US3789194A - Relating to counting machines - Google Patents

Relating to counting machines Download PDF

Info

Publication number
US3789194A
US3789194A US00178571A US3789194DA US3789194A US 3789194 A US3789194 A US 3789194A US 00178571 A US00178571 A US 00178571A US 3789194D A US3789194D A US 3789194DA US 3789194 A US3789194 A US 3789194A
Authority
US
United States
Prior art keywords
machine
counting
articles
stream
detectors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00178571A
Inventor
J Kirby
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SILVER POINT FINANCE AS AGENT LLC
Original Assignee
KIRBY LESTER ELECTRONICS Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KIRBY LESTER ELECTRONICS Ltd filed Critical KIRBY LESTER ELECTRONICS Ltd
Application granted granted Critical
Publication of US3789194A publication Critical patent/US3789194A/en
Assigned to KIRBY LESTER INCORPORATED, A CORP. OF CT reassignment KIRBY LESTER INCORPORATED, A CORP. OF CT ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: KIRBY LESTER (ELECTRONICS ) LIMITED, A CORP. OF ENGLAND
Anticipated expiration legal-status Critical
Assigned to SILVER POINT FINANCE, LLC, AS AGENT reassignment SILVER POINT FINANCE, LLC, AS AGENT SECURITY AGREEMENT Assignors: KIRBY LESTER, LLC
Assigned to SILVER POINT FINANCE, LLC, AS AGENT reassignment SILVER POINT FINANCE, LLC, AS AGENT CORRECTIVE ASSIGNMENT TO REMOVE INCORRECT 7,080,755, 6,555,251, 5,463,839, 3,760,887 PATENT AND APPLICATIONS 11/550,361, 11/484983, 11/474239, 11/445,105, 11/445,408, 11/056,521, 11/108,374, 11/072,887, 10/939,620, 10/025,401 AS NOTED BELOW WHICH WERE RECORDED ON REEL 019580 FRAME 0088. Assignors: KIRBY LESTER, LLC
Assigned to THE PRIVATEBANK AND TRUST COMPANY, AS ADMINISTRATIVE AGENT reassignment THE PRIVATEBANK AND TRUST COMPANY, AS ADMINISTRATIVE AGENT SECOND AMENDED AND RESTATED PATENT AND TRADEMARK SECURITY AGREEMENT Assignors: CAPSA INTERNATIONAL SALES CORPORATION, CAPSA SOLUTIONS LLC (F/K/A INTERNATIONAL RETAIL SERVICES GROUP, LLC), IRSG HOLDINGS, LLC, KIRBY LESTER, LLC
Assigned to THE PRIVATEBANK AND TRUST COMPANY, AS ADMINISTRATIVE AGENT reassignment THE PRIVATEBANK AND TRUST COMPANY, AS ADMINISTRATIVE AGENT REAFFIRMATION OF AND FIRST AMENDMENT TO SECOND AMENDED AND RESTATED PATENT AND TRADEMARK SECURITY AGREEMENT Assignors: CAPSA INTERNATIONAL SALES CORPORATION, CAPSA SOLUTIONS LLC (F/K/A INTERNATIONAL RETAIL SERVICES GROUP, LLC), IRSG HOLDINGS, LLC
Assigned to CAPSA SOLUTIONS LLC reassignment CAPSA SOLUTIONS LLC RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: THE PRIVATEBANK AND TRUST COMPANY, AS ADMINISTRATIVE AGENT
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06MCOUNTING MECHANISMS; COUNTING OF OBJECTS NOT OTHERWISE PROVIDED FOR
    • G06M1/00Design features of general application
    • G06M1/08Design features of general application for actuating the drive
    • G06M1/10Design features of general application for actuating the drive by electric or magnetic means
    • G06M1/101Design features of general application for actuating the drive by electric or magnetic means by electro-optical means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06MCOUNTING MECHANISMS; COUNTING OF OBJECTS NOT OTHERWISE PROVIDED FOR
    • G06M7/00Counting of objects carried by a conveyor
    • G06M7/02Counting of objects carried by a conveyor wherein objects ahead of the sensing element are separated to produce a distinct gap between successive objects

Definitions

  • a machine for counting articles comprising means for C1 235/92 K, 235/92 R, 235/92 dispersing a flow of articles to be counted into sepa- /98 C rate streams, means for providing a substantially even [51] Int. Cl. G06": 1/272 flow of articles to the dispersing means, a detector as- 1 Field of seiil'ch235/92 92 92 98 sociated with each stream for detecting each article in 193/2 R that stream and counting means fed by the outputs from all detectors for counting the total number of ar- [56] References Cited ticles in all the stream.
  • a machine for counting articles comprising means for dispersing a flow of articles to be counted into separate streams, means for providing a substantially even flow of articles to the dispersing means, a detector associated with each stream for detecting each article in that stream, and counting means fed by the outputs from all detectors for counting the total number of articles in all the streams.
  • a warning system is provided for issuing a warning when the accurate working throughput of the machine is exceeded.
  • FIG. 1 is a vertical section through the mechanical part of the machine
  • FIG. 2 is a plan view of the machine shown in FIG.
  • FIG. 3 is a horizontal section taken at IIIIII of FIG.
  • FIG. 4 is a circuit diagram of a photocell and detector circuit
  • FIG. 5 is a block schematic diagram of the counter, dust level detector, overspeed warning and selfchecking arrangements
  • FIG. 6 shows detail circuitry of the counter, dust level detector and overspeed warning arrangements
  • FIG. 7 shows detail circuitry of the self checking arrangement.
  • the machine shown in FIG. 1, 2 and 3 for counting tablets, pills or capsules comprises a vertically disposed, cylindrical casing 1 of circular cross-section and a vertically disposed, cylindrical inlet passage 2, also of circular cross-section, mounted coaxially on top of the casing.
  • a series of spaced annuli 3 are secured to the internal wall of the passage and have upper surfaces 4 which taper downwardly and inwardly.
  • annular passage 6 is defined between the periphery of the base of the cone 5 and the internal wall of the casing 1 and is divided into open-bottomed compartments 7 by a series of radial partitions 8.
  • a photocell 9 is mounted just below the bottom of each compartment 7 adjacent the wall of the casing 1 and a single light source 10 for all the photocells 9 is mounted on the axis of the casing l in substantially the same horizontal plane as the photocells 9.
  • the light source is powered by a smoothed D. C. supply.
  • a collecting chamber 11 and drawer 12 are provided at the bottom of the machine.
  • tablets to be counted enter the top of the inlet passage 2 and fall downwardly into the casing 1.
  • the tapered annuli 3 in the inlet passage 2 serve to break up any bunched group of tablets to provide an even flow of tablets and also to concentrate the flow of tablets along vertical axis of the casing l.
  • the tablets enter the casing 1 and strike the cone 5 at or adjacent its apex to be dispersed outwardly into the compartments 7 around the outside of the cone 5.
  • the tablets fall through the compartments 7, are detected by the photocells 9 and finally pass into the collecting chamber 11 and drawer 12.
  • each photocell 9 is included in a separate detecting circuit which also includes an amplifying circuit (based on transistor T,) which amplifies the photocell output, a trigger circuit (based on transistors T and T which triggers with each falling ball of current caused by modulation of the light on the photocell, resulting from the passage ofa tablet, and a differentiating circuit (based on transistor 1",) which differentiates each trigger pulse to provide a short duration impulse (approximately 2 microseconds).
  • These impulses are fed via a diode D2 and in parallel with impulses from the other detecting circuits to a suitably fast counting circuit shown in FIG. 5.
  • the output of the counting circuit feeds circuits for numeral indicator tubes which digitally display the number of tablets counted.
  • the outputs of the sixteen detector circuits pass through respective diodes to line 20, through a NOR gate 21 to the counter 22.
  • the output of counter 22 is fed to a decoder and drive unit 23 for displaying the count on numerical indicator tubes.
  • the machine is intended to be cleaned regularly to avoid the photoelectric ells and the lamp from becoming obscured by dust from, for example, uncoated tablets.
  • the output of one of the photocells is taken on line 24 to a clamp circuit 25.
  • clamp circuit 25 there is a voltage reference didode in series with the photocell output voltage.
  • the reference voltage current is passed to the base of transistor T so that this transistor becomes conductive and clamps line 20 so that the impulses from the counting circuits are unable to reach the counter.
  • the dust level exceeds a predetermined value the counter is inhibited.
  • a signal is passed from clamp 25 to a latch 26 which becomes conductive and operates a warning lamp 27 to give warning that counting has stopped as a result of a high dust level.
  • a warning circuit is also provided which indicates if a predetermined count rate representing themaximum accurate working throughput of the machine, is exceeded.
  • the warning circuit comprises an oscillator 28, the output of which passes through a pulse sharpener 29 and a gate 30 to a counter timer 31. When the counted pulses from the oscillator reaches a predetermined count an output is provided on line 32 to a second input of the gate 30 and thus the further count of pulses is inhibited. By this means, a time interval is provided with corresponds to a predetermined count of oscillator pulses.
  • the warning circuit also comprises a gate 33 which takes inputs from the units and tens counters of counter 22 and provides an output at certain counts (e.g. 18, 38, 58, 78 and 98).
  • Each output of gate 33 provides a start signal which resets counter timer 31 to zero so that a counting interval can commence.
  • the start signal also passes to a differentiator 34 so that sharp pulses are provided at the input of a gate 35.
  • Gate 35 has a second input which receives a pulse from counter timer 31 corresponding with the end of the timed period. If the timing period had not expired before the start signal at the output of gate 33 reoccurs (due to excessive speed of count) then gate 35 provides an output which trips a bistable circuit 36, thus providing a signal which activates an overspeed indicator 37 and which also passes to gate 21 and thereby inhibits the further counting of tablets. Provided that the timed period expires before the occurrence of the next start signal from gate 33 no overspeed indication is given and the gate 21 is not inhibited.
  • the apparatus has sixteen separate photocells and detecting circuits and it is important that the apparatus should be rendered inoperative if any one or more of the detecting circuits becomes faulty.
  • a self checking circuit is therefore provided by making the machine check itself every time the reset button 38 is pressed and released.
  • the gate 359 provides an output which is fed into the circuit 40 which produces a pulse of about 8 milliseconds duration. This pulse is fed to a transistor switch 41 which reduces the power supplied to lamp so that a count of sixteen should be produced in counter 22, i.e. a count from each photocell, the counter 22 having already been set to zero by the output of gate 39 passing to gate 42 to given an output at reset A.
  • Bistable circuit 36 is also reset by the output of gate 39.
  • a gate 43 having eight inputs is connected to the counter so that a count of 16 there is a signal on each of the eight inputs.
  • a charge of output is fed to a gate 44.
  • pulse sharpener 45 At the end of the lamp dipping pulse from the circuit 40, a pulse is produced by pulse sharpener 45 which after being delayed in delay circuit 46 provides a strobe pulse STR.
  • This strobe pulse is passed to gate 44 and if the count of 16 is not indicated on the other input of gate 44 then an output is provided on line 47 showing that the selfchecking has failed.
  • Monostable circuit 48 provides that the fail signal is given a predetermined duration.
  • This fail signal is passed to a second input of gate 39 so that gate 39 gives an output corresponding to that of pressing the reset button so that the rechecking opera tion is repeated until such times that a satisfactory count is obtained. If the right answer never comes, the machine will be found to be unusable by the operator because it will be totally occupied in this self checking operation. When a satisfactory check is obtained the machine becomes usable and so that the tablet count should commence from zero the strobe pulse output of delay circuit 46 passes to a further delay circuit 49 before passing to gate 42 which causes a reset pulse on reset A, thus reseting the counter to zero.
  • FIGS. 5 and 6 show detail of the circuitry in the various blocks of FIG. 5, the various sections of the circuit being identified by similar reference numerals.
  • a machine for counting small, discrete articles comprising a cone having a vertical axis with its apex upwardly directed for dispersing a flow of articles to be counted into separate falling streams, said streams being divided by vertical partitions radially arranged in an annular space around the base of the cone, means for feeding a substantially even flow of articles to the dispersing means comprising a plurality of spaced annuli having upper surfaces which taper downwardly and inwardly, the annuli being arranged one above another and all above the cone on an axis substantially coinciding with the axis of the cone, a plurality of detectors individually associated with each stream for detecting each article in each falling stream, and counting means fed by the outputs from all of the detectors for counting the total number of articles in all of the streams.
  • the detecting means for each stream includes a photocell, the photocells being arranged on a circle about a central illuminating lamp so that articles passing down each stream interrupt the path of light from the lamp to the respective photocell.
  • a machine for counting small, discrete articles comprising a cone having a vertical axis with its apex upwardly directed for dispersing a flow of articles to be counted into separate falling streams, means for feeding a substantialy even flow of articles to the dispersing means, a plurality of detectors individually associated with each stream for detecting each article in each falling stream, counting means fed by the outputs from all of the detectors for counting the total number of articles in all of the streams, means responsive to said counting for determining the article counting rate, and a warning system responsive to said means for determining for issuing a warning when a predetermined article counting rate of the machine is exceeded.
  • warning system also inhibits the continued counting of the machine when the predetermined throughput is exceeded and until the machine is reset.
  • timer means comprises a pulse generator and a counter which counts the pulses to a predetermined number to establish the predetermined interval of time.
  • a machine as claimed in claim 3, wherein the satisfactory operation of all the article detectors is obtained by simulating the passing of an article at each detector and recording that the total count of the counting means corresponds with the number of detectors.
  • photocells being arranged on a circle about a central illuminating lamp so that articles passing down each stream interrupt the path of light from the lamp to the respective photocell, and wherein the simulation is provided by dimming the lamp once.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Basic Packing Technique (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)
  • Emergency Alarm Devices (AREA)

Abstract

A machine for counting articles, comprising means for dispersing a flow of articles to be counted into separate streams, means for providing a substantially even flow of articles to the dispersing means, a detector associated with each stream for detecting each article in that stream and counting means fed by the outputs from all detectors for counting the total number of articles in all the stream.

Description

United States Patent 1191 11] 3,789,194 Kirby 1 Jan. 29, 1974 [54] RELATING TO COUNTING MACHINES 1,047,316 12/1912 Sicka 193/2 R [75] Inventor: John Kirby, Manchester, England [73] Assignee: Kirby Lester Electronics Limited, P im y Ex miner-Paul J. l-lenon Oldham, Lancashire, England Assistant Examiner-Robert F. Gnuse Attorney, Agent, or Firm-Sughrue, Rothwell, Mion, Flied. 8, Zinn & Macpeak 211 App]. No.: 178,571
[30] Foreign Application Priority Data 57 ABSTRACT Sept. 8, 1970 Great Britain 42867/70 A machine for counting articles, comprising means for C1 235/92 K, 235/92 R, 235/92 dispersing a flow of articles to be counted into sepa- /98 C rate streams, means for providing a substantially even [51] Int. Cl. G06": 1/272 flow of articles to the dispersing means, a detector as- 1 Field of seiil'ch235/92 92 92 98 sociated with each stream for detecting each article in 193/2 R that stream and counting means fed by the outputs from all detectors for counting the total number of ar- [56] References Cited ticles in all the stream.
UNITED STATES PATENTS 2,632,588 3/1953 Hoar 235/92 PE 9 Claims, 7 Drawing Figures I6 PHOTO- 16 (11:5 ro acroas RESET A OVERSPEED i /22 23 i 2O DECODER I l 1 1 1 w meat i i TUBES L RESET A 39 R55 B iJ T T N 42 ET To 9 RESET 0 RESET A osc. SHARPENER figg 33 POWER 2 FAIL W V L 30 3 2 3 J START 1 J 40 1 4| IO $52222 BISTABLE \F -DIFFE\RENTIATOR SHARPENER DELAY RESET A 8 m ur MONOSTABLE GATE OVERSPEED 4} 44 48 FAIL PATENTED 3 789 194 sum 1 UF 5 FIG.2
RX y g PATENTED JAN 2 91974 SHEET 5 OF 5 mm P20 D RELATING TO COUNTING MACHINES This invention relates to machines for counting articles, for example tablets, pills or capsules.
According to the present invention, there is provided a machine for counting articles, comprising means for dispersing a flow of articles to be counted into separate streams, means for providing a substantially even flow of articles to the dispersing means, a detector associated with each stream for detecting each article in that stream, and counting means fed by the outputs from all detectors for counting the total number of articles in all the streams.
Preferably, a warning system is provided for issuing a warning when the accurate working throughput of the machine is exceeded.
An embodiment of the present invention will now be described, by way of example, with reference to the ac companying drawings, in which:
FIG. 1 is a vertical section through the mechanical part of the machine,
FIG. 2 is a plan view of the machine shown in FIG.
FIG. 3 is a horizontal section taken at IIIIII of FIG.
FIG. 4 is a circuit diagram of a photocell and detector circuit,
FIG. 5 is a block schematic diagram of the counter, dust level detector, overspeed warning and selfchecking arrangements,
FIG. 6 shows detail circuitry of the counter, dust level detector and overspeed warning arrangements, and
FIG. 7 shows detail circuitry of the self checking arrangement.
The machine shown in FIG. 1, 2 and 3 for counting tablets, pills or capsules comprises a vertically disposed, cylindrical casing 1 of circular cross-section and a vertically disposed, cylindrical inlet passage 2, also of circular cross-section, mounted coaxially on top of the casing.
A series of spaced annuli 3 are secured to the internal wall of the passage and have upper surfaces 4 which taper downwardly and inwardly.
Mounted coaxially in the casing l vertically below the annuli 3 is a dispersing cone 5. An annular passage 6 is defined between the periphery of the base of the cone 5 and the internal wall of the casing 1 and is divided into open-bottomed compartments 7 by a series of radial partitions 8.
A photocell 9 is mounted just below the bottom of each compartment 7 adjacent the wall of the casing 1 and a single light source 10 for all the photocells 9 is mounted on the axis of the casing l in substantially the same horizontal plane as the photocells 9. The light source is powered by a smoothed D. C. supply.
A collecting chamber 11 and drawer 12 are provided at the bottom of the machine.
In use, tablets to be counted enter the top of the inlet passage 2 and fall downwardly into the casing 1. The tapered annuli 3 in the inlet passage 2 serve to break up any bunched group of tablets to provide an even flow of tablets and also to concentrate the flow of tablets along vertical axis of the casing l. The tablets enter the casing 1 and strike the cone 5 at or adjacent its apex to be dispersed outwardly into the compartments 7 around the outside of the cone 5. The tablets fall through the compartments 7, are detected by the photocells 9 and finally pass into the collecting chamber 11 and drawer 12.
Referring to FIG. 4, each photocell 9 is included in a separate detecting circuit which also includes an amplifying circuit (based on transistor T,) which amplifies the photocell output, a trigger circuit (based on transistors T and T which triggers with each falling ball of current caused by modulation of the light on the photocell, resulting from the passage ofa tablet, and a differentiating circuit (based on transistor 1",) which differentiates each trigger pulse to provide a short duration impulse (approximately 2 microseconds). These impulses are fed via a diode D2 and in parallel with impulses from the other detecting circuits to a suitably fast counting circuit shown in FIG. 5. The output of the counting circuit feeds circuits for numeral indicator tubes which digitally display the number of tablets counted.
Referring now to FIG. 5, the outputs of the sixteen detector circuits pass through respective diodes to line 20, through a NOR gate 21 to the counter 22. The output of counter 22 is fed to a decoder and drive unit 23 for displaying the count on numerical indicator tubes.
The machine is intended to be cleaned regularly to avoid the photoelectric ells and the lamp from becoming obscured by dust from, for example, uncoated tablets. To prevent the machine from operating when the v photocells and/or lamp are obscured by dust the output of one of the photocells is taken on line 24 to a clamp circuit 25. In clamp circuit 25, as will be apparent from FIG. 6, there is a voltage reference didode in series with the photocell output voltage. When the voltage of the cell rises above the reference voltage current is passed to the base of transistor T so that this transistor becomes conductive and clamps line 20 so that the impulses from the counting circuits are unable to reach the counter. Thus, when the dust level exceeds a predetermined value the counter is inhibited. At the same time a signal is passed from clamp 25 to a latch 26 which becomes conductive and operates a warning lamp 27 to give warning that counting has stopped as a result of a high dust level.
A warning circuit is also provided which indicates if a predetermined count rate representing themaximum accurate working throughput of the machine, is exceeded. The warning circuit comprises an oscillator 28, the output of which passes through a pulse sharpener 29 and a gate 30 to a counter timer 31. When the counted pulses from the oscillator reaches a predetermined count an output is provided on line 32 to a second input of the gate 30 and thus the further count of pulses is inhibited. By this means, a time interval is provided with corresponds to a predetermined count of oscillator pulses. The warning circuit also comprises a gate 33 which takes inputs from the units and tens counters of counter 22 and provides an output at certain counts (e.g. 18, 38, 58, 78 and 98). Each output of gate 33 provides a start signal which resets counter timer 31 to zero so that a counting interval can commence. The start signal also passes to a differentiator 34 so that sharp pulses are provided at the input of a gate 35. Gate 35 has a second input which receives a pulse from counter timer 31 corresponding with the end of the timed period. If the timing period had not expired before the start signal at the output of gate 33 reoccurs (due to excessive speed of count) then gate 35 provides an output which trips a bistable circuit 36, thus providing a signal which activates an overspeed indicator 37 and which also passes to gate 21 and thereby inhibits the further counting of tablets. Provided that the timed period expires before the occurrence of the next start signal from gate 33 no overspeed indication is given and the gate 21 is not inhibited.
The apparatus has sixteen separate photocells and detecting circuits and it is important that the apparatus should be rendered inoperative if any one or more of the detecting circuits becomes faulty. A self checking circuit is therefore provided by making the machine check itself every time the reset button 38 is pressed and released. On release of button 38 the gate 359 provides an output which is fed into the circuit 40 which produces a pulse of about 8 milliseconds duration. This pulse is fed to a transistor switch 41 which reduces the power supplied to lamp so that a count of sixteen should be produced in counter 22, i.e. a count from each photocell, the counter 22 having already been set to zero by the output of gate 39 passing to gate 42 to given an output at reset A. Bistable circuit 36 is also reset by the output of gate 39.
A gate 43 having eight inputs is connected to the counter so that a count of 16 there is a signal on each of the eight inputs. When the count of sixteen is present a charge of output is fed to a gate 44. At the end of the lamp dipping pulse from the circuit 40, a pulse is produced by pulse sharpener 45 which after being delayed in delay circuit 46 provides a strobe pulse STR. This strobe pulse is passed to gate 44 and if the count of 16 is not indicated on the other input of gate 44 then an output is provided on line 47 showing that the selfchecking has failed. Monostable circuit 48 provides that the fail signal is given a predetermined duration. This fail signal is passed to a second input of gate 39 so that gate 39 gives an output corresponding to that of pressing the reset button so that the rechecking opera tion is repeated until such times that a satisfactory count is obtained. If the right answer never comes, the machine will be found to be unusable by the operator because it will be totally occupied in this self checking operation. When a satisfactory check is obtained the machine becomes usable and so that the tablet count should commence from zero the strobe pulse output of delay circuit 46 passes to a further delay circuit 49 before passing to gate 42 which causes a reset pulse on reset A, thus reseting the counter to zero.
FIGS. 5 and 6 show detail of the circuitry in the various blocks of FIG. 5, the various sections of the circuit being identified by similar reference numerals.
What is claimed is:
l. A machine for counting small, discrete articles, comprising a cone having a vertical axis with its apex upwardly directed for dispersing a flow of articles to be counted into separate falling streams, said streams being divided by vertical partitions radially arranged in an annular space around the base of the cone, means for feeding a substantially even flow of articles to the dispersing means comprising a plurality of spaced annuli having upper surfaces which taper downwardly and inwardly, the annuli being arranged one above another and all above the cone on an axis substantially coinciding with the axis of the cone, a plurality of detectors individually associated with each stream for detecting each article in each falling stream, and counting means fed by the outputs from all of the detectors for counting the total number of articles in all of the streams.
2. A machine as claimed in claim 1, wherein the detecting means for each stream includes a photocell, the photocells being arranged on a circle about a central illuminating lamp so that articles passing down each stream interrupt the path of light from the lamp to the respective photocell.
3. A machine for counting small, discrete articles, comprising a cone having a vertical axis with its apex upwardly directed for dispersing a flow of articles to be counted into separate falling streams, means for feeding a substantialy even flow of articles to the dispersing means, a plurality of detectors individually associated with each stream for detecting each article in each falling stream, counting means fed by the outputs from all of the detectors for counting the total number of articles in all of the streams, means responsive to said counting for determining the article counting rate, and a warning system responsive to said means for determining for issuing a warning when a predetermined article counting rate of the machine is exceeded.
4. A machine as claimed in claim 3, wherein the warning system also inhibits the continued counting of the machine when the predetermined throughput is exceeded and until the machine is reset.
5. A machine as claimed in claim 3, wherein a signal is produced at predetermined counts of equal intervals, timer means being provided to establish predetermined intervals of time, and means for providing a warning signal when an interval of count takes place within an interval of time.
6. A machine as claimed in claim 5, wherein the timer means comprises a pulse generator and a counter which counts the pulses to a predetermined number to establish the predetermined interval of time.
'7. A machine as claimed in claim 3, wherein the satisfactory operation of all the article detectors is obtained by simulating the passing of an article at each detector and recording that the total count of the counting means corresponds with the number of detectors.
8. A machine as claimed in claim 7 wherein the detecting means for each stream includes a photocell, the
photocells being arranged on a circle about a central illuminating lamp so that articles passing down each stream interrupt the path of light from the lamp to the respective photocell, and wherein the simulation is provided by dimming the lamp once.
9. A machine as claimed in claim 7, wherein the counter is set to zero after each simulation and count and if an unsatisfactory count is obtained re-simulation takes place until a satisfactory count is obtained, thereby preventing the machine from being used if failure of one or more of the detectors has occurred.

Claims (9)

1. A machine for counting small, discrete articles, comprising a cone having a vertical axis with its apex upwardly directed for dispersing a flow of articles to be counted into separate falling streams, said streams being divided by vertical partitions radially arranged in an annular space around the base of the cone, means for feeding a substantially even flow of articles to the dispersing means comprising a plurality of spaced annuli having upper surfaces which taper downwardly and inwardly, the annuli being arranged one above another and all above the cone on an axis substantially coinciding with the axis of the cone, a plurality of detectors individually associated with each stream for detecting each article in each falling stream, and counting means fed by the outputs from all of the detectors for counting the total number of articles in all of the streams.
2. A machine as claimed in claim 1, wherein the detecting means for each stream includes a photocell, the photocells being arranged on a circle about a central illuminating lamp so that articles passing down each stream interrupt the path of light from the lamp to the respective photocell.
3. A machine for counting small, discrete articles, comprising a cone having a vertical axis with its apex upwardly directed for dispersing a flow of articles to be counted into separate falling streams, means for feeding a substantialy even flow of articles to the dispersing means, a plurality of detectors individually associated with each stream for detecting each article in each falling stream, counting means fed by the outputs from all of the detectors for counting the totAl number of articles in all of the streams, means responsive to said counting for determining the article counting rate, and a warning system responsive to said means for determining for issuing a warning when a predetermined article counting rate of the machine is exceeded.
4. A machine as claimed in claim 3, wherein the warning system also inhibits the continued counting of the machine when the predetermined throughput is exceeded and until the machine is reset.
5. A machine as claimed in claim 3, wherein a signal is produced at predetermined counts of equal intervals, timer means being provided to establish predetermined intervals of time, and means for providing a warning signal when an interval of count takes place within an interval of time.
6. A machine as claimed in claim 5, wherein the timer means comprises a pulse generator and a counter which counts the pulses to a predetermined number to establish the predetermined interval of time.
7. A machine as claimed in claim 3, wherein the satisfactory operation of all the article detectors is obtained by simulating the passing of an article at each detector and recording that the total count of the counting means corresponds with the number of detectors.
8. A machine as claimed in claim 7 wherein the detecting means for each stream includes a photocell, the photocells being arranged on a circle about a central illuminating lamp so that articles passing down each stream interrupt the path of light from the lamp to the respective photocell, and wherein the simulation is provided by dimming the lamp once.
9. A machine as claimed in claim 7, wherein the counter is set to zero after each simulation and count and if an unsatisfactory count is obtained re-simulation takes place until a satisfactory count is obtained, thereby preventing the machine from being used if failure of one or more of the detectors has occurred.
US00178571A 1970-09-08 1971-09-08 Relating to counting machines Expired - Lifetime US3789194A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB4286770A GB1358378A (en) 1970-09-08 1970-09-08 Counting machines

Publications (1)

Publication Number Publication Date
US3789194A true US3789194A (en) 1974-01-29

Family

ID=10426311

Family Applications (1)

Application Number Title Priority Date Filing Date
US00178571A Expired - Lifetime US3789194A (en) 1970-09-08 1971-09-08 Relating to counting machines

Country Status (3)

Country Link
US (1) US3789194A (en)
DE (1) DE2144719A1 (en)
GB (1) GB1358378A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3900718A (en) * 1973-12-26 1975-08-19 Harold H Seward System for counting pills and the like
US3928753A (en) * 1974-01-22 1975-12-23 Engineering Dev Associates Inc Small object counting apparatus
US3983373A (en) * 1975-04-30 1976-09-28 Columbine Glass Company, Inc. Article control system
US4012622A (en) * 1972-04-20 1977-03-15 Standard Pressed Steel Co. Method and apparatus for counting small parts
US4027143A (en) * 1974-12-17 1977-05-31 Witriol Norman M Encoding altimeter
US4396828A (en) * 1980-09-26 1983-08-02 Programs & Analysis, Inc. Pill counter
US4611124A (en) * 1984-06-13 1986-09-09 The United States Of America As Represented By The Secretary Of The Air Force Fly's eye sensor nonlinear signal processing
US5317645A (en) * 1991-02-28 1994-05-31 Kirby Lester Inc. Method and apparatus for the recognition and counting of discrete objects
US5774518A (en) * 1997-01-30 1998-06-30 Kirby; John Discrete tablet counting machine
US6631826B2 (en) 2001-07-20 2003-10-14 Parata Systems, Llc Device to count and dispense articles
US20110085634A1 (en) * 2008-04-10 2011-04-14 Riny Bay Sportswear Apparatus for Counting and Displaying and the Use Thereof
US8213014B1 (en) 2007-07-21 2012-07-03 Werner Willemse High speed counter and inspector for medicament and other small objects
US8271128B1 (en) 2008-07-30 2012-09-18 Kirby Lester, Llc Pharmacy workflow management system including plural counters
US9977871B2 (en) 2014-01-14 2018-05-22 Capsa Solutions Llc Cassette control including presence sensing and verification

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4597091A (en) * 1982-09-07 1986-06-24 Blake David J Pill counter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1047316A (en) * 1912-04-15 1912-12-17 Louis T Sicka Ore feed-mixer and distributer.
US2632588A (en) * 1952-01-30 1953-03-24 Jr John Hoar Counting and packaging apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1047316A (en) * 1912-04-15 1912-12-17 Louis T Sicka Ore feed-mixer and distributer.
US2632588A (en) * 1952-01-30 1953-03-24 Jr John Hoar Counting and packaging apparatus

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4012622A (en) * 1972-04-20 1977-03-15 Standard Pressed Steel Co. Method and apparatus for counting small parts
US3900718A (en) * 1973-12-26 1975-08-19 Harold H Seward System for counting pills and the like
US3928753A (en) * 1974-01-22 1975-12-23 Engineering Dev Associates Inc Small object counting apparatus
US4027143A (en) * 1974-12-17 1977-05-31 Witriol Norman M Encoding altimeter
US3983373A (en) * 1975-04-30 1976-09-28 Columbine Glass Company, Inc. Article control system
US4396828A (en) * 1980-09-26 1983-08-02 Programs & Analysis, Inc. Pill counter
US4611124A (en) * 1984-06-13 1986-09-09 The United States Of America As Represented By The Secretary Of The Air Force Fly's eye sensor nonlinear signal processing
US5317645A (en) * 1991-02-28 1994-05-31 Kirby Lester Inc. Method and apparatus for the recognition and counting of discrete objects
US5774518A (en) * 1997-01-30 1998-06-30 Kirby; John Discrete tablet counting machine
GB2321740A (en) * 1997-01-30 1998-08-05 John Kirby Discrete tablet counting machine
US6631826B2 (en) 2001-07-20 2003-10-14 Parata Systems, Llc Device to count and dispense articles
US20040159669A1 (en) * 2001-07-20 2004-08-19 Jasper Pollard Device to count and dispense articles
US8651326B2 (en) 2001-07-20 2014-02-18 Parata Systems, Llc Device to count and dispense articles
US8213014B1 (en) 2007-07-21 2012-07-03 Werner Willemse High speed counter and inspector for medicament and other small objects
US20110085634A1 (en) * 2008-04-10 2011-04-14 Riny Bay Sportswear Apparatus for Counting and Displaying and the Use Thereof
US8271128B1 (en) 2008-07-30 2012-09-18 Kirby Lester, Llc Pharmacy workflow management system including plural counters
US8855811B1 (en) 2008-07-30 2014-10-07 Kirby Lester, Llc Pharmacy workflow management system including plural counters
US9977871B2 (en) 2014-01-14 2018-05-22 Capsa Solutions Llc Cassette control including presence sensing and verification

Also Published As

Publication number Publication date
DE2144719A1 (en) 1972-03-23
GB1358378A (en) 1974-07-03

Similar Documents

Publication Publication Date Title
US3789194A (en) Relating to counting machines
CN105836226B (en) A kind of cillin bottle appearance and size detection arrangement are started going to a nursery machine
US4120403A (en) Photoelectric apparatus for sorting variegated articles according to size
CN207271654U (en) A kind of fully automatic high-speed light splitting machine
ES382931A1 (en) Apparatus and method for detecting and reporting ends down on textile machines
US3928753A (en) Small object counting apparatus
US3638191A (en) Production monitoring system
GB1391221A (en) Electronic system and method for capsule inspection
US3754558A (en) Coin processing apparatus with jam detection system
US4694964A (en) Device for conveying components particularly integrated chips, from an input magazine to an output magazine
US3510632A (en) Digital stretch and speed indicating apparatus
US4455549A (en) Indication device
US4344582A (en) Microprocessor-controlled product roving system
US3786265A (en) Apparatus for detecting defects in continuous traveling material
JPS6127492B2 (en)
CN103447246B (en) High-speed full-automatic capsule vision detector
US3690123A (en) Device for the automatic measurement of the length of yarn consumed in knitting machines
US4496055A (en) Apparatus for forming groups of cigarettes
US4241293A (en) Scanner for detecting and indicating missing and wedged articles in slat-type counting machine
CN109422071A (en) A kind of LED light production transport device with tally function
US5774518A (en) Discrete tablet counting machine
GB1385290A (en) Measuring instrument
GB2108818A (en) Apparatus for testing cigarettes in groups
US3772916A (en) Variable increment transducer for fluid flow metering systems
CN219162397U (en) Device for detecting falling off of ejector plate of grain counting machine

Legal Events

Date Code Title Description
AS Assignment

Owner name: KIRBY LESTER INCORPORATED, 1111 POST ROAD RIVERSID

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:KIRBY LESTER (ELECTRONICS ) LIMITED, A CORP. OF ENGLAND;REEL/FRAME:003946/0347

Effective date: 19811109

STCF Information on status: patent grant

Free format text: PATENTED FILE - (OLD CASE ADDED FOR FILE TRACKING PURPOSES)

AS Assignment

Owner name: SILVER POINT FINANCE, LLC, AS AGENT, CONNECTICUT

Free format text: SECURITY AGREEMENT;ASSIGNOR:KIRBY LESTER, LLC;REEL/FRAME:019580/0088

Effective date: 20070711

Owner name: SILVER POINT FINANCE, LLC, AS AGENT,CONNECTICUT

Free format text: SECURITY AGREEMENT;ASSIGNOR:KIRBY LESTER, LLC;REEL/FRAME:019580/0088

Effective date: 20070711

AS Assignment

Owner name: SILVER POINT FINANCE, LLC, AS AGENT, CONNECTICUT

Free format text: CORRECTIVE ASSIGNMENT TO REMOVE INCORRECT 7,080,755, 6,555,251, 5,463,839, 3,760,887 PATENT AND APPLICATIONS 11/550,361, 11/484983, 11/474239, 11/445,105, 11/445,408, 11/056,521, 11/108,374, 11/072,887, 10/939,620, 10/025,401 AS NOTED BELOW WHICH WERE RECORDED ON REEL 019580 FRAME 0088;ASSIGNOR:KIRBY LESTER, LLC;REEL/FRAME:025812/0709

Effective date: 20070711

AS Assignment

Owner name: THE PRIVATEBANK AND TRUST COMPANY, AS ADMINISTRATI

Free format text: SECOND AMENDED AND RESTATED PATENT AND TRADEMARK SECURITY AGREEMENT;ASSIGNORS:CAPSA SOLUTIONS LLC (F/K/A INTERNATIONAL RETAIL SERVICES GROUP, LLC);CAPSA INTERNATIONAL SALES CORPORATION;KIRBY LESTER, LLC;AND OTHERS;REEL/FRAME:033280/0164

Effective date: 20140701

AS Assignment

Owner name: THE PRIVATEBANK AND TRUST COMPANY, AS ADMINISTRATIVE AGENT, ILLINOIS

Free format text: REAFFIRMATION OF AND FIRST AMENDMENT TO SECOND AMENDED AND RESTATED PATENT AND TRADEMARK SECURITY AGREEMENT;ASSIGNORS:CAPSA SOLUTIONS LLC (F/K/A INTERNATIONAL RETAIL SERVICES GROUP, LLC);CAPSA INTERNATIONAL SALES CORPORATION;IRSG HOLDINGS, LLC;REEL/FRAME:036337/0946

Effective date: 20150806

Owner name: THE PRIVATEBANK AND TRUST COMPANY, AS ADMINISTRATI

Free format text: REAFFIRMATION OF AND FIRST AMENDMENT TO SECOND AMENDED AND RESTATED PATENT AND TRADEMARK SECURITY AGREEMENT;ASSIGNORS:CAPSA SOLUTIONS LLC (F/K/A INTERNATIONAL RETAIL SERVICES GROUP, LLC);CAPSA INTERNATIONAL SALES CORPORATION;IRSG HOLDINGS, LLC;REEL/FRAME:036337/0946

Effective date: 20150806

AS Assignment

Owner name: CAPSA SOLUTIONS LLC, OREGON

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:THE PRIVATEBANK AND TRUST COMPANY, AS ADMINISTRATIVE AGENT;REEL/FRAME:043814/0565

Effective date: 20170908