US3789405A - Automatic step eliminator circuit to prevent radar jamming - Google Patents

Automatic step eliminator circuit to prevent radar jamming Download PDF

Info

Publication number
US3789405A
US3789405A US00238706A US3789405DA US3789405A US 3789405 A US3789405 A US 3789405A US 00238706 A US00238706 A US 00238706A US 3789405D A US3789405D A US 3789405DA US 3789405 A US3789405 A US 3789405A
Authority
US
United States
Prior art keywords
signal
amplifier
sample
jamming
receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00238706A
Inventor
A Nielsen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Air Force
Original Assignee
US Air Force
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Air Force filed Critical US Air Force
Application granted granted Critical
Publication of US3789405A publication Critical patent/US3789405A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems
    • G01S13/68Radar-tracking systems; Analogous systems for angle tracking only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/36Means for anti-jamming, e.g. ECCM, i.e. electronic counter-counter measures

Definitions

  • This invention relates to a circuit to prevent jamming of a tracking radar, and more particularly to a step eliminator circuit to remove a step signal resulting from interfering signals.
  • Countdown is an ECM (electronic countermeasure) technique which denies angle tracking error information to the radar. This is accomplished by providing large amplitude rectangular modulation on top of the target signal. This modulation occurs at a frequency to which the AGC (automatic gain control) loop in the radar cannot respond, and at a duty cycle which causes the signal to become saturated when the ECM is on and to become very small when the ECM is off. Very little error modulation can be recovered by the radar angle tracking circuits and the radar antenna drifts due to the bias and angle track is lost.
  • the radar receiver includes boxcar circuitry associated with the aforementioned AGC loop. The countdown jamming, in the prior art, also resulted in a step in the box car output and also re sulted in transients.
  • the detrimental effects of the transients are primarily due to the box car circuitry being unable to pass peak amplitudes resulting therefrom. The result is that circuitry even if designed to avoid recovery problems will limit and reduce loop gain and introduce periodic loop errors.
  • the step eliminator of the present invention reduces the transients markedly and the aforementioned step in the box car output caused by the countdown jaming is removed before the box car signal is presented to the azimuth and elevation phase detectors of the radar.
  • the step eliminator of the present invention is used with either fast AGC of the radar receiver or Log IF.
  • Log IF has a disadvantage of noise and noise jamming susceptibility particularly for range tracking radars.
  • the AGC loop responds to any deceptive jamming waveform as well as normal signals.
  • a necessary condition for successful operation of the above-mentioned form of ECM is the capture of the radar AGC loop by an ECM signal which is larger than the target signal.
  • the present invention is utilized to prevent capture of the tracking radar by the aforesaid countermeasure signal.
  • An automatic step eliminator circuit to prevent jamming in a tracking radar is provided.
  • the step eliminator circuit is used with either a fast AGC loop or log IF amplifier to eliminate a step signal resulting from electronic countermeasure signals directed to the tracking radar.
  • the fast AGC loop is associated with the tracking radar IF amplifier.
  • the AGC loop responds to any deceptive jamming waveforms as well as normal signals.
  • the voltage applied to the AGC input of the IF amplifier is sampled in two parallel AC coupled output sample and hold amplifiers.
  • the sample and hold amplifiers are instructed by a square wave developed by the onset of jamming from a gate generator so that the normal target signal is stored in one channel and the ECM signal in another.
  • the outputs of both channels are added to develop continuous error signals.
  • the error detector of the tracking radar then receives signals recovered from both jamming and target during alternate intervals and therefor continuously.
  • An object of this invention is to provide an automatic step eliminator circuit to prevent jamming of a tracking radar by an electronic countermeasure signal.
  • Another object of this invention is to provide an automatic step eliminator circuit to prevent jamming of a tracking radar and to eliminate transients resulting from jamming signals.
  • FIG. 1 shows partly in block form and partly in diagrammatic form a preferred embodiment of the invention
  • FIG. 2A illustrates the IF signal
  • FIG. 28 illustrates the AGC signal
  • FIG. 2C shows the gate generator output signal
  • FIG. 2D shows the sample and hold amplifier signal of channel A
  • FIG. 2E shows the sample and hold amplifier signal of channel B
  • FIG. 2F shows the error detector input signal.
  • FIG. 1 there is shown conventional IF amplifier 10, normally utilized in a tracking radar, which receives by way of line 9 a target signal of interest which is utilized to obtain error signals for use by the radar angle tracking circuits.
  • the IF signal is the waveform shown in FIG. 2A.
  • Conventional box car circuit 11 receives the target signal (and also the jamming signal) from IF (intermediate frequency) amplifier l0 and supplies a signal to AGC (automatic gain control) amplifier 12.
  • Filter and delay network 13 interconnects AGC amplifier 12 and IF amplifier 10 completing the AGC loop and as illustrated in the waveform of FIG. 2B, supplying the required gain control voltage signal to IF amplifier 10.
  • IF amplifier III is arranged to be gain controlled.
  • the AGC loop is of the type conventionally used in tracking radars and is vulnerable to the hereinbefore described jamming signals.
  • the automatic step eliminator circuit of the present invention is most effective in eliminating the effects of the jamming.
  • the step eliminator is comprised of gate generator 14, amplifier 19, channel A consisting of sample and hold amplifier 15 and capacitor 17, and channel B consisting of sample and hold amplifier l6 and capacitor 18.
  • the output signal from AGC amplifier 12 is fed to gate generator 14 providing in response thereto an instruction waveform as shown in FIG. 2C which is simultaneously received by sample and hold amplifiers 15 and 16 also receiving simultaneously as an input signal the output signal from filter and delay network 13.
  • the output signals from sample and hold amplifiers 15 and 16 are AC coupled to summing amplifier 19 by way of capacitors 17 and 18, respectively.
  • the output waveforms of channel A and B are illustrated in FIGS. 2D and 2E, respectively.
  • the input signal to error detector 20 is received from summing amplifier 19 and is the waveform illustrated in FIG. 2F.
  • the AGC loop responds to any deceptive jamming waveforms as well as normal target signals.
  • the voltage applied to the AGC input of amplifier 10 is sampled in two parallel AC coupled output sample and hold amplifiers. As is seen in the waveforms of FIG. 2, the AGC voltage swings over a range caused by jamming.
  • Sample and hold amplifiers l5 and 16 are instructed by a square wave developed by the onset of jamming from gate generator 14 so that'the normal target signal is stored in one channel and the ECM signal in the other.
  • the aforesaid onset of jamming triggers gate generator 14 on.
  • the end of said jamming triggers gate generator 14 off. This operation is conventional.
  • the output voltage from gate generator 14 is shown at 20.
  • Sample and hold amplifiers may be conventionally actuated at virtually any desired level. Accordingly, for low level target signal, sample and hold amplifier 16 is operative at one level of the gate generator output and alternately sample and hold amplifier is operative at another level representative of the high level jamming signal.
  • the DC component is not of material interest and so the outputs are AC coupled and added. Since the switching occurs prior to the onset of the change in signal level by virtue of the delay in the AGC amplifier, there are no transients in either channel A or B.
  • the A and B channel outputs are shown as waveforms in FIGS. 2D and 2E, respectively. These are added to develop continuous error signals and the addition eliminates the alternate lack of error signals. Error detector 20 then receives signals due to either jamming or target.
  • An automatic step eliminator circuit to prevent tracking radar jamming comprised of an intennediate frequency amplifier having a gain control input and a signal input, said intermediate amplifier receiving a normal target signal and a jamming signal by way of said signal input, a box car circuit receiving the output signal from said intermediate frequency amplifier, an automatic gain amplifier, a filter and delay network, said automatic gain amplifier receiving the output from said box car circuit and providing an output signal for reception by said filter and delay network, said gain control input of said intermediate amplifier receiving an actuating signal from said filter and delay network, a gate generator receiving an actuating signal from said automatic gain control amplifier to provide a square wave instruction signal in response thereto, first and second sample and hold amplifiers simultaneously reinate the alternate lack of an error signal, and error detector means receiving said continuous resultant signal.
  • An automatic step eliminator circuit as described in claim 1 further including first and second capacitor means to couple the output signals from said first and second sample and hold amplifiers, respectively, to said summing means.

Abstract

An automatic step eliminator circuit to prevent radar jamming is provided wherein the voltage applied to the AGC input of one IF amplifier of a tracking radar is sampled in two parallel sample and hold amplifiers which are instructed by a signal developed by the onset of jamming so that the normal target signal is stored in one channel and the electronic countermeasure (ECM) signal in another. The outputs of both channels are added to develop continuous error signals. The error detector of the tracking radar then receives signals recovered from both jamming and target during alternate intervals and therefor continuously.

Description

United States Patent [191 Nielsen Jan. 29, 1974 AUTOMATIC STEP ELIMINATOR CIRCUIT TO PREVENT RADAR JAMMING 3,495,244 2/1970 LaRosa 343/5 GC Primary ExaminerMalcolm F. Hubler [75] Inventor: Alan H. Nielsen, Pompton Plains,
[73] Assignee: The United States of America as represented by the Secretary of the [57] ABSTRACT States Air Force, An automatic step eliminator circuit to prevent radar washmgton, jamming is provided wherein the voltage applied to [22] Filed: Man 29, 1972 the AGC input of one IF amplifier of a tracking radar is sampled in two parallel sample and hold amplifiers PP N05 238,706 which are instructed by a signal developed by the onset of jamming so that the normal target signal is 52 US. Cl 343/18 E Stored in one channel and the electronic Countermea- [51 int. Cl. G0ls 7/36, GOls 9/02 Sure (ECM) Signal in anolhel The Outputs of both 58] Field of Search 343/5 0c, 18 E channels are added develop Continuous error nals. The error detector of the tracking radar then re- 56] References Cited ceives signals recovered from both jamming and target UNITED STATES PATENTS during alternate intervals and therefor continuously.
3,281,837 10/1966 Vanl-lijfte 343/18 E 3 Claims, 7 Drawing Figures IO ll I F BOX C HR 2 cmcurr F'HST nee z Finsag Acme. gi pg QMPL/F/ER L 6 A TE I 6 E N E 'RHTO'R sn MPLE g 0-----, HOLD E RMPLIFIER OUTPUT x DE ac on. SGNHL SRMPLE ,6
H OLD l B mm IF WE PATENTEDJAHZSIW 3,789,405
1o u F BOX CAR -Z "RM?LIF'IER cmcul-r FAST mac |g FILTER g Hem. DELAY NETWORK QMF'LIFIER |El I GATE L+/6'ENERAT0R l7 SAMPLE g HOLD i R RMPLIFIER g :g; DETECTOR 3mm SRMPLE How A B nmurusn 8 IF SIGNAL Rec HIGH LEVEL JAM 3mm. *SAMPLE nun Hm: ma 025 W LOW LEVEL TH'RGETSMNAL "SAMPLE mm mm m- 3 Win01: DETEc'rmi NWT 0 A.c- SUM OF R RNDB AUTOMATIC STEP ELIMINATOR CIRCUIT TO PREVENT RADAR JAMMING BACKGROUND OF THE INVENTION This invention relates to a circuit to prevent jamming of a tracking radar, and more particularly to a step eliminator circuit to remove a step signal resulting from interfering signals.
Countdown is an ECM (electronic countermeasure) technique which denies angle tracking error information to the radar. This is accomplished by providing large amplitude rectangular modulation on top of the target signal. This modulation occurs at a frequency to which the AGC (automatic gain control) loop in the radar cannot respond, and at a duty cycle which causes the signal to become saturated when the ECM is on and to become very small when the ECM is off. Very little error modulation can be recovered by the radar angle tracking circuits and the radar antenna drifts due to the bias and angle track is lost. The radar receiver includes boxcar circuitry associated with the aforementioned AGC loop. The countdown jamming, in the prior art, also resulted in a step in the box car output and also re sulted in transients. The detrimental effects of the transients are primarily due to the box car circuitry being unable to pass peak amplitudes resulting therefrom. The result is that circuitry even if designed to avoid recovery problems will limit and reduce loop gain and introduce periodic loop errors. The step eliminator of the present invention reduces the transients markedly and the aforementioned step in the box car output caused by the countdown jaming is removed before the box car signal is presented to the azimuth and elevation phase detectors of the radar.
The step eliminator of the present invention is used with either fast AGC of the radar receiver or Log IF. Log IF has a disadvantage of noise and noise jamming susceptibility particularly for range tracking radars. The AGC loop responds to any deceptive jamming waveform as well as normal signals. A necessary condition for successful operation of the above-mentioned form of ECM is the capture of the radar AGC loop by an ECM signal which is larger than the target signal. Thus the present invention is utilized to prevent capture of the tracking radar by the aforesaid countermeasure signal.
SUMMARY OF THE INVENTION An automatic step eliminator circuit to prevent jamming in a tracking radar is provided. The step eliminator circuit is used with either a fast AGC loop or log IF amplifier to eliminate a step signal resulting from electronic countermeasure signals directed to the tracking radar. The fast AGC loop is associated with the tracking radar IF amplifier. The AGC loop responds to any deceptive jamming waveforms as well as normal signals. The voltage applied to the AGC input of the IF amplifier is sampled in two parallel AC coupled output sample and hold amplifiers. The sample and hold amplifiers are instructed by a square wave developed by the onset of jamming from a gate generator so that the normal target signal is stored in one channel and the ECM signal in another. The outputs of both channels are added to develop continuous error signals. The error detector of the tracking radar then receives signals recovered from both jamming and target during alternate intervals and therefor continuously.
An object of this invention is to provide an automatic step eliminator circuit to prevent jamming of a tracking radar by an electronic countermeasure signal.
Another object of this invention is to provide an automatic step eliminator circuit to prevent jamming of a tracking radar and to eliminate transients resulting from jamming signals.
DESCRIPTION OF DRAWINGS FIG. 1 shows partly in block form and partly in diagrammatic form a preferred embodiment of the invention;
FIG. 2A illustrates the IF signal;
FIG. 28 illustrates the AGC signal;
FIG. 2C shows the gate generator output signal;
FIG. 2D shows the sample and hold amplifier signal of channel A;
FIG. 2E shows the sample and hold amplifier signal of channel B; and
FIG. 2F shows the error detector input signal.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT Now referring in detail to FIG. 1,, there is shown conventional IF amplifier 10, normally utilized in a tracking radar, which receives by way of line 9 a target signal of interest which is utilized to obtain error signals for use by the radar angle tracking circuits. The IF signal is the waveform shown in FIG. 2A. Conventional box car circuit 11 receives the target signal (and also the jamming signal) from IF (intermediate frequency) amplifier l0 and supplies a signal to AGC (automatic gain control) amplifier 12. Filter and delay network 13 interconnects AGC amplifier 12 and IF amplifier 10 completing the AGC loop and as illustrated in the waveform of FIG. 2B, supplying the required gain control voltage signal to IF amplifier 10. It is noted that IF amplifier III is arranged to be gain controlled. The AGC loop is of the type conventionally used in tracking radars and is vulnerable to the hereinbefore described jamming signals.
The automatic step eliminator circuit of the present invention is most effective in eliminating the effects of the jamming. The step eliminator is comprised of gate generator 14, amplifier 19, channel A consisting of sample and hold amplifier 15 and capacitor 17, and channel B consisting of sample and hold amplifier l6 and capacitor 18. The output signal from AGC amplifier 12 is fed to gate generator 14 providing in response thereto an instruction waveform as shown in FIG. 2C which is simultaneously received by sample and hold amplifiers 15 and 16 also receiving simultaneously as an input signal the output signal from filter and delay network 13.
The output signals from sample and hold amplifiers 15 and 16 are AC coupled to summing amplifier 19 by way of capacitors 17 and 18, respectively. The output waveforms of channel A and B are illustrated in FIGS. 2D and 2E, respectively. The input signal to error detector 20 is received from summing amplifier 19 and is the waveform illustrated in FIG. 2F.
It is emphasized that the AGC loop responds to any deceptive jamming waveforms as well as normal target signals. The voltage applied to the AGC input of amplifier 10 is sampled in two parallel AC coupled output sample and hold amplifiers. As is seen in the waveforms of FIG. 2, the AGC voltage swings over a range caused by jamming. Sample and hold amplifiers l5 and 16 are instructed by a square wave developed by the onset of jamming from gate generator 14 so that'the normal target signal is stored in one channel and the ECM signal in the other. The aforesaid onset of jamming triggers gate generator 14 on. The end of said jamming triggers gate generator 14 off. This operation is conventional. The output voltage from gate generator 14 is shown at 20. Sample and hold amplifiers may be conventionally actuated at virtually any desired level. Accordingly, for low level target signal, sample and hold amplifier 16 is operative at one level of the gate generator output and alternately sample and hold amplifier is operative at another level representative of the high level jamming signal. The DC component is not of material interest and so the outputs are AC coupled and added. Since the switching occurs prior to the onset of the change in signal level by virtue of the delay in the AGC amplifier, there are no transients in either channel A or B. The A and B channel outputs are shown as waveforms in FIGS. 2D and 2E, respectively. These are added to develop continuous error signals and the addition eliminates the alternate lack of error signals. Error detector 20 then receives signals due to either jamming or target.
What is claimed isi 1. An automatic step eliminator circuit to prevent tracking radar jamming comprised of an intennediate frequency amplifier having a gain control input and a signal input, said intermediate amplifier receiving a normal target signal and a jamming signal by way of said signal input, a box car circuit receiving the output signal from said intermediate frequency amplifier, an automatic gain amplifier, a filter and delay network, said automatic gain amplifier receiving the output from said box car circuit and providing an output signal for reception by said filter and delay network, said gain control input of said intermediate amplifier receiving an actuating signal from said filter and delay network, a gate generator receiving an actuating signal from said automatic gain control amplifier to provide a square wave instruction signal in response thereto, first and second sample and hold amplifiers simultaneously reinate the alternate lack of an error signal, and error detector means receiving said continuous resultant signal.
2. An automatic step eliminator circuit as described in claim 1 further including first and second capacitor means to couple the output signals from said first and second sample and hold amplifiers, respectively, to said summing means.
3. An automatic step eliminator circuit as described in claim 1 wherein said summing means consists of a summing amplifier.

Claims (3)

1. An automatic step eliminator circuit to prevent tracking radar jamming comprised of an intermediate frequency amplifier having a gain control input and a signal input, said intermediate amplifier receiving a normal target signal and a jamming signal by way of said signal input, a box car circuit receiving the output signal from said intermediate frequency amplifier, an automatic gain amplifier, a filter and delay network, said automatic gain amplifier receiving the output from said box car circuit and providing an output signal for reception by said filter and delay network, said gain control input of said intermediate amplifier receiving an actuating signal from said filter and delay network, a gate generator receiving an actuating signal from said automatic gain control amplifier to provide a square wave instruction signal in response thereto, first and second sample and hold amplifiers simultaneously receiving said square wave instruction signal, said first and second sample and hold amplifiers also simultaneously receiving input signals from said filter and delay network, said sample and hold amplifiers being controlled by said square wave instruction signal to store said normal target signal in said first sample and hold amplifier and said jamming signal in said second sample and hold amplifier, means to sum the output signals from said first and second sample and hold amplifiers to provide a continuous resultant signal to eliminate the alternate lack of an error signal, and error detector means receiving said continuous resultant signal.
2. An automatic step eliminator circuit as described in claim 1 further including first and second capacitor means to couple the output signals from said first and second sample and hold amplifiers, respectively, to said summing means.
3. An automatic step eliminator circuit as described in claim 1 wherein said summing means consists of a summing amplifier.
US00238706A 1972-03-29 1972-03-29 Automatic step eliminator circuit to prevent radar jamming Expired - Lifetime US3789405A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US23870672A 1972-03-29 1972-03-29

Publications (1)

Publication Number Publication Date
US3789405A true US3789405A (en) 1974-01-29

Family

ID=22898990

Family Applications (1)

Application Number Title Priority Date Filing Date
US00238706A Expired - Lifetime US3789405A (en) 1972-03-29 1972-03-29 Automatic step eliminator circuit to prevent radar jamming

Country Status (1)

Country Link
US (1) US3789405A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3870997A (en) * 1965-02-03 1975-03-11 Us Navy Automatic gain integrator control
US3895299A (en) * 1974-04-08 1975-07-15 Sanders Associates Inc Apparatus for automatic adjustment of AGC reference voltage
FR2365132A1 (en) * 1976-09-16 1978-04-14 Selenia Ind Elettroniche DEVELOPMENT OF SYSTEMS DESIGNED TO REDUCE ELEVATION ERROR IN RADARS TRACKING TARGETS AT LOW ALTITUDE
US4124760A (en) * 1976-07-20 1978-11-07 Ciba-Geigy Corporation Photopolymerizable diepoxides containing a nitrogen heterocycle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3281837A (en) * 1962-05-23 1966-10-25 Hollandse Signaalapparaten Bv Radar apparatus provided with an arrangement reacting to interference and jamming bychanging either the polarization direction of the aerial system or the carrier frequency or both
US3495244A (en) * 1968-10-07 1970-02-10 Hazeltine Research Inc Interference discriminating apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3281837A (en) * 1962-05-23 1966-10-25 Hollandse Signaalapparaten Bv Radar apparatus provided with an arrangement reacting to interference and jamming bychanging either the polarization direction of the aerial system or the carrier frequency or both
US3495244A (en) * 1968-10-07 1970-02-10 Hazeltine Research Inc Interference discriminating apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3870997A (en) * 1965-02-03 1975-03-11 Us Navy Automatic gain integrator control
US3895299A (en) * 1974-04-08 1975-07-15 Sanders Associates Inc Apparatus for automatic adjustment of AGC reference voltage
US4124760A (en) * 1976-07-20 1978-11-07 Ciba-Geigy Corporation Photopolymerizable diepoxides containing a nitrogen heterocycle
FR2365132A1 (en) * 1976-09-16 1978-04-14 Selenia Ind Elettroniche DEVELOPMENT OF SYSTEMS DESIGNED TO REDUCE ELEVATION ERROR IN RADARS TRACKING TARGETS AT LOW ALTITUDE

Similar Documents

Publication Publication Date Title
US4017856A (en) Self-calibrating microwave transponder
US6476755B1 (en) Communications jamming receiver
US4021805A (en) Sidelobe blanking system
US3234547A (en) Polarization diversity system
US4058809A (en) MTI system and method
US4068233A (en) Radar system having interference rejection
US4072949A (en) Range gate walk-off of compressive radar
US4843398A (en) Tracking radar system
US3947848A (en) Anti-jam dual channel video cancellation circuit for first target tracking system
US3789405A (en) Automatic step eliminator circuit to prevent radar jamming
US3733604A (en) Aircraft guidance system
US4060806A (en) Phased array radars
US3973258A (en) Transient event data acquisition apparatus for use with radar systems and the like
US3130371A (en) Pulse amplitude slicing circuit
US3905034A (en) Radar system
US3896438A (en) Tracking radar countermeasure
US3206754A (en) Ambiguity elimination of directional antenna
US3307185A (en) Interference suppressor
US6133865A (en) CW converter circuit
US3467963A (en) Monopulse radar apparatuses
US4786909A (en) Receiving circuit
US4014020A (en) Automatic gain control circuit for high range resolution correlation radar
US5537120A (en) Main lobe shifting means
US2743355A (en) Automatic gain control circuits for pulse receivers
US3214757A (en) Linear amplifier system