US3786460A - Light detection monitoring device - Google Patents

Light detection monitoring device Download PDF

Info

Publication number
US3786460A
US3786460A US00229150A US3786460DA US3786460A US 3786460 A US3786460 A US 3786460A US 00229150 A US00229150 A US 00229150A US 3786460D A US3786460D A US 3786460DA US 3786460 A US3786460 A US 3786460A
Authority
US
United States
Prior art keywords
tube
high frequency
discharge tube
alarm
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00229150A
Inventor
P Kaltenbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3786460A publication Critical patent/US3786460A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/12Actuation by presence of radiation or particles, e.g. of infrared radiation or of ions

Definitions

  • a light detection monitoring device includes a gaseous discharge tube for converting incident light into an electric signal and a blocking oscillator.
  • the oscillator which is coupled to one of the electrodes of the tube and is enabled by the electric signal produced by the discharge tube, supplies short pulses which add to the discharge current to effect cumulative ionization of the gas in the tube and the attendant generation of high frequency waves.
  • the increased discharge current and the high frequency waves are then employed to trigger local and remote alarm devices, respectively.
  • the present invention relates to monitoring devices an, more particularly, to a new and improved monitoring device employing a discharge tube as a photosensitive element for producing a distinctive signal when a beam of light illuminates the tube.
  • the field of monitoring devices for human and property protection is highly developed and complex.
  • One type of monitoring device with which the present invention is related employs a light detector to trigger circuitry for sounding an alarm when the detector is subjected to light.
  • the light detectors now in widespread use will not respond satisfactorily to an incident luminous flux of low intensity.
  • the sensitivity of the class of photoconductive detectors such as cadmium sulfide and selenium cells is limited by the significantintensity of their darkness current, as well as by the low frequency intrinsic noise accompanying passage of electrons from the valence band to the conduction band.
  • cathode emission detectors such as vacuum or gas cells
  • photomultipliers Several factors tend to limit the sensitivity of these detectors. The most significant factors are the statistical character of the electronic flux of cathode emission or secondary emission, the spontaneous emission of parasite electrons not caused by the light signal, and the wide low frequency fluctuations in the supply source, which in the case of photomultipliers, can extend to several milliamperes.
  • glow tubes for light detection, as well as for signal transmission.
  • the sensitivity of these tubes is limited by fluctuations in cathode drop and potential difference at the terminals and by the comparatively high darkness current maintained by a steadily applied internal electric source.
  • the present invention provides a combination of a photosensitive member and a complementary electronic accessory. More specifically, by the novel employment of the special properties of ionized gases in a discharge tube, and the ability of such tubes to generate high frequency oscillations, the device according to the present invention provides a powerful signal even when the incident light intensity is very low. In addition, the device, being free from low frequency fluctuations, remains inoperative both in the absence of illumination and when the tube is short-circuited.
  • the photosensitive member comprises a gas that readily absorbs photons of light, provides a very low detection threshold, and under suitable conditions of installation, generates and sustains high frequency oscillations.
  • the small electric current supplied by the photosensitive member when illuminated acts upon the electronic accessory which, after processing the signal, reapplies the processed signal. to the photo-sensitive member.
  • the photosensitive member then transmits the resulting discharge current to the following stages to sound an alarm.
  • the photosensitive member utilized in the present invention performs three salient functions: (I) the conversion of incident light quanta into a weak electric current, (2) the reception of the signals processed by the electronic accessory, and (3) the transmission of either its discharge current or the high frequency electromagnetic energy produced therein to sound an alarm.
  • the photosensitive member does not operate with an outside source and, accordingly, is not subjected to low frequency parasite fluctuations.
  • the present invention provides both a very low light detection threshold and a very high light-to-electric-signal conversion slope.
  • the combination serves as a high frequency emitter modulated at the frequency determined by the accessory.
  • the montioring device comprises in combination a photosensitive gas element and an active electronic accessory consisting of passive elements.
  • the gas element comprises a bidirectionally conductive tube having two like cold electrodes free from continuous interference by an outside source and filled with a pure inert gas or mixture of gases, preferably a monatomic gas, such as neon, argon, helium, crypton or xenon.
  • the electronic accessory comprises a blocking oscillator coupled to one electrode-of the photosensitive element.
  • the other electrode when the tube is operated in closed circuit, is connected through a detector to a sensory alarm indicator.
  • the other electrode of the tube is connected to a radio frequency antenna which radiates the high frequency waves produced in the tube.
  • the monitoring device of the present invention is especially useful for fire detection, burglary prevention, alarm or control systems actuated at a distance by a beam of light and the detection of the establishment of an arc in an inaccessible high-tension installation.
  • the monitoring device of the present invention may respond to lasting or transitory illumination of the discharge tube through acoustic means, such as gongs, sirens, loudspeakers, or visual means such as lighting of an incandescent lamp, deviation of a pointer, production of a recording, or in any other manner suited to the particular conditions of service.
  • the novel means according to the invention will likewise serve to provide an uninterrupted warning signal requiring manual intervention to stop the alarm.
  • the device is compact and light weight and can be installed easily as required for varied applications.
  • FIG. I is a schematic block diagram of the basic embodiment of a monitoring device arranged according to the present invention.
  • FIG. 2 is a schematic block diagram of a closed circuit embodiment of the present invention which provides an alarm of limited duration
  • FIG. 3 is a schematic circuit diagram of a closed circuit embodiment of the present invention that provides a warning signal of extended duration
  • FIG. 4 is a schematic block diagram of an open circuit embodiment of the present invention that provides high frequency radiation
  • FIG. 5 is a schematic block diagram of an open circuit embodiment of the present invention that provides an uninterrupted alarm signal
  • FIG. 6 is a schematic block diagram of a further open circuit embodiment of the present invention that will provide an uninterrupted signal after illumination has terminated.
  • the device includes a gaseous discharge tube 10 such as, for example, a neon or xenon tube. Ionization of the gases within the tube 10 is initiated when the tube is illuminated by a beam of light 12.
  • a gaseous discharge tube 10 such as, for example, a neon or xenon tube. Ionization of the gases within the tube 10 is initiated when the tube is illuminated by a beam of light 12.
  • One electrode 10a of the tube 10 is coupled via a conductor 14 and its branch conductor 14a to the collector of a transistor 16 forming an integral part of blocking oscillator 18 and to the primary winding of a transformer 20 also forming an integral part of the oscillator 18.
  • the oppositely poled output or secondary winding of the transformer 20 is coupled across the base and cathode of the transistor 16 through a resistor 22 and a capacitor 24.
  • a normally closed switch 26 which couples an enabling DC source E1 concurrently to the cathode of the transistor 16 and to the output winding of the transformer 20.
  • the negative terminal of the source E1 is connected to the primary winding of the transformer 20 and through a normally closed switch 28 to a second normally closed switch 30 and a second DC source E2.
  • the two DC sources El and E2 preferably supply equal voltage potentials.
  • the other electrode 10b of the tube 10 is connected to the output circuitry of the device.
  • the output circuitry includes a detector-amplifier 32 that is enabled by the DC source E2 through the switch 30.
  • An alarm circuit 34 completes the output circuitry of the monitoring device and is enabled by the DC source E2 and is driven into operation to generate an alarm by the amplifier 32.
  • the alarm 34 may be located either locally with the discharge tube I0 or remotely therefrom.
  • the switches 26 and 30 enable the operation of the input and output circuitry, respectively, and that the switch 28 serves the function of either coupling or isolating the input and output circuitry of the device.
  • the device will energize the alarm 34 as long as the tube 10 is illuminated by the optical electromagnetic energy 12.
  • the blocking oscillator 18 and the amplifier 32 are in their quiescent states.
  • the input and output windings of the transformer 20 are not acted upon by any current from the discharge tube 10 whose electrodes 10a and 10b are at the same potential. It necessarily follows that the collector current lc of the transistor 16 is zero.
  • the photons of light absorbed by the inert gas of the tube 10 cause the formation of a plasma in which neutral atoms, excited atoms, electrons and positive ions coexist.
  • the electrified particles of the plasma wander in the interelectrode space, with some electrons reaching the electrode 10a and charging it negatively.
  • a discharge current Ip is created in the primary winding of the transformer 20 which, in turn, induces a current Is in the secondary winding of the transformer.
  • the capacitor 24 discharges through the resistor 22 to reduce the potential of the base of the transistor 16 until the transistor 16 starts to draw collector current I0 and the collector voltage drops.
  • the collector current Ic adds to the discharge current Ip with the result that the potential of the electrode is descreased.
  • An electric field is established in the tube 10 which increases the collisions between electrons and atoms within the tube.
  • the currents Ip, Ic, Is grow in step with the potential difference across the tube 10 to effect cumulative ionization in the tube and the attendant generation of high frequency waves.
  • a cloud of positive ions forms and increases around the electrode 10b to attract electrons and thereby reduce the number of electrons reaching the electrode 10a.
  • the directions of the currents are reversed, and a secondary discharge current lb in the output circuit is produced.
  • the discharge current Ib drives the detector-amplifier 32 into conduction which, in turn, drives the alarm circuit 34 to generate a sensory alarm indication.
  • the capacitor 24 of the blocking oscillator charges to reverse bias the transistor 16. Then, the positive ions collect at electrode 10a to diminish the reverse electric field and the cycle repeats itself for as long as the discharge tube 10 remains illuminated.
  • the timing is maintained by the discharge tube 10.
  • the critical features of the present invention are the interdependence of the blocking oscillator 18 and the discharge tube 10, the monatomic gas of the tube 10 and the omission of any permanent triggering source for the tube 10.
  • FIG. 2 there is shown a closed circuit monitoring device of the type illustrated in FIG. 1, with the exception that one form of amplifier 32 is diagrammatically illustrated and several alarm indicators which may be used as the local alarm 34 are illustrated.
  • the amplifier 32 is shown as including a pnp transistor 36 and the alarm circuit 34 is shown as including a stepping switch 38 for coupling the collector of the, transistor 36 to either a lougspeaker 40, a
  • FIG. 3 there is shown a closed circuit embodiment of the present invention which provides an uninterrupted warning signal even when the incident luminous flux 12 lasts for only a short time.
  • the amplifier 32 includes a silicon th-yristor 46 having its control electrode coupled to the electrode b of the discharge tube 10.
  • a signal, even a brief one, furnished by electrode 10b triggers the thyristor 46 which will then supply a continuous current It to the alarm circuit 34 which may comprise for example, an incandescent bulb, a pointer instrument, an acoustic alarm or any other constant current signaling device-An additional switch 48 serves to stop the current It to the alarm circuit 34.
  • a thyratron may be used in place of the thyristor 46 to produce a constant warning signal, as will be understood in the art.
  • FIG. 4 illustrates an open circuit embodiment of the present invention which radiates high frequency waves into the surrounding space.
  • An antenna 50 which may consist of a single wire, is connected to electrode 10b of the discharge tube 10. Since the potentials of electrodes 10a and 10b are not fixed when the tube 10 is illuminated, the ionized particles wander from one electrode to the other, undergoing collisions, recombinations and reionizations. These frequent interactions, as well as the dislocations of the positive ions, produce a band of high frequency waves modulated by the low frequency oscillations of the blocked oscillator 18.
  • the waves generated fall within the band of conventional radio frequencies.
  • a remotely located radio receiver 52 having an antenna will detect these waves generated by the discharge tube 10 and make the vibrations of the blocked oscillator 18" audible through its speaker.
  • a second transformer 54 is interposed between the transformer operating the oscillator 18 (FIG. 1) and electrode 100. The primary windings of transformers 54 and 20 are connected in parallel.
  • the antenna 50 may be long, so that the receiver 52 may be placed at a very great distance and, more specifically, in a different location from that of the monitoring device. It is possible, however, to place the tube l0 and the oscillator 18 inside the cabinet of receiver 52 without interfering in any way with normal radio operation. To listen to ordinary voice transmission, the discharge tube 10 need merely be short-circuited with a switch 56, thereby eliminating the monitoring mode.
  • An open circuitembodiment of the present invention that provides an uninterrupted signal is schematically shown in FIG. 5.
  • the connection between the oscillator 18 and the transformer 54 leading to electrode 10a of discharge tube 10 is the same as in F IG. 4.
  • a thyristor 58 located inside a radio receiver 52, is inserted between the positive terminal of a supply source E3 and the positive tab of a supply bar 59 which, when energized, supplies current to the radio circuitry (not shown).
  • the electrode 10b of the discharge tube 10 is connected directly to the control electrode of the thyristor 58, the emitter of which is connected to the positive terminal of the source E3 and the collector which supplies the positive tab of the bar 59 of the receiver.
  • the thyristor 58 serves as a switch, open in the absence of the luminous flux 12 and closed when the light appears. In order to generate a loud sound in case of intrusion, it is desirable to take the precaution of raising the volume control potentiometer 60 of the radio receiver all the way and setting the wavelength of the receiver to a powerful broadcast transmitter.
  • a switch 62 connected between the collector and the emitter of the thyristor 58 serves to stop the thyristor, cut off the receiver 52 and restore the monitoring mode of the device as a whole. In darkness, the receiver, having no supply, remains silent.
  • the tube 10 in order not to render the tube 10 conspicuous, the tube 10 may be covered by a filter. Of course, when monitoring is not required, normal radio listening modes may be restored. It then suffices to disconnect the wire coupling the electrode 10b to the control electrode of the thyristor 58 and make a direct connection joining the positive terminals of the source E3 and bar 59.
  • FIG. 6 illustrates diagrammatically a further open circuit embodiment of the present invention which requires only a single supply of energy to implement a remote alarm control function.
  • the circuit includes a discharge tube coupled between an oscillator 72 and a discharge circuit 74.
  • the circuit '74 is in turn coupled to a radio receiver 76 which is kept in state of readiness.
  • a DC source E which supplies, for example, a voltage of 9 voltsfis the only source of energy for the entire circuit.
  • the oscillator includes a transistor 78 together with a transformer 80 forming the coupling means with reference to the discharge tube 70.
  • One end of the transformer primary is connected through a conductor 82 to one of the electrodes of the discharge tube 70, while the other end of the primary is connected to a radiating wire 84. Consequently, the circuit incorporating the discharge tube 70 is an open circuit.
  • a condenser 86 is situated in series with the secondary of said transformer 80 which interconnects the collector of the transistor 78 with its base.
  • a center tap 88 is further coupled to the secondary winding of the transformer 80.
  • the discharge circuit 74 of the discharge tube 70 includes a thyristor 90, the control electrode of which is connected with the second electrode of the discharge tube.
  • the emitter of the thyristor 90 and the emitter of the transistor 78 in the oscillator circuit are connected together and to the positive terminal of the battery E0 through a switch 91.
  • the negative terminal of the battery E ⁇ is co nne cted via a conductor 91 to the negative jack of switch strip or bar 92 in the circuit feeding the radio receiver 76. Since the positive jack of the same switch 92 is connected with the base of the thyristor 90, the circuit feeding the radio receiver forms a fictitious loading resistance fed by the thyristor when it is energized by the discharge tube 70.
  • the secondary of the coupling transformer 80 is provided with a center tap 88.
  • the tap 88 is connected to a switch 94 which may be of a mechanical type, the terminals 94a and 94b of said switch being connected with the Two jacks for the switch strip 92.
  • the switch 94 is closed over the terminal 94a, the loudspeaker of the radio will produce, whenever the discharge tube 70 is illuminated, a powerful periodical acoustic signal which is a replica of the pulses produced by the blocking oscillator 72. in the absence of illumination, the alarm signal stops.
  • the alarm signal will continue uninterruptedly and will not cease when the illumination is cut off. Only by opening the switch 94 will the alarm circuit become disabled.
  • the collector of the thyristor 90 produces across the jacks of the switch strip 92 a pulsatory voltage which is fed back via the switch 94 and its terminal 94b to the center tap 88.
  • the discharge in the tube 70 is consequently maintained electrically and the thyristor will be continuously reignited even in the absence of any illumination.
  • the voltage on the collector of the thyristor 90 drops down to a predetermined low voltage as soon as the pulsating voltage terminates, which results in the extinguishing of the thyristor 90 in the absence of an undamped discharge current as provided by a continuation of the illumination of the discharge tube 70 or else by an external electric signal.
  • a light detection monitoring system comprising a gaseous discharge tube filled with a monatomic gas for producing high frequency electromagnetic waves and a discharge current in the presence of light, a radiating wire, signal generating means comprising a blocking oscillator having a transistor and a pulse transformer with a secondary winding coupled across the terminals of the transistor and a primary winding coupled between the radiating wire and one terminal of the gaseous discharge tube and responsive to the discharge current produced by the tube for generating periodic signals which add to the discharge signal to effect cumulative ionization of the gas in the tube and the reenforcement of the high frequency electromagnetic waves produced by the tube and an alarm producing means comprising a radio receiver means and an amplifier means adapted to supply energization current to the radio receiver means in response to the high frequency electromagnetic energy produced by the gaseous discharge tube to produce a detectable alarm.
  • Apparatus according to claim 1 further comprising switch means for selectively coupling the secondary winding of the transformer to the central electrode of the amplifier means to thereby periodically drive the amplifier means into conduction after the light illuminating the gaseous discharge tube has been extinguished.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

As described herein, a light detection monitoring device includes a gaseous discharge tube for converting incident light into an electric signal and a blocking oscillator. The oscillator, which is coupled to one of the electrodes of the tube and is enabled by the electric signal produced by the discharge tube, supplies short pulses which add to the discharge current to effect cumulative ionization of the gas in the tube and the attendant generation of high frequency waves. The increased discharge current and the high frequency waves are then employed to trigger local and remote alarm devices, respectively.

Description

[4 1 Jan. 15, 1974 LIGI-IT DETECTION MONITORING DEVICE [76] Inventor: Pierre Kaltenbach, 680 Fifth Ave.,
New York, NY. 10019 [22] Filed: Feb. 24, 1972 [21] Appl. No.: 229,150
Related US. Application Data [63] Continuation-in-part of Ser. No. 138,905, April 30,
3,683,372 8/1972 Horn 340/227 X Primary Examiner-Harold I. Pitts v Att0rneyBrumbaugh, Graves, Donahue & Raymond [57] ABSTRACT As described herein, a light detection monitoring device includes a gaseous discharge tube for converting incident light into an electric signal and a blocking oscillator. The oscillator, which is coupled to one of the electrodes of the tube and is enabled by the electric signal produced by the discharge tube, supplies short pulses which add to the discharge current to effect cumulative ionization of the gas in the tube and the attendant generation of high frequency waves. The increased discharge current and the high frequency waves are then employed to trigger local and remote alarm devices, respectively.
2 Claims, 6 Drawing Figures l4\ uqiv """""r2"""| 1: f l in, 34 I l AMPLIFIER ALARM i 22 2Q flpi i I v 'i 24 1 I 1 30 i l- E M l 4 R 3 A n L A 4 3 R F II u Fu P M A r 1| FIG. 2
sum 1 or '3 D. m a. 2 w 1 2 m Mn m n l v j M M TW I" I m E k I I E PAIENTEDJAN! 5w lb I 24- BLOCKING OSCILLATOR PMENTED'JAN 1 5 I914 BLOCKING OSCILLATOR sum 2 F 3 ALARM BLOCKING OSCILLATOR BLOCKING OSCILLATOR RADIO 2 RECEIVER I BACKGROUND OF THE INVENTION This is a continuation-in-part of my copending US. Pat. application entitled Light Detection Monitoring Device, Ser. No. 138,905, filed Apr. 30, 1971.
The present invention relates to monitoring devices an, more particularly, to a new and improved monitoring device employing a discharge tube as a photosensitive element for producing a distinctive signal when a beam of light illuminates the tube.
The field of monitoring devices for human and property protection is highly developed and complex. One type of monitoring device with which the present invention is related employs a light detector to trigger circuitry for sounding an alarm when the detector is subjected to light. The light detectors now in widespread use will not respond satisfactorily to an incident luminous flux of low intensity. In particular, the sensitivity of the class of photoconductive detectors such as cadmium sulfide and selenium cells is limited by the significantintensity of their darkness current, as well as by the low frequency intrinsic noise accompanying passage of electrons from the valence band to the conduction band.
Other types of detectors presently in use are cathode emission detectors, such as vacuum or gas cells, and photomultipliers. Several factors tend to limit the sensitivity of these detectors. The most significant factors are the statistical character of the electronic flux of cathode emission or secondary emission, the spontaneous emission of parasite electrons not caused by the light signal, and the wide low frequency fluctuations in the supply source, which in the case of photomultipliers, can extend to several milliamperes.
It has also been suggested to use glow tubes for light detection, as well as for signal transmission. However, the sensitivity of these tubes is limited by fluctuations in cathode drop and potential difference at the terminals and by the comparatively high darkness current maintained by a steadily applied internal electric source.
All the foregoing prior art light detectors are limited in sensitivity by low frequencyfluctuations and noise, and furthermore, none of such detectors utilizes high frequency oscillations, known as acoustic electrostatic oscillations, that can be generated in ionized gases.
SUMMARY OF THE INVENTION In order to overcome these disadvantages, the present invention provides a combination of a photosensitive member and a complementary electronic accessory. More specifically, by the novel employment of the special properties of ionized gases in a discharge tube, and the ability of such tubes to generate high frequency oscillations, the device according to the present invention provides a powerful signal even when the incident light intensity is very low. In addition, the device, being free from low frequency fluctuations, remains inoperative both in the absence of illumination and when the tube is short-circuited.
The photosensitive member comprises a gas that readily absorbs photons of light, provides a very low detection threshold, and under suitable conditions of installation, generates and sustains high frequency oscillations. The small electric current supplied by the photosensitive member when illuminated acts upon the electronic accessory which, after processing the signal, reapplies the processed signal. to the photo-sensitive member. The photosensitive member then transmits the resulting discharge current to the following stages to sound an alarm.
The photosensitive member utilized in the present invention performs three salient functions: (I) the conversion of incident light quanta into a weak electric current, (2) the reception of the signals processed by the electronic accessory, and (3) the transmission of either its discharge current or the high frequency electromagnetic energy produced therein to sound an alarm. The photosensitive member does not operate with an outside source and, accordingly, is not subjected to low frequency parasite fluctuations.
In closed circuit, the present invention provides both a very low light detection threshold and a very high light-to-electric-signal conversion slope. In open circuit, the combination serves as a high frequency emitter modulated at the frequency determined by the accessory.
In one preferred embodiment of the invention, the montioring device comprises in combination a photosensitive gas element and an active electronic accessory consisting of passive elements. The gas element comprises a bidirectionally conductive tube having two like cold electrodes free from continuous interference by an outside source and filled with a pure inert gas or mixture of gases, preferably a monatomic gas, such as neon, argon, helium, crypton or xenon. The electronic accessory comprises a blocking oscillator coupled to one electrode-of the photosensitive element. The other electrode, when the tube is operated in closed circuit, is connected through a detector to a sensory alarm indicator. According to another feature of the present invention, when the tube is operated in open circuit, the other electrode of the tube is connected to a radio frequency antenna which radiates the high frequency waves produced in the tube.
Many possible uses of the monitoring device of the present invention are envisioned. The monitoring device is especially useful for fire detection, burglary prevention, alarm or control systems actuated at a distance by a beam of light and the detection of the establishment of an arc in an inaccessible high-tension installation. The monitoring device of the present invention may respond to lasting or transitory illumination of the discharge tube through acoustic means, such as gongs, sirens, loudspeakers, or visual means such as lighting of an incandescent lamp, deviation of a pointer, production of a recording, or in any other manner suited to the particular conditions of service. The novel means according to the invention will likewise serve to provide an uninterrupted warning signal requiring manual intervention to stop the alarm. Finally, the device is compact and light weight and can be installed easily as required for varied applications.
BRIEF DESCRIPTION OF THE DRAWINGS In the Drawings;
FIG. I is a schematic block diagram of the basic embodiment of a monitoring device arranged according to the present invention;
FIG. 2 is a schematic block diagram of a closed circuit embodiment of the present invention which provides an alarm of limited duration;
FIG. 3 is a schematic circuit diagram of a closed circuit embodiment of the present invention that provides a warning signal of extended duration;
FIG. 4 is a schematic block diagram of an open circuit embodiment of the present invention that provides high frequency radiation;
FIG. 5 is a schematic block diagram of an open circuit embodiment of the present invention that provides an uninterrupted alarm signal; and
FIG. 6 is a schematic block diagram of a further open circuit embodiment of the present invention that will provide an uninterrupted signal after illumination has terminated.
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the description of the preferred embodiments of the light detection monitoring device of the present in vention shown in FIGS. 1-6, circuit components which are common to the various embodiments are designated with the same identifying numbers.
Referring now to FIG. 1 which shows a basic embodiment of a light detection monitoring device arranged according to the present invention, the device includes a gaseous discharge tube 10 such as, for example, a neon or xenon tube. Ionization of the gases within the tube 10 is initiated when the tube is illuminated by a beam of light 12. One electrode 10a of the tube 10 is coupled via a conductor 14 and its branch conductor 14a to the collector of a transistor 16 forming an integral part of blocking oscillator 18 and to the primary winding of a transformer 20 also forming an integral part of the oscillator 18. The oppositely poled output or secondary winding of the transformer 20 is coupled across the base and cathode of the transistor 16 through a resistor 22 and a capacitor 24. Completing the input circuitry for the tube 10 are a normally closed switch 26 which couples an enabling DC source E1 concurrently to the cathode of the transistor 16 and to the output winding of the transformer 20. The negative terminal of the source E1 is connected to the primary winding of the transformer 20 and through a normally closed switch 28 to a second normally closed switch 30 and a second DC source E2. The two DC sources El and E2 preferably supply equal voltage potentials.
The other electrode 10b of the tube 10 is connected to the output circuitry of the device. The output circuitry includes a detector-amplifier 32 that is enabled by the DC source E2 through the switch 30. An alarm circuit 34 completes the output circuitry of the monitoring device and is enabled by the DC source E2 and is driven into operation to generate an alarm by the amplifier 32. As will be described hereinbelow, the alarm 34 may be located either locally with the discharge tube I0 or remotely therefrom. In view of the foregoing, it will be seen that the switches 26 and 30 enable the operation of the input and output circuitry, respectively, and that the switch 28 serves the function of either coupling or isolating the input and output circuitry of the device.
In the operation of the FIG. 1 monitoring device (switches 26, 28 and 30 closed), the device will energize the alarm 34 as long as the tube 10 is illuminated by the optical electromagnetic energy 12. Specifically, in the initial state of the device and in the absence of any illumination 12, the blocking oscillator 18 and the amplifier 32 are in their quiescent states. The input and output windings of the transformer 20 are not acted upon by any current from the discharge tube 10 whose electrodes 10a and 10b are at the same potential. It necessarily follows that the collector current lc of the transistor 16 is zero.
When the tube 10 is illuminated by the light 12, the photons of light absorbed by the inert gas of the tube 10 cause the formation of a plasma in which neutral atoms, excited atoms, electrons and positive ions coexist. In the absence of a potential difference across the terminals of the tube 10, the electrified particles of the plasma wander in the interelectrode space, with some electrons reaching the electrode 10a and charging it negatively. A discharge current Ip is created in the primary winding of the transformer 20 which, in turn, induces a current Is in the secondary winding of the transformer. The capacitor 24 discharges through the resistor 22 to reduce the potential of the base of the transistor 16 until the transistor 16 starts to draw collector current I0 and the collector voltage drops. The collector current Ic adds to the discharge current Ip with the result that the potential of the electrode is descreased. An electric field is established in the tube 10 which increases the collisions between electrons and atoms within the tube. The currents Ip, Ic, Is grow in step with the potential difference across the tube 10 to effect cumulative ionization in the tube and the attendant generation of high frequency waves.
A cloud of positive ions forms and increases around the electrode 10b to attract electrons and thereby reduce the number of electrons reaching the electrode 10a. The electric field, as well as the currents Igandlp,
will then be reduced. At a certain time, the directions of the currents are reversed, and a secondary discharge current lb in the output circuit is produced. The discharge current Ib drives the detector-amplifier 32 into conduction which, in turn, drives the alarm circuit 34 to generate a sensory alarm indication. At this time, the capacitor 24 of the blocking oscillator charges to reverse bias the transistor 16. Then, the positive ions collect at electrode 10a to diminish the reverse electric field and the cycle repeats itself for as long as the discharge tube 10 remains illuminated.
The timing is maintained by the discharge tube 10. The critical features of the present invention are the interdependence of the blocking oscillator 18 and the discharge tube 10, the monatomic gas of the tube 10 and the omission of any permanent triggering source for the tube 10.
Referring now to FIG. 2, there is shown a closed circuit monitoring device of the type illustrated in FIG. 1, with the exception that one form of amplifier 32 is diagrammatically illustrated and several alarm indicators which may be used as the local alarm 34 are illustrated. In particular, the amplifier 32 is shown as including a pnp transistor 36 and the alarm circuit 34 is shown as including a stepping switch 38 for coupling the collector of the, transistor 36 to either a lougspeaker 40, a
meter 42 or a light bulb 44. It will be understood that in actual practice only one of the alarms 40, 42 and 44 would be coupled directly to the output of the amplifier 32 and any particular location.
Referring now to FIG. 3, there is shown a closed circuit embodiment of the present invention which provides an uninterrupted warning signal even when the incident luminous flux 12 lasts for only a short time.
For this purpose the amplifier 32 includes a silicon th-yristor 46 having its control electrode coupled to the electrode b of the discharge tube 10. A signal, even a brief one, furnished by electrode 10b triggers the thyristor 46 which will then supply a continuous current It to the alarm circuit 34 which may comprise for example, an incandescent bulb, a pointer instrument, an acoustic alarm or any other constant current signaling device-An additional switch 48 serves to stop the current It to the alarm circuit 34. A thyratron may be used in place of the thyristor 46 to produce a constant warning signal, as will be understood in the art.
The diagram of FIG. 4 illustrates an open circuit embodiment of the present invention which radiates high frequency waves into the surrounding space. An antenna 50, which may consist of a single wire, is connected to electrode 10b of the discharge tube 10. Since the potentials of electrodes 10a and 10b are not fixed when the tube 10 is illuminated, the ionized particles wander from one electrode to the other, undergoing collisions, recombinations and reionizations. These frequent interactions, as well as the dislocations of the positive ions, produce a band of high frequency waves modulated by the low frequency oscillations of the blocked oscillator 18.
For suitable ionic density of the plasma, the waves generated fall within the band of conventional radio frequencies. A remotely located radio receiver 52 having an antenna will detect these waves generated by the discharge tube 10 and make the vibrations of the blocked oscillator 18" audible through its speaker. To isolate electrode 10a of the tube 10, a second transformer 54 is interposed between the transformer operating the oscillator 18 (FIG. 1) and electrode 100. The primary windings of transformers 54 and 20 are connected in parallel.
The antenna 50 may be long, so that the receiver 52 may be placed at a very great distance and, more specifically, in a different location from that of the monitoring device. It is possible, however, to place the tube l0 and the oscillator 18 inside the cabinet of receiver 52 without interfering in any way with normal radio operation. To listen to ordinary voice transmission, the discharge tube 10 need merely be short-circuited with a switch 56, thereby eliminating the monitoring mode. An open circuitembodiment of the present invention that provides an uninterrupted signal is schematically shown in FIG. 5. The connection between the oscillator 18 and the transformer 54 leading to electrode 10a of discharge tube 10 is the same as in F IG. 4. For monitoring, a thyristor 58, located inside a radio receiver 52, is inserted between the positive terminal of a supply source E3 and the positive tab of a supply bar 59 which, when energized, supplies current to the radio circuitry (not shown). The electrode 10b of the discharge tube 10 is connected directly to the control electrode of the thyristor 58, the emitter of which is connected to the positive terminal of the source E3 and the collector which supplies the positive tab of the bar 59 of the receiver. The thyristor 58 serves as a switch, open in the absence of the luminous flux 12 and closed when the light appears. In order to generate a loud sound in case of intrusion, it is desirable to take the precaution of raising the volume control potentiometer 60 of the radio receiver all the way and setting the wavelength of the receiver to a powerful broadcast transmitter.
Since one end of the transformer 54 is isolated, the potential of electrode 10a of the tube 10 is not fixed,
and hence the high frequency oscillations of the plasma are reinforced when the discharge tube is illuminated. These oscillations act on the control electrode of the thyristor 58 to thereby fire the thyristor which will then close the circuit comprising the battery E3 and the bar 59 and enable energizing current to be supplied to the circuitry of the receiver 52. The speaker (not shown) in the receiver will then loudly reproduce the voice transmission being detected. A switch 62, connected between the collector and the emitter of the thyristor 58 serves to stop the thyristor, cut off the receiver 52 and restore the monitoring mode of the device as a whole. In darkness, the receiver, having no supply, remains silent.
In this embodiment, in order not to render the tube 10 conspicuous, the tube 10 may be covered by a filter. Of course, when monitoring is not required, normal radio listening modes may be restored. It then suffices to disconnect the wire coupling the electrode 10b to the control electrode of the thyristor 58 and make a direct connection joining the positive terminals of the source E3 and bar 59.
FIG. 6 illustrates diagrammatically a further open circuit embodiment of the present invention which requires only a single supply of energy to implement a remote alarm control function. As shown therein, the circuit includes a discharge tube coupled between an oscillator 72 and a discharge circuit 74. The circuit '74 is in turn coupled to a radio receiver 76 which is kept in state of readiness. A DC source E which supplies, for example, a voltage of 9 voltsfis the only source of energy for the entire circuit.
The oscillator includes a transistor 78 together with a transformer 80 forming the coupling means with reference to the discharge tube 70. One end of the transformer primary is connected through a conductor 82 to one of the electrodes of the discharge tube 70, while the other end of the primary is connected to a radiating wire 84. Consequently, the circuit incorporating the discharge tube 70 is an open circuit. A condenser 86 is situated in series with the secondary of said transformer 80 which interconnects the collector of the transistor 78 with its base. A center tap 88 is further coupled to the secondary winding of the transformer 80. The discharge circuit 74 of the discharge tube 70 includes a thyristor 90, the control electrode of which is connected with the second electrode of the discharge tube. The emitter of the thyristor 90 and the emitter of the transistor 78 in the oscillator circuit are connected together and to the positive terminal of the battery E0 through a switch 91. The negative terminal of the battery E}, is co nne cted via a conductor 91 to the negative jack of switch strip or bar 92 in the circuit feeding the radio receiver 76. Since the positive jack of the same switch 92 is connected with the base of the thyristor 90, the circuit feeding the radio receiver forms a fictitious loading resistance fed by the thyristor when it is energized by the discharge tube 70.
As above-described, the secondary of the coupling transformer 80 is provided with a center tap 88. The tap 88 is connected to a switch 94 which may be of a mechanical type, the terminals 94a and 94b of said switch being connected with the Two jacks for the switch strip 92. Thus, when the switch 94 is closed over the terminal 94a, the loudspeaker of the radio will produce, whenever the discharge tube 70 is illuminated, a powerful periodical acoustic signal which is a replica of the pulses produced by the blocking oscillator 72. in the absence of illumination, the alarm signal stops.
However, if the switch is shifted onto the terminal 94b, the alarm signal will continue uninterruptedly and will not cease when the illumination is cut off. Only by opening the switch 94 will the alarm circuit become disabled. Thus, during operation, the collector of the thyristor 90 produces across the jacks of the switch strip 92 a pulsatory voltage which is fed back via the switch 94 and its terminal 94b to the center tap 88. The discharge in the tube 70 is consequently maintained electrically and the thyristor will be continuously reignited even in the absence of any illumination. In contradistinction, when the switch is closed over to the terminal 94a, the voltage on the collector of the thyristor 90 drops down to a predetermined low voltage as soon as the pulsating voltage terminates, which results in the extinguishing of the thyristor 90 in the absence of an undamped discharge current as provided by a continuation of the illumination of the discharge tube 70 or else by an external electric signal.
It is thus apparent that by resorting to a novel application of discharge tubes filled with an inert gas as described hereinabove, the watching circuits referred to provide, by reason of their high sensitivity both for low and for high frequencies, a highly efficient monitoring device.
Although the invention has been described herein with reference to specific embodiments, many modifications and variations therein will readily be apparent to those skilled in the art. Accordingly, all such variations and modifications are included within the intended scope of the invention as defined by the following claims.
I claim:
1. A light detection monitoring system comprising a gaseous discharge tube filled with a monatomic gas for producing high frequency electromagnetic waves and a discharge current in the presence of light, a radiating wire, signal generating means comprising a blocking oscillator having a transistor and a pulse transformer with a secondary winding coupled across the terminals of the transistor and a primary winding coupled between the radiating wire and one terminal of the gaseous discharge tube and responsive to the discharge current produced by the tube for generating periodic signals which add to the discharge signal to effect cumulative ionization of the gas in the tube and the reenforcement of the high frequency electromagnetic waves produced by the tube and an alarm producing means comprising a radio receiver means and an amplifier means adapted to supply energization current to the radio receiver means in response to the high frequency electromagnetic energy produced by the gaseous discharge tube to produce a detectable alarm.
2. Apparatus according to claim 1 further comprising switch means for selectively coupling the secondary winding of the transformer to the central electrode of the amplifier means to thereby periodically drive the amplifier means into conduction after the light illuminating the gaseous discharge tube has been extinguished.
l Disclaimer 3,7 86,460.-Piew'e Kaltenbach, New York, N.Y. LIGHT DETECTION MONITORING DEVICE. Patent dated J an. 15, 197 4. Disclaimer filed June 26, 197 3, by the inventor. Hereby disclaims the portion of the term of the patent subsequent to July 31, 1990.
[Ofiicial Gazette May 28, 1974.]

Claims (2)

1. A light detection monitoring system comprising a gaseous discharge tube filled with a monatomic gas for Producing high frequency electromagnetic waves and a discharge current in the presence of light, a radiating wire, signal generating means comprising a blocking oscillator having a transistor and a pulse transformer with a secondary winding coupled across the terminals of the transistor and a primary winding coupled between the radiating wire and one terminal of the gaseous discharge tube and responsive to the discharge current produced by the tube for generating periodic signals which add to the discharge signal to effect cumulative ionization of the gas in the tube and the reenforcement of the high frequency electromagnetic waves produced by the tube and an alarm producing means comprising a radio receiver means and an amplifier means adapted to supply energization current to the radio receiver means in response to the high frequency electromagnetic energy produced by the gaseous discharge tube to produce a detectable alarm.
2. Apparatus according to claim 1 further comprising switch means for selectively coupling the secondary winding of the transformer to the central electrode of the amplifier means to thereby periodically drive the amplifier means into conduction after the light illuminating the gaseous discharge tube has been extinguished.
US00229150A 1972-02-24 1972-02-24 Light detection monitoring device Expired - Lifetime US3786460A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US22915072A 1972-02-24 1972-02-24

Publications (1)

Publication Number Publication Date
US3786460A true US3786460A (en) 1974-01-15

Family

ID=22860017

Family Applications (1)

Application Number Title Priority Date Filing Date
US00229150A Expired - Lifetime US3786460A (en) 1972-02-24 1972-02-24 Light detection monitoring device

Country Status (1)

Country Link
US (1) US3786460A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3967258A (en) * 1973-08-06 1976-06-29 Texas Instruments Alarm system
US5530432A (en) * 1995-02-03 1996-06-25 Chen; Mark P. C. Photo monitoring apparatus with visual/audio alarm
US8829412B1 (en) * 2011-04-25 2014-09-09 Dgi Creations, Llc Remote monitoring of glow tube light output including a logic unit maintaining an indication of a monitored glow tube discharge while no discharge is detected

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3315244A (en) * 1964-01-13 1967-04-18 Aseco Inc Alarm devices
US3416041A (en) * 1965-09-02 1968-12-10 Electronics Corp America Flame sensor quench circuits for combustion control systems
US3544792A (en) * 1967-12-08 1970-12-01 Charbonnages De France Ultraviolet flame detector using a trigger circuit to avoid false alarms
US3683372A (en) * 1971-05-27 1972-08-08 Robert Horn Multimode self-checking flame detector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3315244A (en) * 1964-01-13 1967-04-18 Aseco Inc Alarm devices
US3416041A (en) * 1965-09-02 1968-12-10 Electronics Corp America Flame sensor quench circuits for combustion control systems
US3544792A (en) * 1967-12-08 1970-12-01 Charbonnages De France Ultraviolet flame detector using a trigger circuit to avoid false alarms
US3683372A (en) * 1971-05-27 1972-08-08 Robert Horn Multimode self-checking flame detector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3967258A (en) * 1973-08-06 1976-06-29 Texas Instruments Alarm system
US5530432A (en) * 1995-02-03 1996-06-25 Chen; Mark P. C. Photo monitoring apparatus with visual/audio alarm
US8829412B1 (en) * 2011-04-25 2014-09-09 Dgi Creations, Llc Remote monitoring of glow tube light output including a logic unit maintaining an indication of a monitored glow tube discharge while no discharge is detected

Similar Documents

Publication Publication Date Title
US4092643A (en) Security device
US4612535A (en) Add-on alert system
US4283657A (en) Exit illuminating system
US4777474A (en) Alarm system for the hearing impaired
US5019805A (en) Smoke detector with strobed visual alarm and remote alarm coupling
US5422543A (en) Flash monitor alarm system
US5598139A (en) Fire detecting system with synchronized strobe lights
US4432041A (en) Smoke penetrating emergency light
US3363250A (en) Monitoring system for remote radio control
US2709251A (en) Audio electromagnetic capacity alarm device
US4101880A (en) Audiovisual signaling device
GB2177561A (en) Electrical arc fault detector
US4290057A (en) Sequential power distribution circuit
US4274084A (en) Audio-visual signal circuits
US3974489A (en) Centralized monitor and alarm system for monitoring remote areas with acoustical electric transducers
US3786460A (en) Light detection monitoring device
US4287509A (en) Sound and light signaling system
US3546692A (en) Combined optical and acoustical blown fuse indicator
US3798625A (en) Rate-of-change combustion and combination detection apparatus
US3914753A (en) Intruder alarm system
US3750157A (en) Light detection monitoring device
US3820102A (en) Premises entry and exit signaling system
US3750123A (en) Smoke sensing circuit with battery standby
US3340521A (en) Alarm system
US3586919A (en) Remote control device