US3788093A - Hot gas bypass system for a refrigeration system utilizing a plurality of eutectic plates - Google Patents

Hot gas bypass system for a refrigeration system utilizing a plurality of eutectic plates Download PDF

Info

Publication number
US3788093A
US3788093A US00246158A US3788093DA US3788093A US 3788093 A US3788093 A US 3788093A US 00246158 A US00246158 A US 00246158A US 3788093D A US3788093D A US 3788093DA US 3788093 A US3788093 A US 3788093A
Authority
US
United States
Prior art keywords
compressor
plates
hot gas
plate
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00246158A
Inventor
W Lauterbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FARMERS & MERCHANTS NATIONAL BANK
Original Assignee
Dole Refrigerating Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dole Refrigerating Co filed Critical Dole Refrigerating Co
Application granted granted Critical
Publication of US3788093A publication Critical patent/US3788093A/en
Anticipated expiration legal-status Critical
Assigned to FARMERS & MERCHANTS NATIONAL BANK IN reassignment FARMERS & MERCHANTS NATIONAL BANK IN ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: DOLE REFRIGERATING COMPANY, AN IL CORPORATION
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0403Refrigeration circuit bypassing means for the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/06Damage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D16/00Devices using a combination of a cooling mode associated with refrigerating machinery with a cooling mode not associated with refrigerating machinery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D5/00Devices using endothermic chemical reactions, e.g. using frigorific mixtures
    • F25D5/02Devices using endothermic chemical reactions, e.g. using frigorific mixtures portable, i.e. adapted to be carried personally

Definitions

  • ABSTRACT A refrigeration system includes a plurality of holdover plates of the type in which an eutectic is frozen by the use of a circulating refrigerant.
  • the hold-over plates are in a closed refrigeration circuit with a compressor, condenser and receiver. In order to provide continuous compressor operation at the lowest safe suction pressure after the eutectic is frozen, there is a hot gas connection between the compressor output and the plate input to bypass compressor discharge gas through each plate.
  • the present invention relates to a refrigeration system utilizing a hot-gas bypass capacity control arrangement to provide improved refrigeration performance and compressor protection after the eutectic in the hold-over plates is frozen.
  • One purpose of the invention is a refrigeration system of the type described utilizing a hot gas bypass between the compressor output and the plate inputs.
  • Another purpose is a hot gas bypass of the type described utilizing a distributor to insure that all of the plates receive an adequate amount of gas.
  • Another purpose is a refrigeration system of the type described utilizing a distributor to convey hot gas to all of the plates, and a check valve between the output of the distributor and the input of each plate to prevent refrigerant passing from one plate to another during the refrigeration cycle when hot-gas is not being bypassed.
  • Another purpose is a refrigeration system of the type described which permits continuous running of the compressor at a low suction pressure without losing oil to the plates.
  • Another purpose is a refrigeration system of the type described which provides lower temperatures within the space being cooled than heretofore possible with hold-over plates.
  • Another purpose is a refrigeration system of the type described which prevents undesirable low-pressure cycling of the compressor after the eutectic is frozen, minimizing electrical problems and avoiding possible liquid refrigerant migration.
  • Another purpose is a refrigeration system of the type described which prevents a servicing mechanic from jeopardizing the compressor by mindlessly setting the low-pressure cut-out switch below the safe limit.
  • Each plate consists of a steel pan and cover which are welded together to form an air tight container, at serpentine steel tube coil for the primary refrigerant, and steel channels and tube spacers which serve to hold the coil in position and to maintain the thickness dimension.
  • the container is filled, under vacuum, with an eutectic which is a precise mixture of an inorganic salt and water that freezes and melts at a given constant temperature.
  • an inhibitor to prevent electrochemical anaerobic corrosion a freezing starter to prevent subcooling of the liquid phase, a softening agent to prevent hard freezing which might damage the plate, and other additives for special purposes.
  • the vacuum serves to hold the assembly solidly together and to prevent internal aerobic corrosion.
  • the channels are designed and located so as to transmit heat in a desired manner during freezing or melting of the eutectic.
  • the exterior of the plate may be zinc metallized to provide protection against corrosion.
  • holdover plates are mounted by suitable hangers on the ceiling and/or walls of a truck body.
  • the eutectic is frozen at dockside by feeding refrigerant such as R-12 or R-502 to the plate coils from a closed-circuit truck-mounted condensing unit. On the route the eutectic melts, providing the refrigerating effect necessary to protect the product.
  • Each of the plates 10, 12 and 14 have a refrigerant output line connected in common to a heat exchanger 16.
  • the output of the heat exchanger passes through a crankcase pressure regulating valve 18, with the valve output being connected to an accumulator 20.
  • the output of the accumulator is connected to the compressor 22.
  • the compressor output is connected to a condenser 24, with the output of the condenser 24 being connected to a receiver 26.
  • the receiver output passes through a sight glass 28 and through a dryer 30 and then to a solenoid valve 32.
  • the refrigerant line from the receiver then passes through the heat exchanger and is connected to a plurality of expansion valves indicated at 34, 36 and 38.
  • each of the expansion valves is connected to the input of one of the plates l0, 12 or 14.
  • Each of the expansion valves have a remote thermal bulb, indicated at 42, in communication with the power assembly and clamped on the output line of each of the plates, which controls the refrigerant feed through the valve as is conventional.
  • Each of the expansion valves also may have an external equalizer line, indicated at 40, which is connected from the power assembly of the expansion valve to the output of each of the plates which provides for more accurate control of the expansion valves, as is conventional.
  • the compressor has an output of hot gas at a pressure of approximately 215 psig and a superheated temperature of approximately 250 F. After the hot gas has passed into the condenser, it will condense into a liquid at a temperature of approximately 100 F. The 100 F. liquid passes into the heat exchanger where it is effective to dry the gas coming from the hold-over plates, thus removing any liquid droplets in the gas passing to the compressor.
  • the accumulator also functions to remove any liquid slugs in the gas directed to the compressor input.
  • the refrigerant is in a liquid state at a pressure of approximately 210 psig and at a temperature of approximately F.
  • the refrigerant On the output side of the expansion valve the refrigerant is a mixture of gas and liquid and is at a pressure of approximately 10 psig and a temperature of 29 F.
  • the refrigerant is passed through the eutectic within the plates to cause the eutectic to freeze.
  • the liquid evaporates during the process and the gas passes through the heat exchanger where it is dried, as described above, and then flows to the accumulator and the compressor.
  • oil from the compressor is circulated with the refrigerant.
  • oil logging an accumulation of oil in the hold-over plates, known as oil logging, which can cause damage to the compressor as it takes the oil needed to operate the compressor away from it and deposits this oil within the plates.
  • oil logging There is a greater tendency for oil logging in holdover plates than in finned-tube blower-coil evaporators.
  • Various methods have been tried in the past to prevent oil logging, but none have been entirely reliable. The problem arises in hold-over plate systems due to the reduction in heat load once the eutectic is frozen.
  • the reduction in heat load causes the temperature, pressure and velocity of the refrigerant within the plate all to drop to such a low level that oil flowing with the refrigerant may accumulate in the plates and not flow back to the compressor.
  • there is no problem during the period that the eutectic is being frozen as the heat load is high and hence the refrigerant within the plates is moving at an adequate velocity.
  • the lowpressure cut-out is set too low, once the eutectic is frozen and the heat load rapidly drops, the velocity of the refrigerant within the plate is not sufficient and oil may be deposited within the plates causing a loss of oil to the compressor.
  • a hot gas bypass valve is indicated at 44 and has its input connected through a solenoid 46 to a line 48 which is connected to the compressor output.
  • a line 50 is connected between the valve 44 and the compressor input to transmit suction pressure to the valve power assembly for the purpose of controlling the valve oper-- ation.
  • the output from the bypass valve 44 is connected by a line 52 to a distributor 54 which may be of the type manufactured by the Sporlan Valve Company of St. Louis, M0.
  • the distributor 54 has a number of outputs equal to the number of plates, as it is essential that each of the plates receive an adequate amount of gas to raise the pressure and temperature of the refrigerant and to increase the velocity of the refrigerant.
  • the outputs from the distributor 54 are connected through check valves 56 to the output side of each of the expansion valves.
  • the check valves prevent refrigerant from being fed between plates in the event there is any slight difference in refrigerant pressure in the various plates occasioned by normal modulation of the expansion valves during the refrigeration cycle when the bypass valve is not feeding hot gas.
  • Solenoid 46 may be used when the system is to be pumped down for maintenance. Any type of shut-off valve is satisfactory for this function.
  • the invention consists in providing a hot gas bypass between the compressor output and the plate inputs with the distribution system being arranged such that each of the plates gets an adequate amount of the hot gas, enough to raise the pressure and temperature of the refrigerant, and to increase the velocity of the refrigerant to sweep any oil accumulation out of the plates.
  • the hot gas bypass By permitting the compressor to run continuously under a safe operation condition, which is accomplished by the hot gas bypass, the temperature of air and product within the space being cooled can effectively be lowered, as compared with a system in which there is no hot gas bypass.
  • a typical plate system without a hot gas bypass may have an external plate temperature of 20 F., whereas the same system with a hot gas bypass may have an external plate temperature of 40 F.
  • the refrigerant will continue to pass through the plates, thus continuing to lower the external plate temperature.
  • the hot gas maintains the refrigerant above a predetermined minimum, but the refrigerant continues to be at a sufficiently low temperature to effectively supercool the external surfaces of the plates.
  • a refrigeration system a plurality of holdover plates, an expansion valve at the input of each plate, a compressor, condenser and receiver, a connection between the receiver and the input of each expansion valve, and a connection between the output of each plate and the compressor,
  • the improvement comprising a hot gas connection between the compressor output and the input of each plate, said hot gas connection including a vapor distributor connected at its input to the compressor output, a hot gas bypass control valve connected between the compressor output and the distributor input, a plurality of outputs from said distributor, one for each plate, each distributor output being connected between the output of an expansion valve and the input of a plate and a plurality of backflow check valves, one in each connection between said distributor and a plate input.

Abstract

A refrigeration system includes a plurality of hold-over plates of the type in which an eutectic is frozen by the use of a circulating refrigerant. The hold-over plates are in a closed refrigeration circuit with a compressor, condenser and receiver. In order to provide continuous compressor operation at the lowest safe suction pressure after the eutectic is frozen, there is a hot gas connection between the compressor output and the plate input to bypass compressor discharge gas through each plate. This increases the velocity of the refrigerant flowing through the plates, as well as insuring that the evaporating pressure of the refrigerant does not go below a predetermined minimum danger point. Instead of operating below the minimum danger point or shutting off on low-pressure cut-out, the compressor continues to operate at an acceptable suction pressure to effectively reduce the temperature of air and product within the space being refrigerated.

Description

United States Patent- [191 Lauterbach HOT GAS BYPASS SYSTEM FOR A REFRIGERATION SYSTEM UTILIZING A PLURALITY OF EUTECTIC PLATES [75] Inventor: William E. Lauterbach, Evanston,
Ill.
[73] Assignee: Dole Refrigeration Company,
' Chicago, Ill.
22 Filed: Apr. 21, 1972 21 Appl. No.: 246,158
[52] US. Cl 62/200, 62/278, 62/439 [51] Int. Cl. F25b 41/00 [58] Field of Search 62/199, 196, 200, 278, 439
[56] References Cited' Jan. 29, 1974 Primary Examiner-Meyer Perlin Attorney, Agent, or Firm-Parker, Plyer & McEachran [5 7] ABSTRACT A refrigeration system includes a plurality of holdover plates of the type in which an eutectic is frozen by the use of a circulating refrigerant. The hold-over plates are in a closed refrigeration circuit with a compressor, condenser and receiver. In order to provide continuous compressor operation at the lowest safe suction pressure after the eutectic is frozen, there is a hot gas connection between the compressor output and the plate input to bypass compressor discharge gas through each plate. This increases the velocity of the refrigerant flowing through the plates, as well as insuring that the evaporating pressure of the refrigerant does not go below a predetermined minimum'danger point. Instead of operating below the minimum danger point or shutting off on low-pressure cut-out, the compressor continues to operate at an acceptable suction pressure to effectively reduce the temperature bran and product within the space being refrigerated;
1 Claim, 1 Drawing Figure HOT GAS BYPASS SYSTEM FOR A REFRIGERATION SYSTEM UTILIZING A PLURALITY OF EUTECTIC PLATES SUMMARY OF THE INVENTION The present invention relates to a refrigeration system utilizing a hot-gas bypass capacity control arrangement to provide improved refrigeration performance and compressor protection after the eutectic in the hold-over plates is frozen.
One purpose of the invention is a refrigeration system of the type described utilizing a hot gas bypass between the compressor output and the plate inputs.
Another purpose is a hot gas bypass of the type described utilizing a distributor to insure that all of the plates receive an adequate amount of gas.
Another purpose is a refrigeration system of the type described utilizing a distributor to convey hot gas to all of the plates, and a check valve between the output of the distributor and the input of each plate to prevent refrigerant passing from one plate to another during the refrigeration cycle when hot-gas is not being bypassed.
Another purpose is a refrigeration system of the type described which permits continuous running of the compressor at a low suction pressure without losing oil to the plates.
Another purpose is a refrigeration system of the type described which provides lower temperatures within the space being cooled than heretofore possible with hold-over plates.
Another purpose is a refrigeration system of the type described which prevents undesirable low-pressure cycling of the compressor after the eutectic is frozen, minimizing electrical problems and avoiding possible liquid refrigerant migration.
Another purpose is a refrigeration system of the type described which prevents a servicing mechanic from jeopardizing the compressor by mindlessly setting the low-pressure cut-out switch below the safe limit.
Other purposes will appear in the ensuing specification, drawing and claims.
BRIEF DESCRIPTION OF THE DRAWING The invention is illustrated in the attached diagrammatic showing of a refrigeration system.
DESCRIPTION OF THE PREFERRED EMBODIMENT Hold-over refrigeration plates are indicated at l0, l2 and I4 and they may typically be of the type shown in U. S. Pat. No. 2,859,945. Each plate consists ofa steel pan and cover which are welded together to form an air tight container, at serpentine steel tube coil for the primary refrigerant, and steel channels and tube spacers which serve to hold the coil in position and to maintain the thickness dimension. The container is filled, under vacuum, with an eutectic which is a precise mixture of an inorganic salt and water that freezes and melts at a given constant temperature. To this mixture may be added an inhibitor to prevent electrochemical anaerobic corrosion, a freezing starter to prevent subcooling of the liquid phase, a softening agent to prevent hard freezing which might damage the plate, and other additives for special purposes. The vacuum serves to hold the assembly solidly together and to prevent internal aerobic corrosion. The channels are designed and located so as to transmit heat in a desired manner during freezing or melting of the eutectic. The exterior of the plate may be zinc metallized to provide protection against corrosion. In operation, holdover plates are mounted by suitable hangers on the ceiling and/or walls of a truck body. The eutectic is frozen at dockside by feeding refrigerant such as R-12 or R-502 to the plate coils from a closed-circuit truck-mounted condensing unit. On the route the eutectic melts, providing the refrigerating effect necessary to protect the product.
Each of the plates 10, 12 and 14 have a refrigerant output line connected in common to a heat exchanger 16. The output of the heat exchanger passes through a crankcase pressure regulating valve 18, with the valve output being connected to an accumulator 20. The output of the accumulator is connected to the compressor 22. The compressor output is connected to a condenser 24, with the output of the condenser 24 being connected to a receiver 26. The receiver output passes through a sight glass 28 and through a dryer 30 and then to a solenoid valve 32. The refrigerant line from the receiver then passes through the heat exchanger and is connected to a plurality of expansion valves indicated at 34, 36 and 38. As is conventional, the output of each of the expansion valves is connected to the input of one of the plates l0, 12 or 14. Each of the expansion valves have a remote thermal bulb, indicated at 42, in communication with the power assembly and clamped on the output line of each of the plates, which controls the refrigerant feed through the valve as is conventional. Each of the expansion valves also may have an external equalizer line, indicated at 40, which is connected from the power assembly of the expansion valve to the output of each of the plates which provides for more accurate control of the expansion valves, as is conventional.
In a typical R-502 refrigeration system of the type described, the compressor has an output of hot gas at a pressure of approximately 215 psig and a superheated temperature of approximately 250 F. After the hot gas has passed into the condenser, it will condense into a liquid at a temperature of approximately 100 F. The 100 F. liquid passes into the heat exchanger where it is effective to dry the gas coming from the hold-over plates, thus removing any liquid droplets in the gas passing to the compressor. The accumulator also functions to remove any liquid slugs in the gas directed to the compressor input. At the input side of each of the expansion valves the refrigerant is in a liquid state at a pressure of approximately 210 psig and at a temperature of approximately F. On the output side of the expansion valve the refrigerant is a mixture of gas and liquid and is at a pressure of approximately 10 psig and a temperature of 29 F. The refrigerant is passed through the eutectic within the plates to cause the eutectic to freeze. The liquid evaporates during the process and the gas passes through the heat exchanger where it is dried, as described above, and then flows to the accumulator and the compressor.
In a system of the type described, oil from the compressor is circulated with the refrigerant. At times, particularly at low suction pressure, there can be an accumulation of oil in the hold-over plates, known as oil logging, which can cause damage to the compressor as it takes the oil needed to operate the compressor away from it and deposits this oil within the plates. There is a greater tendency for oil logging in holdover plates than in finned-tube blower-coil evaporators. Various methods have been tried in the past to prevent oil logging, but none have been entirely reliable. The problem arises in hold-over plate systems due to the reduction in heat load once the eutectic is frozen. The reduction in heat load causes the temperature, pressure and velocity of the refrigerant within the plate all to drop to such a low level that oil flowing with the refrigerant may accumulate in the plates and not flow back to the compressor. Generally, there is no problem during the period that the eutectic is being frozen, as the heat load is high and hence the refrigerant within the plates is moving at an adequate velocity. However, if the lowpressure cut-out is set too low, once the eutectic is frozen and the heat load rapidly drops, the velocity of the refrigerant within the plate is not sufficient and oil may be deposited within the plates causing a loss of oil to the compressor.
This problem has been overcome, in the present invention, by providing a hot gas bypass from the output of the compressor to the input of the plates, holding the pressure of the refrigerant within the plates above a predetermined minimum, and thus insuring that the compressor will not cycle off, but will run continuously. in addition, the use of hot gas or the introduction of hot gas at the input of the plates increases the velocity of the refrigerant moving through the plates, insuring that the oil will be swept through the plates and will not remain as an accumulation or deposit. Thus, there are two advantages brought about by the introduction of hot gas from the compressor output to the input of each of the plates. The hot gas maintains the temperature pressure and velocity of the refrigerant in the plates at such levels that oil will not accumulate within the plates and tends to sweep any oil deposits out of the plates.
A hot gas bypass valve is indicated at 44 and has its input connected through a solenoid 46 to a line 48 which is connected to the compressor output. A line 50 is connected between the valve 44 and the compressor input to transmit suction pressure to the valve power assembly for the purpose of controlling the valve oper-- ation. The output from the bypass valve 44 is connected by a line 52 to a distributor 54 which may be of the type manufactured by the Sporlan Valve Company of St. Louis, M0. The distributor 54 has a number of outputs equal to the number of plates, as it is essential that each of the plates receive an adequate amount of gas to raise the pressure and temperature of the refrigerant and to increase the velocity of the refrigerant. It is not necessary that the gas distributed to each plate be equal, but there must be an adequate supply for each plate. The outputs from the distributor 54 are connected through check valves 56 to the output side of each of the expansion valves. The check valves prevent refrigerant from being fed between plates in the event there is any slight difference in refrigerant pressure in the various plates occasioned by normal modulation of the expansion valves during the refrigeration cycle when the bypass valve is not feeding hot gas.
Solenoid 46 may be used when the system is to be pumped down for maintenance. Any type of shut-off valve is satisfactory for this function.
Basically, the invention consists in providing a hot gas bypass between the compressor output and the plate inputs with the distribution system being arranged such that each of the plates gets an adequate amount of the hot gas, enough to raise the pressure and temperature of the refrigerant, and to increase the velocity of the refrigerant to sweep any oil accumulation out of the plates. By permitting the compressor to run continuously under a safe operation condition, which is accomplished by the hot gas bypass, the temperature of air and product within the space being cooled can effectively be lowered, as compared with a system in which there is no hot gas bypass. A typical plate system without a hot gas bypass may have an external plate temperature of 20 F., whereas the same system with a hot gas bypass may have an external plate temperature of 40 F. Once the eutectic is frozen, and even though the heat load is lowered, the refrigerant will continue to pass through the plates, thus continuing to lower the external plate temperature. The hot gas maintains the refrigerant above a predetermined minimum, but the refrigerant continues to be at a sufficiently low temperature to effectively supercool the external surfaces of the plates.
Whereas the preferred form of the invention has been shown and described herein, it should be realized that there may be many modifications, substitutions and alterations thereto.
I claim:
1. In a refrigeration system a plurality of holdover plates, an expansion valve at the input of each plate, a compressor, condenser and receiver, a connection between the receiver and the input of each expansion valve, and a connection between the output of each plate and the compressor,
the improvement comprising a hot gas connection between the compressor output and the input of each plate, said hot gas connection including a vapor distributor connected at its input to the compressor output, a hot gas bypass control valve connected between the compressor output and the distributor input, a plurality of outputs from said distributor, one for each plate, each distributor output being connected between the output of an expansion valve and the input of a plate and a plurality of backflow check valves, one in each connection between said distributor and a plate input.

Claims (1)

1. In a refrigeration system a plurality of holdover plates, an expansion valve at the input of each plate, a compressor, condenser and receiver, a connection between the receiver and the input of each expansion valve, and a connection between the output of each plate and the compressor, the improvement comprising a hot gas connection between the compressor output and the input of each plate, said hot gas connection including a vapor distributor connected at its input to the compressor output, a hot gas bypass control valve connected between the compressor output and the distributor input, a plurality of outputs from said distributor, one for each plate, each distributor output being connected between the output of an expansion valve and the input of a plate and a plurality of backflow check valves, one in each connection between said distributor and a plate input.
US00246158A 1972-04-21 1972-04-21 Hot gas bypass system for a refrigeration system utilizing a plurality of eutectic plates Expired - Lifetime US3788093A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US24615872A 1972-04-21 1972-04-21

Publications (1)

Publication Number Publication Date
US3788093A true US3788093A (en) 1974-01-29

Family

ID=22929533

Family Applications (1)

Application Number Title Priority Date Filing Date
US00246158A Expired - Lifetime US3788093A (en) 1972-04-21 1972-04-21 Hot gas bypass system for a refrigeration system utilizing a plurality of eutectic plates

Country Status (1)

Country Link
US (1) US3788093A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4813239A (en) * 1984-03-21 1989-03-21 Olson Hans E E Method for defrosting and device for the implementation of said method
US5369961A (en) * 1991-10-31 1994-12-06 Seiler; Wolfram Apparatus for the defrosting of refrigerating driers below 0 degrees celsius
US6354342B1 (en) 1999-11-10 2002-03-12 Shurflo Pump Manufacturing Company, Inc. Hand-held rapid dispensing apparatus and method
US6354341B1 (en) 1999-11-10 2002-03-12 Shurflo Pump Manufacturing Co., Inc. Rapid comestible fluid dispensing apparatus and method
US6360556B1 (en) 1999-11-10 2002-03-26 Shurflo Pump Manufacturing Company, Inc. Apparatus and method for controlling fluid delivery temperature in a dispensing apparatus
US6443335B1 (en) 1999-11-10 2002-09-03 Shurflo Pump Manufacturing Company, Inc. Rapid comestible fluid dispensing apparatus and method employing a diffuser
US6449970B1 (en) 1999-11-10 2002-09-17 Shurflo Pump Manufacturing Company, Inc. Refrigeration apparatus and method for a fluid dispensing device
US20040232173A1 (en) * 1999-11-10 2004-11-25 Michael Saveliev Rapid comestible fluid dispensing apparatus and method
US20050050911A1 (en) * 2003-09-09 2005-03-10 Samsung Electronics Co., Ltd. Air conditioner
US20090120113A1 (en) * 2004-09-13 2009-05-14 Masaaki Takegami Refrigeration system
US20160144764A1 (en) * 2013-06-18 2016-05-26 Thermo King Corporation Control method for a hybrid refrigeration system
US10351042B2 (en) 2013-06-18 2019-07-16 Thermo King Corporation Hybrid temperature control system and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2344215A (en) * 1943-02-26 1944-03-14 York Corp Refrigeration
US2534272A (en) * 1947-12-22 1950-12-19 Dole Refrigerating Co Multitemperature refrigerator car
US2744388A (en) * 1954-08-09 1956-05-08 Dole Refrigerating Co Refrigerating car structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2344215A (en) * 1943-02-26 1944-03-14 York Corp Refrigeration
US2534272A (en) * 1947-12-22 1950-12-19 Dole Refrigerating Co Multitemperature refrigerator car
US2744388A (en) * 1954-08-09 1956-05-08 Dole Refrigerating Co Refrigerating car structure

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4813239A (en) * 1984-03-21 1989-03-21 Olson Hans E E Method for defrosting and device for the implementation of said method
US5369961A (en) * 1991-10-31 1994-12-06 Seiler; Wolfram Apparatus for the defrosting of refrigerating driers below 0 degrees celsius
US6354342B1 (en) 1999-11-10 2002-03-12 Shurflo Pump Manufacturing Company, Inc. Hand-held rapid dispensing apparatus and method
US6354341B1 (en) 1999-11-10 2002-03-12 Shurflo Pump Manufacturing Co., Inc. Rapid comestible fluid dispensing apparatus and method
US6360556B1 (en) 1999-11-10 2002-03-26 Shurflo Pump Manufacturing Company, Inc. Apparatus and method for controlling fluid delivery temperature in a dispensing apparatus
US6443335B1 (en) 1999-11-10 2002-09-03 Shurflo Pump Manufacturing Company, Inc. Rapid comestible fluid dispensing apparatus and method employing a diffuser
US6449970B1 (en) 1999-11-10 2002-09-17 Shurflo Pump Manufacturing Company, Inc. Refrigeration apparatus and method for a fluid dispensing device
US6695168B2 (en) 1999-11-10 2004-02-24 Shurflo Pump Mfg. Co., Inc. Comestible fluid dispensing apparatus and method
US20040232173A1 (en) * 1999-11-10 2004-11-25 Michael Saveliev Rapid comestible fluid dispensing apparatus and method
US20050050911A1 (en) * 2003-09-09 2005-03-10 Samsung Electronics Co., Ltd. Air conditioner
US7036328B2 (en) * 2003-09-09 2006-05-02 Samsung Electronics Co., Ltd. Air conditioner
US20090120113A1 (en) * 2004-09-13 2009-05-14 Masaaki Takegami Refrigeration system
US20160144764A1 (en) * 2013-06-18 2016-05-26 Thermo King Corporation Control method for a hybrid refrigeration system
US9688181B2 (en) * 2013-06-18 2017-06-27 Thermo King Corporation Control method for a hybrid refrigeration system
US10351042B2 (en) 2013-06-18 2019-07-16 Thermo King Corporation Hybrid temperature control system and method

Similar Documents

Publication Publication Date Title
US4197716A (en) Refrigeration system with auxiliary heat exchanger for supplying heat during defrost cycle and for subcooling the refrigerant during a refrigeration cycle
US5921092A (en) Fluid defrost system and method for secondary refrigeration systems
US3822561A (en) Self contained air cooling unit
US3788093A (en) Hot gas bypass system for a refrigeration system utilizing a plurality of eutectic plates
US4043144A (en) Hot gas defrost system
US3922875A (en) Refrigeration system with auxiliary defrost heat tank
US4420943A (en) Method and apparatus for refrigerator defrost
US3838582A (en) Defrosting device with heat extractor
US3481151A (en) Refrigerant system employing liquid chilling evaporators
US2791891A (en) Refrigeration heat exchange circuit
EP0483161B1 (en) Refrigeration and freezing plant
US3390540A (en) Multiple evaporator refrigeration systems
JPH0320570A (en) Cooling system and air-cooling method
US3721108A (en) Refrigerant cooled compressor
US3234754A (en) Reevaporator system for hot gas refrigeration defrosting systems
US3234752A (en) Desuperheater for refrigeration system
CN110926046B (en) Refrigerating device
US2389452A (en) Drying
US3015939A (en) Heating and freezing system
JPH05296503A (en) Ice heat storage device
US3267689A (en) High and low temperature refrigeration systems with common defrosting means
US2319502A (en) Refrigerating apparatus and method
US3559421A (en) Refrigeration defrost system with receiver heat source
US2219789A (en) Refrigerator
JP3408022B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
AS Assignment

Owner name: FARMERS & MERCHANTS NATIONAL BANK IN COLUMBIA, TEN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:DOLE REFRIGERATING COMPANY, AN IL CORPORATION;REEL/FRAME:005722/0889

Effective date: 19910228