections being directly sealed in and to a common envelope.
  • a reed switch having an envelope non-circular in cross section, and switch elements sealed in opposite ends of said envelope in sealing areas of said envelope, each of said switch elements including a reed section and a sealing section
  • said sealing section being of a cross-sectional configuration complementary to the cross-sectional configuration of the inner wall of the envelope, and being so closely dimensioned with respect to said inner wall that the said sealing section and inner wall constitute the locating and positioning means for said switch element in five of the six possible degrees of freedom when the said element is being sealed in said envelope.
  • a reed switch assembly comprising a common envelope non-circular in cross setion and a multiplicity of switchelements each of said switch elements having a sealing section and at least one reed section, each of said sealing sections being of a cross-sectional configuration complementary to the cross-sectional configuration of the inner wall of the said envelopeand being so closely dimensioned with respect to said inner wall that the said sealing section and inner wall constitute the locating and positioning means for said switch elements in five of the six possible degrees of freedom of said elements.
  • a reed switch comprising a non-circular envelope having a straight inner wall through a reed-enclosing length, a pair of switch elements sealed in opposite ends of said envelope, each of said elements having a reed section, a sealing section and a lead section, a portion of said sealing section bearing against a portion of said straight inner wall and serving as a switch element-locating means therewith, and said reed section constituting an extension thereof, one side of said reed section extending along said straight inner wall and bearing lightly throughout its length against said straight inner wall, said reed section being stepwardly offset from the said sealing section on the side of the reed section opposite the side which bears against the said straight inner wall.
  • a reed switch having a fusible glass envelope non-circular in cross section, and switch elements sealed in opposite ends of said envelope infused sealing areas of said envelope, each of said switch elements including a reed section, a sealing section, and a lead section
  • said sealing section being of greater cross-sectional area than the said reed section and being of a cross-sectional configuration complementary to the cross-sectional configuration of the inner wall of the envelope and being so closely dimensioned with respect to said inner wall that the said sealing section and inner wall constitute the sole locating and positioning means for said switch element in five of the six possible degrees of freedom when the said element is being sealed in said envelope, said sealing section being sealed in said sealing area through less than the full length of the said sealing section and bearing against an unfused area of said envelope beyond and inboard of the said sealing area.
  • one side of said reed section constitutes an extension of the surface of the sealing section and lies against the inner surface of the envelope throughout the length of the reed section when the .reed is in its relaxed condition.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Switches (AREA)
US00290113A 1972-09-18 1972-09-18 Reed switches and process for making them Expired - Lifetime US3794944A (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US29011372A 1972-09-18 1972-09-18
US400796A US3866317A (en) 1972-09-18 1973-09-26 Reed switches and process for making them
BE138416A BE808093A (fr) 1972-09-18 1973-11-30 Interrupteurs a lames et procede pour les fabriquer
FR7344858A FR2254868B1 (US08124317-20120228-C00018.png) 1972-09-18 1973-12-14
DE2400087A DE2400087C2 (de) 1972-09-18 1974-01-02 Reedschalter und Verfahren zu dessen Herstellung
NL7400093A NL7400093A (nl) 1972-09-18 1974-01-04 Tongschakelaar.

Publications (1)

Publication Number Publication Date
US3794944A true US3794944A (en) 1974-02-26

Family

ID=27543001

Family Applications (2)

Application Number Title Priority Date Filing Date
US00290113A Expired - Lifetime US3794944A (en) 1972-09-18 1972-09-18 Reed switches and process for making them
US400796A Expired - Lifetime US3866317A (en) 1972-09-18 1973-09-26 Reed switches and process for making them

Family Applications After (1)

Application Number Title Priority Date Filing Date
US400796A Expired - Lifetime US3866317A (en) 1972-09-18 1973-09-26 Reed switches and process for making them

Country Status (7)

Country Link
US (2) US3794944A (US08124317-20120228-C00018.png)
BE (1) BE808093A (US08124317-20120228-C00018.png)
CA (1) CA999621A (US08124317-20120228-C00018.png)
DE (1) DE2400087C2 (US08124317-20120228-C00018.png)
FR (1) FR2254868B1 (US08124317-20120228-C00018.png)
GB (1) GB1418238A (US08124317-20120228-C00018.png)
NL (1) NL7400093A (US08124317-20120228-C00018.png)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2530041A1 (de) * 1974-07-08 1976-01-22 Morex Inc Zungenschalter und verfahren zu ihrer herstellung
US4055888A (en) * 1976-10-04 1977-11-01 Morex, Inc. Process for making reed switches

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2131230A (en) * 1982-10-07 1984-06-13 Weston William A Electric switching devices
US8878104B2 (en) * 2010-11-22 2014-11-04 General Electric Company Voltage switching microswitch for hot surface igniter system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3098908A (en) * 1961-12-28 1963-07-23 Rca Corp Reed switch
US3124670A (en) * 1961-09-25 1964-03-10 Reed switch having improved reed positioning means
US3134868A (en) * 1961-10-09 1964-05-26 Bell Telephone Labor Inc Multiple contact arrangement with force transmitting mechanical connector
US3310863A (en) * 1963-04-10 1967-03-28 Bell Telephone Labor Inc Manufacture of reed type devices
US3388463A (en) * 1965-05-03 1968-06-18 Clare & Co C P Process of sealed switch manufacture
US3539956A (en) * 1968-07-09 1970-11-10 C P Clare Co Low profile relay
US3599129A (en) * 1969-11-20 1971-08-10 Bell Telephone Labor Inc Coaxial cable switch

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3124670A (en) * 1961-09-25 1964-03-10 Reed switch having improved reed positioning means
US3134868A (en) * 1961-10-09 1964-05-26 Bell Telephone Labor Inc Multiple contact arrangement with force transmitting mechanical connector
US3098908A (en) * 1961-12-28 1963-07-23 Rca Corp Reed switch
US3310863A (en) * 1963-04-10 1967-03-28 Bell Telephone Labor Inc Manufacture of reed type devices
US3388463A (en) * 1965-05-03 1968-06-18 Clare & Co C P Process of sealed switch manufacture
US3539956A (en) * 1968-07-09 1970-11-10 C P Clare Co Low profile relay
US3599129A (en) * 1969-11-20 1971-08-10 Bell Telephone Labor Inc Coaxial cable switch

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2530041A1 (de) * 1974-07-08 1976-01-22 Morex Inc Zungenschalter und verfahren zu ihrer herstellung
US3938066A (en) * 1974-07-08 1976-02-10 Morex, Inc. Reed switches and process for making them
US4055888A (en) * 1976-10-04 1977-11-01 Morex, Inc. Process for making reed switches

Also Published As

Publication number Publication date
FR2254868A1 (US08124317-20120228-C00018.png) 1975-07-11
BE808093A (fr) 1974-03-15
DE2400087A1 (de) 1975-07-03
NL7400093A (nl) 1975-07-08
DE2400087C2 (de) 1982-01-21
FR2254868B1 (US08124317-20120228-C00018.png) 1980-05-09
CA999621A (en) 1976-11-09
US3866317A (en) 1975-02-18
GB1418238A (en) 1975-12-17

Similar Documents

Publication Publication Date Title
US2219573A (en) Method of making composite glassmetal articles
US3436109A (en) Stressed hermetic seal and method of making said seal
US2699594A (en) Method of assembling semiconductor units
US2296579A (en) Glass envelope seal
US3794944A (en) Reed switches and process for making them
US2194418A (en) Method of making a cathode-ray tube envelope
US2795018A (en) Double-glazed cells
US2682009A (en) Seal and method of fabrication
US4767125A (en) Expansion chuck
US2334604A (en) Glassworking apparatus
US3519409A (en) Method of forming glass-to-glass seals using induction heat
US2159794A (en) Electric lamp and similar devices
US3183361A (en) Method of making glass sealed electric circuit devices and article resulting therefrom
US2696543A (en) Electric switch
US2790941A (en) Terminal lead construction and method, and semiconductor unit
US2843925A (en) Methods of separating glass articles
US2486101A (en) Method of making glass-to-metal seals
US3155478A (en) Adjustment of sealed reed contacts
US4178050A (en) Manufacture of halogen cycle incandescent lamps
US2447158A (en) Sealing-in method for lamps and similar devices
US2899575A (en) Glass-to-metal seals in cathode-ray tubes
US902032A (en) Incandescent electric lamp.
US2494857A (en) Method for making electric discharge lamps
US3310863A (en) Manufacture of reed type devices
JPS63211539A (ja) 真空管ステムの製造方法

Legal Events

Date Code Title Description
AS Assignment

Owner name: CONTINENTAL BANK N.A., 231 SOUTH LASALLE ST., CHIC

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:THETA-J CORPORATION;REEL/FRAME:005060/0303

Effective date: 19890126

AS Assignment

Owner name: C.P. CLARE CORPORATION, MASSACHUSETTS

Free format text: RELEASE;ASSIGNOR:BANK OF AMERICA ILLINOIS;REEL/FRAME:007629/0646

Effective date: 19950914