US3785811A - Zinc-aluminum alloy - Google Patents
Zinc-aluminum alloy Download PDFInfo
- Publication number
- US3785811A US3785811A US00053039A US3785811DA US3785811A US 3785811 A US3785811 A US 3785811A US 00053039 A US00053039 A US 00053039A US 3785811D A US3785811D A US 3785811DA US 3785811 A US3785811 A US 3785811A
- Authority
- US
- United States
- Prior art keywords
- percent
- weight
- alloy
- zinc
- aluminum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 69
- 239000000956 alloy Substances 0.000 title claims abstract description 69
- 229910000611 Zinc aluminium Inorganic materials 0.000 title abstract description 16
- HXFVOUUOTHJFPX-UHFFFAOYSA-N alumane;zinc Chemical compound [AlH3].[Zn] HXFVOUUOTHJFPX-UHFFFAOYSA-N 0.000 title abstract description 14
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 29
- 239000011701 zinc Substances 0.000 claims abstract description 29
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 26
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 24
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 24
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052793 cadmium Inorganic materials 0.000 claims abstract description 6
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000011777 magnesium Substances 0.000 claims abstract description 6
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 6
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims abstract description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 abstract description 56
- 229910052759 nickel Inorganic materials 0.000 abstract description 28
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 22
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 abstract description 17
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 abstract description 17
- 239000010949 copper Substances 0.000 abstract description 17
- 229910052802 copper Inorganic materials 0.000 abstract description 17
- 239000010936 titanium Substances 0.000 abstract description 17
- 229910052719 titanium Inorganic materials 0.000 abstract description 17
- 229910052751 metal Inorganic materials 0.000 abstract description 13
- 239000002184 metal Substances 0.000 abstract description 13
- 229910052742 iron Inorganic materials 0.000 abstract description 11
- 229910052710 silicon Inorganic materials 0.000 abstract description 10
- 239000010703 silicon Substances 0.000 abstract description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 9
- 238000001816 cooling Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 5
- 238000007711 solidification Methods 0.000 description 5
- 230000008023 solidification Effects 0.000 description 5
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- 229910001297 Zn alloy Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 239000000654 additive Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000005496 eutectics Effects 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 238000000265 homogenisation Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- FJMNNXLGOUYVHO-UHFFFAOYSA-N aluminum zinc Chemical compound [Al].[Zn] FJMNNXLGOUYVHO-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000004512 die casting Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000011067 equilibration Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- OYIKARCXOQLFHF-UHFFFAOYSA-N isoxaflutole Chemical compound CS(=O)(=O)C1=CC(C(F)(F)F)=CC=C1C(=O)C1=C(C2CC2)ON=C1 OYIKARCXOQLFHF-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000005555 metalworking Methods 0.000 description 1
- 238000007712 rapid solidification Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 238000007666 vacuum forming Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C18/00—Alloys based on zinc
- C22C18/04—Alloys based on zinc with aluminium as the next major constituent
Definitions
- ABSTRACT A zinc-aluminum alloy consisting of 18 to 24% by weight (preferably 21% by weight) aluminum, the bal-- ance zinc and 0.1 to 1.5% by weight nickel (preferably 0.3 to 1.0% by weight).
- the nickel component represents a further metal for which can be substituted, to an amount of about 50% by weight, titanium in an amount of 0.05 to 0.5% by weight of the alloy, copper up to 0.5% by weight of the alloy, iron in an amount of up to 0.75% by weight of the alloy, and silicon in an amount of up to 0.75% by weight of the alloy.
- the lead, cadmium and tin content should be no greater than 0.05% by weight of the alloy and the magnesium content is preferably less than 0.0005% by weight of the alloy.
- ductile metals facilitating shaping in dies or the like.
- Typical shaping methods include extrusion, drawing and die-casting and, depending upon the requirements of the alloy, bodies composed thereof must be capable of withstanding bending, folding, compression and tensile stresses. It is advantageous, therefore, to have high ductility and resistance to rupture, high resistance to fatigue and high strength, e.g. compressive strength and tensile strength. It is also important that these characteristics be present at room temperature, the bodies being most frequently used at this temperature or at a mean. temperature close to room temperature.
- binary zincaluminum alloys in which some of the ductile charac teristics of zinc and the compressive-strength characteristics of aluminum can be combined.
- binary zinc-aluminum alloys containing between I and 63 percent by weight aluminum and 99 to 37 percent by weight zinc. (the'balance) have been studied.
- the solid solution develops in a fine-grained eutectic crystalline structure and yields an alloy of high ductility which can be plastically deformed readily with relatively low mechanical stress.
- Such alloys are advantageous for die forming, extrusion and drawing.
- the alloy is amenable to vacuum-forming, i.e. foils of the metal, e.g. prepared by lowering, can be vacuum-formed in a manner analogous to the formation of blisters, bubbles, containers and the like from thermoplastic foils.
- this unique method of forming which was not generally possible earlier in the metal-working art, opens new vistas in the processing of sheet metals.
- Such zinc-aluminum alloys in this state, with compressive strength of 16 to 20 kg/mm have elongation values of more than 100 percent, so that bands, sheets and strips of the metal can be bent or folded through l80 without rupture or crack formation and can be used more effectively in deep-drawing.
- these highly ductile zinc-aluminum alloys have the disadvantage that the creep resistance of the metal is low.
- creep resistance it will'be understood that it is intended to designate the load which can be applied to the workpiece which will develop a shape change of more than 1 percent per year.
- the desired alloys under discussion have a creep resistance of, say, 0.4 kg/mm and this value is extremely low, even lower than that of unalloyed zinc.
- Another object of the invention is to provide a zincaluminum-based alloy having high tensile strength, a higher creep resistance than has been attainable heretofore with such alloys, and yet has an effective ductil- 1ty.
- high-ductility zinc/aluminum alloy which possesses high creep resistance
- the alloy consisting essentially of 18 to 24 percent by weight of aluminum, 0.1 to L5 percent by weight of a further metal component consisting in larger measure of nickel and the balance, i.e. 74.5 to 81.9 percent by weight highgrade zinc.
- high-grade zinc is used herein to refer to zinc in accordance with ASTM specification B6 49 and containing a maximum of 0.006 percent by weight lead, 0.005 percent by weight iron, 0.004 percent by weight cadmium and, generally, having a total impurity level no greater than 0.050 percent by weight.
- the high-grade zinc of the present invention is 99.95 percent pure.
- the third component i.e. the nickel-containing component, constitutes 0.3 percent by weight to l.0 percent by weight of the alloy while the aluminum content is preferably 21 percent by weight.
- the third metallic component of the alloy may consist entirely of nickel percent by weight of the third component which constitutes 0.1 to 1.5 percent by weight of the alloy), although it has been found desirable to add or provide other metals, preferably in lesser proportion than the nickel, as part of this third metallic component.
- the nickel content can, according to the invention, be replaced at least in part (up to 50 percent of the nickel or third metallic component) with 0.05 to 0.5 percent by weight titanium.
- the nickel and/or titanium component can be substituted with up to 0.5 percent by weight copper (0 to 5 percent) as long as the copper content does not exceed 50 percent of the nickel and/or titanium content.
- the nickel content of the alloy is 1 percent by weight and the titanium content is 0.5 percent by weight, neither copper nor any of the other possible constituents of the third metallic components can be present.
- the nickel content is 0.75 percent by weight, the titanium content can reach 0.375 percent by weight and a copper content of 0.375 percent by weight is permissible by virtue of the upper limit of the third metallic component (1.5 percent) of the alloy.
- the copper content will be at most 50'percent of the titanium content so that, in the present example, the upper limit of the copper content will be 0.188 percent.
- the alloy may contain, as part of the third component, iron and/or silicon in an amount ranging up to 50 percent by weight of the nickel and/or titanium content. In all cases, however, it' is important that the lead, cadmium and tin contents of the alloy be collectively less than 0.05 percent by weight and that the magnesium content be below 0.0005 percent.
- the alloying components incorporated in the zinc-aluminum matrix are insoluble in zinc and aluminum in the solid state and constitute, in the dendritic structure, intermediate phases in finely defined form, I provide a rapid cooling of the melt to ensure the maintenance of the fine-grained structure. According to an important feature of the present invention, therefore,
- the volume of the metal body (extruded) should be 5 to mm", preferably 8 to 15 mm.
- the extruded body, billet or bar may have a rollable thickness of 10 to 50 mm, preferably 16 to mm.
- the rapid cooling and solidification results in rapid crystal formation so that it is advisable, according to the invention, to permit equilibration or homogenization of the lattice structure for a relatively long period at a temperature of 300 to 380C. 1 have found that such a procedure yields an increase in the creep resistance of the metal body of five to eight times as compared with conventional alloys.
- the alloy of the present invention is malleable and can be employed for the production of plates, strips, bands, tubes and bars of various configurations in the manner currently employed with the production of extruded articles.
- Example 1 representing the system of the present invention
- Example 11 representing a control in which features of the invention are omitted for the purpose of comparison.
- EXAMPLE I An alloy is prepared by melting high-purity zinc, aluminum and nickel to yield a composition of 78 percent by weight zinc, 21 percent by weight aluminum and 1 percent by weight nickel.
- the extruded block is provided with 1 mm of cooling surface for each 10 mm of volume and is rolled to a square cross-section, 4 cm on each side.
- Example 2 Upon solidification of the block to a temperature of 220C over a period of 10 seconds, the elongation to break was 125 percent and the creep resistance was 1.2 kg/mm A block of the same dimension cooled to room temperature over a solidification and cooling time of 2 seconds had an elongation to break of 120 percent and a creep resistance of 2.8 kg/mm EXAMPLE II A zinc-aluminum alloy containing 79 percent by weight zinc and 21 percent aluminum was produced and treated in the manner described in Example 1.
- creep resistance was found to range between I and 3 kg/mm, or 2.5 to six times that of a composition omitting the third component, while the elongation to break or ductility was equal to that of the composition without the third component or deviated therefrom by less than 10 percent;
- the alloy in each case, was extruded at a temperature close to the melting point in a bar having a thickness of 20 mm and a circumference such that for each 10 mm of extruded volume, the surface area at which cooling was effected was 1 mm
- the bar was rapidly cooled to room temperature in a period of 2 seconds. Thereafter, the bar was brought to a temperature of 350C and maintained at this temperature for a period of minutes to 5 hours (preferably 30 to 60 minutes) for homogenization.
- a zinc-aluminum alloy consisting essentially of a first metallic component consisting of aluminum in an amount between 18 and 24 percent by weight of the alloy, a second metallic component consisting of zinc in amount of copper being up to 0.5 percent by weight of the alloy, and the total amount of copper, iron, and silicon in the alloy not exceeding 50 percent by weight of the total content of nickel and titanium in the alloy.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Gates (AREA)
- Continuous Casting (AREA)
- Extrusion Of Metal (AREA)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE19691934788 DE1934788A1 (de) | 1969-07-09 | 1969-07-09 | Legierung auf Zink-Aluminium-Basis und Verfahren zu deren Herstellung |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3785811A true US3785811A (en) | 1974-01-15 |
Family
ID=5739306
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US00053039A Expired - Lifetime US3785811A (en) | 1969-07-09 | 1970-07-07 | Zinc-aluminum alloy |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US3785811A (enrdf_load_stackoverflow) |
| BE (1) | BE752448A (enrdf_load_stackoverflow) |
| DE (1) | DE1934788A1 (enrdf_load_stackoverflow) |
| FR (1) | FR2056326A5 (enrdf_load_stackoverflow) |
| GB (1) | GB1257445A (enrdf_load_stackoverflow) |
| NL (1) | NL7010110A (enrdf_load_stackoverflow) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3888660A (en) * | 1972-12-25 | 1975-06-10 | Oiles Industry Co Ltd | Zinc alloy for bearing |
| US4717430A (en) * | 1984-06-18 | 1988-01-05 | Copper Development Association, Inc. | Soldering compositions, fluxes and methods of use |
| US4822272A (en) * | 1986-10-17 | 1989-04-18 | Agency Of Industrial Science And Technology | Mandrel for use in a manufacture of an article made of composite material |
| US4885927A (en) * | 1988-09-12 | 1989-12-12 | General Motors Corporation | Method and apparatus for press forming intricate metallic shapes such as spool valve elements |
| US20050189103A1 (en) * | 2004-02-27 | 2005-09-01 | Smith International, Inc. | Drillable bridge plug |
| US20100132960A1 (en) * | 2004-02-27 | 2010-06-03 | Smith International, Inc. | Drillable bridge plug for high pressure and high temperature environments |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE3633338A1 (de) * | 1986-10-01 | 1988-04-07 | Teves Gmbh Alfred | Metalleinsatz, insbesondere monometalleinsatz fuer lenkraeder |
| JP3247294B2 (ja) | 1996-06-28 | 2002-01-15 | 昭和電工株式会社 | 低温ろう付用アルミニウムろう材 |
-
1969
- 1969-07-09 DE DE19691934788 patent/DE1934788A1/de active Pending
-
1970
- 1970-06-24 FR FR7023353A patent/FR2056326A5/fr not_active Expired
- 1970-06-24 BE BE752448D patent/BE752448A/xx unknown
- 1970-06-24 GB GB1257445D patent/GB1257445A/en not_active Expired
- 1970-07-07 US US00053039A patent/US3785811A/en not_active Expired - Lifetime
- 1970-07-08 NL NL7010110A patent/NL7010110A/xx unknown
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3888660A (en) * | 1972-12-25 | 1975-06-10 | Oiles Industry Co Ltd | Zinc alloy for bearing |
| US4717430A (en) * | 1984-06-18 | 1988-01-05 | Copper Development Association, Inc. | Soldering compositions, fluxes and methods of use |
| US4822272A (en) * | 1986-10-17 | 1989-04-18 | Agency Of Industrial Science And Technology | Mandrel for use in a manufacture of an article made of composite material |
| US4885927A (en) * | 1988-09-12 | 1989-12-12 | General Motors Corporation | Method and apparatus for press forming intricate metallic shapes such as spool valve elements |
| US20050189103A1 (en) * | 2004-02-27 | 2005-09-01 | Smith International, Inc. | Drillable bridge plug |
| US7424909B2 (en) * | 2004-02-27 | 2008-09-16 | Smith International, Inc. | Drillable bridge plug |
| US20100132960A1 (en) * | 2004-02-27 | 2010-06-03 | Smith International, Inc. | Drillable bridge plug for high pressure and high temperature environments |
| US8469088B2 (en) | 2004-02-27 | 2013-06-25 | Smith International, Inc. | Drillable bridge plug for high pressure and high temperature environments |
Also Published As
| Publication number | Publication date |
|---|---|
| NL7010110A (enrdf_load_stackoverflow) | 1971-01-12 |
| FR2056326A5 (enrdf_load_stackoverflow) | 1971-05-14 |
| BE752448A (fr) | 1970-12-01 |
| GB1257445A (enrdf_load_stackoverflow) | 1971-12-15 |
| DE1934788A1 (de) | 1971-01-14 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10697046B2 (en) | High-performance 5000-series aluminum alloys and methods for making and using them | |
| US7550110B2 (en) | Al-Zn-Mg-Cu alloys and products with improved ratio of static mechanical characteristics to damage tolerance | |
| US5560789A (en) | 7000 Alloy having high mechanical strength and a process for obtaining it | |
| US4772342A (en) | Wrought Al/Cu/Mg-type aluminum alloy of high strength in the temperature range between 0 and 250 degrees C. | |
| US4636357A (en) | Aluminum alloys | |
| EP0546103A1 (en) | IMPROVED LITHIUM AND ALUMINUM ALLOY SYSTEM. | |
| US6726878B1 (en) | High strength aluminum based alloy and the article made thereof | |
| JPS608300B2 (ja) | 金属製品の製造方法 | |
| JPH0372147B2 (enrdf_load_stackoverflow) | ||
| CN112695230B (zh) | 一种高延伸率耐热铝合金车用零件及其制备方法 | |
| US20240263279A1 (en) | High strength microalloyed magnesium alloy | |
| US3984260A (en) | Aluminium base alloys | |
| ES475808A1 (es) | Procedimiento para la fabricacion de productos semiacabados soldables y esmaltables. | |
| US3402043A (en) | Copper base alloys | |
| US3785811A (en) | Zinc-aluminum alloy | |
| JPH0440418B2 (enrdf_load_stackoverflow) | ||
| RU2163938C1 (ru) | Коррозионно-стойкий сплав на основе алюминия, способ получения полуфабрикатов и изделие из него | |
| US4033794A (en) | Aluminium base alloys | |
| CA1119920A (en) | Copper based spinodal alloys | |
| US3297497A (en) | Copper base alloy | |
| US4944914A (en) | Titanium base alloy for superplastic forming | |
| CN115572870A (zh) | 一种增强型606x系铝合金及其制备和型材加工方法 | |
| US3841919A (en) | Aluminum-silicon-magnesium ternary superplastic alloy and method for manufacture thereof | |
| US3734785A (en) | Zinc forging alloy | |
| US5417919A (en) | Aluminum alloy material having high strength and excellent formability |