US3791534A - Valve apparatus for controlling train action - Google Patents

Valve apparatus for controlling train action Download PDF

Info

Publication number
US3791534A
US3791534A US00156853A US3791534DA US3791534A US 3791534 A US3791534 A US 3791534A US 00156853 A US00156853 A US 00156853A US 3791534D A US3791534D A US 3791534DA US 3791534 A US3791534 A US 3791534A
Authority
US
United States
Prior art keywords
valve
operable
cylinder
cushioning device
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00156853A
Inventor
J Stephenson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FM ACQUISITION Corp
Original Assignee
Halliburton Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Halliburton Co filed Critical Halliburton Co
Application granted granted Critical
Publication of US3791534A publication Critical patent/US3791534A/en
Assigned to BARCLAYS BUSINESS CREDIT, INC. reassignment BARCLAYS BUSINESS CREDIT, INC. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FM ACQUISITION CORPORATION A CORP. OF TX
Assigned to FM ACQUISITION CORPORATION reassignment FM ACQUISITION CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HALLIBURTON COMPANY, A CORP. OF DE
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61GCOUPLINGS; DRAUGHT AND BUFFING APPLIANCES
    • B61G9/00Draw-gear
    • B61G9/04Draw-gear combined with buffing appliances
    • B61G9/08Draw-gear combined with buffing appliances with fluid springs or fluid shock-absorbers; Combinations thereof

Definitions

  • valve apparatus for controlling run-in train action [2]] Appl' 156353 events.
  • Thevalve is characterized by a valve member Related US. Application Data which is normally open to provide a low impedance [63] Continuation-impart of Ser. No. 752,649, A 14, level in an hydraulic cushioning device capable of ef- 1968, p 3,589,528' fectively absorbing buff coupling shock.
  • a disabling device obviates the function 188/885 10, 96, 284, 279, 287, 313 of the reaction surface means, when buff coupling forces act on the cushioning device, so as to cause the [56 Ref ren Ci d valve member to remain open.
  • a biasing means deter- UNITED STATES PATENTS mines the condition of the valve during restoration of the cushioning device from a buff condition.
  • cushioning devices provide a mechanism for absorbing coupling shocks, there. still remains the problem of coping with train action events.
  • Train action events may be defined as a phenomena which occurs as a consequence of the existence of slack in the couplings between moving railway cars. Suchslack enables the cars, in motion on a railbed, to undergo relative movement. Thus, train action denotes the equalizing of speed of adjacent cars which have undergone relative movement.
  • a train action event is termed a run-out where adjacent cars are moving apart. Where moving cars are converging, the train action event is termed a run-in.
  • the cushioning mechanism is designed to impede coupler movement to an extent sufficient to control run-in events, the cushioning device will be unable to effectively absorb the high energy coupling shocks.
  • a particularly acute problem relates to the provision of a mechanism for controlling the impedance level in a cushioning device, which mechanism will operate with sufficient rapidity and reliability to control both run-in events and buff coupling forces acting on the cushioning mechanism.
  • .It is a further object of the invention to provide such a run-in control valve, including a' low inertia disabling component which acts rapidly to maintain the valve in an open condition in response to buff coupling force's.
  • a further object of the invention is to provide such a run-in control valve including a' valve member and disabling member, which traverse overlapping paths so as to maintain the control valve within minimum dimensions.
  • Another object of the invention is to provide a simplified valve structure characterized by telescopingly assembled components, with at least two of these components being biased by a single spring mechanism.
  • buff movement denotes in the conventional sense, the movement of a coupler bar toward a railway car occasioned by forces such as those generated during coupling operations. Draft movement on the other hand indicates outward movement of a coupling bar, i.e. movement of a coupling bar away from its associated railway car in response to pulling forces acting on the coupling bar.
  • a first level of impedance to movement is provided by the impedance. means.
  • a second level of impedance is provided which is substantially less than the first level of impedance.
  • this basic concept is augmented by providing other hydraulic impedance means between the draft gear cushioning members.
  • This other hydraulic impedance means is operable to impede draft movement of railway car draft gear.
  • a relatively high impedance level is provided in the other impedance means.
  • a relatively low impedance level is provided in this other impedance means.
  • the invention here presented relates to a run-in control valve incorporated in an overall impedance system as described in an application of Seay et al. filed July 15, 1968 and entitled Method and Apparatus for Controlling Train Action Events and now issued as U.S. Pat. No. 3,589,527.
  • a runin control valve characterized by a normallyopen valve. In its open condition, this valve provides a low impedance level resisting buff coupling forces.
  • Actuating means associated with the valve move the valve to a closed position in response to run-in forces acting on a cushioning mechanism.
  • a low inertia, disabling device serves to obviate the influence of the actuating means when buff coupling forces are acting upon the cushioning device.
  • the valve mechanism includes body means and passage means extending through the body means and operable to provide fluid communication between'the impedance zone of a cushioning device and a low pressure, fluid discharge zone of the cushioning device.
  • a valve member is mounted for telescoping movement in the body means and is operable to control flow through the passage means.
  • a fluid reaction means is operably associated with the valve member and is operable to move the valve member to a position impeding flow through the passage means in response to flow from the impedance zone to the low pressure discharge zone.
  • Port means provide fluid communication between the passage means and the fluid reaction means.
  • a valve disabling means is operable to tend to close the port means, in response to a rate of movement of a railway coupling member connected with the cushioning device which results from any anticipated buff coupling forces acting on the coupling member.
  • a biasing means resiliently urges the valve member to a position operable to permit flow through the passage means.
  • FIG. 1 provides a perspective view of a railway car and components of a cushioning mechanism and a conpling bar, with these components being shown in an exploded or separated format;
  • FIG. 2 provides an enlarged, sectioned, elevational view of the cushioning mechanism shown in FIG. 1;
  • FIG. 3 provides a plan view of the inner cylinder wall of the FIG. 2 cushioning device, with this wall laid flat;
  • FIG. 4 provides an enlarged, transverse, sectional view of the FIG. 2 cushioning device as viewed along the section line 4-4 of FIG. 2;
  • FIG. 5 provides a transverse, sectional and enlarged view of the FIG. 2 cushioning device as viewed along the section line 5-5 of FIG. 2;
  • FIG. 6 provides an enlarged, elevational, and sectioned view of a valve mechanism incorporated in the FIG. 2 mechanism, which valve mechanism is operable to control flow through cylinder ports during buff movement of the draft gear, i.e., coupling bar.
  • the valve components are shown in FIG. 6 in their relaxed or normal condition, i.e., with no fluid forces acting on the components;
  • FIG. 7 illustrates the components of the FIG. 6 assembly as they are disposed during an outflow of fluid from the inner cylinder of the FIG. 2 mechanism so as to control run-in train action events;
  • FIG. 8 illustrates the components of the FIG. 6 assembly as'they are disposed during an outflow of fluid from the inner cylinder of the FIG. 2 assembly in response to coupling shock acting on the coupling member;
  • FIG. 9 provides a transverse sectional view of the FIG. 6 assembly as viewed along the section line 9-9 of FIG. 6;
  • FIG.' 10 provides a transverse sectional view of the FIG. 6 assembly as viewed along the section line 10-10 of FIG. 6;
  • FIG. 11 provides a transverse sectional view of the FIG. 6 assembly as viewed along the section line 1l11 of FIG. 6;
  • FIG. 12 provides a bottom plan view of the underside of a railway car sill illustrating details of an anchoring system for securing the piston rod of the FIG. 2 mechanism to the sill;
  • FIG. 13 provides an enlarged, transversely sectioned, view of a check valve mechanism incorporated in the FIG. 2 mechanism, which check valve mechanism enables fluid to return to the interior of the inner cylinder of this mechanism during draft movement of the coupling bar;
  • FIG. 14 provides an enlarged transversely sectioned view of a valve mechanism mounted at the draft end of the inner cylinder of the FIG. 2 mechanism and which serves to control run-out train action events.
  • FIGS. 1 and 2 illustrate the basic components of a cushioning mechanism designed to be incorporated in a railway freight car in conjunction with a conventional drawbar or coupler.
  • Cushioning mechanism 1 includes cylinder means 2. This cylinder means comprises an outer cylinder 3 and an inner cylinder 4. A piston means 5 is telescopingly associated with the cylinder means 2. Piston means 5 includes a piston 6 mounted for telescoping movement within the interior cavity 7 of cylinder 4. Piston means 5 includes a piston rod 8 extending from one side only of the piston body 6.
  • Anchor means 9 serves to connect the piston means 5 to the sill 10 of a railway car 11.
  • Anchor means 9 comprises a conventional spherical bearing assembly 12 carried at the free extremity of the piston rod 8. This spherical bearing assembly 12 is secured within a unitized pre-cast housing 13. The housing 13 is secured within the sill 10 as, for example, by conventional welding techniques.
  • a continuation of outer cylinder 3 defines -a connecting means 14 which serves to connect the cylinder means 2 with a conventional drawbar 15.
  • a restoring mechanism 16 provides a resilient interconnection between the sill l and a tongue portion 17 of the cylinder means 2.
  • Restoring mechanism 16 fabricated from coil springs, serves to yieldably and resiliently bias the cylinder means 2 to a predetermined neutral or rest position.
  • Restoring mechanism 16 may be of the general type described, for example, in the US. Abbott et al Pat. No. 3,233,747, and may bias cylinder means 2 to a neutral position, causing piston 6 to be at or near the draft extremity of the interior of cylinder means 4.
  • the cushioning device 1 is mounted within the sill 10, with the piston means fixedly anchored to the sill by way of anchor means 9.
  • the cylinder means 2 is free to undergo longitudinal telescoping movement within the sill 10.
  • Buff movement of the cylinder means 2 is limited by engagement of collar-like abutment means 18, carried by connecting means 14, with collar-like abutment means 19 carried by the outer end of the sill 10.
  • Draft movement of the cylinder means 2 is limited by engagement of the piston means 6 with an annular check valve member 20 defining the draft end of cylinder space 7.
  • Restoring mechanism 16 is connected, at one end, by bracket means 21 to a sill base plate 22.
  • Sill plate 22 is fixedly connected to the underside of sill 10 so as to provide support for the underside of cylinder means 2.
  • Another portion of restoring mechanism 16 is connected with the tongue portion 17 of cylinder means 2.
  • the coil spring components of restoring mechanism 16 tend to yieldably bias the cylinder means 2 toward a predetermined neutral position as described in detail in the aforesaid Abbott et al. US. Pat. No. 3,233,747.
  • the predetermined neutral position is the position at which the piston means 6 engages the draft extremity of cylinder space 7, i.e., the check valve 20.
  • the restoring mechanism 16 need not have a capacity to restore in a buff direction. It is necessary only for the restoring mechanism to return the cylinder means 2 from the full buff position illustrated in FIG. 3, in a draft direction, to the neutral position.
  • the structure of the restoring mechanism described in the Abbott et al patent may be simplified to eliminate the ability of the Abbott et al restoring mechanism to resiliently bias the cylinder means 2 in a buff direction.
  • cylinder means 2 includes outer cylinder 3 and inner cylinder 4.
  • Outer cylinder means 3, as shown in FIGS. 2, 4 and 5, has a generally rectangular crosssectional configuration.
  • Inner cylinder 4 which is contained within and spaced from the outer cylinder 3, has a generally cylindrical or circular cross section. 7
  • Cylinder 4 is spaced from cylinder 3 so as to provide a generally annular, low pressure cavity 23. Because of the relatively low pressure nature of the fluid contained within this cavity, the side wall 24 of cylinder 3 may be relatively thin in relation to the side wall 25 of cylinder 4. Cylinder 4 contains the high pressure cavity 7.
  • first cylinder ends The ends of cylinder means 3 and 4, adjacent anchor means 9, may be termed first cylinder ends.
  • the first end of outer cylinder means 3 is defined by a cylinder head 26.
  • the first end of inner cylinder means 4 is defined by a cylinder head 27.
  • Cylinder heads 26 and 27 are both centrally apertured to telescopingly receive the piston rod 8.
  • a bushing 28 provides a. bearing relationship between the cylinder head 27 and piston rod 8.
  • An assembly 29 of conventional annular seals is provided in cylinder head 26 to maintain a sealed relationship between the cylinder head 26 and the reciprocable'piston rod 8.
  • seal mechanism 29 is disposed in an annular recess 29a formed in cylinder head 26. Recess 29a faces outwardly so as to provide access to the sea] assembly 29 from the exterior of the unit. Seal assembly 29 may be retained in place in recess 29a by an annular cover plate 29b. Plate 29b may be secured in place by conventional threaded fasteners, as shown in FIG. 2.
  • An accordian-like elastomeric dust shield 30 is connected atone end 31 to cylinder head 26 and the other end 32 to piston rod 8. This dust shield structure protects the portion of the piston rod 8 which reciprocates into and out of the cylinder means 2.
  • cylinder head 27 is stabilized by cylinder head 26.
  • This support is achieved by a plurality of circumferentially spaced and radially directed webs 33 extending longitudinally between the cylinder heads 26 and 27.
  • the longitudinal spacing of cylinder heads 26 and 27 and the circumferential spacing of the webs 33 provides passage means 34 defining a continuation of the low pressure cavity 23.
  • This passage means 34 communicates with the rightmost end of cylinder head 27, viewing the apparatus as shown in FIG. 2.
  • the end of cylinder means 2-disposed adjacent connecting means 14 may be termed the second cylinder head or second cylinder end.
  • second end of cylinder means 3 is closed by generally annular, second cylinder head means 35.
  • second end of inner cylinder means 4 is closed by second cylinder head means 36.
  • cylinder head means 35 and 36 are defined by an integral wall extending entirely across the second end of cylinder means 2.
  • Inner cylinder wall means 25 may be mounted in an interfering fit relationship on an annular ledge-like portion 37 of the unitary wall means 38 which provides cylinder head means 35 and 36.
  • a similar mounting arrangement interconnects wall 25 with cylinder head 27.
  • the cylinder head wall 36 moves toward the left-most side of piston means 6, viewing the apparatus as shown in FIG. 2, so as to expel fluid from the cylinder cavity portion 7a into the low pressure zone 23. Fluid expelled from the cavity 7a enters the low pressure zone 23 and flows into the passage means 34. This fluid is returned to the cylinder zone 7b, disposed between the rightmost side of piston 6 and the cylinder head 27, by way of a check valve 20.
  • Check valve comprises a generally annular valving plate 20d mounted on cylinder head 27 within cavity 7.
  • Plate 20a is valvingly associated with a plurality of Iongitudinally extending and circumferentially spaced, high capacity passages 40 formed in cylinder head 27.
  • a series of circumferentially spaced coil spring units 41 serve to yieldably and resiliently bias the plate 20a toward anchor means 9, into passage closing relationship with the passage means 40.
  • Each such biasing mechanism 41 comprises a coil spring 42 interposed between an abutment 43, carried by valve plate 20a by way of a rod 44, and an abutment 45 formed in a cylinder head passage 46.
  • Port 47 is disposed inthe underside of cylinder wall and provides fluid communication between the cavities 7a and 23 throughout the extent of draft travel of the cylinder means 2.
  • a check valve mechanism 48 illustrated in detail in FIG. 13, provides continuously, check valve controlled communication between the cavity 7a and the cavity 23.
  • the flow capacity of the port means 47, when placed in an open condition by check valve 48 is of a relatively high magnitude, so as to afford nominal resistance to return flow of fluid from low pressure cavity 23 through the zone 7a.
  • mechanism 48 comprises a body 49 connected by threaded coupling means 50 to the exterior of wall 25.
  • a valve member 51 is telescopingly mounted within valve body 49.
  • Valve member 51 is generally cylindrical in character and includes a cylindrical side wall 52 provided with a plurality of radial ports 53.
  • An imperforate head wall 54 connected with side wall 52, provides a sealing sur face 55 to sealingly engage a valve seat 56 formed on valve body 49.
  • a coil spring 57 interposed between valve member carried abutment 58 and a valve body carried abutment 59 serves to yieldably bias the valve member 51 to a closed position.
  • valve 51 In response to a relatively low pressure in cavity 7a, resulting from draft movement of cylinder means 2, the valve 51 will automatically open so as to allow the return flow of fluid from cavity 23 into the zone 7a.
  • Piston means 5 includes the piston 6.
  • a bushing 60 is supported in an annular, notch-like recess 61 formed on the outer cylindrical periphery of piston 6.
  • Bushing 60 may be secured in place by an annular plate 62 secured to piston body 6 by threaded fastener 63.
  • a generally annular sealing element 64 is carried onthe outer periphery of bushing 60 and provides sliding and substantially sealing engagement between the outer periphery of the piston 6 and the inner periphery of wall 25 of cylinder means 4.
  • Element 64 may comprise a split piston ring operable to provide highly limited leakage between zones 7a and 7b, as described in the aforesaid Stephenson application.
  • Piston rod 8 extends from one side only of piston body 6 and intersects the first ends only of cylinder means 3 and 4. Thus, piston 6 is supported in a cantilever fashion within cylinder means 4, with there being no piston rod extending into the cavity portion 7a or through the second cylinder end plate 38.
  • Piston rod 8 is sealingly and slidably supported during its reciprocable passage through cylinder heads 27 and 26 by bushing 28 andseal means 29.
  • This spherical bearing assembly 12 is of the type described, for example, in the aforesaid U.S. Blake Pat. No. 2,944,681.
  • this spherical bearing assembly which serves to accommodate nonaxially directed stress, comprises a head-like portion 65 providing arcuate spherical segment surfaces 66 and 67.
  • a bearing plate 68 conformingly engages surface 66 while another bearing plate 69 conformingly engages surface 67.
  • Plates 68 and 69 are interconnected as described generally in the aforesaid Blake US. Pat. No. 2,944,681.
  • Unitized housing 13 of an anchor means 9 comprises a pair of side walls 70 and 71. These walls extend longitudinally of the side walls 72 and 73 0f sill 10. Housing side walls 70 and 71 niay be welded to sill side walls 72 and 73, respectively.
  • Housing side walls 70 and 71 are interconnected by a pair of longitudinally spaced, and transversely extending, walls 74 and 75.
  • Wall 75 is provided with an aperture 76 of a size sufficientto receive the spherical bearing assembly 12.
  • Securing plate 77 as shown in F IG. 1, is U-shaped and includes a pair of laterally spaced legs '78 .and 79. Plate 77 is installed through the open underside 80 of housing 13 so as to straddel the piston rod 8, with the legs 78 and 79 disposed on opposite lateral sides of the piston rod 8.
  • the width of the plate 77 is such that when it is disposed in this straddling position, it bridges the longitudinal clearance between plate 68 and the housing wall 75,
  • anchor plate 77 With anchor plate 77 thus positioned, it may be secured in place by conventional threaded fasteners 81 which pass transversely through the housing wall 75 and the lower wall portion 82 of plate 77 which connects the legs 78 and 79.
  • HYDRAULIC FLUID SYSTEM When the cushioning mechanism 1 is assembled, oil may be introduced into the cavity 7 through conventional filling orifices (not shown). Oil is introduced when the piston 6 is in the full buff position shown in FIG. 2. The volume of oil is adjusted so as to fill the total void space of cavities 7a, 7b, 23 and 34, except for a volume equal to one-half of the volume of piston rod 8 which reciprocates into and out of the cavity 7, i.e. the change in volume of cavity 7 caused by reciprocation of piston rod 8. t
  • the air void which comprises an air body in direct communication with the hydraulic oil of the system, will exist only in the top of cavity 23 and above the cavity 7. Thus, the free air or void space will not extend into the hydraulic impedance zone 7.
  • FIG. 3 represents cylinder wall 25, separated at median and longitudinally extending line 26, and laid flat.
  • Line 26 represents the intersection of the longitudinally extending vertical median plane passing through the cylinder means 4 with the upper portion of wall 25.
  • FIGS. 4 and 5 general location of line 26 is shown in FIGS. 4 and 5.
  • the exponential spacing herein referred to corresponds generally to that described, for example, in the U. S. Seay Pat. No. 3,301,410 and described also in the previously noted Stephenson et al. US. Pat. No.
  • All of the ports 83 through 94 are of the same diameter, i.e., nineteen sixty-fourths inches.
  • the longitudinal width of the piston 6, i.e., the distance between piston sides 6a and 6b, is approximately 2% inches.
  • each of the 12 ports 83 through 94 may be provided with a control valve 96.
  • valve mechanisms 96 associated with the ports 83 through 88 of port system 39 are not shown in FIG. 2. However, the positioned relationship of valves 96 are shown in FIGS. 3, 4 and 5.
  • FIGS. 6 through 11 Structural details of a representative control valve 96 are illustrated in FIGS. 6 through 11.
  • the control valve 96 comprises a generally cylindrical body 97.
  • a threaded coupling 98 serves to threadably secure the valve 96 to the exterior of the wall 25 in a radially extending akignment with respect to the central axis of the cylinder means 4 and in coaxial disposition with its associated port.
  • the valve 96 illustrated in FIGS. 6 through 11, is shown in association with the first port 83 in the exponential series.
  • valves 96 are arranged so as to project into the enlarged corner por tions of the generally annular cavity 23, where maximum space is available.
  • each valve includes a reciprocable, generally cylindrical, spool valve member 99.
  • Each such spool valve member includes a generally cylindrical body portion 100 having a closed, radially outermost, extremity 101.
  • a plurality of radially extending ports 102 intersect the cylindrical wall portion 100, immediately beneath the end wall 101.
  • four ports 102 are provided, each having a diameter of eleven sixty-fourths inches.
  • valve 99 facing the central axis of the cylinder means 4, is open as shown in FIG. 6.
  • Each reciprocable valve further includes a generally annular rim-like piston 104. This piston extends radially outwardly from cylinder wall 100, generally adjacent the free end 103.
  • a second series of radially extending and circumferentially spaced ports 105 intersects cylinder wall 100 adjacent piston 104.
  • annular shoulder or ledge 106 is formed on the outer periphery of cylindrical wall 100. Ledge 106 faces generally axially, toward the head portion 101 of valve 99.
  • a valve body cap 107 closes the outermost end of the valve body 97 and telescopingly receives the cylindrical wall 100.
  • closure or cap 107 may be disc-like in structure. Closure 107 is provided with a central aperture 108 through which cylindrical wall portion 100 reciprocates.
  • Closure 107 provides an annular abutment 109, extending radially outwardly from a cylindrical cap surface 110, which surface defines aperture 108. With abutment 106 with abutment 109, the main valve ports 102 are positioned so. as to clear, i.e., be spaced outwardly from, the outer extremity 111 of closure 107.
  • Valve 99 is biased outwardly of the central axis of cylinder means 4 so as to bring the abutment 106 into engagement with abutment 109 by a coil spring 112.
  • This spring 1 12 abuttingly engages an annular recess or seat 113 formed in the free end 103 of the valve wall
  • closure 107 cooperates with a radially extending valve body wall 114 and a cylindrical body wall 115 to define a generally annular cylinderlike cavity 1 16.
  • Valve piston 104 is operable to reciprocate through cavity 116.
  • Port means 105 provide, by way of port 83, fluid communication between the high pressure cavity 7 and the zone 1160 of cavity 1 16 which is disposed between the closure 107 and the piston 104.
  • a plurality of ports 1 17 intersect the generally hexagonal base wall 1 18 of valve body 97, immediately adjacent, but radially outwardly of, the cylinder end wall 114.
  • Port means 117 thus serve to provide fluid communication between the low pressure cavity 23 and the portion l16b of cylinder cavity 116 disposed between piston 104 and valve body 114.
  • piston 104 is biased inwardly toward the central axis of piston means 4 by the pressure of fluid within the cavity 7.
  • Piston 104 is biased radially outwardly, away from the central axis of cylinder means 4, by a generally low pressure fluid within cavity 23.
  • valve 97 will move radially in-' wardly to a closed valve position, i.e. the position shown in FIG. 7.
  • the ports 102 are covered and substantially closed by surface 110.
  • Surface 110 is disposed in generally telescoping and conforming relation with the outer periphery 119 of valve wall 100.
  • valve 96 may not be such as to provide complete sealing, i.e., some limited leakage may take place. Indeed, in the embodiment characterized by the dimensional criteria above-indicated, with the valve disposed in the FIG. 7. position, a degree of leakage through the valve takes place which is on the order of one-tenth of the flow permitted by the valve in the open position shown in FIG. 6.
  • reaction surface 104a provided by the piston 104 in the zone 1 16a is sufficient to provide a net downward biasing operable to overcome both the biasing influence of spring 112, the biasing of fluid pressure in the zone 116b, and any biasing acting outwardly on the valve 99 as a result of a restricted flow through the ports 102.
  • the restoring or biasing force of spring 1 12 is of a relatively low magnitude such that the valve member 97 will move to the closed valve position during any runin train action phenomena. This results because the low velocity of piston 6 during run-in events is sufficient to generate enough pressure in cavity 7 and cavity 116a to induce closing movement of valve 99.
  • the restoring mechanism 16 may serve to position the piston 6 at a neutral position where the piston 6 would be spaced from its extremity of draft movement. Regardless of the neutral position, where the restoring mechanism 16 is imposing very low level forces on the piston 16 tending to restore the piston 16 from a full draft or full buff position to an intermediate (or draft extremity) neutral position (by moving cylinder means 2), the spring 112 of any valve mechanism 96 on the pressurized side of the piston 6 may, if strong enough, overcome the pressure effects of fluid within the cavity 7, transmitted through the port means 105 and acting on the piston 104, so as to hold the valve 99 thereof in the open position shown in FIG. 9. With the valve 99 thus'held open during the restoring action, relatively rapid restoration will be assured.
  • each spring 112 on the pressurized side of piston 6 is sufficiently strong, its associated valve 99 will remain open when the restoring mechanism 16 moves cylinder means 2 toward a neutral position.
  • the spring 112 may be strong enough to prevent the actuating means 104, here in the form of a piston, from moving between the first position of FIG. 6 to the second position of FIG. 7 in response to operation of the restoring mechanism. If the bias of each spring 112 is not this strong, its associated valve 99 may close during this restoring action. In this latter event, for example during draft directed restoration, and where control valve means 96 are exposed in the draft side of piston 6, extended impedance would be made available, at the end of a run-in event, to cope with a succeeding run-out event occurring during restoration.
  • Valve mechanism 96 includes a unique disabling device 120 which serves to maintain the valve 97 in an open position when the coupler bar and cylinder means 2 are subjected to impact forces of the type encountered during coupling operations. Such operations ordinarily occur in railway yards where trains are being assembled and one car is moved into engagement with another with sufficient force to induce interlatching of the coupler bars of the two cars involved.
  • Disabling mechanism 120 comprises a sleeve 121 mounted for telescoping-movement within the valve member 99.
  • sleeve 121 is generally cylindrical in configuration and has an open upper end 122 as well as an open lower end 123. Ends 122 and 123 are connected by a relatively thin walled, or recessed, cylindrical wall portion 124.
  • Upper end 122 is telescopinglyand slidably supported by cylindrical wall portion 125 of valve 99.
  • the lower end 123 of sleeve 121 is telescopingly and slidably supported by a cylindrical wall portion 126 formed in the valve body 97.
  • Sleeve 121 is provided with a radially outwardly extending, ledge-like flange 127.
  • Flange 127 defines an abutment which engages the end 1280f coil spring 112,
  • Abutment 132 comprises a generally radially extending wall projecting outwardly from a cylindrical wall 133. Cylindrical wall 133, in essence, defines the inner surface of wall 100.
  • this sleeve end 122 With the sleeve end 122 engaged with the abutment 132, this sleeve end 122 is operable to close the ports 105, as shown in FIG. 8. With the ports 105 thus i.e., the end of this spring opposite to the end 129 it which is engaged by the seat 113.
  • valve 96 In the normal or neutral position of valve 96 shown in FIG. 6, the spring 112 biases the flange 127 radially.
  • biasing effect of spring 112 may be varied by selecting a spring 112 of appropriate resilience. This biasing effect may also be varied in accordance with the degree of spring prestressin'g which is dependent upon the distance betweenthe seat 113 andthe ledge127, when this ledge is engaged with the abutment 129.
  • the diameter of the port 83 is less than the outer diameter of the sleeve end 123.
  • Sleeve 121 is characterizedby a substantially lower inertia factor than that possessed by the valve 99. This difference in inertia will tend to cause the sleeve 121 to move relatively rapidly to the FIG. 8 position, before fluid pressure is able to build up in the zone 116a and induce movement of the piston- 104. Further, a high velocity flowthrough the passage 134, and through the central passage of the valve member 99, will tend to create a velocity reaction force acting on the valve head 101 so as to tend to hold the valve member 99 in its open position while the sleeve 121 is moving to its disabling position.
  • the individual influences of either the ow inertia of the sleeve 121, the restrictive influence of the ports 105, or the fluid reaction on the head 101, or the combined influence of these factors, ensures that a rate of fluid flow passing through the passage 131 sufficient to induce movement of the sleeve 121, will cause the sleeve 121 to move to its disabling position before the piston 104 is able to move the valve 99 to a closed valve position.
  • valve 99 has moved to the closed valve position of FIG. 7, it is unlikely that sleeve 121 will be able to move radially outwardly to close the ports 105 so as to obviate the biasing influence of piston 104.
  • the closing of ports 102 will probably prevent a flow of sufiicient velocity through the passage 131 to induce movement of the sleeve 121.
  • This valve characteristic is not believed to be of adverse consequency because during run-in" phenomena, train action forces would not be expected to approach the magnitude of coupling forces so as to require that the ports 102 remain open.
  • the wall 133 defines a sub stantially smooth-walled continuation of the inner wall 134 of sleeve 121. This results, of course, from walls 133 and 134 having the same circular cross section, i.e., the same internal diameter.
  • each of the valves 96 associated with the ports 83 through 88 (or 83 through 94) is identical in structure, and includes a coil spring 112 of identical configuration and resilience, the various disabling sleeves 121 should operate in unison, and immediately in response to the imposition of coupling forces on the drawbar 15.
  • each of the valves 96 will be of identical configuration and operating characteristics. Thus, during run-in phenomena, each of the valves 96 associated individually with the buff ports 83 through 88 (or all of buff ports 83 through 94 or any one of these ports) should close more or less simultaneously, in response to runin" phenomena.
  • valves 96 which operate in sequence or at different times so a to provide progressive closing off or constricting of the ports.
  • FIGS. 2 and 14 SYSTEM FOR CONTROLLING RUN-OUT PHENOMENA The system incorporated in mechanism 1 for controlling run-out phenomena is illustrated in FIGS. 2 and 14.
  • This system includes, as a part of the port means 39, a relatively small capacity port 135 and a somewhat larger capacity port 136, provided with a control valve mechanism 137.
  • the port 135 has an effective diameter of approximately .099 inches and the port 136 has a diameter of nineteen sixth-fourths inches.
  • fluid flow through port 136 is controlled by the substantially small flow capacity of the passage means of valve 137. 4
  • the port is spaced longitudinally from the edge 95 by a distance of approximately 16.62 inches.
  • the port 136 is spaced from the edge 95 by a distance of approximately 19.72 inches.
  • Valve mechanism 137 as shown in FIGS. 14 and 5, is disposed in a lower corner of cavity 23.
  • Control valve 137 is substantially the same as the run-out" control valve described in detail in the aforesaid Stephenson et al US. Pat. No. 3,451,561.
  • this control valve 137 is characterized by a generally cylindrical valve body 138.
  • Valve body 138 is attached by threaded fastening means 139 to wall 25. When thus attached, valve body 138 extends generally coaxially of port 136, i.e., radially of the central axis of cylinder means 4.
  • Control valve 137 includes a generally cylindrical valve member 140 mounted for telescoping movement within valve body 138.
  • a coil spring 141 interposed between a valve body ledge 142 and a flange 143 carried by valve 140, serves to bias the valve member 140 radially inwardly with respect to the cylinder means 4. Inward movement of valve member 140 is limited by engagement of the flange 143 with a valve body ledge 144.
  • Valve member 140 is defined by a cylindrical wall 145 having an open upper end 146 and a closed lower end 147.
  • One or more ports 148 intersect cylindrical wall 145 immediately adjacent the closed end 147.
  • the flow controlling port means 148 is disposed in communicating relation with the cavity 7b.
  • a cylindrical wall 149 of valve body 138 valves-off or closes the port means 148.
  • the restoring mechanism 16 When the restoring mechanism 16 is tending to move the cylinder means 2 in a draft direction, i.e., restore the unit from a buff condition, the pressure differential acting across the valve 140 will not be sufficient to overcome the biasing influence of the spring 141. Thus, the valve 137 will remain open during the restoring action of mechanism 16 so as to provide a relatively low level of impedance operating against the piston 6 during the restoring action. This relatively low level of impedance will tend to ensure that the mechanism 16 is operable to effect rapid restoration of the cylinder means 2 to its neutral position.
  • ports 83 through 94 in the exponential series may play a role in this impedance if they are located between the piston face 6a and the piston extremity 20 during the run-out event. If these ports are provided with a control valve 96, their runout control will be especially effective as they will tend to close during a run-out event.
  • the piston will move to a position where control is influenced by the ports 135 and 136. At least bythis point in time, if not before due to the closing of valves 96, the pressure within the zone 7b will be sufficient to close the valve 137 and create (or maintain) a high hydraulic impedance within the cavity 7b, operable to continue to resist draft movement of the cylinder means 2.
  • the housing 13 is welded in place within the sill- 10, as previously described and as illustrated in FIG. 12.
  • the piston end of the cushioning mechanism 1 is inserted through the opening in the sill mouth 19a.
  • the cushioning mechanism 1 is moved longitudinally through the sill so as to slide the bearing assembly 12 through the aperture 76 and into abutting engagement with the stop 74a.
  • the securing plate 77 is then installed so as to effectively anchor the piston means 5 to the sill 10.
  • the coupler bar 15 is inserted into the recess in the connecting means 14.
  • a conventional coupler key is inserted, in sequence, through a slot 151 in vertical wall 152 of connecting means 14, a slot 153 in drawbar 15, and a slot 154 in vertical wall 155 of connecting means 14'.
  • drawbar 15 is connected with cylinder means 2.
  • key 150 will pass loosely through slot 153 so as to permit horizontal pivoting movement of drawbar 15 relative to cylinder means 2. 7
  • the plate 22 is connected to the underside of the sill 10 so as'to provide a floor operable to slidably support the cylinder means 2 of the cushioning mechanism 1.
  • the restoring mechanism 16 is connected to the sill floor 22.
  • the mechanism 16 is connected with the tongue portion 17 of the cylinder means 2 in the manner generally described in the U. S. Abbott Pat. No. 3,233,747.
  • a major advantage of the invention resides in the ability of the run-in control valve to provide an immediately effective, low impedance level in the hydraulic cushioning device capable of effectively absorbing bufi coupling shock.
  • valve 19 are controlled by the valve member moving to a closed valve position.
  • valve 99 and the sleeve 121 provide axially overlapping operating paths for these components so as tominimize the axial dimension of the control valve 96 and facilitate its positioning between the low pressure and high pressure cylinder walls of the cushioning device.
  • the low impedance level of the present invention is immediatelyeffective to absorb impact energy where relief valve systems inherently involve an operational delay, during which there is a danger of developing excessive hydraulic pressures.
  • vent valve systems have an inherent propensity to provide undesirably high impedance in response to low-level, coupling action induced impact forces.
  • the vent valve systems tend to produce excessive impedance, so as to transmit excessively severe shock forces to the body of a railway car.
  • said cushioning device includes hydraulic piston means and cylinder means, and restoring means operable to tend to effect predetermined relative positioning of said piston means and cylinder means, the improvement in said system comprising at least one valve including:
  • valve means biased to a normally open condition and operable to provide immediately effective fluid communication between a high-pressure impedance zone of said cushioning device and a fluid receiving means; actuating means operable to move from a first to a second position and in so doing move said valve means to a position tending to impede flow between said impedance zone and said fluid receiving means, with said actuating means being operable to undergo said movement in response to run-in, train action forces acting on said cushioning device; valve disabling means, operable in response to buff coupling forces acting on said cushioning device, to disable said actuating means, prevent said movement thereof, and maintain said valve means substantially in said normally open condition; and resilient biasing means operable to yieldably impede movement of said actuating means from said first to said second position.
  • a valve system as described in claim 1 wherein: said system includes a plurality of passage means controlling fluid communication between said high pressure impedance zone and said fluid receiving means, with flow through each such passage means being controlled by a said valve; and said resilient biasing means of said at least one valve is operable to position said valve means thereof in said position tending to impede flow in response to operation of said restoring means.
  • said system includes a plurality of passage means controlling fluid communication between said high pressure impedance zone and said fluid receiving means, with flow through each such passage means being controlled by a said valve; and said resilient biasing means of said at least one valve is operable to position said valve means thereof not in said position tending to impede flow in response to operation of said restoring means.
  • said cushioning device includes hydraulic piston means and cylinder means, and restoring means operable to tend to effect predetermined relative positioning of said piston means and cylinder means, the improvement in said system comprising:
  • fluid receiving means a plurality of control valves; and a plurality of passage means operable to control fluid communication between said high pressure impedance zone and said fluid receiving means in response to buff forces acting on said cushioning device, with flow through each of said passage means being controlled by an individual control valve;
  • each said control valve including:
  • valve means biased to a normally open condition and operable to provide immediately effective fluid communication between said high-pressure impedance zone of said cushioning device and said fluid receiving means
  • actuating means operable to move said valve means to a position tending to impede flow between said impedance zone and said fluid receiving means in response to run-in", train action forces acting on said cushioning device,
  • valve disabling means operable in response to buff coupling forces acting on said cushioning device, to disable said actuating means and maintain said valve means in a substantially open condition
  • resilient biasing means yieldably cooperating with said actuating means and operable to determine whether or not said actuating means will be operable to move said valve means to said position tending to impede'flow in response to operation of said restoring means
  • said resilient biasing means being operable to position said valve means in said position tending to impede flow in response to operation of said restoring means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

A valve apparatus for controlling ''''run-in'''' train action events. The valve is characterized by a valve member which is normally open to provide a low impedance level in an hydraulic cushioning device capable of effectively absorbing buff coupling shock. Fluid reaction surface means associated with the valve member enables the valve member to move to a relatively closed position to provide a high impedance level and thus enable the cushioning device to control ''''run-in'''' train action events. A disabling device obviates the function of the reaction surface means, when buff coupling forces act on the cushioning device, so as to cause the valve member to remain open. A biasing means determines the condition of the valve during restoration of the cushioning device from a buff condition.

Description

United States Patent 1191 Powell 213/43 Stephenson *Feb. 12, 1974 VALVE APPARATUS FOR CONTROLLING 3,451,561 6/1969 Stephenson et a1 213/43 TRAIN ACTION 3,463,328 8/1969 Blake 213/43 3,589,527 6/1971 Seay et a1. 213/43 Inventor: J stephenson, Duncan, OkIa- 3,647,088 3/1972 Seay et al. 213/43 Assigneez Hamburmn o p y, Duncan, 3,568,855 3/1971 Seay et a1. 213/43 Okla Primary ExaminerDrayton E. Hoffman 1 Notice: The portion of the term of this Attorney, Agent, or Firm--Burns, Doane, Swecker &
patent subsequent to June 29, 1988, M thi has been disclaimed.
22 Filed: June 25, 1971 1571 ABSTRACT A valve apparatus for controlling run-in train action [2]] Appl' 156353 events. Thevalve is characterized by a valve member Related US. Application Data which is normally open to provide a low impedance [63] Continuation-impart of Ser. No. 752,649, A 14, level in an hydraulic cushioning device capable of ef- 1968, p 3,589,528' fectively absorbing buff coupling shock. Fluid reaction surface means associated with the valve member en- 521 US. c1 213/43, l88/287, 188/313, ables the valve member to 'move to a relatively closed 213/8 position to provide a high impedance level and thus 51 Int. Cl. 861g 9/16 enable the cushioning device to control train [53] Fi ld f S h 213/8 43 2233; 267/64 65; action events, A disabling device obviates the function 188/885 10, 96, 284, 279, 287, 313 of the reaction surface means, when buff coupling forces act on the cushioning device, so as to cause the [56 Ref ren Ci d valve member to remain open. A biasing means deter- UNITED STATES PATENTS mines the condition of the valve during restoration of the cushioning device from a buff condition. 3,589,528 6/1971 Stephenson 213/43 3,378,149 4/1968 6 Claims, 14 Drawing Figures 1mm) h MM Q SHEET 1 BF 4 PAIENTEI] FEB I 2 I974 INVENTOR JACK G. STEPHENSON BY BMIOQMI FIGS I ATTORNEYS ATTORNEYS villi ,mfl- R m W N a s m m M r mm CL Wu H 5 Q m 3 a 8 mm M w M w? a a m K M om\ .lihm m m 1 M M 4 Na r at 1 @N\ hw W :5]! IN 5 3: m 5
PATENTED FEB I 2 I974 SHEET 2 OF 4 PAIENIEBFEBI m 3391.534 I saw 3 (If a I INVENTOR 25 v JACK G. STEPHENSON BY 5 00M i e3 ATTORNEYS PAIENIEB FEB 1 21974 SHEET Q 0F 4 FIGB INVENTOR JACK G. STEPHENSON ATTORNEYS 1 VALVE APPARATUS FOR CONTROLLING TRAIN ACTION RELATED CASES This application is a continuation in part of application Ser. No. 752,649, filed Aug. 14, 1968, issued as U.S. Letters Pat. 3,589,528.
GENERAL BACKGROUND, OBJECTS AND SUMMARY OF INVENTION Railway freight cars or other train type vehicles often carry goods and cornmodites which must be protected from shock. Thus, there has been a longstanding practice in the railway or train art to provide cushioning mechanisms in association with car coupling devices. Such mechanisms enable shock forces, generated during car coupling operations, to be absorbed without transmitting excessive shock to goods contained within the railway or train cars being coupled.
While cushioning devices provide a mechanism for absorbing coupling shocks, there. still remains the problem of coping with train action events.
Train action events may be defined as a phenomena which occurs as a consequence of the existence of slack in the couplings between moving railway cars. Suchslack enables the cars, in motion on a railbed, to undergo relative movement. Thus, train action denotes the equalizing of speed of adjacent cars which have undergone relative movement. A train action event is termed a run-out where adjacent cars are moving apart. Where moving cars are converging, the train action event is termed a run-in.
There are several undesirable aspects associated with I train action phenomena While train action is occurring, crewman experience an undesirable floating sensation. At. the termination of train action events, shock forces are transmitted to coupling units and railway cars and often transmitted in a more or less wave form throughout a train. Such train action induced shocks are often severe enough to both damage goods carried by a train and cause injury to train crewmen. Indeed, the train action induced shock forces may be so severe as to induce derailment.
A major contribution to the railway cushioning art which provides a system for effectively coping with run-out tr'ain action events is featured in United States Stephenson et al. U.S.-Pat. No. 3,451,561.
While the Stephenson et al concept provided a concept for effectively handling a run-out event, there remained a need, going beyond the teaching of this concept, for a method and apparatus which would effectively minimize or control run-in events.
The problems involved in coping with run-in events are particularly aggravating and seemingly mutually inconsistent from the standpoint of solutions.
The greatest forces ordinarily imposed upon a coupling are those encountered in a railway yard where a train'is moving at relatively low speed and abruptly en- 2 gages a car for coupling purposes. In order to absorb the high level shock generated during such coupling operations, it is necessary that a cushioning device have a capacity to move relatively rapidly and dissipate large amounts of energy on a fairly uniform basis.
However, when a train is in motion and lower level forces are acting on the coupling units so as to tend to induce a run-in phenomena, i.e., induce. convergence of coupling units, the requisites of the cushioning device necessary to absorb high level coupling shocks are self-defeating. With the coupling unit being able to move rapidly so as to absorb coupling shock, its capacity to cause slow coupling movement soas to control run-in events is severely restricted.
Conversely, if the cushioning mechanism is designed to impede coupler movement to an extent sufficient to control run-in events, the cushioning device will be unable to effectively absorb the high energy coupling shocks.
A particularly acute problem relates to the provision of a mechanism for controlling the impedance level in a cushioning device, which mechanism will operate with sufficient rapidity and reliability to control both run-in events and buff coupling forces acting on the cushioning mechanism.
It thus is a principal object of the present invention to provide a control valve mechanism, uniquely adapted for incorporation in an hydraulic cushioning mechanism associated with a railway car, which valve mechanism is normally open and remains open to absorb coupling shock and is closed in response to runin train action forces so as to provide a higher impedance level.
.It is a further object of the invention to provide such a run-in control valve, including a' low inertia disabling component which acts rapidly to maintain the valve in an open condition in response to buff coupling force's.
A further object of the invention is to provide such a run-in control valve including a' valve member and disabling member, which traverse overlapping paths so as to maintain the control valve within minimum dimensions.
Another object of the invention is to provide a simplified valve structure characterized by telescopingly assembled components, with at least two of these components being biased by a single spring mechanism.
It is another object of the invention to provide such a run-in control valve characterized by structural simplicity and inherent ruggedness and a mounting arrangement which positively prevents valve components from entering into the interior .of the cylinder of an hydraulic impedance mechanism.
In accomplishing certain of the foregoing objects, there is presented through this invention, a method of controlling train action phenomena wherein an impedance means is provided between relatively movable draft gear cushioning members. The impedance means is operable to impede buff movement of the draft gear.
The term buff movement, as here used, denotes in the conventional sense, the movement of a coupler bar toward a railway car occasioned by forces such as those generated during coupling operations. Draft movement on the other hand indicates outward movement of a coupling bar, i.e. movement of a coupling bar away from its associated railway car in response to pulling forces acting on the coupling bar.
In response to the buff forces acting on the draft gear tending to produce run-in train action events, a first level of impedance to movement is provided by the impedance. means. In response to buff coupling forces acting on the draft gear, i.e., buff forcesgenerated during coupling operations, a second level of impedance is provided which is substantially less than the first level of impedance.
In a preferred embodiment, this basic concept is augmented by providing other hydraulic impedance means between the draft gear cushioning members. This other hydraulic impedance means is operable to impede draft movement of railway car draft gear. In response to draft forces acting on the draft gear and tending to provide run-out train action events, a relatively high impedance level is provided in the other impedance means. In response to low level draft forces acting on the draft gear, a relatively low impedance level is provided in this other impedance means.
The invention here presented relates to a run-in control valve incorporated in an overall impedance system as described in an application of Seay et al. filed July 15, 1968 and entitled Method and Apparatus for Controlling Train Action Events and now issued as U.S. Pat. No. 3,589,527.
In accomplishing at least some of the foregoing ob jects, there is presented, through this invention, a runin control valve characterized by a normallyopen valve. In its open condition, this valve provides a low impedance level resisting buff coupling forces. Actuating means associated with the valve move the valve to a closed position in response to run-in forces acting on a cushioning mechanism. A low inertia, disabling device serves to obviate the influence of the actuating means when buff coupling forces are acting upon the cushioning device.
In a specific format, the valve mechanism includes body means and passage means extending through the body means and operable to provide fluid communication between'the impedance zone of a cushioning device and a low pressure, fluid discharge zone of the cushioning device. A valve member is mounted for telescoping movement in the body means and is operable to control flow through the passage means. A fluid reaction means is operably associated with the valve member and is operable to move the valve member to a position impeding flow through the passage means in response to flow from the impedance zone to the low pressure discharge zone. Port means provide fluid communication between the passage means and the fluid reaction means. A valve disabling means is operable to tend to close the port means, in response to a rate of movement of a railway coupling member connected with the cushioning device which results from any anticipated buff coupling forces acting on the coupling member. A biasing means resiliently urges the valve member to a position operable to permit flow through the passage means.
DRAWINGS In describing the invention, reference will be made to a preferred embodiment shown in the appended drawings.
In the drawings:
FIG. 1 provides a perspective view of a railway car and components of a cushioning mechanism and a conpling bar, with these components being shown in an exploded or separated format;
FIG. 2 provides an enlarged, sectioned, elevational view of the cushioning mechanism shown in FIG. 1;
FIG. 3 provides a plan view of the inner cylinder wall of the FIG. 2 cushioning device, with this wall laid flat;
FIG. 4 provides an enlarged, transverse, sectional view of the FIG. 2 cushioning device as viewed along the section line 4-4 of FIG. 2;
FIG. 5 provides a transverse, sectional and enlarged view of the FIG. 2 cushioning device as viewed along the section line 5-5 of FIG. 2;
FIG. 6 provides an enlarged, elevational, and sectioned view of a valve mechanism incorporated in the FIG. 2 mechanism, which valve mechanism is operable to control flow through cylinder ports during buff movement of the draft gear, i.e., coupling bar. The valve components are shown in FIG. 6 in their relaxed or normal condition, i.e., with no fluid forces acting on the components;
FIG. 7 illustrates the components of the FIG. 6 assembly as they are disposed during an outflow of fluid from the inner cylinder of the FIG. 2 mechanism so as to control run-in train action events;
FIG. 8 illustrates the components of the FIG. 6 assembly as'they are disposed during an outflow of fluid from the inner cylinder of the FIG. 2 assembly in response to coupling shock acting on the coupling member;
FIG. 9 provides a transverse sectional view of the FIG. 6 assembly as viewed along the section line 9-9 of FIG. 6;
FIG.' 10 provides a transverse sectional view of the FIG. 6 assembly as viewed along the section line 10-10 of FIG. 6;
FIG. 11 provides a transverse sectional view of the FIG. 6 assembly as viewed along the section line 1l11 of FIG. 6;
FIG. 12 provides a bottom plan view of the underside of a railway car sill illustrating details of an anchoring system for securing the piston rod of the FIG. 2 mechanism to the sill;
FIG. 13 provides an enlarged, transversely sectioned, view of a check valve mechanism incorporated in the FIG. 2 mechanism, which check valve mechanism enables fluid to return to the interior of the inner cylinder of this mechanism during draft movement of the coupling bar; and
FIG. 14 provides an enlarged transversely sectioned view of a valve mechanism mounted at the draft end of the inner cylinder of the FIG. 2 mechanism and which serves to control run-out train action events.
BASIC STRUCTURE FIGS. 1 and 2 illustrate the basic components of a cushioning mechanism designed to be incorporated in a railway freight car in conjunction with a conventional drawbar or coupler.
Cushioning mechanism 1 includes cylinder means 2. This cylinder means comprises an outer cylinder 3 and an inner cylinder 4. A piston means 5 is telescopingly associated with the cylinder means 2. Piston means 5 includes a piston 6 mounted for telescoping movement within the interior cavity 7 of cylinder 4. Piston means 5 includes a piston rod 8 extending from one side only of the piston body 6.
An anchor assembly or anchor means 9 serves to connect the piston means 5 to the sill 10 of a railway car 11. Anchor means 9 comprises a conventional spherical bearing assembly 12 carried at the free extremity of the piston rod 8. This spherical bearing assembly 12 is secured within a unitized pre-cast housing 13. The housing 13 is secured within the sill 10 as, for example, by conventional welding techniques.
' A continuation of outer cylinder 3 defines -a connecting means 14 which serves to connect the cylinder means 2 with a conventional drawbar 15.
A restoring mechanism 16 provides a resilient interconnection between the sill l and a tongue portion 17 of the cylinder means 2. Restoring mechanism 16, fabricated from coil springs, serves to yieldably and resiliently bias the cylinder means 2 to a predetermined neutral or rest position. Restoring mechanism 16 may be of the general type described, for example, in the US. Abbott et al Pat. No. 3,233,747, and may bias cylinder means 2 to a neutral position, causing piston 6 to be at or near the draft extremity of the interior of cylinder means 4.
The general manner in which a cushioning mechanism is mounted on a railway car structure is well understood and described, for example, in the U. S. Abbott et al Pat. No. 3,233,747, as well as in said U. S. Stephenson et al. Pat; No. 3,451,561.
Suffice it to say, with reference to FIG. 2, that the cushioning device 1 is mounted within the sill 10, with the piston means fixedly anchored to the sill by way of anchor means 9. The cylinder means 2 is free to undergo longitudinal telescoping movement within the sill 10.
Buff movement of the cylinder means 2 is limited by engagement of collar-like abutment means 18, carried by connecting means 14, with collar-like abutment means 19 carried by the outer end of the sill 10. Draft movement of the cylinder means 2 is limited by engagement of the piston means 6 with an annular check valve member 20 defining the draft end of cylinder space 7.
Restoring mechanism 16 is connected, at one end, by bracket means 21 to a sill base plate 22. Sill plate 22 is fixedly connected to the underside of sill 10 so as to provide support for the underside of cylinder means 2.
Another portion of restoring mechanism 16 is connected with the tongue portion 17 of cylinder means 2.
The coil spring components of restoring mechanism 16 tend to yieldably bias the cylinder means 2 toward a predetermined neutral position as described in detail in the aforesaid Abbott et al. US. Pat. No. 3,233,747. In connection .with this invention, the predetermined neutral position is the position at which the piston means 6 engages the draft extremity of cylinder space 7, i.e., the check valve 20.
It will here be recognized that with this neutral position, the restoring mechanism 16 need not have a capacity to restore in a buff direction. It is necessary only for the restoring mechanism to return the cylinder means 2 from the full buff position illustrated in FIG. 3, in a draft direction, to the neutral position. Thus, if desired, the structure of the restoring mechanism described in the Abbott et al patent may be simplified to eliminate the ability of the Abbott et al restoring mechanism to resiliently bias the cylinder means 2 in a buff direction.
CYLINDER STRUCTURE.
As noted, cylinder means 2 includes outer cylinder 3 and inner cylinder 4. Outer cylinder means 3, as shown in FIGS. 2, 4 and 5, has a generally rectangular crosssectional configuration.
Inner cylinder 4, which is contained within and spaced from the outer cylinder 3, has a generally cylindrical or circular cross section. 7
Cylinder 4 is spaced from cylinder 3 so as to provide a generally annular, low pressure cavity 23. Because of the relatively low pressure nature of the fluid contained within this cavity, the side wall 24 of cylinder 3 may be relatively thin in relation to the side wall 25 of cylinder 4. Cylinder 4 contains the high pressure cavity 7.
The ends of cylinder means 3 and 4, adjacent anchor means 9, may be termed first cylinder ends. The first end of outer cylinder means 3 is defined by a cylinder head 26. The first end of inner cylinder means 4 is defined by a cylinder head 27. Cylinder heads 26 and 27 are both centrally apertured to telescopingly receive the piston rod 8.
A bushing 28 provides a. bearing relationship between the cylinder head 27 and piston rod 8. An assembly 29 of conventional annular seals is provided in cylinder head 26 to maintain a sealed relationship between the cylinder head 26 and the reciprocable'piston rod 8.
It is here significant to note that the seal mechanism 29 is disposed in an annular recess 29a formed in cylinder head 26. Recess 29a faces outwardly so as to provide access to the sea] assembly 29 from the exterior of the unit. Seal assembly 29 may be retained in place in recess 29a by an annular cover plate 29b. Plate 29b may be secured in place by conventional threaded fasteners, as shown in FIG. 2.
An accordian-like elastomeric dust shield 30 is connected atone end 31 to cylinder head 26 and the other end 32 to piston rod 8. This dust shield structure protects the portion of the piston rod 8 which reciprocates into and out of the cylinder means 2.
As shown in FIG. 2, cylinder head 27 is stabilized by cylinder head 26. This support is achieved by a plurality of circumferentially spaced and radially directed webs 33 extending longitudinally between the cylinder heads 26 and 27. As illustrated, the longitudinal spacing of cylinder heads 26 and 27 and the circumferential spacing of the webs 33 provides passage means 34 defining a continuation of the low pressure cavity 23. This passage means 34 communicates with the rightmost end of cylinder head 27, viewing the apparatus as shown in FIG. 2.
The end of cylinder means 2-disposed adjacent connecting means 14 may be termed the second cylinder head or second cylinder end.
Thus, the second end of cylinder means 3 is closed by generally annular, second cylinder head means 35. The second end of inner cylinder means 4 is closed by second cylinder head means 36.
As illustrated, cylinder head means 35 and 36, in essence, are defined by an integral wall extending entirely across the second end of cylinder means 2.
Inner cylinder wall means 25 may be mounted in an interfering fit relationship on an annular ledge-like portion 37 of the unitary wall means 38 which provides cylinder head means 35 and 36. A similar mounting arrangement interconnects wall 25 with cylinder head 27.
of these ports is more accurately reflected in FIG. 3.
During buff movement of the cylinder means 2, the cylinder head wall 36 moves toward the left-most side of piston means 6, viewing the apparatus as shown in FIG. 2, so as to expel fluid from the cylinder cavity portion 7a into the low pressure zone 23. Fluid expelled from the cavity 7a enters the low pressure zone 23 and flows into the passage means 34. This fluid is returned to the cylinder zone 7b, disposed between the rightmost side of piston 6 and the cylinder head 27, by way of a check valve 20.
Check valve comprises a generally annular valving plate 20d mounted on cylinder head 27 within cavity 7. Plate 20a is valvingly associated with a plurality of Iongitudinally extending and circumferentially spaced, high capacity passages 40 formed in cylinder head 27. A series of circumferentially spaced coil spring units 41 serve to yieldably and resiliently bias the plate 20a toward anchor means 9, into passage closing relationship with the passage means 40. Each such biasing mechanism 41 comprises a coil spring 42 interposed between an abutment 43, carried by valve plate 20a by way of a rod 44, and an abutment 45 formed in a cylinder head passage 46.
The structure and mode of operation of this check valve mechanism is described in detail, for example, in the U. S. Blake Pat. No. 2,944,681. For present purposes, it is sufficient to note that fluid expelled from space 7a and transmitted to the area of passage means 34 returns to the cylinder cavity 7b as a result of the opening of check valve 20.
During draft movement of cylinder means 2, the cylinder head 27 moves toward the right side of piston 6 viewing the apparatus as shown in FIG. 2. During this draft movement of cylinder means 2, fluid will be expelled from the cavity 71) through the port means 39 and flow into the low pressure zone 23.
This fluid expelled from cavity 7b will return to cavity 7a by way of a first port 47 in port means 39. Port 47 is disposed inthe underside of cylinder wall and provides fluid communication between the cavities 7a and 23 throughout the extent of draft travel of the cylinder means 2.
A check valve mechanism 48, illustrated in detail in FIG. 13, provides continuously, check valve controlled communication between the cavity 7a and the cavity 23. The flow capacity of the port means 47, when placed in an open condition by check valve 48 is of a relatively high magnitude, so as to afford nominal resistance to return flow of fluid from low pressure cavity 23 through the zone 7a.
Structural details of the check valve mechanism 48 are shown in FIG. 13. As there shown, mechanism 48 comprises a body 49 connected by threaded coupling means 50 to the exterior of wall 25. A valve member 51 is telescopingly mounted within valve body 49.
Valve member 51 is generally cylindrical in character and includes a cylindrical side wall 52 provided with a plurality of radial ports 53. An imperforate head wall 54, connected with side wall 52, provides a sealing sur face 55 to sealingly engage a valve seat 56 formed on valve body 49. A coil spring 57 interposed between valve member carried abutment 58 and a valve body carried abutment 59 serves to yieldably bias the valve member 51 to a closed position.
In response to a relatively low pressure in cavity 7a, resulting from draft movement of cylinder means 2, the valve 51 will automatically open so as to allow the return flow of fluid from cavity 23 into the zone 7a.
PISTON MEANS AND ANCHOR STRUCTURE The structure of piston means 5 and anchor means 9 is illustrated in FIGS. 2 and 12.
Piston means 5 includes the piston 6. A bushing 60 is supported in an annular, notch-like recess 61 formed on the outer cylindrical periphery of piston 6. Bushing 60 may be secured in place by an annular plate 62 secured to piston body 6 by threaded fastener 63. A generally annular sealing element 64 is carried onthe outer periphery of bushing 60 and provides sliding and substantially sealing engagement between the outer periphery of the piston 6 and the inner periphery of wall 25 of cylinder means 4. Element 64 may comprise a split piston ring operable to provide highly limited leakage between zones 7a and 7b, as described in the aforesaid Stephenson application.
Piston rod 8 extends from one side only of piston body 6 and intersects the first ends only of cylinder means 3 and 4. Thus, piston 6 is supported in a cantilever fashion within cylinder means 4, with there being no piston rod extending into the cavity portion 7a or through the second cylinder end plate 38.
Piston rod 8 is sealingly and slidably supported during its reciprocable passage through cylinder heads 27 and 26 by bushing 28 andseal means 29.
The free, or rightmost extremity of piston rod 8 terminates in the spherical bearing assembly 12. This spherical bearing assembly 12 is of the type described, for example, in the aforesaid U.S. Blake Pat. No. 2,944,681.
For present purposes, it is sufficient to note that this spherical bearing assembly, which serves to accommodate nonaxially directed stress, comprises a head-like portion 65 providing arcuate spherical segment surfaces 66 and 67. A bearing plate 68 conformingly engages surface 66 while another bearing plate 69 conformingly engages surface 67. Plates 68 and 69 are interconnected as described generally in the aforesaid Blake US. Pat. No. 2,944,681.
Unitized housing 13 of an anchor means 9 comprises a pair of side walls 70 and 71. These walls extend longitudinally of the side walls 72 and 73 0f sill 10. Housing side walls 70 and 71 niay be welded to sill side walls 72 and 73, respectively.
Housing side walls 70 and 71 are interconnected by a pair of longitudinally spaced, and transversely extending, walls 74 and 75. Wall 75 is provided with an aperture 76 of a size sufficientto receive the spherical bearing assembly 12.
With spherical'bearing assembly 12 inserted through the aperture 76 of the welded-in-place housing 13, it will be positioned such that the plate 69 abuttingly engages an abutment or stop portion 74a carried by the transverse wall 74 of housing means 13.
With the spherical bearing-assembly 12 thus disposed in abutting engagement with the stop 740, the assembly 12 may be fixed in position relative to the housing 13 by inserting a securing plate 77. Securing plate 77, as shown in F IG. 1, is U-shaped and includes a pair of laterally spaced legs '78 .and 79. Plate 77 is installed through the open underside 80 of housing 13 so as to straddel the piston rod 8, with the legs 78 and 79 disposed on opposite lateral sides of the piston rod 8. The width of the plate 77 is such that when it is disposed in this straddling position, it bridges the longitudinal clearance between plate 68 and the housing wall 75,
assuming, of course, that plate 69 is abuttingly engaged with the stop 74a. With anchor plate 77 thus positioned, it may be secured in place by conventional threaded fasteners 81 which pass transversely through the housing wall 75 and the lower wall portion 82 of plate 77 which connects the legs 78 and 79.
HYDRAULIC FLUID SYSTEM When the cushioning mechanism 1 is assembled, oil may be introduced into the cavity 7 through conventional filling orifices (not shown). Oil is introduced when the piston 6 is in the full buff position shown in FIG. 2. The volume of oil is adjusted so as to fill the total void space of cavities 7a, 7b, 23 and 34, except for a volume equal to one-half of the volume of piston rod 8 which reciprocates into and out of the cavity 7, i.e. the change in volume of cavity 7 caused by reciprocation of piston rod 8. t
This degree of filling will leave, in the total void space of cylinder means 2, when the piston is in the full buff or contracted position, a void or air space'equal to onehalf of the piston rod volume which reciprocates into and out of the cavity 7. At the other extremity of piston movement, i.e., when the cylinder is in the extended or draft position, this void space will be equal to one and one-half times the piston rod volume which moves into and out of the cavity 7.
Even at the draft position of the cylinder means 2, the air void, which comprises an air body in direct communication with the hydraulic oil of the system, will exist only in the top of cavity 23 and above the cavity 7. Thus, the free air or void space will not extend into the hydraulic impedance zone 7.
Nevertheless, this air, being in direct contact with the oil body, will be capable of intermixing with the oil as relative movement between the piston means and cylinder means 2 occurs. It has been found, 'quite unex- I exists in the system when the cylinder is in the full buff position shown in FIG. 2. Even under this condition, the system will still accommodate the thermally induced expansion of the hydraulic oil.
RUN-IN AND BUFF SHOCK CONTROL SYSTEM The impedance to coupler bar movement during buff movement of cylinder means 2 is controlled by a plurality of exponentially spaced ports 83 through 94 included in the port series 39.
These exponentially spaced ports are arranged on cylinder wall 25, generally as shown in FIG. 3.
FIG. 3 represents cylinder wall 25, separated at median and longitudinally extending line 26, and laid flat. Line 26 represents the intersection of the longitudinally extending vertical median plane passing through the cylinder means 4 with the upper portion of wall 25. The
general location of line 26 is shown in FIGS. 4 and 5.
The exponential spacing herein referred to corresponds generally to that described, for example, in the U. S. Seay Pat. No. 3,301,410 and described also in the previously noted Stephenson et al. US. Pat. No.
Port Distance in Inches from Cylinder End 95 83 2.00 84 2.14 85 2.44 86 2.84 87 3.35 88 4.00 89 4.84 90 5.97 91 7.37 92 9.25 93 l l.32 94 13.90
All of the ports 83 through 94, in the embodiment characterized by the dimensions above-noted, are of the same diameter, i.e., nineteen sixty-fourths inches.
In this embodiment the longitudinal width of the piston 6, i.e., the distance between piston sides 6a and 6b, is approximately 2% inches.
In the full buff position of piston 6, this piston covers ports 83 through 88. Each of these six ports adjacent cylinder end 95 are individually controlled by a control valve 96. Thus, ports 89 through 94 are continuously open and unvalved, while ports 83 through 88 are each under the control of an individual valve 96. (In certain instances, even a single control valve 96 may suffice,
while in others each of the 12 ports 83 through 94 may be provided with a control valve 96.)
In order to facilitate the overall installation of the invention, the various valve mechanisms 96 associated with the ports 83 through 88 of port system 39 are not shown in FIG. 2. However, the positioned relationship of valves 96 are shown in FIGS. 3, 4 and 5.
Structural details of a representative control valve 96 are illustrated in FIGS. 6 through 11. As there shown, the control valve 96 comprises a generally cylindrical body 97. A threaded coupling 98 serves to threadably secure the valve 96 to the exterior of the wall 25 in a radially extending akignment with respect to the central axis of the cylinder means 4 and in coaxial disposition with its associated port. The valve 96, illustrated in FIGS. 6 through 11, is shown in association with the first port 83 in the exponential series.
As shown in FIGS. 4 and 5, the various valves 96 are arranged so as to project into the enlarged corner por tions of the generally annular cavity 23, where maximum space is available.
Returning to the basic structure of valve 96, each valve includes a reciprocable, generally cylindrical, spool valve member 99. Each such spool valve member includes a generally cylindrical body portion 100 having a closed, radially outermost, extremity 101. A plurality of radially extending ports 102 intersect the cylindrical wall portion 100, immediately beneath the end wall 101. In the embodiment characterized by the dimensions above-noted, four ports 102 are provided, each having a diameter of eleven sixty-fourths inches.
The end 103 of valve 99, facing the central axis of the cylinder means 4, is open as shown in FIG. 6.
Each reciprocable valve further includes a generally annular rim-like piston 104. This piston extends radially outwardly from cylinder wall 100, generally adjacent the free end 103.
A second series of radially extending and circumferentially spaced ports 105 intersects cylinder wall 100 adjacent piston 104.
An annular shoulder or ledge 106 is formed on the outer periphery of cylindrical wall 100. Ledge 106 faces generally axially, toward the head portion 101 of valve 99.
A valve body cap 107 closes the outermost end of the valve body 97 and telescopingly receives the cylindrical wall 100. As illustrated, closure or cap 107 may be disc-like in structure. Closure 107 is provided with a central aperture 108 through which cylindrical wall portion 100 reciprocates.
Closure 107 provides an annular abutment 109, extending radially outwardly from a cylindrical cap surface 110, which surface defines aperture 108. With abutment 106 with abutment 109, the main valve ports 102 are positioned so. as to clear, i.e., be spaced outwardly from, the outer extremity 111 of closure 107.
Valve 99 is biased outwardly of the central axis of cylinder means 4 so as to bring the abutment 106 into engagement with abutment 109 by a coil spring 112. This spring 1 12 abuttingly engages an annular recess or seat 113 formed in the free end 103 of the valve wall As shown in FIG. 6, closure 107 cooperates with a radially extending valve body wall 114 and a cylindrical body wall 115 to define a generally annular cylinderlike cavity 1 16. Valve piston 104 is operable to reciprocate through cavity 116.
Port means 105 provide, by way of port 83, fluid communication between the high pressure cavity 7 and the zone 1160 of cavity 1 16 which is disposed between the closure 107 and the piston 104.
A plurality of ports 1 17 intersect the generally hexagonal base wall 1 18 of valve body 97, immediately adjacent, but radially outwardly of, the cylinder end wall 114. Port means 117 thus serve to provide fluid communication between the low pressure cavity 23 and the portion l16b of cylinder cavity 116 disposed between piston 104 and valve body 114.
Thus, piston 104 is biased inwardly toward the central axis of piston means 4 by the pressure of fluid within the cavity 7. Piston 104 is biased radially outwardly, away from the central axis of cylinder means 4, by a generally low pressure fluid within cavity 23.
Thus, when the higher pressure of fluid within cavity 7, acting through port means 105 on piston 104, over comes both the spring biasing of spring 112, and the fluid pressure of cavity 23 transmitted through ports 117 to piston 104, the valve 97 will move radially in-' wardly to a closed valve position, i.e. the position shown in FIG. 7. In this closed valve position, the ports 102 are covered and substantially closed by surface 110. Surface 110 is disposed in generally telescoping and conforming relation with the outer periphery 119 of valve wall 100.
In this connection, however, it will be understood that the relationship between outer periphery 119 of valve 96 and surface 110 may not be such as to provide complete sealing, i.e., some limited leakage may take place. Indeed, in the embodiment characterized by the dimensional criteria above-indicated, with the valve disposed in the FIG. 7. position, a degree of leakage through the valve takes place which is on the order of one-tenth of the flow permitted by the valve in the open position shown in FIG. 6.
It will here be understood that the reaction surface 104a provided by the piston 104 in the zone 1 16a is sufficient to provide a net downward biasing operable to overcome both the biasing influence of spring 112, the biasing of fluid pressure in the zone 116b, and any biasing acting outwardly on the valve 99 as a result of a restricted flow through the ports 102.
The restoring or biasing force of spring 1 12 is of a relatively low magnitude such that the valve member 97 will move to the closed valve position during any runin train action phenomena. This results because the low velocity of piston 6 during run-in events is sufficient to generate enough pressure in cavity 7 and cavity 116a to induce closing movement of valve 99.
It is contemplated that, in some circumstances, the restoring mechanism 16 may serve to position the piston 6 at a neutral position where the piston 6 would be spaced from its extremity of draft movement. Regardless of the neutral position, where the restoring mechanism 16 is imposing very low level forces on the piston 16 tending to restore the piston 16 from a full draft or full buff position to an intermediate (or draft extremity) neutral position (by moving cylinder means 2), the spring 112 of any valve mechanism 96 on the pressurized side of the piston 6 may, if strong enough, overcome the pressure effects of fluid within the cavity 7, transmitted through the port means 105 and acting on the piston 104, so as to hold the valve 99 thereof in the open position shown in FIG. 9. With the valve 99 thus'held open during the restoring action, relatively rapid restoration will be assured.
In any event, and as is now apparent, if the bias of each spring 112 on the pressurized side of piston 6 is sufficiently strong, its associated valve 99 will remain open when the restoring mechanism 16 moves cylinder means 2 toward a neutral position. In other words, the spring 112 may be strong enough to prevent the actuating means 104, here in the form of a piston, from moving between the first position of FIG. 6 to the second position of FIG. 7 in response to operation of the restoring mechanism. If the bias of each spring 112 is not this strong, its associated valve 99 may close during this restoring action. In this latter event, for example during draft directed restoration, and where control valve means 96 are exposed in the draft side of piston 6, extended impedance would be made available, at the end of a run-in event, to cope with a succeeding run-out event occurring during restoration.
Valve mechanism 96 includes a unique disabling device 120 which serves to maintain the valve 97 in an open position when the coupler bar and cylinder means 2 are subjected to impact forces of the type encountered during coupling operations. Such operations ordinarily occur in railway yards where trains are being assembled and one car is moved into engagement with another with sufficient force to induce interlatching of the coupler bars of the two cars involved.
Because of the severity of such coupler forces, it is highly desirable to maintain an immediately effective low level of impedance in the unit 1, operable to dissipate impact energy in a generally uniform manner and without excessively stressing the cylinder components of the mechanism. This low level of impedance is in contrast to the high level of impedance previously described which is attained during run-in phenomena. The high level of impedance during run-in phenomena is necessary in order to impede coupler movements where the level of forces acting on the coupler units is relatively low in comparison to those encountered during coupling operations.
The low level of impedance effected by the valve mechanism 96 will now be described with relation to FIGS. 6 and 8.
Disabling mechanism 120 comprises a sleeve 121 mounted for telescoping-movement within the valve member 99. As shown, sleeve 121 is generally cylindrical in configuration and has an open upper end 122 as well as an open lower end 123. Ends 122 and 123 are connected by a relatively thin walled, or recessed, cylindrical wall portion 124.
Upper end 122 is telescopinglyand slidably supported by cylindrical wall portion 125 of valve 99. The lower end 123 of sleeve 121 is telescopingly and slidably supported by a cylindrical wall portion 126 formed in the valve body 97.
Sleeve 121 is provided with a radially outwardly extending, ledge-like flange 127. Flange 127 defines an abutment which engages the end 1280f coil spring 112,
ton 6 to move relatively rapidly within the cylinder cavity 7. This tendency to undergo rapid movement will generate a high pressure 'within the cavity zone 7a and tend to induce a relatively high velocity fluid flow, radially outwardly through the central passage 131 of the sleeve 121. This fluid flow, because of its relatively high velocity, will produce a substantial pressure drop longitudinally across the sleeve 121. This pressure drop will overcome the biasing influence of the spring 112 and cause the sleeve 121 to move radially outwardly with respect to the longitudinal axis of the cylinder means 4. It is anticipated that this sleeve movement will occur in response to all movements of drawbar 15 and cylinder means 2, relative to fixed piston means 5, in excess of 20 inches per second. This rate of movement substantially embraces the entire buff impact range during car coupling action.
The outward movement of sleeve 121 will terminate when the outermost sleeve end 122 engages an annular abutment 132 formed in valve member 99. Abutment 132 comprises a generally radially extending wall projecting outwardly from a cylindrical wall 133. Cylindrical wall 133, in essence, defines the inner surface of wall 100.
With the sleeve end 122 engaged with the abutment 132, this sleeve end 122 is operable to close the ports 105, as shown in FIG. 8. With the ports 105 thus i.e., the end of this spring opposite to the end 129 it which is engaged by the seat 113.
In the normal or neutral position of valve 96 shown in FIG. 6, the spring 112 biases the flange 127 radially.
inwardly toward the axis of cylinder-means 4 so as to cause the flange 127 'to abuttingly engage an annular seat 129 formed in the valve body 97. With the flange 127 engaged with the seat 129, the spring 112 is operable to resist radially inward movement of the valve member 99.
The biasing effect of spring 112, both with respect to sleeve 121' and valve member 99, may be varied by selecting a spring 112 of appropriate resilience. This biasing effect may also be varied in accordance with the degree of spring prestressin'g which is dependent upon the distance betweenthe seat 113 andthe ledge127, when this ledge is engaged with the abutment 129.
The diameter of the port 83 is less than the outer diameter of the sleeve end 123. Thus, if the ledge 127 should rupture, radially inward movement of the sleeve 121 would be interrupted by engagement of the sleeve end 123 with the portion 130 of cylinder wall 25 which surrounds the port 83. In this manner, inadvertent entry of the sleeve 120 into the high pressure cavity 7 is positively prevented.
When the coupler bar 15 is subjected to coupling forces or impacts, there will be a tendency for the pisclosed, the ability of the piston 104 to move the valve member 99 to a closed valve position is obviated.
Sleeve 121 is characterizedby a substantially lower inertia factor than that possessed by the valve 99. This difference in inertia will tend to cause the sleeve 121 to move relatively rapidly to the FIG. 8 position, before fluid pressure is able to build up in the zone 116a and induce movement of the piston- 104. Further, a high velocity flowthrough the passage 134, and through the central passage of the valve member 99, will tend to create a velocity reaction force acting on the valve head 101 so as to tend to hold the valve member 99 in its open position while the sleeve 121 is moving to its disabling position.
It will also be appreciated that, even apart from the low inertia characteristic-of the disabling sleeve 21, the restricted flow path defined by the ports 105 will somewhat delay the generation of sufficient force in the zone 116a operable to act on the piston surface 104a and move the valve member 99 to a closed valve position. The individual influences of either the ow inertia of the sleeve 121, the restrictive influence of the ports 105, or the fluid reaction on the head 101, or the combined influence of these factors, ensures that a rate of fluid flow passing through the passage 131 sufficient to induce movement of the sleeve 121, will cause the sleeve 121 to move to its disabling position before the piston 104 is able to move the valve 99 to a closed valve position.
However, once the valve 99 has moved to the closed valve position of FIG. 7, it is unlikely that sleeve 121 will be able to move radially outwardly to close the ports 105 so as to obviate the biasing influence of piston 104. The closing of ports 102 will probably prevent a flow of sufiicient velocity through the passage 131 to induce movement of the sleeve 121. This valve characteristic, however, is not believed to be of adverse consequency because during run-in" phenomena, train action forces would not be expected to approach the magnitude of coupling forces so as to require that the ports 102 remain open.
It will here be noted that with the valve components disposed as shown in FIG. 8, the wall 133 defines a sub stantially smooth-walled continuation of the inner wall 134 of sleeve 121. This results, of course, from walls 133 and 134 having the same circular cross section, i.e., the same internal diameter.
It will here be recognized that the level of impact forces required to induce the disabling operation of the sleeve 121 will be determined, to a large extent, by the resistance to sleeve movement offered by the coil spring 112.
Where each of the valves 96 associated with the ports 83 through 88 (or 83 through 94) is identical in structure, and includes a coil spring 112 of identical configuration and resilience, the various disabling sleeves 121 should operate in unison, and immediately in response to the imposition of coupling forces on the drawbar 15.
This will ensure that the exponential pattern of the ports 83 through 94 remains fully operative during the high impact condition so as to facilitate or contribute to a substantially linear disposition of energy in the manner described in U. S. Pat. No. 3,301,410.
At this point it will be recognized that even the lower level impact forces encountered during coupling action will be sufficient to induce the disabling operation of the sleeves 121 of the various valves 96 individually associated with the ports 83 through 88 (or 83 through 94). This results because, even under the influence of relatively low impact coupling forces, the flow velocity through the passage 134 will be substantially higher than that encountered during run-in train action phenomena, and thus will be operable to move the sleeve 121-to the disabling position shown in FIG. 11.
In the system here described, it is contemplated that each of the valves 96 will be of identical configuration and operating characteristics. Thus, during run-in phenomena, each of the valves 96 associated individually with the buff ports 83 through 88 (or all of buff ports 83 through 94 or any one of these ports) should close more or less simultaneously, in response to runin" phenomena.
However, it is recognized that under certain conditions, it may be desirable to provide valves 96 which operate in sequence or at different times so a to provide progressive closing off or constricting of the ports.
It will also be recognized that the number of ports required to control run-in phenomena may vary, depending upon operating conditions, and the the number'of these ports which are valved may vary, depending upon operating criteria.
SYSTEM FOR CONTROLLING RUN-OUT PHENOMENA The system incorporated in mechanism 1 for controlling run-out phenomena is illustrated in FIGS. 2 and 14.
This system includes, as a part of the port means 39, a relatively small capacity port 135 and a somewhat larger capacity port 136, provided with a control valve mechanism 137.
In the embodiment characterized by the dimensions previously indicated, the port 135 has an effective diameter of approximately .099 inches and the port 136 has a diameter of nineteen sixth-fourths inches. However, fluid flow through port 136 is controlled by the substantially small flow capacity of the passage means of valve 137. 4
In this embodiment, the port is spaced longitudinally from the edge 95 by a distance of approximately 16.62 inches. The port 136 is spaced from the edge 95 by a distance of approximately 19.72 inches.
Valve mechanism 137, as shown in FIGS. 14 and 5, is disposed in a lower corner of cavity 23. Control valve 137 is substantially the same as the run-out" control valve described in detail in the aforesaid Stephenson et al US. Pat. No. 3,451,561.
In summary, this control valve 137 is characterized by a generally cylindrical valve body 138. Valve body 138 is attached by threaded fastening means 139 to wall 25. When thus attached, valve body 138 extends generally coaxially of port 136, i.e., radially of the central axis of cylinder means 4.
Control valve 137 includes a generally cylindrical valve member 140 mounted for telescoping movement within valve body 138. A coil spring 141, interposed between a valve body ledge 142 and a flange 143 carried by valve 140, serves to bias the valve member 140 radially inwardly with respect to the cylinder means 4. Inward movement of valve member 140 is limited by engagement of the flange 143 with a valve body ledge 144.
Valve member 140 is defined by a cylindrical wall 145 having an open upper end 146 and a closed lower end 147. One or more ports 148 intersect cylindrical wall 145 immediately adjacent the closed end 147.
With the valve member 140 disposed in the neutral position shown in FIG. 6, the flow controlling port means 148 is disposed in communicating relation with the cavity 7b. When the valve member 140 is moved radially outwardly, by overcoming the biasing influence of spring 141, a cylindrical wall 149 of valve body 138 valves-off or closes the port means 148.
During run-out38 train action phenomena, fluid flowing from the cavity 7b, through the port means 148, and thence through the valve passage 150, to the low pressure zone 23 will induce, i.e., insure or maintain, a substantial pressure drop across the closed valve head 147. This pressure differential may also be viewed as resulting, at least in part, from the difference in pressure between the zone 7b and the zone 23, resulting from movement of piston 6.
Regardless of the manner'in which the pressure differential is explained, its existence will serve to induce radially outwardly movement of the valve 140 in response to run-out train action phenomena. This valve closing action will close off the port means 136, and thus provide a relatively high level of impedance operating against the piston 6 during run-out train action events.
When the restoring mechanism 16 is tending to move the cylinder means 2 in a draft direction, i.e., restore the unit from a buff condition, the pressure differential acting across the valve 140 will not be sufficient to overcome the biasing influence of the spring 141. Thus, the valve 137 will remain open during the restoring action of mechanism 16 so as to provide a relatively low level of impedance operating against the piston 6 during the restoring action. This relatively low level of impedance will tend to ensure that the mechanism 16 is operable to effect rapid restoration of the cylinder means 2 to its neutral position.
It will also be appreciated that during run-out train action phenomena, once the piston means 6 has moved relative to the cylinder wall 25, so asto have cleared the series of exponential ports 83 through 94, an abrupt intensification of impedance will result because of the highly constricted nature of the port 135 and the closing of the port 136 by the valve 137. This impedance is further intensified when the piston 6 has moved relative to the cylinder wall 25 so as to have moved past the port 135. Once the port 135 has been cleared, virtually the only flow outof the cavity 7b will be effected by leakage through the closed valve 137, by leakage around piston 6 between the cavities 7a and 7b, and by other highly constricted leakage paths.
OVERALL MODE OF OPERATION OF IMPEDANCE SYSTEM During coupling action, the disabling means 120 of the valve mechanism 96- will maintain the ports 83 through 88 in an open condition. This will result in the entire series of exponentially spaced ports 83 through 94 remaining open. These open ports will yield a substantially or generally linear dissipation of impact en ergy, with a relatively impedance level present in cavity 7a.
Once coupling as been effected, with the cars involved being at a substantial standstill, relatively rapid restoration of the unit 1 is effected by mechanism 16 as a result of the control valve 137 remaining open. With a train in motion run-in events are controlled by all or some of the ports 83 through 94, and 135. The port 136 will play little or no part in the control of run-in'phenomena, since this port will be covered by the piston 6 when the cylinder means 2 is in the extreme draft position. I
Of this group of ports, 83 through 94, and 135, those disposed between the piston face 6b and the cylinder head 38 during a run-in event will control the impeding of piston movement. This impedance will be of a relatively high magnitude as a result of the closing of the valves 96 in response to run-in induced forces.
During run-out train action events, it is anticipated that the ports .1-35 and 136 will play the primary governing role. In this connection, it will be recalled that the neutral position for the mechanism 1 may position the piston face 6a in juxtaposition with the draft extremity 20 of the cavity 7. It thus is anticipated that the slack developed as a result of train movements, or a run-in event will position the piston means 6 in an intermediate position within the cavity where impedance is controlled by the ports 135 and 136. However,
it is apparent that some of the ports 83 through 94 in the exponential series may play a role in this impedance if they are located between the piston face 6a and the piston extremity 20 during the run-out event. If these ports are provided with a control valve 96, their runout control will be especially effective as they will tend to close during a run-out event.
Regardless of the position of the piston at the commencement of the run-out event, the piston will move to a position where control is influenced by the ports 135 and 136. At least bythis point in time, if not before due to the closing of valves 96, the pressure within the zone 7b will be sufficient to close the valve 137 and create (or maintain) a high hydraulic impedance within the cavity 7b, operable to continue to resist draft movement of the cylinder means 2.
Thus, during run-out events, if the piston 6 commences movement from the full buff position shown in FIG. 2, three stages of control impedance may develop in the cavity 7b. Duringthe first stage, any unvalved ports in the exponential series on the draft side of the piston will provide escape paths for fluid and, thus may provide the lowest level of impedance in this threestage phenomena. As draft movement of the cylinder means 2 continues, the piston 6 will move through the exponential series and then be controlled, in the second impedance stage, by the port and the port 136. It is contemplated that at least by the time the piston 6 clears the exponential series, the valve 137 will have closed the port 136. Thus, during this second stage, the relatively restricted escape path provided by the port 135 will afford a higher impedance level (assuming there were unvalved ports in the exponential series).
Continued draft movement of the cylinder means 2 will cause the piston 6 to clear or move past the port 135 so that, in essence, system leakage or bypassing provides the only escape for'fluid from the cavity 7b. This leakage or bypassing will provide the third or highest level of impedance during the run-out event.
GENERAL MODE OF INSTALLATION OF CUSHIONING MECHANISM By reference to FIG. 1, the mode of interconnection of the cushioning mechanism 1. with the drawbar 15 and the railway car sill 10 will be evident.
The housing 13 is welded in place within the sill- 10, as previously described and as illustrated in FIG. 12.
Thereafter, the piston end of the cushioning mechanism 1 is inserted through the opening in the sill mouth 19a. The cushioning mechanism 1 is moved longitudinally through the sill so as to slide the bearing assembly 12 through the aperture 76 and into abutting engagement with the stop 74a. The securing plate 77 is then installed so as to effectively anchor the piston means 5 to the sill 10.
The coupler bar 15 is inserted into the recess in the connecting means 14. A conventional coupler key is inserted, in sequence, through a slot 151 in vertical wall 152 of connecting means 14, a slot 153 in drawbar 15, and a slot 154 in vertical wall 155 of connecting means 14'. With the key 150 thus installed, drawbar 15 is connected with cylinder means 2. In the usual fashion, key 150 will pass loosely through slot 153 so as to permit horizontal pivoting movement of drawbar 15 relative to cylinder means 2. 7
During the installation, the plate 22 is connected to the underside of the sill 10 so as'to provide a floor operable to slidably support the cylinder means 2 of the cushioning mechanism 1.
Either before or after the installation of the drawbar 15, the restoring mechanism 16 is connected to the sill floor 22. The mechanism 16 is connected with the tongue portion 17 of the cylinder means 2 in the manner generally described in the U. S. Abbott Pat. No. 3,233,747.
SUMMARY OF ADVANTAGES AND SCOPE OF INVENTION A major advantage of the invention resides in the ability of the run-in control valve to provide an immediately effective, low impedance level in the hydraulic cushioning device capable of effectively absorbing bufi coupling shock. The low level forces acting on the cushioning device during run-in train action events,
19 are controlled by the valve member moving to a closed valve position.
The immediately effective, open passage condition of the valve, which serves to control buff coupling forces, results from a unique combination of the normally open valve and the low inertia disabling sleeve which moves almost instantaneously to obviate the valve closing influence of the annular fluid reaction piston 104.
The telescoping relationship of the valve 99 and the sleeve 121 provide axially overlapping operating paths for these components so as tominimize the axial dimension of the control valve 96 and facilitate its positioning between the low pressure and high pressure cylinder walls of the cushioning device.
The use of cylindrical components and a single actuating spring in the valve contributes to ease of manufacture and structural and operational reliability.
The use of the cylindrical lip 130, in combination with the valve 96, which prevents the accidental introduction of the cylindrical valve components into the interior of the high pressure cylinder, yields a significant safety factor.
In the past, it has been suggested that excessive pressure responsive, relief valves may be provided in hydraulic cushioning devices so as to prevent the development of excessive pressures. However, the inertia of such relief valves, and the conventional biasing associated with them, inherently provides a relatively high impedance level for the dissipation of impact or coupler shocks, in direct contradistinction to the low impedance provided in the present invention for absorbing such impact or coupler shocks.
Further, the low impedance level of the present invention is immediatelyeffective to absorb impact energy where relief valve systems inherently involve an operational delay, during which there is a danger of developing excessive hydraulic pressures.
Further, vent valve systems have an inherent propensity to provide undesirably high impedance in response to low-level, coupling action induced impact forces. Thus, during such low-level coupling action, the vent valve systems tend to produce excessive impedance, so as to transmit excessively severe shock forces to the body of a railway car. I
The unique utilization of run-in control valves in association with an exponential series of ports provides 1 In describing the invention, reference has been made to preferred embodiments. However, those skilled in the railway cushioning art and familiar with the disclosure of this invention may envision additions, deletions, modifications and substitutions which fall within the purview of the art as defined in the appended claims.
I claim:
1. In a valve system for controlling the impedance level in an hydraulic-type, train cushioning device,
wherein said cushioning device includes hydraulic piston means and cylinder means, and restoring means operable to tend to effect predetermined relative positioning of said piston means and cylinder means, the improvement in said system comprising at least one valve including:
valve means biased to a normally open condition and operable to provide immediately effective fluid communication between a high-pressure impedance zone of said cushioning device and a fluid receiving means; actuating means operable to move from a first to a second position and in so doing move said valve means to a position tending to impede flow between said impedance zone and said fluid receiving means, with said actuating means being operable to undergo said movement in response to run-in, train action forces acting on said cushioning device; valve disabling means, operable in response to buff coupling forces acting on said cushioning device, to disable said actuating means, prevent said movement thereof, and maintain said valve means substantially in said normally open condition; and resilient biasing means operable to yieldably impede movement of said actuating means from said first to said second position. 2. A valve system as described in claim 1 wherein: said system includes a plurality of passage means controlling fluid communication between said high pressure impedance zone and said fluid receiving means, with flow through each such passage means being controlled by a said valve; and said resilient biasing means of said at least one valve is operable to position said valve means thereof in said position tending to impede flow in response to operation of said restoring means. 3. A valve system as described in claim 1 wherein: said system includes a plurality of passage means controlling fluid communication between said high pressure impedance zone and said fluid receiving means, with flow through each such passage means being controlled by a said valve; and said resilient biasing means of said at least one valve is operable to position said valve means thereof not in said position tending to impede flow in response to operation of said restoring means. 4. A valve system as described in claim 1 wherein: said resilient biasing means of said at least one valve is operable to position said valve means thereof in said position tending to impede flow in response to operation of said restoring means. 5. A valve system as described in claim 1 wherein: said resilient biasing means of said at least one valve is operable to position said valve means thereof not in said position tending to impede flow in response to operation of said restoring means. 6. In a valve system for controlling the impedance level in an hydraulictype, train cushioning device,
wherein said cushioning device includes hydraulic piston means and cylinder means, and restoring means operable to tend to effect predetermined relative positioning of said piston means and cylinder means, the improvement in said system comprising:
an impedance zone;
fluid receiving means; a plurality of control valves; and a plurality of passage means operable to control fluid communication between said high pressure impedance zone and said fluid receiving means in response to buff forces acting on said cushioning device, with flow through each of said passage means being controlled by an individual control valve;
each said control valve including:
valve means biased to a normally open condition and operable to provide immediately effective fluid communication between said high-pressure impedance zone of said cushioning device and said fluid receiving means,
actuating means operable to move said valve means to a position tending to impede flow between said impedance zone and said fluid receiving means in response to run-in", train action forces acting on said cushioning device,
valve disabling means, operable in response to buff coupling forces acting on said cushioning device, to disable said actuating means and maintain said valve means in a substantially open condition, and
resilient biasing means yieldably cooperating with said actuating means and operable to determine whether or not said actuating means will be operable to move said valve means to said position tending to impede'flow in response to operation of said restoring means, I
said resilient biasing means being operable to position said valve means in said position tending to impede flow in response to operation of said restoring means.

Claims (6)

1. In a valve system for controlling the impedance level in an hydraulic-type, train cushioning device, wherein said cushioning device includes hydraulic piston means and cylinder means, and restoring means operable to tend to effect predetermined relative positioning of said piston means and cylinder means, the improvement in said system comprising at least one valve including: valve means biased to a normally open condition and operable to provide immediately effective fluid communication between a high-pressure impedance zone of said cushioning device and a fluid receiving means; actuating means operable to move from a first to a second position and in so doing move said valve means to a position tending to impede flow between said impedance zone and said fluid receiving means, with said actuating means being operable to undergo said movement in response to ''''run-in'''', train action forces acting on said cushioning device; valve disabling means, operable in response to buff coupling forces acting on said cushioning device, to disable said actuating means, prevent said movement thereof, and maintain said valve means substantially in said normally open condition; and resilient biasing means operable to yieldably impede movement of said actuating means from said first to said second position.
2. A valve system as described in claim 1 wherein: said system includes a plurality of passage means controlling fluid communication between said high pressure impedance zone and said fluid receiving means, with flow through each such passage means being controlled by a said valve; and said resilient biasing means of said at least one valve is operable to position said valve means thereof in said position tending to impede flow in response to operation of said restoring means.
3. A valve system as described in claim 1 wherein: said system includes a plurality of passage means controlling fluid communication between said high pressure impedance zone and said fluid receiving means, with flow through each such passage means being controlled by a said valve; and said resilient biasing means of said at least one valve is operable to position said valve means thereof not in said position tending to impede flow in responSe to operation of said restoring means.
4. A valve system as described in claim 1 wherein: said resilient biasing means of said at least one valve is operable to position said valve means thereof in said position tending to impede flow in response to operation of said restoring means.
5. A valve system as described in claim 1 wherein: said resilient biasing means of said at least one valve is operable to position said valve means thereof not in said position tending to impede flow in response to operation of said restoring means.
6. In a valve system for controlling the impedance level in an hydraulic-type, train cushioning device, wherein said cushioning device includes hydraulic piston means and cylinder means, and restoring means operable to tend to effect predetermined relative positioning of said piston means and cylinder means, the improvement in said system comprising: an impedance zone; fluid receiving means; a plurality of control valves; and a plurality of passage means operable to control fluid communication between said high pressure impedance zone and said fluid receiving means in response to buff forces acting on said cushioning device, with flow through each of said passage means being controlled by an individual control valve; each said control valve including: valve means biased to a normally open condition and operable to provide immediately effective fluid communication between said high-pressure impedance zone of said cushioning device and said fluid receiving means, actuating means operable to move said valve means to a position tending to impede flow between said impedance zone and said fluid receiving means in response to ''''run-in'''', train action forces acting on said cushioning device, valve disabling means, operable in response to buff coupling forces acting on said cushioning device, to disable said actuating means and maintain said valve means in a substantially open condition, and resilient biasing means yieldably cooperating with said actuating means and operable to determine whether or not said actuating means will be operable to move said valve means to said position tending to impede flow in response to operation of said restoring means, said resilient biasing means being operable to position said valve means in said position tending to impede flow in response to operation of said restoring means.
US00156853A 1968-08-14 1971-06-25 Valve apparatus for controlling train action Expired - Lifetime US3791534A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US75264968A 1968-08-14 1968-08-14
US15685371A 1971-06-25 1971-06-25

Publications (1)

Publication Number Publication Date
US3791534A true US3791534A (en) 1974-02-12

Family

ID=26853576

Family Applications (1)

Application Number Title Priority Date Filing Date
US00156853A Expired - Lifetime US3791534A (en) 1968-08-14 1971-06-25 Valve apparatus for controlling train action

Country Status (1)

Country Link
US (1) US3791534A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3864922A (en) * 1974-03-22 1975-02-11 Halliburton Co Sealed cushioning unit
US4043545A (en) * 1974-03-22 1977-08-23 Halliburton Company Sealed cushioning unit
US4519617A (en) * 1983-09-19 1985-05-28 Halliburton Company Cushioning unit shaft seal arrangement
US4562929A (en) * 1983-04-01 1986-01-07 Keystone Industries, Inc. Backstop assembly for use with cushioning device in sill of railway car
US4566701A (en) * 1983-09-19 1986-01-28 Halliburton Company Cushioning unit shaft seal
US4953727A (en) * 1989-07-03 1990-09-04 Co-Ordinated Railway Services, Inc, Piston and shaft assembly of railroad end-of-car cushioning devices and method of repairing same
US5415303A (en) * 1993-08-27 1995-05-16 F M Industries, Inc. Railcar cushion unit
US5487480A (en) * 1993-06-10 1996-01-30 Oleo International Holdings Limited Hydro-pneumatic cushioning device
US20110079569A1 (en) * 2009-10-01 2011-04-07 Voith Patent Gmbh Device for damping tractive and compressive forces
EP3855043A1 (en) * 2020-01-22 2021-07-28 Faiveley Transport Schwab AG Pulling and pushing device in particular for a coupling of a railway vehicle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3378149A (en) * 1966-02-14 1968-04-16 Acf Ind Inc Railway car cushioning device
US3451561A (en) * 1967-01-20 1969-06-24 Halliburton Co Draft gear train action control system
US3463328A (en) * 1967-01-26 1969-08-26 William T Blake Draft gear train action control valve
US3568855A (en) * 1968-05-27 1971-03-09 Halliburton Co Hydraulic cushioning apparatus for railway cars
US3589527A (en) * 1968-07-15 1971-06-29 Halliburton Co Method and apparatus for controlling train action events
US3589528A (en) * 1968-08-14 1971-06-29 Halliburton Co Valve apparatus for controlling train action events
US3647088A (en) * 1968-05-27 1972-03-07 Halliburton Co Hydraulic cushioning apparatus for railway cars

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3378149A (en) * 1966-02-14 1968-04-16 Acf Ind Inc Railway car cushioning device
US3451561A (en) * 1967-01-20 1969-06-24 Halliburton Co Draft gear train action control system
US3463328A (en) * 1967-01-26 1969-08-26 William T Blake Draft gear train action control valve
US3568855A (en) * 1968-05-27 1971-03-09 Halliburton Co Hydraulic cushioning apparatus for railway cars
US3647088A (en) * 1968-05-27 1972-03-07 Halliburton Co Hydraulic cushioning apparatus for railway cars
US3589527A (en) * 1968-07-15 1971-06-29 Halliburton Co Method and apparatus for controlling train action events
US3589528A (en) * 1968-08-14 1971-06-29 Halliburton Co Valve apparatus for controlling train action events

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3864922A (en) * 1974-03-22 1975-02-11 Halliburton Co Sealed cushioning unit
US4043545A (en) * 1974-03-22 1977-08-23 Halliburton Company Sealed cushioning unit
US4562929A (en) * 1983-04-01 1986-01-07 Keystone Industries, Inc. Backstop assembly for use with cushioning device in sill of railway car
US4519617A (en) * 1983-09-19 1985-05-28 Halliburton Company Cushioning unit shaft seal arrangement
US4566701A (en) * 1983-09-19 1986-01-28 Halliburton Company Cushioning unit shaft seal
US4953727A (en) * 1989-07-03 1990-09-04 Co-Ordinated Railway Services, Inc, Piston and shaft assembly of railroad end-of-car cushioning devices and method of repairing same
US5487480A (en) * 1993-06-10 1996-01-30 Oleo International Holdings Limited Hydro-pneumatic cushioning device
US5415303A (en) * 1993-08-27 1995-05-16 F M Industries, Inc. Railcar cushion unit
US20110079569A1 (en) * 2009-10-01 2011-04-07 Voith Patent Gmbh Device for damping tractive and compressive forces
US8376159B2 (en) * 2009-10-01 2013-02-19 Voith Patent Gmbh Device for damping tractive and compressive forces
EP3855043A1 (en) * 2020-01-22 2021-07-28 Faiveley Transport Schwab AG Pulling and pushing device in particular for a coupling of a railway vehicle

Similar Documents

Publication Publication Date Title
US3589528A (en) Valve apparatus for controlling train action events
US3791534A (en) Valve apparatus for controlling train action
US5676265A (en) Elastomer spring/hydraulic shock absorber cushioning device
US3589527A (en) Method and apparatus for controlling train action events
US3483952A (en) Two-way hydraulic unit
US3854596A (en) Railway unit cushioning apparatus
US4040523A (en) Railway car cushioning device
US3378149A (en) Railway car cushioning device
US3598249A (en) Railway draft appliance
US3265222A (en) Railway car cushioning device
US3400833A (en) Railway car cushioning device
US3110367A (en) Hydraulic cushioning device for railway vehicles
CA2252272C (en) Railcar cushioning device with internal spring
US2816670A (en) Hydraulic draft gear
US3411635A (en) Railway car cushioning device
US3028019A (en) Underframe structure and cushion mechanism for railway vehicles
US3515286A (en) Railway car buff and draft force cushioning device
US3568855A (en) Hydraulic cushioning apparatus for railway cars
US3451561A (en) Draft gear train action control system
US3035714A (en) Long travel hydraulic cushion device
US3035827A (en) Long travel hydraulic cushion device
US3332364A (en) Impact absorbing apparatus
US3800961A (en) End of car cushioning device for a railway car
US3743109A (en) Hydraulic cushion device for railway vehicles
US3237574A (en) Impact absorbing apparatus

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED FILE - (OLD CASE ADDED FOR FILE TRACKING PURPOSES)

PS Patent suit(s) filed
AS Assignment

Owner name: FM ACQUISITION CORPORATION, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HALLIBURTON COMPANY, A CORP. OF DE;REEL/FRAME:005093/0793

Effective date: 19890331

Owner name: BARCLAYS BUSINESS CREDIT, INC., TEXAS

Free format text: SECURITY INTEREST;ASSIGNOR:FM ACQUISITION CORPORATION A CORP. OF TX;REEL/FRAME:005093/0801

Effective date: 19890331