US3788287A - Fuel injection system - Google Patents

Fuel injection system Download PDF

Info

Publication number
US3788287A
US3788287A US00227428A US3788287DA US3788287A US 3788287 A US3788287 A US 3788287A US 00227428 A US00227428 A US 00227428A US 3788287D A US3788287D A US 3788287DA US 3788287 A US3788287 A US 3788287A
Authority
US
United States
Prior art keywords
fuel
air
passage
sockets
injection system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00227428A
Inventor
W Falen
A Giardina
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motors Liquidation Co
Original Assignee
Motors Liquidation Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motors Liquidation Co filed Critical Motors Liquidation Co
Application granted granted Critical
Publication of US3788287A publication Critical patent/US3788287A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/14Arrangements of injectors with respect to engines; Mounting of injectors
    • F02M61/145Arrangements of injectors with respect to engines; Mounting of injectors the injection nozzle opening into the air intake conduit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/22Multi-cylinder engines with cylinders in V, fan, or star arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0671Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto
    • F02M51/0675Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto the valve body having cylindrical guiding or metering portions, e.g. with fuel passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/04Injectors peculiar thereto
    • F02M69/042Positioning of injectors with respect to engine, e.g. in the air intake conduit
    • F02M69/044Positioning of injectors with respect to engine, e.g. in the air intake conduit for injecting into the intake conduit downstream of an air throttle valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/04Injectors peculiar thereto
    • F02M69/047Injectors peculiar thereto injectors with air chambers, e.g. communicating with atmosphere for aerating the nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/46Details, component parts or accessories not provided for in, or of interest apart from, the apparatus covered by groups F02M69/02 - F02M69/44
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/46Details, component parts or accessories not provided for in, or of interest apart from, the apparatus covered by groups F02M69/02 - F02M69/44
    • F02M69/462Arrangement of fuel conduits, e.g. with valves for maintaining pressure in the pipes after the engine being shut-down
    • F02M69/465Arrangement of fuel conduits, e.g. with valves for maintaining pressure in the pipes after the engine being shut-down of fuel rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0606Fuel temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S261/00Gas and liquid contact apparatus
    • Y10S261/82Upper end injectors

Definitions

  • each rail contains a fuel passage and an atmospheric air gallery formed during extrusion and provides for mounting the injectors and other fuel injection system components in an easily handled unit.
  • FIG. 1 is a side elevational view of a fuel injection system, also showing an air cleaner mounted on the air inlet body but omitting any showing of the inlet mani fold and other engine components for clarity of detail;
  • FIG. 2 is a front elevational view of the fuel injection system, showing its relationship to the inlet manifold and cylinder heads;
  • FIG. 3 is a top plan view of the fuel injection system, showing the bracket securing the air inlet body and the fuel rails into a single package for testing and shipping;
  • FIG. 4 is a sectional view, as it would appear along line 44 of FIG. 3, showing one of the injectors mounted in the fuel rails and also showing the relationship of the components to the induction passage in the inlet manifold and cylinder heads;
  • FIG. 5 is a sectional view, as it would appear along line 55 of FIG. 3, showing one of the air inlet fittings for the atmospheric air galleries in the fuel rails;
  • FIG. 6 is a sectional view along line 6-6 of FIG. 4 showing the constructional details of one of the fuel injectors;
  • FIG. 7 is a sectional view along line 7-7 of FIG. 2 showing the mounting of a fuel temperature thermistor
  • FIG. 8 is a bottom plan view of the air inlet body and the heating conducting pad.
  • FIG. 9 is a sectional view along line 9-9 of FIG. 8 showing further details of the heat conducting pad.
  • the fuel injection system includes an air inlet body 10 and a pair of extruded fuel rails 12 and 14. Mounted on an inlet manifold 16 which in turn is mounted on cylinder heads 18 and 20, air inlet body 10 has a pair of air inlet passages 22 and 24 which register with the induction passage 26 extending through inlet manifold 16 and heads 18 and to the combustion chamber inlet ports. Throttles 28 and 30 are disposed in inlet passages 22 and 24 on a rotatable shaft 32 for controlling air flow through induction passage 26.
  • Air inlet body 10 also is provided with a transducer 34, such as that described in U.S. Ser. No. 202,760, filed Nov. 29, 1971, which measures the absolute pressure in air inlet passages 22 and 24 and induction passage 26 downstream of throttles 28 and 30 and provides an electrical signal proportional thereto.
  • a transducer 34 such as that described in U.S. Ser. No. 202,760, filed Nov. 29, 1971, which measures the absolute pressure in air inlet passages 22 and 24 and induction passage 26 downstream of throttles 28 and 30 and provides an electrical signal proportional thereto.
  • Air inlet body 10 also has provision for a curb idle adjustment 36 and a fast idle control valve 38 such as those shown in US. Ser. No. 41,141, filed May 25, 1970, now US. Pat. No. 3,645,509.
  • air inlet body 10 also may include provision for a transducer 40 which provides an electrical signal indicative of a sudden increase in pressure in air inlet passages 22 and 24 and induction passage 26 downstream of throttles 28 and 30 and thus indicative of engine acceleration.
  • air inlet body 10 includes provision for mounting a thermistor 42 which senses the temperature of the air entering air inlet passages 22 and 24 and induction passage 26. Further, air inlet body 10 may include provision for an electrical switch 44 which is opened and closed by a throttle lever 46 secured on throttle shaft 32 and which thus indicates the position of throttles 28 and 30. An adjusting screw 48 may be provided to limit throttle closing movement of throttle lever 46.
  • a heat conducting pad 50 extends horizontally from air inlet body 10 toward the rear of the engine.
  • a drilled passage 52 provides a manifold vacuum tap to which the manifold vacuum connection 54 shown in FIG. 3 may be mounted.
  • Other fittings 56 also shown in FIG. 3 may be provided for various vacuum signals created as throttle 30 traverses various ports (not shown) provided in air inlet passage 24.
  • Other vaccum taps such as that shown at 58 in FIG. 2, also may be provided.
  • an electronic package 60 is mounted on heat conducting pad 50.
  • Electronic package 60 receives electrical signals from the components, such as transducers 34 and 40, throttle switch 44, and thermistor 42, which meter air flow to the engine and controls energization of the injectors which meter fuel flow to the engine as described below.
  • electronic package 60 is designed to mate with the heat transfer surface 62 of pad 50 whereby heat generated during operation of electronic package 60 may be conducted into heat conducting pad 50.
  • the lower surface of pad 50 has a plurality of elongated recesses 64 which define a plurality of fins 66 therebetwen.
  • Fins 66 radiate heat from pad 50 into the atmosphere ambient pad 50, space being provided between the lower portion of pad 50 and inlet manifold 16 to permit air circulation.
  • Recesses 64 and fins 66 are generally parallel and their major axes extend longitudinally toward air inlet body 10, thus facilitating heat conduction to air inlet passages 22 and 24. Heat generated during operation of electronic package 60 also is dissipated, therefore, into the air flowing through inlet passages 22 and 24 to induction passage 26.
  • ports 68 and 70 provide openings from air inlet passages 22 and 24, below throttles 28 and 30, to manifold pressure chambers 72 and 74.
  • Manifold vacuum passage 52 extends from chamber 74, while manifold pressure transducer 34, idle air controls 36 and 38, acceleration transducer 40, as well as other desired components, are associated with chamber 72.
  • Fuel rail 12 extends longitudinally along the righthand bank of combustion chambers while fuel rail 14 extends longitudinally along the left-hand bank of combustion chambers. Rails 12 and 14 are shown in FIG. 2 as being mounted on inlet manifold 16, but provision could be made for mounting the rails on cylinder heads 18 and 20, if desired.
  • rails 12 and 14 have fuel passages 76 and air passages or galleries 78 which are formed during the process of extruding rails 12 and 14.
  • Air galleries 78 having fittings 80 provided with hoses 82 to receive air from an air cleaner 84.
  • cleaner 84 is supported by an adapter ring 85, received on a ledge 86 formed about air inlet body 10, and is secured by a stud 87.
  • Each rail 12 and 14 has a plurality of injectors 88 retained, by clamps 90 as shown in FIG. 3, in sockets 92 formed as shown in FIG. 4. Sockets 92 intersect fuel passages 76, and -rings 94 surrounding injectors 88 above and below passages 76 prevent leakage of fuel from sockets 92.
  • each injector 88 has a screen 96 through which fuel is received from passage 76. Fuel passes from screen 96 through an opening 98 in the injector body 100 and then through a central bore 102 in the nozzle 103. A valve plunger 104 controls flow of fuel from bore 102 through nozzle opening 106. When energized by electronic package 60, a solenoid coil 108 lifts a magnetically responsive member 110 secured on the end of valve plunger 104, thus metering and delivering fuel from fuel passage 76 through injector socket 92, screen 96, opening 98, bore 102, and opening 106 into the base region 112 of socket 92.
  • Nozzle opening 106 sprays the fuel through a critical flow orifice member 114 which is disposed in the outlet 115 opening from base region 112 of socket 92. Orifice members 114 are aimed through induction passage 26 toward the inlet ports for the combustion chambers located at the ends of induction passage 26.
  • Branch passages 116 extend from air galleries 78 to base regions 112 of sockets 92 to provide atmospheric pressure regions at the outlets of injectors 88 and to supply a constant flow of air through orifice members 114. Branch passages 116 receive plugs 118 at the outer ends.
  • the rearward end of rail 14 is provided with a filter housing 120 which receives fuel through a fitting 122 from a fuel pump such as that set forth in US. SER. No. 211,934, filed Dec. 27, 1971.
  • Filter housing 120 supplies fuel to fuel passage 76 in rail 14 and, through a crossover pipe 124, to a similar fuel passage in rail 12.
  • a fitting 126 may be provided on the rearward end of rail 12 to receive fuel from crossover pipe 124.
  • a fitting 128 houses a fuel temperature responsive thermistor 129 and provides a connection between fuel passage 76 in rail 14 and a crossover pipe 130 which extends to a fitting 132 at the forward end of rail 12.
  • F itting 132 includes means for bleeding fuel vapor from fuel passages 76 in rails 12 and 14 as set forth in U.S. Ser. No. 221,640, filed Jan. 28, 1972.
  • a bracket 134 is bolted at its outboard ends 136 and 138 to rails 12 and 14 and has a central portion 140 which is received on air cleaner adapter ring ledge 86 formed about air inlet body 10.
  • a central arm 144 carries a bolt 146 which is received in a hole tapped in body 10 to receive air cleaner stud 87, thereby securing bracket 134 to air inlet body 10.
  • a fuel rail member extruded from a single piece of material and having longitudinally extending fuel and air passages formed during extrusion of the rail member, injector receiving sockets extending transversely into said fuel rail member and intersecting said fuel passage, branch air passages extending transversely from said air passage to said sockets adjacent the bases thereof, and outlets opening from the bases of said sockets into said combustion chamber air and fuel inlet passages,

Abstract

In an electronically controlled fuel injection system, the fuel injectors and other components are mounted on extruded rails each having a fuel passage and an atmospheric air gallery formed during extrusion.

Description

United States Patent [191 F alen et al.
[451 Jan. 29, 1974 FUEL INJECTION SYSTEM [75] Inventors: Walter S. Falen, Greece; Anthony J.
Giardina, Rochester, both of NY.
[73] Assignee: General Motors Corporation,
Detroit, Mich.
22 Filed: Feb. 18, 1972 21 App1.No.: 227,428
[52] U.S. CL. 123/52 MV, 123/119 R, 123/139 AW [51] Int. Cl. F02b 75/22 [58] Field of Search. 123/139 AW, 139 BG, 32 AE,
123/32 JV, 32 G, 139 AV, 52 M, 52 MV,
[5 6] References Cited UNITED STATES PATENTS 2,511,213 6/1950 Leslie 123/139 AW 2,893,365 7/1959 Haefner 123/139 AW 2,816,745 12/1957 McCain 123/139 AW 2,991,776 7/1961 Dolza et a1. 123/139 AW FOREIGN PATENTS OR APPLICATIONS 757,527 10/1944 Germany 123/139 AV Primary Examiner--Laurence M. Goodridge Attorney, Agent, or Firm-C. K. Veenstra [5 7] ABSTRACT In an electronically controlled fuel injection system, the fuel injectors and other components are mounted on extruded rails each having a fuel passage and an atmospheric air gallery formed during extrusion.
1 Claim, 9 Drawing Figures PATENTEB JAN 2 91974 SHEET 2 UF 4 PATENTEB JAN 29 I974 SHEET 3 OF 4 PATENTEB JAN 29 I974 SHEH Q BF 4 FUEL INJECTION SYSTEM This invention relates to a fuel injection system having numerous advantages of construction and operation over those available heretofore.
Particular advantages may be noted in the provision of extruded rails which extend along each bank of combustion chambers. Each rail contains a fuel passage and an atmospheric air gallery formed during extrusion and provides for mounting the injectors and other fuel injection system components in an easily handled unit.
The details as well as other objects and advantages of this invention are set forth in the remainder of the specification and are shown in the drawings in which:
FIG. 1 is a side elevational view of a fuel injection system, also showing an air cleaner mounted on the air inlet body but omitting any showing of the inlet mani fold and other engine components for clarity of detail;
FIG. 2 is a front elevational view of the fuel injection system, showing its relationship to the inlet manifold and cylinder heads;
FIG. 3 is a top plan view of the fuel injection system, showing the bracket securing the air inlet body and the fuel rails into a single package for testing and shipping;
FIG. 4 is a sectional view, as it would appear along line 44 of FIG. 3, showing one of the injectors mounted in the fuel rails and also showing the relationship of the components to the induction passage in the inlet manifold and cylinder heads;
FIG. 5 is a sectional view, as it would appear along line 55 of FIG. 3, showing one of the air inlet fittings for the atmospheric air galleries in the fuel rails;
FIG. 6 is a sectional view along line 6-6 of FIG. 4 showing the constructional details of one of the fuel injectors;
FIG. 7 is a sectional view along line 7-7 of FIG. 2 showing the mounting of a fuel temperature thermistor;
FIG. 8 is a bottom plan view of the air inlet body and the heating conducting pad; and
FIG. 9 is a sectional view along line 9-9 of FIG. 8 showing further details of the heat conducting pad.
Throughout the drawings, some portions of the electrical wiring and the air and vacuum hoses are illustrated but most portions of such have been omitted for a clearer illustration of other components of the fuel injection system.
Referring to the drawings, the fuel injection system includes an air inlet body 10 and a pair of extruded fuel rails 12 and 14. Mounted on an inlet manifold 16 which in turn is mounted on cylinder heads 18 and 20, air inlet body 10 has a pair of air inlet passages 22 and 24 which register with the induction passage 26 extending through inlet manifold 16 and heads 18 and to the combustion chamber inlet ports. Throttles 28 and 30 are disposed in inlet passages 22 and 24 on a rotatable shaft 32 for controlling air flow through induction passage 26.
Air inlet body 10 also is provided with a transducer 34, such as that described in U.S. Ser. No. 202,760, filed Nov. 29, 1971, which measures the absolute pressure in air inlet passages 22 and 24 and induction passage 26 downstream of throttles 28 and 30 and provides an electrical signal proportional thereto.
Air inlet body 10 also has provision for a curb idle adjustment 36 and a fast idle control valve 38 such as those shown in US. Ser. No. 41,141, filed May 25, 1970, now US. Pat. No. 3,645,509.
If desired, air inlet body 10 also may include provision for a transducer 40 which provides an electrical signal indicative of a sudden increase in pressure in air inlet passages 22 and 24 and induction passage 26 downstream of throttles 28 and 30 and thus indicative of engine acceleration.
In addition, air inlet body 10 includes provision for mounting a thermistor 42 which senses the temperature of the air entering air inlet passages 22 and 24 and induction passage 26. Further, air inlet body 10 may include provision for an electrical switch 44 which is opened and closed by a throttle lever 46 secured on throttle shaft 32 and which thus indicates the position of throttles 28 and 30. An adjusting screw 48 may be provided to limit throttle closing movement of throttle lever 46.
A heat conducting pad 50 extends horizontally from air inlet body 10 toward the rear of the engine. As shown in FIG. 8, a drilled passage 52 provides a manifold vacuum tap to which the manifold vacuum connection 54 shown in FIG. 3 may be mounted. Other fittings 56 also shown in FIG. 3 may be provided for various vacuum signals created as throttle 30 traverses various ports (not shown) provided in air inlet passage 24. Other vaccum taps, such as that shown at 58 in FIG. 2, also may be provided.
As shown in FIGS. 1 and 3, an electronic package 60 is mounted on heat conducting pad 50. Electronic package 60 receives electrical signals from the components, such as transducers 34 and 40, throttle switch 44, and thermistor 42, which meter air flow to the engine and controls energization of the injectors which meter fuel flow to the engine as described below. Referring to FIGS. 8 and 9, electronic package 60 is designed to mate with the heat transfer surface 62 of pad 50 whereby heat generated during operation of electronic package 60 may be conducted into heat conducting pad 50. The lower surface of pad 50 has a plurality of elongated recesses 64 which define a plurality of fins 66 therebetwen. Fins 66 radiate heat from pad 50 into the atmosphere ambient pad 50, space being provided between the lower portion of pad 50 and inlet manifold 16 to permit air circulation. Recesses 64 and fins 66 are generally parallel and their major axes extend longitudinally toward air inlet body 10, thus facilitating heat conduction to air inlet passages 22 and 24. Heat generated during operation of electronic package 60 also is dissipated, therefore, into the air flowing through inlet passages 22 and 24 to induction passage 26.
Still referring to FIGS. 8 and 9, it may be noted that several ports 68 and 70 provide openings from air inlet passages 22 and 24, below throttles 28 and 30, to manifold pressure chambers 72 and 74. Manifold vacuum passage 52 extends from chamber 74, while manifold pressure transducer 34, idle air controls 36 and 38, acceleration transducer 40, as well as other desired components, are associated with chamber 72.
Fuel rail 12 extends longitudinally along the righthand bank of combustion chambers while fuel rail 14 extends longitudinally along the left-hand bank of combustion chambers. Rails 12 and 14 are shown in FIG. 2 as being mounted on inlet manifold 16, but provision could be made for mounting the rails on cylinder heads 18 and 20, if desired.
As shown in FIGS. 4 and 5, rails 12 and 14 have fuel passages 76 and air passages or galleries 78 which are formed during the process of extruding rails 12 and 14. Air galleries 78 having fittings 80 provided with hoses 82 to receive air from an air cleaner 84. As shown in FIG. 1, cleaner 84 is supported by an adapter ring 85, received on a ledge 86 formed about air inlet body 10, and is secured by a stud 87.
Each rail 12 and 14 has a plurality of injectors 88 retained, by clamps 90 as shown in FIG. 3, in sockets 92 formed as shown in FIG. 4. Sockets 92 intersect fuel passages 76, and -rings 94 surrounding injectors 88 above and below passages 76 prevent leakage of fuel from sockets 92.
As shown in FIG. 6 each injector 88 has a screen 96 through which fuel is received from passage 76. Fuel passes from screen 96 through an opening 98 in the injector body 100 and then through a central bore 102 in the nozzle 103. A valve plunger 104 controls flow of fuel from bore 102 through nozzle opening 106. When energized by electronic package 60, a solenoid coil 108 lifts a magnetically responsive member 110 secured on the end of valve plunger 104, thus metering and delivering fuel from fuel passage 76 through injector socket 92, screen 96, opening 98, bore 102, and opening 106 into the base region 112 of socket 92. Nozzle opening 106 sprays the fuel through a critical flow orifice member 114 which is disposed in the outlet 115 opening from base region 112 of socket 92. Orifice members 114 are aimed through induction passage 26 toward the inlet ports for the combustion chambers located at the ends of induction passage 26.
Branch passages 116 extend from air galleries 78 to base regions 112 of sockets 92 to provide atmospheric pressure regions at the outlets of injectors 88 and to supply a constant flow of air through orifice members 114. Branch passages 116 receive plugs 118 at the outer ends.
As best shown in FIG. 3, the rearward end of rail 14 is provided with a filter housing 120 which receives fuel through a fitting 122 from a fuel pump such as that set forth in US. SER. No. 211,934, filed Dec. 27, 1971. Filter housing 120 supplies fuel to fuel passage 76 in rail 14 and, through a crossover pipe 124, to a similar fuel passage in rail 12. A fitting 126 may be provided on the rearward end of rail 12 to receive fuel from crossover pipe 124. At the forward end of rail 14, a fitting 128 houses a fuel temperature responsive thermistor 129 and provides a connection between fuel passage 76 in rail 14 and a crossover pipe 130 which extends to a fitting 132 at the forward end of rail 12. F itting 132 includes means for bleeding fuel vapor from fuel passages 76 in rails 12 and 14 as set forth in U.S. Ser. No. 221,640, filed Jan. 28, 1972.
As shown in FIG. 3, a bracket 134 is bolted at its outboard ends 136 and 138 to rails 12 and 14 and has a central portion 140 which is received on air cleaner adapter ring ledge 86 formed about air inlet body 10. A central arm 144 carries a bolt 146 which is received in a hole tapped in body 10 to receive air cleaner stud 87, thereby securing bracket 134 to air inlet body 10. By this means, air inlet body 10 and rails 12 and 14 are secured in a single package whereby both air and fuel metering components of the fuel injection system may be tested and shipped as a single unit. If desired, the bracket may be removed during installation of the air inlet body 10 and rails 12 and 14 on the engine.
I claim:
1. In a fuel injection system on an internal combustion engine having a plurality of longitudinally spaced combustion chambers, each of said combustion chambers having an air and fuel inlet passage:
a fuel rail assembly mounted longitudinally on said engine, said fuel rail assembly comprising:
a fuel rail member extruded from a single piece of material and having longitudinally extending fuel and air passages formed during extrusion of the rail member, injector receiving sockets extending transversely into said fuel rail member and intersecting said fuel passage, branch air passages extending transversely from said air passage to said sockets adjacent the bases thereof, and outlets opening from the bases of said sockets into said combustion chamber air and fuel inlet passages,
and injectors disposed in said sockets for controlling fuel flow from said fuel passage to said outlets.
I. I. 4 l

Claims (1)

1. In a fuel injection system on an internal combustion engine having a plurality of longitudinally spaced combustion chambers, each of said combustion chambers having an air and fuel inlet passage: a fuel rail assembly mounted longitudinally on said engine, said fuel rail assembly comprising: a fuel rail member extruded from a single piece of material and having longitudinally extending fuel and air passages formed during extrusion of the rail member, injector receiving sockets extending transversely into said fuel rail member and intersecting said fuel passage, branch air passages extending transversely from said air passage to said sockets adjacent the bases thereof, and outlets opening from the bases of said sockets into said combustion chamber air and fuel inlet passages, and injectors disposed in said sockets for controlling fuel flow from said fuel passage to said outlets.
US00227428A 1972-02-18 1972-02-18 Fuel injection system Expired - Lifetime US3788287A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US22742872A 1972-02-18 1972-02-18

Publications (1)

Publication Number Publication Date
US3788287A true US3788287A (en) 1974-01-29

Family

ID=22853068

Family Applications (1)

Application Number Title Priority Date Filing Date
US00227428A Expired - Lifetime US3788287A (en) 1972-02-18 1972-02-18 Fuel injection system

Country Status (1)

Country Link
US (1) US3788287A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3943904A (en) * 1974-07-19 1976-03-16 General Motors Corporation Single injector throttle body
US4041918A (en) * 1974-12-13 1977-08-16 Regie Nationale Des Usines Renault Fuel injection system
US4230273A (en) * 1978-02-07 1980-10-28 The Bendix Corporation Fuel injection valve and single point system
US4235375A (en) * 1978-02-07 1980-11-25 The Bendix Corporation Fuel injection valve and single point system
DE3026802A1 (en) * 1979-07-18 1981-01-22 Hitachi Ltd ELECTRONICALLY CONTROLLED FUEL FEEDING DEVICE FOR INTERNAL COMBUSTION ENGINE
US4361126A (en) * 1979-09-08 1982-11-30 Robert Bosch Gmbh Fuel injection valve
EP0084179A2 (en) * 1982-01-14 1983-07-27 Mitsubishi Denki Kabushiki Kaisha Fuel control apparatus for an internal combustion engine
EP0084099A2 (en) * 1982-01-14 1983-07-27 Mitsubishi Denki Kabushiki Kaisha Internal combustion engine having a fuel control apparatus
DE3228508A1 (en) * 1982-07-30 1984-02-02 Robert Bosch Gmbh, 7000 Stuttgart FUEL SUPPLY PIPE
US4475486A (en) * 1982-02-18 1984-10-09 General Motors Corporation Engine induction system
DE3323010A1 (en) * 1983-06-25 1985-01-03 Dr.Ing.H.C. F. Porsche Ag, 7000 Stuttgart FUEL FEEDING DEVICE FOR INTERNAL COMBUSTION ENGINES
US4510909A (en) * 1984-04-05 1985-04-16 General Motors Corporation Fuel rail assembly
US4519354A (en) * 1982-04-30 1985-05-28 Toyota Jidosha Kabushiki Kaisha Fuel supply system in internal combustion engine
US4539962A (en) * 1984-11-19 1985-09-10 General Motors Corporation Fuel injection system
US4570601A (en) * 1983-11-15 1986-02-18 Nippondenso Co., Ltd. Fuel delivery pipe
US4601275A (en) * 1982-08-23 1986-07-22 General Motors Corporation Fuel rail
FR2597548A1 (en) * 1986-04-22 1987-10-23 Weber Srl HOUSING DEVICE FOR CENTRAL ELECTRONIC PROCESSING UNIT OF INTERNAL COMBUSTION ENGINE
GB2225968A (en) * 1988-11-03 1990-06-20 Weber Srl Manufacturing a fuel manifold for an internal combustion engine supply device
US5058555A (en) * 1990-04-23 1991-10-22 Handy & Harman Automotive Group, Inc. Modular fuel injector pod and fuel injection system
FR2666626A1 (en) * 1990-09-12 1992-03-13 Peugeot Device for supplying and holding several fuel injectors for an internal combustion engine
EP0475829A1 (en) * 1990-09-12 1992-03-18 Automobiles Peugeot Device for feeding fuel to and holding several fuel injectors for an internal combustion engine
FR2670277A1 (en) * 1991-06-04 1992-06-12 Siemens Automotive Sa Device for cooling electronic components and gas throttle valve regulator (casing) for internal combustion engine making use thereof
US5127382A (en) * 1990-09-17 1992-07-07 Siemens Automotive L.P. Electrical connector bar for a fuel injector/fuel rail assembly and method of making
GB2273130A (en) * 1992-12-07 1994-06-08 Nippon Denso Co Control of atomising air supply to i.c.engine fuel injectors.
FR2714934A1 (en) * 1994-01-10 1995-07-13 Peugeot Fuel injection engine arrangement with ventilated injectors.
WO1995028562A1 (en) * 1994-04-13 1995-10-26 Siemens Automotive Corporation Discrete filter mounted in fuel rail
WO1998054451A1 (en) * 1997-05-28 1998-12-03 Nissan Motor Co., Ltd. Covering device for an internal combustion engine
US6178950B1 (en) * 1997-06-11 2001-01-30 Caterpillar Inc. Noise reducing bracket for a fuel injection system
EP1074730A2 (en) * 1999-08-06 2001-02-07 Siemens Canada limited Center feed of air for assist fuel injector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2511213A (en) * 1945-04-26 1950-06-13 Stewart Warner Corp Carbureting apparatus
DE757527C (en) * 1939-01-10 1954-03-01 Bosch Gmbh Robert Fuel supply system for an internal combustion engine
US2816745A (en) * 1955-04-25 1957-12-17 William G Mccain Fuel injector
US2893365A (en) * 1956-05-31 1959-07-07 Gen Motors Corp Fuel injection means
US2991776A (en) * 1958-09-15 1961-07-11 Gen Motors Corp Fuel injection system and manifold

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE757527C (en) * 1939-01-10 1954-03-01 Bosch Gmbh Robert Fuel supply system for an internal combustion engine
US2511213A (en) * 1945-04-26 1950-06-13 Stewart Warner Corp Carbureting apparatus
US2816745A (en) * 1955-04-25 1957-12-17 William G Mccain Fuel injector
US2893365A (en) * 1956-05-31 1959-07-07 Gen Motors Corp Fuel injection means
US2991776A (en) * 1958-09-15 1961-07-11 Gen Motors Corp Fuel injection system and manifold

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3943904A (en) * 1974-07-19 1976-03-16 General Motors Corporation Single injector throttle body
US4041918A (en) * 1974-12-13 1977-08-16 Regie Nationale Des Usines Renault Fuel injection system
US4235375A (en) * 1978-02-07 1980-11-25 The Bendix Corporation Fuel injection valve and single point system
US4230273A (en) * 1978-02-07 1980-10-28 The Bendix Corporation Fuel injection valve and single point system
DE3026802A1 (en) * 1979-07-18 1981-01-22 Hitachi Ltd ELECTRONICALLY CONTROLLED FUEL FEEDING DEVICE FOR INTERNAL COMBUSTION ENGINE
US4364355A (en) * 1979-07-18 1982-12-21 Hitachi, Ltd. Electronically controlled fuel supply apparatus for internal combustion engine
US4361126A (en) * 1979-09-08 1982-11-30 Robert Bosch Gmbh Fuel injection valve
EP0084179A2 (en) * 1982-01-14 1983-07-27 Mitsubishi Denki Kabushiki Kaisha Fuel control apparatus for an internal combustion engine
EP0084099A2 (en) * 1982-01-14 1983-07-27 Mitsubishi Denki Kabushiki Kaisha Internal combustion engine having a fuel control apparatus
EP0084179B1 (en) * 1982-01-14 1987-06-16 Mitsubishi Denki Kabushiki Kaisha Fuel control apparatus for an internal combustion engine
EP0084099B1 (en) * 1982-01-14 1987-05-06 Mitsubishi Denki Kabushiki Kaisha Internal combustion engine having a fuel control apparatus
US4475486A (en) * 1982-02-18 1984-10-09 General Motors Corporation Engine induction system
US4519354A (en) * 1982-04-30 1985-05-28 Toyota Jidosha Kabushiki Kaisha Fuel supply system in internal combustion engine
DE3228508A1 (en) * 1982-07-30 1984-02-02 Robert Bosch Gmbh, 7000 Stuttgart FUEL SUPPLY PIPE
US4601275A (en) * 1982-08-23 1986-07-22 General Motors Corporation Fuel rail
DE3323010A1 (en) * 1983-06-25 1985-01-03 Dr.Ing.H.C. F. Porsche Ag, 7000 Stuttgart FUEL FEEDING DEVICE FOR INTERNAL COMBUSTION ENGINES
US4570601A (en) * 1983-11-15 1986-02-18 Nippondenso Co., Ltd. Fuel delivery pipe
AU571666B2 (en) * 1984-04-05 1988-04-21 General Motors Corporation Fuel rail assembly
US4510909A (en) * 1984-04-05 1985-04-16 General Motors Corporation Fuel rail assembly
EP0184303A1 (en) * 1984-11-19 1986-06-11 General Motors Corporation Fuel injection system
US4539962A (en) * 1984-11-19 1985-09-10 General Motors Corporation Fuel injection system
FR2597548A1 (en) * 1986-04-22 1987-10-23 Weber Srl HOUSING DEVICE FOR CENTRAL ELECTRONIC PROCESSING UNIT OF INTERNAL COMBUSTION ENGINE
GB2225968A (en) * 1988-11-03 1990-06-20 Weber Srl Manufacturing a fuel manifold for an internal combustion engine supply device
US5058555A (en) * 1990-04-23 1991-10-22 Handy & Harman Automotive Group, Inc. Modular fuel injector pod and fuel injection system
FR2666626A1 (en) * 1990-09-12 1992-03-13 Peugeot Device for supplying and holding several fuel injectors for an internal combustion engine
EP0475829A1 (en) * 1990-09-12 1992-03-18 Automobiles Peugeot Device for feeding fuel to and holding several fuel injectors for an internal combustion engine
US5127382A (en) * 1990-09-17 1992-07-07 Siemens Automotive L.P. Electrical connector bar for a fuel injector/fuel rail assembly and method of making
FR2670277A1 (en) * 1991-06-04 1992-06-12 Siemens Automotive Sa Device for cooling electronic components and gas throttle valve regulator (casing) for internal combustion engine making use thereof
GB2273130A (en) * 1992-12-07 1994-06-08 Nippon Denso Co Control of atomising air supply to i.c.engine fuel injectors.
US5441032A (en) * 1992-12-07 1995-08-15 Nippondenso Co., Ltd. Fuel injection system for multi-cylinder internal combustion engine
GB2273130B (en) * 1992-12-07 1995-12-13 Nippon Denso Co Fuel injection system for multi-cylinder internal combustion engine
FR2714934A1 (en) * 1994-01-10 1995-07-13 Peugeot Fuel injection engine arrangement with ventilated injectors.
EP0666417A1 (en) * 1994-01-10 1995-08-09 Automobiles Peugeot Arrangement of a fuel injection engine having aerated injectors
WO1995028562A1 (en) * 1994-04-13 1995-10-26 Siemens Automotive Corporation Discrete filter mounted in fuel rail
WO1998054451A1 (en) * 1997-05-28 1998-12-03 Nissan Motor Co., Ltd. Covering device for an internal combustion engine
US6178950B1 (en) * 1997-06-11 2001-01-30 Caterpillar Inc. Noise reducing bracket for a fuel injection system
EP1074730A2 (en) * 1999-08-06 2001-02-07 Siemens Canada limited Center feed of air for assist fuel injector
EP1074730A3 (en) * 1999-08-06 2002-01-02 Siemens Canada limited Center feed of air for assist fuel injector
US6553980B1 (en) 1999-08-06 2003-04-29 Siemens Canada Limited Center feed of air for air assist fuel injector

Similar Documents

Publication Publication Date Title
US3788287A (en) Fuel injection system
JP2662007B2 (en) Fuel injection system for multi-cylinder internal combustion engine
US3783844A (en) Fuel injection system
US5357931A (en) Supply device with built-in pipework
US3789819A (en) Fuel rail vapor bleed
US4378001A (en) Fuel injection type carburetor
JP2765866B2 (en) Apparatus for making retention, fuel supply and electrical contact for electronic fuel injectors
US4475486A (en) Engine induction system
US4364355A (en) Electronically controlled fuel supply apparatus for internal combustion engine
JPS60108561A (en) Fuel distribution pipe
US3412718A (en) Precision fuel metering system
US3785354A (en) Fuel injection system
JPH11506514A (en) Liquid fuel injection device
US4924834A (en) Integral device for forming and metering a mixture of air and fuel in an internal combustion engine fed by a multipoint injection system
US4212277A (en) Economy throttle body for hot fuel handling
IE912269A1 (en) Internal-combustion engine with a carburetor
GB2059503A (en) Fuel Supply Devices for Multi- cylinder Internal Combustion Engines
US6928996B2 (en) Stratified scavenging mechanism of a two-stroke engine
US4051815A (en) Fluid injection apparatus for internal combustion engine
US4448153A (en) Water injection system for a combustion engine
JPH0674109A (en) Internal combustion engine
US4922866A (en) Fuel injector assembly
US4029065A (en) Carburetor
US3187732A (en) Fuel metering apparatus
US3006326A (en) Fuel supply system