US3785921A - Paper reinforcing composition containing starch and a starch-acrylamide graft polymer - Google Patents

Paper reinforcing composition containing starch and a starch-acrylamide graft polymer Download PDF

Info

Publication number
US3785921A
US3785921A US00210595A US3785921DA US3785921A US 3785921 A US3785921 A US 3785921A US 00210595 A US00210595 A US 00210595A US 3785921D A US3785921D A US 3785921DA US 3785921 A US3785921 A US 3785921A
Authority
US
United States
Prior art keywords
acrylamide
water
polymer
paper
starch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00210595A
Inventor
F Ide
T Kodama
Y Kotake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Application granted granted Critical
Publication of US3785921A publication Critical patent/US3785921A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/21Macromolecular organic compounds of natural origin; Derivatives thereof
    • D21H17/24Polysaccharides
    • D21H17/28Starch
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/02Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to polysaccharides

Definitions

  • the DISCLOSURE Paper reinforcing agent composed mainly of a polymer composition which includes a graft polymer, a watersoluble polysaccharide, and, if necessary, an acrylamide typerandom copolymer.
  • the graft polymer is that having the water-soluble polysaccharide as its backbone polymer and a copolymer derived from a monomer mixture of acrylamide and an unsaturated carboxylic acid, as its branch polymer; said random copolymer is that which is derived from the aforesaid monomer mixture.
  • the Water-soluble 'polysaccharide content is -22% by Weight based on the composition.
  • the paper reinforcing agent is obtained by polymerizing the aforesaid monomer mixture in the presence of the water-soluble polysaccharide, or by further adding thereto a suitable amount of the Water-soluble polysaccharide and/or the acrylamide type random copolymer.
  • the reinforcing agent exhibits high paper-reinforcing property even in a small quantity and is markedly cheaper than any of the known acrylamide type paper reinforcing agents.
  • This invention relates to a paper reinforcing agent having a novel composition.
  • starches As the paper reinforcing agent, there have predominantly been used starches and water-soluble polysaccharides obtained by subjecting starches to such treatment as oxidation or 'etherific'ation. These starches are inexpensive. Since they are natural products, however, they have a defect that they are susceptible to weather conditions and their prices are not stable. Further, their paper-reinforcing effects are insuflicient.
  • acrylamide type paper reinforcing agents have entered the limelight as dry paper reinforcing agents.
  • homopolymer and copolymers of acrylamide are used as such dry paper reinforcing agents.
  • the homopolymer of acrylamide is nonionic and does not easily form anionic bond with pulp. Therefore, it is difficult for the horn opolymer to provide stable adhesion to the pulp and, as a consequence, it has insufficient paper ice reinforcing capacity.
  • the copolymers of acrylamide are divided into two typesanionic type and cationic type.
  • the anionic copolymers include the copolymers of acrylamide with unsaturated compounds having such acid radicals as carboxyl and sulfonyl groups in their molecular units.
  • the anionic copolymer exhibits strong aflinity to the pulp in the presence of such polyvalent cation as aluminum ion, with the result that the greater part of the copolymer adheres fast to the pulp. Thus, it shows excellent paper reinforcing effect even if it is used in a small amount.
  • the acrylamide type paper reinforcing agents are highly effective as mentioned above, but quite expensive.
  • a method is suggested in which acrylamide is copolymerized with an inexpensive nonionic monomer such as, for example, acrylonitrile, styrene or methyl methacrylate, in order to reduce the price of the anionic acrylamide type paper reinforcing agent.
  • Paper reinforcing capacity is inevitably degraded as an amount of the nonionic monomer is increased.
  • this method has not fully attained the goal of greatly lowering the price of paper reinforcing agent so as to permit ample use of the agent for obtaining a fixed level of paper reinforcing effect.
  • Japanese patent publication No. 17,051/1963 teaches that a product obtained by polymerizing 10-300 parts of acrylamide and an unsaturated carboxylic acid in the presence of parts of a water-soluble polysaccharide is used as an additive to a heater of a paper mill.
  • the product mentioned here contains as much as 25 to 91% by weight of polysaccharide, and its paper reinforcing capacity is a little more than that of a mixture of a polysaccharide and an acrylamide copolymer. Such an improvement obtained, however, is not large enough.
  • a paper reinforcing agent which has, as its main ingredient, a polymer composition comprising (A) a water-soluble polysaccharide and (B) a graft polymer.
  • the graft polymer (B) has (A) as the backbone polymer and a copolymer (C) as the branch polymer, said copolymer (C) being derived from a monomer mixture (D) of acrylamide and an unsaturated carboxylic acid.
  • Proportion of (A) including that contained in the backbone polymer ranges from 5 to 22% by Weight, based on the entire composition.
  • the present paper reinforcing agent may further be incorporated with an acrylamide type random copolymer (C') derivable from the monomer mixture (D).
  • the Water-soluble polysaccharides (A) include various carbohydrates such as, for example, Indian corn starch, wheat starch, potato starch, and sweet potato starch, and derivatives thereof.
  • the derivatives include oxidized starches, solubilized tarches, etherified starches, etc.
  • the monomer mixture (D) is composed of 55-98% by weight of acrylamide and 2-20% by Weight of at least one unsaturated carboxylic acid of acrylic acid, methacrylic acid, maleic anhydride, itaconic acid and/or crotonic acid. Besides, up to 25% by weight of one or more vinyl monomers (E) of methacrylamide, acrylonitrile, methacrylonitrile, alkyl acrylates and/or alkyl methacrylate may be contained.
  • the alkyl esters of acrylic acid or methacrylic acid include methyl, ethyl, npropyl, isopropyl, n-butyl, isobutyl, secondary butyl, tertiary butyl, hydroxyethyl and hydroxypropyl esters.
  • Polymer (C) is copolymer of the monomer mixture (D), i.e. carboxylic acid-acrylamide or carboxylic acidacrylamide-vinyl compound (E).
  • the polymer (C) constitutes branch polymer of the graft polymer (B), and has molecular weight of 2000 or more.
  • Polymer (C) is polymer of the monomer mixture (D) in the absence of polysaccharide (A). It has molecular weight of 2000 or more. Polymer (C) is sometime the same as Polymer (C).
  • Reinforcing capacity is improved conspicuously when the proportion of the water-soluble polysaccharide (A) exceeds 5% by Weight and it is maximized when the proportion falls in the neighborhood of -15% by weight.
  • the capacity begins to decline gradually when the proportion exceeds by weight. If the proportion increases over 22%, the capacity become substantially equal to the capacity attained by using the acrylamide copolymer alone. If the proportion further increases, the capacity abruptly approaches the level of capacity calculated on the assumption that the acrylamide copolymer and the water-soluble polysaccharide act independently. Thus, the advantages derived from the graft polymer is lost practically completely.
  • the amount of the un aturated carboxylic acid present in the monomer mixture (D) is required to fall in the range of from 2 to This is an important requirement for the paper reinforcing agent to manifest its excellent effect as contemplated.
  • the paper reinforcing agent has a lower degree of reinforcing capacity than when the acrylamide copolymer is used alone.
  • Random terpolymer such as, for example, acrylamide, acrylonitrile and unsaturated carboxylic acid
  • random binary copolymer such as, for example, acrylamide and unsaturated carboxylic acid
  • the paper reinforcing agent of this invention can be obtained by either of the following methods:
  • the monomer mixture (D) is polymerized in the presence of such an amount of the water-soluble polysaccharide (A) as to give a proportion of 522% by weight in the total composition.
  • the monomer mixture (D) is polymerized in the presence of the water-soluble polysaccharide (A) and then the water-soluble polysaccharide (A) and/or the acrylamide type copolymer (C) is added to the resultant polymerization product in such an amount that (A) in the total composition may be in the range of 522% by weight.
  • the method of (ii) is preferable, because the ratio of graft polymer (B) in the composition, the average molecular weight and an amount of the acrylamide type copolymer (C), and the proportion of unaltered water soluble polysaccharide can freely be varied.
  • the proportion of the graft polymer (B) in the composition can be controlled at a suitable value by adding the acrylamide copolymer (C) to the graft polymer (B). It is no matter how much grafting degree of the graft polymer (B) may be.
  • the medium to be used for this purpose may be either a solvent or non-solvent for the polymer being produced.
  • water is used as the medium.
  • the water-soluble polysaccharide may preferably be converted in advance to a homogeneous solution by being heated to a temperature exceeding the gelatinizing point and then put to use in the form of solution.
  • the catalysts which are suitable for the polymerization in the medium of water include ammonium persulfate, potassium persulfate, hydrogen peroxide, etc. Redox catalysts made of such peroxides and such reducing substances as amines may also be used.
  • water-soluble ceric salts, such as ceric ammonium nitrate, are also usable. These ceric salts are capable of causing water-soluble polysaccharides to form radicals. If a ceric.
  • component (B) it is desirable to control the contents of component (B) by adding thereto a suitable amount of the acrylamide type copolymer (C) obtained by polymerizing the monomer mixture (D) and/or the water-soluble polysaccharide capacity which is obtained by using the water-soluble polysaccharide, the acrylamide type graft polymer, or the acrylamide type random copolymer alone.
  • a suitable amount of the acrylamide type copolymer (C) obtained by polymerizing the monomer mixture (D) and/or the water-soluble polysaccharide capacity which is obtained by using the water-soluble polysaccharide, the acrylamide type graft polymer, or the acrylamide type random copolymer alone.
  • Each example describes a method for manufacturing the paper reinforcing agent of this invention.
  • the properties of the agents prepared in these examples are collectively shown in the table given at the end of the text. Parts and percent all are referred to by weight.
  • EXAMPLE 1 The aqueous solution of a polymer containing soluble starch by 10% based on the polymer was obtained by following the procedure of Example 1, except there were used 10 parts of soluble starch and 90 parts of a monomer mixture incorporating acrylic acid in place .of the' methacrylic acid.
  • EXAMPLE 3 The aqueous solution of a polymer containing soluble starch by 15 based on the polymer was obtained by following the procedure of Example 1, except there were used 15 parts of soluble starch and parts of monomer mixture. l
  • EXAMPLE 4 The aqueous solution of a polymer containing soluble starch by 22% based on the polymer was obtained by following the procedure of Example 1, except there were used 22 parts of soluble starch and 78 parts of monomer mixture.
  • the paper reinforcing agent of the present invention has outstanding reinforcing capacity as comparedwith the EXAMPLE 5
  • 900 parts of water were dissolved 15 parts of soluble starch and 85 parts of a monomer mixture consisting of 95% of acrylamide and 5% of methacrylic acid.
  • the solution was adjusted to pH 2.5 with nitric acid and displaced thoroughly with N
  • the solution was subjected to polymerization at 50 C. for six hours to afford the aqueous solution of a graft polymer.
  • EXAMPLE 6 In 450 parts of water were dissolved 45 parts of acrylamide and 5 parts of acrylic acid. The solution was adjusted to pH 7.0 and, in the presence of 1.0 part of potassium persulfate added thereto, subjected to polymerization at 60 C. for two hours to aiford the copolymer of acrylamide. The copolymer was mixed with the aqueous solution of graft polymer obtained by the procedure of Example 5, to afford a homogeneous solution.
  • EXAMPLE 7 Ten parts of oxidized starch was suspended in 40 parts of water and then dissolved by heating. The resultant aqueous solution was combined with the aqueous solution of graft polymer obtained by following the procedure of Example 1, to form a homogeneous solution.
  • EXAMPLE 8 Five (5) parts of oxidized starch was suspended in 45 parts of water and dissolved by heating to afford the aqueous solution of oxidized starch. Separately, 45 parts of acrylamide and 5 parts of acrylic acid were dissolved in 450 parts of water. The solution was adjusted to pH 7.0 and, in the presence of 0.5 part of ammonium persulfate added thereto, subjected to polymerization at 60 C. for four hours, to afford the aqueous solution of acrylamide copolymer. The two aqueous solutions thus prepared were mixed with the aqueous solution of graft polymer obtained by following the procedure of Example 2, to obtain a homogeneous solution. 7
  • EXAMPLE 9 Ten (10) parts of oxidized starch was dissolved by heating in 900 parts of water. In the resultant solution were further dissolved 2 parts of acrylamide, 10 parts of acrylonitrile, and 8 parts of acrylic acid. The final solution was adjusted to pH 2.5 with nitric acid. This was displaced thoroughly with nitrogen and, in the presence of 1.5 parts of ceric ammonium nitrate, subjected to polymerization at 50 C. for eight hours, to afford the aqueous solution of graft polymer (A). Separately, 5 parts of soluble starch was dissolved by heating in 45 parts of water. This solution was combined with the aqueous solution of graft polymer (A), to produce a homogeneous solution.
  • EXAMPLE 10 In 450 parts of water were dissolved 35 parts of acrylamide, 10 parts of methyl acrylate, and 5 parts of methacrylic acid. The solution was adjusted to pH 7.0 and, in the presence of 0.5 part of potassium persulfate added thereto, subjected to polymerization at 60 C. for four hours, to produce the aqueous solution of copolymer having acrylamide as the main component. The aqueous solution was combined with the aqueous solution of graft polymer synthesized by following the procedure of Example 5, to afford a homogeneous solution.
  • EXAMPLE 11 In 270 parts of water were dissolved 25 parts of acrylamide, 3 parts of methacrylic'acid, and 2 parts of acrylonitrile. The solution was adjusted to pH 7.0 and, in the presence of 0.5 part of ammonium persulfate added thereto, subjected to polymerization at 60 C. for four hours,
  • COMPARATIVE EXAMPLE 1 In 900 parts of water were dissolved 90 parts of acrylamide and 10 parts of acrylic acid. The solution was adjusted to pH 7.0 and, in the presence of 2 parts of potassium persulfate added thereto, subjected to polymerization at 60 C. for two hours, to produce the copolymer of acrylamide.
  • COMPARATIVE EXAMPLE 2 The solution obtained by dissolving 10 parts of oxidized starch under heating in 90 parts of water was combined with the aqueous solution of acrylamide copolymer obtained by following the procedure of Comparative Example 1, to afford a homogeneous solution.
  • COMPARATIVE EXAMPLE 3 The aqueous solution of graft polymer containing soluble starch by 25% based on the polymer was obtained by following the procedure of Example 1, except there were used 25 parts of soluble starch and 75 parts of monomer mixture.
  • COMPARATIVE EXAMPLE 4 In 9 00 parts of water were dissolved 15 parts of oxidized starch and parts of acrylamide. In the presence of 1.0 part of potassium persulfate added thereto, the solution was subjected to polymerization at 60 C. for three hours to afford the aqueous solution of graft polymer.
  • COMPARATIVE EXAMPLE 5 In 900 parts of water were dissolved 15 parts of oxidized starch and 85 parts of a monomer mixture consisting of 75% of acrylamide and 25% of methacrylic acid. The solution was adjusted to pH 7.0 and, in the presence of 1.0 part of ammonium persnlfate added thereto, subjected to polymerization at 60 C. for four hours, to afford the aqueous solution of graft polymer.
  • Papers using the polymer solutions of Examples 1-11 and Comparative Examples 1-5 as paper reinforcing agents were fabricated by the Tappi standard sheet machine and then tested for strength.
  • the papers were made of pulp LBKP (bleached kraft pulp of broad-leaf trees) having Canadian Standard freeness 390 ml.
  • the basis weight was 60-62 g./m.
  • As the sizing agent rosin maleate was used in an amount corresponding to 1.5% based on the pulp.
  • Aluminum sulfate was used in an amount corresponding to 2.0% based on the pulp.
  • the amount of paper reinforcing agent used was 0.5% based on the pulp.
  • Burst factor was measured with Miillen burst strength tester and breaking length with Schopper tensile machine respectively at 20 C. and 65% RH.
  • G graft polymerization product
  • B blended composition
  • GB graft polymerized and blended product.
  • a paper reinforcing agent having, as its main component, a composition consisting essentially of (A) a watersoluble polysaccharide selected from the group consisting of starch and modified starch and (B) a graft polymer, said graft polymer having (A) as a backbone polymer and a copolymer (C) as a branch polymer, said copolymer (C) being the reaction product of a monomer mixture (D) consisting of 80 to 98% by weight of acrylamide and 2 to 20% by weight of at least one unsaturated carboxylic acid and derivatives thereoof selected from the group consisting of acrylic acid, methacrylic acid, maleic anhydride, itaconic acid and crotonic acid, and the proportion of (A) including that contained in the backbone polymer falling in the range of from to 22% by weight based on the entire composition.
  • A a watersoluble polysaccharide selected from the group consisting of starch and modified starch
  • B a graft polymer
  • a paper reinforcing agent having, as its main component, a composition consisting essentially of (A) a water-soluble polysaccharide selected from the group consisting of starch and modified starch, (B) a graft copolymer and (C') a copolymer derived from a monomer mixture (D), said monomer mixture (D) being made up of 80 to 98% by weight of acrylamide and 2 to 20% by weight of at least one unsaturated carboxylic acid and derivatives thereof selected from the group consisting of acrylic acid, methacrylic acid, maleic anhydride, itaconic acid, and crotonic acid, and said graft polymer (B) having (A) as a backbone polymer and the copolymer (C') as a branch polymer, the proportion of (A) in the composition falling in the range of from 5 to 22% by weight.
  • a paper reinforcing agent having as its main compo nent a composition consisting essentially of (A) a watersoluble polysaccharide selected from the group consisting of starch and modified starch and (B) a graft polymer, said graft polymer having the watersoluble polysaccharide (A) as a backbone polymer and a copolymer (C) as a branch polymer, said copolymer (C) being the reaction product of a monomer mixture consisting essentially of from 55 to 98% by weight of acrylamide, 2 to 20% by weight of an unsaturated carboxylic acid and derivatives thereof selected from the group consisting of acrylic acid, methacrylic acid, maleic anhydride, itaconic acid and crotonic acid, and up to 25% by weight of at least one vinyl monomer selected from the group consisting of methacrylamide, acrylonitrile, methacrylonitrile, alkyl acrylates and alkyl methacrylates, and the proportion of the water-soluble polysacc
  • a paper reinforcing agent having as its main component a composition consisting essentially of (A) a watersoluble polysaccharide selected from the group consisting of starch and modified starch, (B) a graft copolymer and (C') a coplymer derived from a monomer mixture (D), said monomer mixture (D) consisting essentially of from 55 to 98% by weight of acrylamide, 2 to 20% by weight of an unsaturated carboxylic acid and derivatives thereof selected from the group consisting of acrylic acid, methacrylic acid, malcic anhydride, itaconic acid and crotonic aid, and up to 25% by weight of at least one vinyl monomer selected from the group consisting of methacrylamide, acrylonitrile, methacrylonitrile, alkyl acrylates, and alkyl methacrylates, and said graft polymer (B) having the watersoluble polysaccharide (A) as a backbone polymer and (C') as a branch polymer, the proportion of (

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Paper (AREA)

Abstract

PAPER REINFORCING AGENT COMPOSED MAINLY OF A POLYMER COMPOSITION WHICH INCLUDES A GRAFT POLYMER, A WATERSOLUBLE POLYSACCHARIDE, AND, IF NECESSARY, AN ACRYLAMIDE TYPE RANDOM COPOLYMER. THE GRAFT POLYMER IS THAT HAVING THE WATER-SOLUBLE POLYSACCHARIDE AS ITS BACKBONE POLYMER AND A COPOLYMER DERIVED FROM A MONOMER MIXTURE OF ACRYLAMIDE AND AN UNSATURATED CARBOXYKIC ACID, AS ITS BRANCH POLYMER; SAID RANDOM COPLYMER IS THAT WHICH IS DERIVED FROM THE AFORESAID MONOMER MIXTURE. THE WATER-SOLUBLE POLYSACCHARIDE CONTENT IS 5-22% BY WEIGHT BASED ON THE COMPOSITION. THE PAPER REINFORCING AGENT IS OBTAINED BY POLYMERIZING THE AFORESAID MONOMER MIXTURE IN THE PRESENCE OF THE WATER-SOLUBLE POLYSACCHRIDE, OR BY FURTHER ADDING THERETO A SUITABLE AMOUNT OF THE WATER-SOLUBLE POLYSACCHARIDE AMD/OR THE ACRYLAMIDE TYPE RANDOM COPOLYMER. THE REINFORCING AGENT EXHIBITS HIGH PAPER-REINFORCING PROPERTY EVEN IN A SMALL QUANTITY AND IS MARKEDLY CHEAPER THAN ANY OF THE KNOW ACRYLAMIDE TYPE PAPER REINFORCING AGENTS.

Description

"United States Patent PAPER REINFORCING COMPOSITION CONTAIN- ING STARCH AND A STARCH-ACRYLAMIDE GRAFT POLYMER Fumio lde, Tsuneo Kodama, and Yahide Kotake, Hiroshima, Japan, assiguors to Mitsubishi Rayon Co., Ltd., and Nitto Kagyo Co., Ltd., both of Tokyo, Japan N0 Drawing. Filed Dec. 21, 1971, Ser. No. 210,595 Int. Cl. C08d 9/06; D21h 3/08, 3/28 US. Cl. 162-168 17 Claims ABSTRACT OF THE DISCLOSURE Paper reinforcing agent composed mainly of a polymer composition which includes a graft polymer, a watersoluble polysaccharide, and, if necessary, an acrylamide typerandom copolymer. The graft polymer is that having the water-soluble polysaccharide as its backbone polymer and a copolymer derived from a monomer mixture of acrylamide and an unsaturated carboxylic acid, as its branch polymer; said random copolymer is that which is derived from the aforesaid monomer mixture. The Water-soluble 'polysaccharide content is -22% by Weight based on the composition.
The paper reinforcing agent is obtained by polymerizing the aforesaid monomer mixture in the presence of the water-soluble polysaccharide, or by further adding thereto a suitable amount of the Water-soluble polysaccharide and/or the acrylamide type random copolymer.
The reinforcing agent exhibits high paper-reinforcing property even in a small quantity and is markedly cheaper than any of the known acrylamide type paper reinforcing agents.
This invention relates to a paper reinforcing agent having a novel composition.
In recent years, the supply of needle-leaf trees is running short throughout the world. In the circumstances, the paper industry hasno alternative but to use shortfiber pulp of broad-leaf trees as the raw material for paper products. In order that the paper manufactured from the pulp such as of broad-leaf trees acquires the same strength as the paper from the pulp of needle-leaf trees, it is necessary to use a paper reinforcing agent. The paper reinforcing agent is also very effective in improving the yield of pulp, the yield of loading material, and the sheet forming rate.
As the paper reinforcing agent, there have predominantly been used starches and water-soluble polysaccharides obtained by subjecting starches to such treatment as oxidation or 'etherific'ation. These starches are inexpensive. Since they are natural products, however, they have a defect that they are susceptible to weather conditions and their prices are not stable. Further, their paper-reinforcing effects are insuflicient.
In recent years, synthetic high molecular compounds are arresting keen attention as useful paper reinforcing agents. Particularly, acrylamide type paper reinforcing agents have entered the limelight as dry paper reinforcing agents. Namely, homopolymer and copolymers of acrylamide are used as such dry paper reinforcing agents. The homopolymer of acrylamide is nonionic and does not easily form anionic bond with pulp. Therefore, it is difficult for the horn opolymer to provide stable adhesion to the pulp and, as a consequence, it has insufficient paper ice reinforcing capacity. The copolymers of acrylamide are divided into two typesanionic type and cationic type. The anionic copolymers include the copolymers of acrylamide with unsaturated compounds having such acid radicals as carboxyl and sulfonyl groups in their molecular units. The anionic copolymer exhibits strong aflinity to the pulp in the presence of such polyvalent cation as aluminum ion, with the result that the greater part of the copolymer adheres fast to the pulp. Thus, it shows excellent paper reinforcing effect even if it is used in a small amount. The acrylamide type paper reinforcing agents are highly effective as mentioned above, but quite expensive. A method is suggested in which acrylamide is copolymerized with an inexpensive nonionic monomer such as, for example, acrylonitrile, styrene or methyl methacrylate, in order to reduce the price of the anionic acrylamide type paper reinforcing agent. Paper reinforcing capacity is inevitably degraded as an amount of the nonionic monomer is increased. Thus, this method has not fully attained the goal of greatly lowering the price of paper reinforcing agent so as to permit ample use of the agent for obtaining a fixed level of paper reinforcing effect.
Japanese patent publication No. 17,051/1963 teaches that a product obtained by polymerizing 10-300 parts of acrylamide and an unsaturated carboxylic acid in the presence of parts of a water-soluble polysaccharide is used as an additive to a heater of a paper mill. The product mentioned here contains as much as 25 to 91% by weight of polysaccharide, and its paper reinforcing capacity is a little more than that of a mixture of a polysaccharide and an acrylamide copolymer. Such an improvement obtained, however, is not large enough.
It is an object of this invention to provide an acrylamide type paper reinforcing agent containing a watersoluble polysaccharide in a specified amount.
It is another object of this invention to provide an inexpensive paper reinforcing agent having high paper reinforcing capacity.
According to the present invention, a paper reinforcing agent is provided, which has, as its main ingredient, a polymer composition comprising (A) a water-soluble polysaccharide and (B) a graft polymer. The graft polymer (B) has (A) as the backbone polymer and a copolymer (C) as the branch polymer, said copolymer (C) being derived from a monomer mixture (D) of acrylamide and an unsaturated carboxylic acid. Proportion of (A) including that contained in the backbone polymer ranges from 5 to 22% by Weight, based on the entire composition. The present paper reinforcing agent may further be incorporated with an acrylamide type random copolymer (C') derivable from the monomer mixture (D).
The Water-soluble polysaccharides (A) include various carbohydrates such as, for example, Indian corn starch, wheat starch, potato starch, and sweet potato starch, and derivatives thereof. The derivatives include oxidized starches, solubilized tarches, etherified starches, etc.
The monomer mixture (D) is composed of 55-98% by weight of acrylamide and 2-20% by Weight of at least one unsaturated carboxylic acid of acrylic acid, methacrylic acid, maleic anhydride, itaconic acid and/or crotonic acid. Besides, up to 25% by weight of one or more vinyl monomers (E) of methacrylamide, acrylonitrile, methacrylonitrile, alkyl acrylates and/or alkyl methacrylate may be contained. The alkyl esters of acrylic acid or methacrylic acid include methyl, ethyl, npropyl, isopropyl, n-butyl, isobutyl, secondary butyl, tertiary butyl, hydroxyethyl and hydroxypropyl esters.
Polymer (C) is copolymer of the monomer mixture (D), i.e. carboxylic acid-acrylamide or carboxylic acidacrylamide-vinyl compound (E). The polymer (C) constitutes branch polymer of the graft polymer (B), and has molecular weight of 2000 or more.
Polymer (C) is polymer of the monomer mixture (D) in the absence of polysaccharide (A). It has molecular weight of 2000 or more. Polymer (C) is sometime the same as Polymer (C).
Reinforcing capacity is improved conspicuously when the proportion of the water-soluble polysaccharide (A) exceeds 5% by Weight and it is maximized when the proportion falls in the neighborhood of -15% by weight. The capacity begins to decline gradually when the proportion exceeds by weight. If the proportion increases over 22%, the capacity become substantially equal to the capacity attained by using the acrylamide copolymer alone. If the proportion further increases, the capacity abruptly approaches the level of capacity calculated on the assumption that the acrylamide copolymer and the water-soluble polysaccharide act independently. Thus, the advantages derived from the graft polymer is lost practically completely.
For use in the agent of this invention, the amount of the un aturated carboxylic acid present in the monomer mixture (D) is required to fall in the range of from 2 to This is an important requirement for the paper reinforcing agent to manifest its excellent effect as contemplated. When the amount deviates from the aforesaid range, the special elfects brought about by the agent hereof cannot be observed. In this case, the paper reinforcing agent has a lower degree of reinforcing capacity than when the acrylamide copolymer is used alone. Random terpolymer such as, for example, acrylamide, acrylonitrile and unsaturated carboxylic acid, is said to be inferior to random binary copolymer such as, for example, acrylamide and unsaturated carboxylic acid, so far as paper reinforcing capacity is concerned. However, there is seen little reduction in paper reinforcing capacity, as long as the aforesaid vinyl monomer (E) is used in an amount pecified above.
The paper reinforcing agent of this invention can be obtained by either of the following methods:
(i) the monomer mixture (D) is polymerized in the presence of such an amount of the water-soluble polysaccharide (A) as to give a proportion of 522% by weight in the total composition.
(ii) the monomer mixture (D) is polymerized in the presence of the water-soluble polysaccharide (A) and then the water-soluble polysaccharide (A) and/or the acrylamide type copolymer (C) is added to the resultant polymerization product in such an amount that (A) in the total composition may be in the range of 522% by weight.
The method of (ii) is preferable, because the ratio of graft polymer (B) in the composition, the average molecular weight and an amount of the acrylamide type copolymer (C), and the proportion of unaltered water soluble polysaccharide can freely be varied. According to the method of (ii), the proportion of the graft polymer (B) in the composition can be controlled at a suitable value by adding the acrylamide copolymer (C) to the graft polymer (B). It is no matter how much grafting degree of the graft polymer (B) may be.
In carrying out the graft polymerization, it is desirable to use a medium. The medium to be used for this purpose may be either a solvent or non-solvent for the polymer being produced. Preferably, water is used as the medium. In this case, the water-soluble polysaccharide may preferably be converted in advance to a homogeneous solution by being heated to a temperature exceeding the gelatinizing point and then put to use in the form of solution.
The polymerization of monomer mixture (D) i conducted in the presence of a radical polymerization initiator. Otherwise, there may be used a compound that forms a radical upon reaction with the water-soluble polysaccharide'. The catalysts which are suitable for the polymerization in the medium of water include ammonium persulfate, potassium persulfate, hydrogen peroxide, etc. Redox catalysts made of such peroxides and such reducing substances as amines may also be used. Besides, water-soluble ceric salts, such as ceric ammonium nitrate, are also usable. These ceric salts are capable of causing water-soluble polysaccharides to form radicals. If a ceric. salt is used as the catalyst for polymerization, the proportion of graft polymer (B) in the product will be quite high. If this proportion is too high, the reinforcing capacity rather tends to decline. In this case, therefore, it is desirable to control the contents of component (B) by adding thereto a suitable amount of the acrylamide type copolymer (C) obtained by polymerizing the monomer mixture (D) and/or the water-soluble polysaccharide capacity which is obtained by using the water-soluble polysaccharide, the acrylamide type graft polymer, or the acrylamide type random copolymer alone. This shows that a mixture of the graft polymer and a specific amount of water-soluble polysaccharides has synergistic effect. In fact, a remarkably large amount of the water-solublepolysaccharides is deposited on pulp in the present paper reinforcing agent, although the polysaccharides themselves do not deposit on pulp in a large amount. This is explained with reference to preferred embodiments of the invention cited hereinafter.
Each example describes a method for manufacturing the paper reinforcing agent of this invention. The properties of the agents prepared in these examples are collectively shown in the table given at the end of the text. Parts and percent all are referred to by weight.
EXAMPLE 1 The aqueous solution of a polymer containing soluble starch by 10% based on the polymer was obtained by following the procedure of Example 1, except there were used 10 parts of soluble starch and 90 parts of a monomer mixture incorporating acrylic acid in place .of the' methacrylic acid.
EXAMPLE 3 The aqueous solution of a polymer containing soluble starch by 15 based on the polymer was obtained by following the procedure of Example 1, except there were used 15 parts of soluble starch and parts of monomer mixture. l
EXAMPLE 4 The aqueous solution of a polymer containing soluble starch by 22% based on the polymer was obtained by following the procedure of Example 1, except there were used 22 parts of soluble starch and 78 parts of monomer mixture.
The paper reinforcing agent of the present invention. has outstanding reinforcing capacity as comparedwith the EXAMPLE 5 In 900 parts of water were dissolved 15 parts of soluble starch and 85 parts of a monomer mixture consisting of 95% of acrylamide and 5% of methacrylic acid. The solution was adjusted to pH 2.5 with nitric acid and displaced thoroughly with N In the presence of 1.0 part of ceric ammonium nitrate added thereto, the solution was subjected to polymerization at 50 C. for six hours to afford the aqueous solution of a graft polymer.
EXAMPLE 6 In 450 parts of water were dissolved 45 parts of acrylamide and 5 parts of acrylic acid. The solution was adjusted to pH 7.0 and, in the presence of 1.0 part of potassium persulfate added thereto, subjected to polymerization at 60 C. for two hours to aiford the copolymer of acrylamide. The copolymer was mixed with the aqueous solution of graft polymer obtained by the procedure of Example 5, to afford a homogeneous solution.
EXAMPLE 7 Ten parts of oxidized starch was suspended in 40 parts of water and then dissolved by heating. The resultant aqueous solution was combined with the aqueous solution of graft polymer obtained by following the procedure of Example 1, to form a homogeneous solution.
EXAMPLE 8 Five (5) parts of oxidized starch was suspended in 45 parts of water and dissolved by heating to afford the aqueous solution of oxidized starch. Separately, 45 parts of acrylamide and 5 parts of acrylic acid were dissolved in 450 parts of water. The solution was adjusted to pH 7.0 and, in the presence of 0.5 part of ammonium persulfate added thereto, subjected to polymerization at 60 C. for four hours, to afford the aqueous solution of acrylamide copolymer. The two aqueous solutions thus prepared were mixed with the aqueous solution of graft polymer obtained by following the procedure of Example 2, to obtain a homogeneous solution. 7
EXAMPLE 9 Ten (10) parts of oxidized starch was dissolved by heating in 900 parts of water. In the resultant solution were further dissolved 2 parts of acrylamide, 10 parts of acrylonitrile, and 8 parts of acrylic acid. The final solution was adjusted to pH 2.5 with nitric acid. This was displaced thoroughly with nitrogen and, in the presence of 1.5 parts of ceric ammonium nitrate, subjected to polymerization at 50 C. for eight hours, to afford the aqueous solution of graft polymer (A). Separately, 5 parts of soluble starch was dissolved by heating in 45 parts of water. This solution was combined with the aqueous solution of graft polymer (A), to produce a homogeneous solution.
EXAMPLE 10 In 450 parts of water were dissolved 35 parts of acrylamide, 10 parts of methyl acrylate, and 5 parts of methacrylic acid. The solution was adjusted to pH 7.0 and, in the presence of 0.5 part of potassium persulfate added thereto, subjected to polymerization at 60 C. for four hours, to produce the aqueous solution of copolymer having acrylamide as the main component. The aqueous solution was combined with the aqueous solution of graft polymer synthesized by following the procedure of Example 5, to afford a homogeneous solution.
EXAMPLE 11 In 270 parts of water were dissolved 25 parts of acrylamide, 3 parts of methacrylic'acid, and 2 parts of acrylonitrile. The solution was adjusted to pH 7.0 and, in the presence of 0.5 part of ammonium persulfate added thereto, subjected to polymerization at 60 C. for four hours,
6 to produce the aqueous solution of acrylamide copolymer (B). The solution having 15 parts of oxidized starch dissolved by heating in 135 parts of water was combined the aqueous solution (B) mentioned above and the aqueous solution of graft polymer obtained by following the procedure of Example 1, to afford a homogeneous solution.
COMPARATIVE EXAMPLE 1 In 900 parts of water were dissolved 90 parts of acrylamide and 10 parts of acrylic acid. The solution was adjusted to pH 7.0 and, in the presence of 2 parts of potassium persulfate added thereto, subjected to polymerization at 60 C. for two hours, to produce the copolymer of acrylamide.
COMPARATIVE EXAMPLE 2 The solution obtained by dissolving 10 parts of oxidized starch under heating in 90 parts of water was combined with the aqueous solution of acrylamide copolymer obtained by following the procedure of Comparative Example 1, to afford a homogeneous solution.
COMPARATIVE EXAMPLE 3 The aqueous solution of graft polymer containing soluble starch by 25% based on the polymer was obtained by following the procedure of Example 1, except there were used 25 parts of soluble starch and 75 parts of monomer mixture.
COMPARATIVE EXAMPLE 4 In 9 00 parts of water were dissolved 15 parts of oxidized starch and parts of acrylamide. In the presence of 1.0 part of potassium persulfate added thereto, the solution was subjected to polymerization at 60 C. for three hours to afford the aqueous solution of graft polymer.
COMPARATIVE EXAMPLE 5 In 900 parts of water were dissolved 15 parts of oxidized starch and 85 parts of a monomer mixture consisting of 75% of acrylamide and 25% of methacrylic acid. The solution was adjusted to pH 7.0 and, in the presence of 1.0 part of ammonium persnlfate added thereto, subjected to polymerization at 60 C. for four hours, to afford the aqueous solution of graft polymer.
DETERMINATION OF PAPER REINFORCING CAPACITY Papers using the polymer solutions of Examples 1-11 and Comparative Examples 1-5 as paper reinforcing agents were fabricated by the Tappi standard sheet machine and then tested for strength. The papers were made of pulp LBKP (bleached kraft pulp of broad-leaf trees) having Canadian Standard freeness 390 ml. The basis weight was 60-62 g./m. As the sizing agent, rosin maleate was used in an amount corresponding to 1.5% based on the pulp. Aluminum sulfate was used in an amount corresponding to 2.0% based on the pulp. The amount of paper reinforcing agent used was 0.5% based on the pulp.
Burst factor was measured with Miillen burst strength tester and breaking length with Schopper tensile machine respectively at 20 C. and 65% RH.
The strengths thus measured of the papers using the various reinforcing compositions are shown in the following table in terms of indexes based on the strengths of paper using no reinforcing agent taken as 100.
It is clear from the table that. the paper reinforcing agents according to the present invention, indicated in the table as No. 1 through 11, exhibited reinforcing effect far exceeding the effect which could be predicted from the results of independent use of the acrylamide copoly- TABLE Starch Index of Index of content burst breaking No. Kind percent 1 factor 8 length 3 Remarks 5 135 130 Example 1. 10 142 139 Example 2. 15 145 140 Example 3. 22 135 129 Example 4. 15 140 136 Example 5. 10 140 137 Example 6. 13. 6 142 138 Example 7. 9. 9 141 137 Example 8. 14. 3 136 131 Example 9.
6. 7 135 131 Example 10. 13. 8 140 139 Example 11.
130 127 Comparative polymer. Example 1. 13.- B 9. 1 132 128 Comparative Example 2. 14- G 25 128 126 Comparative Example 3. 15 115 113 Comparative Example 4 without acid monomer. 16...-.. G 15 130 126 Comparative Example 5, acid monomer used by 25%. 17.-- Soluble 103 102 starch. 18- Oxidized 103 102 starch.
G=graft polymerization product, B =blended composition, GB= graft polymerized and blended product.
(Starch)/ (starch plus charged monomer) X100 (percent). Absolute value calculated based on the strength of paper incorporating no reinforcing agent taken as 100.
What we claim is:
1. A paper reinforcing agent having, as its main component, a composition consisting essentially of (A) a watersoluble polysaccharide selected from the group consisting of starch and modified starch and (B) a graft polymer, said graft polymer having (A) as a backbone polymer and a copolymer (C) as a branch polymer, said copolymer (C) being the reaction product of a monomer mixture (D) consisting of 80 to 98% by weight of acrylamide and 2 to 20% by weight of at least one unsaturated carboxylic acid and derivatives thereoof selected from the group consisting of acrylic acid, methacrylic acid, maleic anhydride, itaconic acid and crotonic acid, and the proportion of (A) including that contained in the backbone polymer falling in the range of from to 22% by weight based on the entire composition.
2. A paper reinforcing agent according to claim 1, wherein the proportion of the water-soluble polysaccharide (A) falls in the range of from to 20% by Weight.
3. A paper reinforcing agent according to claim 1, wherein the water-soluble polysaccharide is a modified starch derivative selected from the group consisting of oxidized starches, and etherified starches.
4. A paper reinforcing agent having, as its main component, a composition consisting essentially of (A) a water-soluble polysaccharide selected from the group consisting of starch and modified starch, (B) a graft copolymer and (C') a copolymer derived from a monomer mixture (D), said monomer mixture (D) being made up of 80 to 98% by weight of acrylamide and 2 to 20% by weight of at least one unsaturated carboxylic acid and derivatives thereof selected from the group consisting of acrylic acid, methacrylic acid, maleic anhydride, itaconic acid, and crotonic acid, and said graft polymer (B) having (A) as a backbone polymer and the copolymer (C') as a branch polymer, the proportion of (A) in the composition falling in the range of from 5 to 22% by weight.
5. A paper reinforcing agent according to claim 4, wherein the proportion of the water-soluble polysaccharide (A) falls in the range of from 10 to 20% by weight.
6. A paper reinforcing agent according to claim 1, wherein the copolymer (C) has a molecular weight of at least 2000.
, 7. A paper reinforcing agent according to claim 1, wherein the proportion of the water-soluble polysaccharide (A) falls in the range of from 10 to 15% by weight.
8. A paper reinforcing agent according to claim 1, wherein the unsaturated acid is acrylic acid.
9. A paper reinforcing agent having as its main compo nent a composition consisting essentially of (A) a watersoluble polysaccharide selected from the group consisting of starch and modified starch and (B) a graft polymer, said graft polymer having the watersoluble polysaccharide (A) as a backbone polymer and a copolymer (C) as a branch polymer, said copolymer (C) being the reaction product of a monomer mixture consisting essentially of from 55 to 98% by weight of acrylamide, 2 to 20% by weight of an unsaturated carboxylic acid and derivatives thereof selected from the group consisting of acrylic acid, methacrylic acid, maleic anhydride, itaconic acid and crotonic acid, and up to 25% by weight of at least one vinyl monomer selected from the group consisting of methacrylamide, acrylonitrile, methacrylonitrile, alkyl acrylates and alkyl methacrylates, and the proportion of the water-soluble polysaccharide (A), including that contained in the backbone polymer, falling within the range of from 5 to 22% by weight based on the entire weight of the composition.
10. A paper reinforcing agent having as its main component a composition consisting essentially of (A) a watersoluble polysaccharide selected from the group consisting of starch and modified starch, (B) a graft copolymer and (C') a coplymer derived from a monomer mixture (D), said monomer mixture (D) consisting essentially of from 55 to 98% by weight of acrylamide, 2 to 20% by weight of an unsaturated carboxylic acid and derivatives thereof selected from the group consisting of acrylic acid, methacrylic acid, malcic anhydride, itaconic acid and crotonic aid, and up to 25% by weight of at least one vinyl monomer selected from the group consisting of methacrylamide, acrylonitrile, methacrylonitrile, alkyl acrylates, and alkyl methacrylates, and said graft polymer (B) having the watersoluble polysaccharide (A) as a backbone polymer and (C') as a branch polymer, the proportion of (A) in the composition falling in the range of from 5 to 22% by weight.
11. A paper reinforcing agent according to claim 9, wherein the unsaturated acid is acrylic acid and the vinyl monomer is acrylonitrile.
12. A paper reinforcing agent according to claim 9, wherein the copolymer (C) has a molecular weight of at least 2000.
13. A paper reinforcing agent according to claim 10, wherein the copolymer (C') has a molecular weight of at least 2000.
14. A paper reinforcing agent according to claim 10, wherein the unsaturated acid is acrylic acid and the vinyl monomer is acrylonitrile.
15. A paper containing reinforcing amount of the reinforcing agent of claim 1.
16. A paper containing a reinforcing amount of the reinforcing agent of claim 4.
17. A paper according to claim 15, wherein the amount of reinforcing agent contained therein is 0.5% based on the weight of the pulp.
References Cited UNITED STATES PATENTS 3,095,391 6/1963 Brockway et al. 260-17.4 3,138,564 6/1964 Borunsky 260-17 3,635,857 1/1972 Restaino et al. 260--17.4 3,640,925 2/ 1972 Tovzinsky et a1. 26017.4 GC 3,687,884 8/1972 Haung 26029.6
WILLIAM H. SHORT, Primary Examiner E. WOODBERRY, Assistant Examiner US. Cl. XIR.
162175; 26017.4 GC, 17.4 ST
I UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3 785,921 Dated January 15. I974 Inventor(s) Fumio Ide, Tsuneo Kodama, and Yahide Kotake It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Column 1, line 6, change Nitto Kagyo Co. Ltd." to Nitto Kagaku Kogyo C0., Ltd. 7 between lines 8 and 9, insert Claim priority, application Japan, December 26, 1970, 129611/70 Signed and sealed this 9th day of July 1974.
(SEAL) Attesc:
MCCOY M. GIBSON, JR. 0. MARSHALL DANN Attesting Officer Commissioner of Patents po'wso I p USCOMM-DC 6O376-P69 Ui5. GOVERNMENT PRINHNG OFFICE I969 0-366-334
US00210595A 1970-12-26 1971-12-21 Paper reinforcing composition containing starch and a starch-acrylamide graft polymer Expired - Lifetime US3785921A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP45129611A JPS5247044B1 (en) 1970-12-26 1970-12-26

Publications (1)

Publication Number Publication Date
US3785921A true US3785921A (en) 1974-01-15

Family

ID=15013729

Family Applications (1)

Application Number Title Priority Date Filing Date
US00210595A Expired - Lifetime US3785921A (en) 1970-12-26 1971-12-21 Paper reinforcing composition containing starch and a starch-acrylamide graft polymer

Country Status (4)

Country Link
US (1) US3785921A (en)
JP (1) JPS5247044B1 (en)
CA (1) CA949691A (en)
FR (1) FR2124662A5 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4134863A (en) * 1976-12-06 1979-01-16 The United States Of America As Represented By The Secretary Of Agriculture Highly absorbent graft copolymers of polyhydroxy polymers, acrylonitrile, and acrylic comonomers
EP0011303A2 (en) * 1978-11-20 1980-05-28 Cpc International Inc. Starch-sized paper
US4278573A (en) * 1980-04-07 1981-07-14 National Starch And Chemical Corporation Preparation of cationic starch graft copolymers from starch, N,N-methylenebisacrylamide, and polyamines
US4323487A (en) * 1979-10-22 1982-04-06 Henkel Corporation Absorbent starch graft polymer and method of its preparation
US4330365A (en) * 1980-04-07 1982-05-18 National Starch And Chemical Corporation Paper containing cationic starch graft copolymers from starch, N,N'-methylenebisacrylamide, and polyamines
EP0130961A1 (en) * 1983-06-02 1985-01-09 Monsanto Company Viscosity modifiers for grafted starch polymer solutions
EP0257412A1 (en) * 1986-08-14 1988-03-02 BASF Aktiengesellschaft Paper-sizing agent based on particulate aqueous dispersions
EP0276770A3 (en) * 1987-01-30 1988-08-24 Basf Aktiengesellschaft Paper-sizing agent based on particulate aqueous dispersions
EP0405921A1 (en) * 1989-06-26 1991-01-02 Sequa Chemicals Inc. Starch binder composition
EP0405917A1 (en) * 1989-06-26 1991-01-02 Sequa Chemicals Inc. Starch polymer graft
US5055541A (en) * 1989-06-27 1991-10-08 Sequa Chemicals, Inc. Starch polymer graft composition and method of preparation
US5294301A (en) * 1991-05-30 1994-03-15 National Starch And Chemical Investment Holding Corporation Process for manufacture of paper
US6787574B1 (en) 2000-10-24 2004-09-07 Georgia-Pacific Resins, Inc. Emulsification of alkenyl succinic anhydride size
US20050153421A1 (en) * 2002-03-22 2005-07-14 Kozo Murao Aqueous acrylamide solution containing saccharide
RU2733729C2 (en) * 2016-03-01 2020-10-06 Кемира Ойй Polymer composition, use thereof and surface sizing

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4134863A (en) * 1976-12-06 1979-01-16 The United States Of America As Represented By The Secretary Of Agriculture Highly absorbent graft copolymers of polyhydroxy polymers, acrylonitrile, and acrylic comonomers
EP0011303A2 (en) * 1978-11-20 1980-05-28 Cpc International Inc. Starch-sized paper
EP0011303A3 (en) * 1978-11-20 1980-08-20 Cpc International Inc. Process for the manufacture of paper, paper additive composition and paper of improved surface properties
US4323487A (en) * 1979-10-22 1982-04-06 Henkel Corporation Absorbent starch graft polymer and method of its preparation
US4278573A (en) * 1980-04-07 1981-07-14 National Starch And Chemical Corporation Preparation of cationic starch graft copolymers from starch, N,N-methylenebisacrylamide, and polyamines
US4330365A (en) * 1980-04-07 1982-05-18 National Starch And Chemical Corporation Paper containing cationic starch graft copolymers from starch, N,N'-methylenebisacrylamide, and polyamines
EP0130961A1 (en) * 1983-06-02 1985-01-09 Monsanto Company Viscosity modifiers for grafted starch polymer solutions
EP0257412A1 (en) * 1986-08-14 1988-03-02 BASF Aktiengesellschaft Paper-sizing agent based on particulate aqueous dispersions
US4855343A (en) * 1986-08-14 1989-08-08 Basf Aktiengesellschaft Paper size based on finely divided aqueous dispersions
EP0276770A3 (en) * 1987-01-30 1988-08-24 Basf Aktiengesellschaft Paper-sizing agent based on particulate aqueous dispersions
EP0405921A1 (en) * 1989-06-26 1991-01-02 Sequa Chemicals Inc. Starch binder composition
EP0405917A1 (en) * 1989-06-26 1991-01-02 Sequa Chemicals Inc. Starch polymer graft
US5026746A (en) * 1989-06-26 1991-06-25 Sequa Chemicals, Inc. Starch based binder composition for non-woven fibers or fabrics
US5055541A (en) * 1989-06-27 1991-10-08 Sequa Chemicals, Inc. Starch polymer graft composition and method of preparation
US5294301A (en) * 1991-05-30 1994-03-15 National Starch And Chemical Investment Holding Corporation Process for manufacture of paper
US6787574B1 (en) 2000-10-24 2004-09-07 Georgia-Pacific Resins, Inc. Emulsification of alkenyl succinic anhydride size
US20050153421A1 (en) * 2002-03-22 2005-07-14 Kozo Murao Aqueous acrylamide solution containing saccharide
US7129217B2 (en) * 2002-03-22 2006-10-31 Dia-Nitrix Co., Ltd. Aqueous acrylamide solution containing saccharide
AU2003221403B2 (en) * 2002-03-22 2008-02-21 Mitsubishi Chemical Corporation Aqueous acrylamide solution containing saccharide
CN100462372C (en) * 2002-03-22 2009-02-18 大野绿水株式会社 Aqueous acrylamide solution containing saccharide
RU2733729C2 (en) * 2016-03-01 2020-10-06 Кемира Ойй Polymer composition, use thereof and surface sizing
US11447618B2 (en) 2016-03-01 2022-09-20 Kemira Oyj Polymer composition, its use and a surface size

Also Published As

Publication number Publication date
CA949691A (en) 1974-06-18
FR2124662A5 (en) 1972-09-22
JPS5247044B1 (en) 1977-11-30

Similar Documents

Publication Publication Date Title
US3785921A (en) Paper reinforcing composition containing starch and a starch-acrylamide graft polymer
US4251651A (en) Amphoteric polyelectrolyte
US4690996A (en) Inverse emulsions
JP2596593B2 (en) Process for producing paper, cardboard or paperboard with high drying strength
CA1254315A (en) Cationic grafted starch copolymers
NO166359B (en) PACKAGING SUBJECTS FOR USE FOR AIR-CLOSED CONTAINERS SPECIAL FOR FOOD PRODUCTS.
US3840489A (en) Novel vinylamide dry strength resins and paper containing the same hydrophilic-hydrophobic vinylamide polymers and manufacture of paper
JPS63227895A (en) Production of paper, cardboard and thick paper having high dry strength
KR100646003B1 (en) Polymer dispersion and method to produce the same
CN106968132A (en) A kind of Study of Paper-Strengthening Agent Based
US10590607B2 (en) Method for producing interpenetrating polymer network material, a product thereof and use of the product
US4305860A (en) Stable, pumpable, solvent-free colloidal polyampholyte latices, their preparation and use in paper
US4581402A (en) Novel stable water in oil dispersions of hydrosoluble cationic polymers based on salified or quaternized dimethylaminoethyl acrylate, process of preparation thereof and application thereof as flocculents
US2999038A (en) Method of producing wet-strength papers
US3976552A (en) Water-soluble graft polymers produced by an outwardly dry radiation polymerization process
CA1093236A (en) Additive composition for use in papermaking
AU696666B2 (en) Water-soluble polymers
CN106866886A (en) A kind of paper both sexes drying strengthening agent
US4167439A (en) Non-ionic, water-soluble polymers for improving the dry-strength of paper
US3017291A (en) Wet-strength paper and method of producing same
ES432661A1 (en) Process for the preparation of transparent high impact strength vinyl chloride polymers
CA3001674C (en) Method of increasing drainage performance of a pulp slurry during manufacture of paper products, and products therefrom
US3451890A (en) Rosin size compositions
US2654671A (en) Paper product and process for its preparation
US3640925A (en) Process for the simultaneous gelatinization and graft copolymerization of monomers onto starch