US3784122A - Sheet rewinder - Google Patents

Sheet rewinder Download PDF

Info

Publication number
US3784122A
US3784122A US00209074A US3784122DA US3784122A US 3784122 A US3784122 A US 3784122A US 00209074 A US00209074 A US 00209074A US 3784122D A US3784122D A US 3784122DA US 3784122 A US3784122 A US 3784122A
Authority
US
United States
Prior art keywords
sheet
core
roll
bonding agent
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00209074A
Inventor
H Kataoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3784122A publication Critical patent/US3784122A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H19/00Changing the web roll
    • B65H19/22Changing the web roll in winding mechanisms or in connection with winding operations
    • B65H19/2207Changing the web roll in winding mechanisms or in connection with winding operations the web roll being driven by a winding mechanism of the centre or core drive type
    • B65H19/2223Turret-type with more than two roll supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2301/00Handling processes for sheets or webs
    • B65H2301/40Type of handling process
    • B65H2301/41Winding, unwinding
    • B65H2301/414Winding
    • B65H2301/4148Winding slitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2408/00Specific machines
    • B65H2408/20Specific machines for handling web(s)
    • B65H2408/23Winding machines
    • B65H2408/231Turret winders
    • B65H2408/2315Turret winders specified by number of arms
    • B65H2408/23157Turret winders specified by number of arms with more than three arms

Definitions

  • This invention relates to a rewinder adapted to draw a feed sheet from a large roll of feed sheet and rewind the drawn sheet into small rolls. While the sheet is being wound on a rotating core, the decompressor roll is held down to press the sheet against the outer surface of the roll so as to permit the sheet to be wound around the core with a predetermined amount of tension. Bonding agent is applied to the upper surface of the sheet so that a bonding agent film is formed to a fixed length on the sheet.
  • the sheet is cut so that the bonding agent film is divided into two portions; front and rear portions.
  • the rear portion of the bonding agent film which now falls at the forward end of supply sheet is used to fasten that end of sheet onto a new core to start the winding of sheet thereon.
  • the front portion of the bonding agent film which now falls at the tail end of the cutoff portion of the sheet is used to fasten that end of sheet onto the underlying portion of sheet already wound on the core to complete the sheet winding.
  • FIG. 1 is a schematic side view of the entire rewinder in the state following completion of the cores winding motion
  • FIG. 2 is a side view of a part of the rewinder in the state in which a turret is in the process of making an angular rotation subsequent to completion of the cores winding motion
  • FIG. 3 is a side view of a part of the rewinder in the state in which the angular rotation of the turret has already been completed and the sheet is being cut by a cutting device,
  • FIG. 4 is a side view of a part of the rewinder in the state in which the sheet cutting has been completed and the cores winding motion has been resumed
  • FIG. 5 and FIG. 6 are side views of depressor rolls which differ in design from the depressor rolls illustrated in FIG. 1 through FIG. 4;
  • FIG. 7 is a plan view showing a part of the turret in section.
  • FIG. 8 is a side view of the turret as seen in a direction different from that of FIG. 1.
  • the supply sheet wound in a roll 1 is mounted rotatably on a suitable support.
  • the sheet 1' paid off the roll is passed under a bonding agent applying means 2 and over a pair of rolls 3 and 3. It is then passed over a depressor roll 5 which is held in contact with a core 4.
  • the sheet 1' is wound up around the core, with the upper surface of sheet facing toward the core.
  • the depressor roll 5 is supported at the free end of a swing arm 6.
  • the swing arm 6 is pushed out as by the piston of a piston type actuator 7 to confer energy for bringing the depressor roll 5 into contact with the outer surface of the core 4.
  • the depressor roll 5 is pushed back proportionally and the piston of the actuator 7 retracts by forcing the fluid (such as, for example, air) out of the cylinder through a throttle, causing the swing arm 6 to swing in the direction opposite that of energy exertion.
  • the fact that the core has wound up a predetermined amount of feed sheet (a full core) is determined by using, as a parameter, the position to which the swing arm 6 has been swung back in the direction opposite that of energy exertion, the total diameter of the roll of sheet or the total length of feed sheet paid off the roll 1.
  • the rotation of the core 4 for sheet winding is stopped in the manner described hereinafter.
  • the core 4 rotates itself counterclockwise. It is held in position indirectly by an angularly rotatable main shaft 10 which is disposed lateral thereto. It, therefore, can be revolved around the main shaft in consequence of the rotation of the main shaft.
  • the main shaft 10 is adapted so as to produce an angular rotation, at a time.
  • a disk 11 At one end thereof is fastened a disk 11.
  • spindles 12 are disposed parallel to the main shaft, spaced equally by intervals of 90 and supported in position each by a bearing provided with a one-way clutch 13 which is rotatable only in the counterclockwise direction and not rotatable in the clockwise direction.
  • the aforementioned core 4 is inserted'around the said spindle 12.
  • the first spindle assumes the first position at which a new core is set in position on the spindle
  • the second spindle assumes the second position at which the core set thereon winds up the feed sheet while it is kept in contact with the depressor roll 5
  • the third spindle assumes the third position at which the tail end of the sheet wound on the core is fastened
  • the fourth spindle assumes the fourth position at which the roll of sheet already wound on the core is removed from the spindle.
  • the spindle 12 can be that which has an equiangular hexagonal section, so that it may be inserted fast in the inner hollow of the core and rotated in conjunction with the core.
  • a large toothed wheel 14 may be mounted freely so as to be rotated relatively to the main shaft 10. This toothed wheel is continuously rotated by motive power.
  • Each spindle l2 is-interlocked with a shaft 6 via an electromagnetic on-off clutch 15.
  • the shaft 16 has a small toothed wheel 17 fitted thereon and, by the agency thereof, is meshed with the said large toothed wheel 14.
  • the said shaft 16 may also be supported opposite the disk. This disk 11 may be substituted by a set of radially arranged spokes.
  • the bonding agent applying means 2 descends to a point intervening between the rolls 3 and 3, applies bonding agent 19 sideways onto the upper surface of the sheet 1', and ascends back to its former position.
  • the core which is being advanced from the second position to the third position by the 90 rotation of the main shaft tends to rotate clockwise because of a pull given by the sheet wound thereon. Since the spindle 12 is supported in position, as mentioned previously, by a bearing which is provided with a oneway clutch 13, however, the core is prevented from being rotated clockwise. As a consequence, the core draws the last portion of sheet out of the roll to a length corresponding to the distance travelled by the core because of the 90 rotation of the main shaft. The sheet 1' is passed over half of the circumference of the depressor roll and is pulled by the core which is in motion from the second position to the third position.
  • the shaft around which the feed roll 1 is mounted actuates brakes 21 to control its free rotation.
  • the rotation of the feed roll is so regulated that the sheet may not be broken by the tension which builds up in the sheet in consequence of the 90 rotation of the main shaft.
  • the aforesaid one-way clutch 13 serves the purpose of preventing the spindle 12 from being rotated clockwise while the core at the second position is being advanced to the third position in consequence of the 90 rotation of the main shaft. Therefore, it may be utilized as a substitute for a braking means.
  • the bonding agent 19 applied to the sheet 1 by the bonding agent applying means 2 is essentially required to be moved to a position such that the front portion 19b and the rear portion 190 thereof fall on both sides of the point at which the depressor roll 5 comes into contact with the core which has just assumed the second position.
  • the position at which the bonding agent is applied to the sheet by the bonding agent applying means must be fixed in accordance with the diameter of the roll of sheet to be Wound on the core.
  • Denoted by 18 is a regulator adapted to move the bonding agent applying means 2 in the direction of the length of sheet 1' so as to adjust the position of bonding agent application for the purpose mentioned above.
  • the said regulator 18 may be omitted, of course, where the sheet rewinder of this invention is used for rewinding a feed sheet having a fixed thickness into rolls each containing a fixed length of sheet without exception.
  • the component of the tension which builds up in the sheet 1' while the sheet 1 is being drawn out of roil in consequence of the rotation of the main shaft keeps the depressor roll 5 in a retracted position. While the depressor roll 5 is kept in that position, the front portion 19b of the bonding agent 19 is allowed to pass the point of contact without being brought into contact, on its upper surface, with the core which is being advanced to the second position.
  • the depressor roll 5 While the angular rotation of the main shaft is in process, the depressor roll 5 must be safely retained in its retracted position and the front portion 19b of the bonding agent must be allowed, with absolute certainty, to pass the said point of contact without being brought into contact with the core which is in transit to the second position.
  • a device which serves to temporarily immobilize the depressor roll in its retracted position into which the roll has been driven back by the increasing diameter of the roll of sheet wound on the core at the second position.
  • the port formed for the passage of the fluid (such as, for example, air) into and out of the cylinder may be blocked by an electromagnetic valve while the angular rotation of the main shaft is in process.
  • the piston is restricted from movingin either of the forward and backward directions.
  • the valve may be switched so as to permit the piston to move forward.
  • a claw member 23 is required to engage with a projection 6' on the swing arm 6 after the depressor roll has been brought to its retracted position.
  • the claw member 23 should be so adapted as to be movable along a circular locus described around the fulcrum 6" of the swing arm as the center, so that the required engagement with the projection 6 may be obtained at a fixed position which is determined by the desired diameter of the roll of sheet wound on the core.
  • a release means 24 such as, for example, a solenoid which, on completion of the angular rotation of the main shaft, pushes the claw member 23 against the energy being exerted thereto so as to release the engagement thereof with the projection 6.
  • FIG. 6 illustrates a depressor roll 5 which is constructed so as to be gravitationally brought into contact with the core.
  • the embodiment illustrated here is not provided with any means which serves the purpose of retaining the depressor roll 5 in its retracted position into which the roll has been pushed back by the increasing diameter of the roll of sheet wound on the core.
  • the arm 6 for suspending the depressor roll 5 is extended beyond the fulcrum 6". On the said extension of the arm, there is fixed a balance weight w which lessens the gravity of the depressor roll 5, so that the force with which the roll comes into contact with the surface of the core may be decreased to produce a mild impact between the two surfaces at the time of contact.
  • the cutter blade cuts the sheet 1' in the direction of its width at a point anterior to the point of contact between the depressor roll 5 and the core and at a position at which the front portion 19b of the bonding agent 19 is fastened to the sheet 1.
  • the said cutter blade 25 is supported in position by means of the screwed lever 26 and the guide 27 which are disposed parallel with each other below the sheet 1 in the direction of the sheets width.
  • the cutting of the sheet is effected by rotating the screw lever 26 so as to move the cutter blade across the sheet from outside one edge of the sheet to outside the other edge.
  • the subsequent round of cutting may be effected by reversing the direction of the movement of the cutter blade.
  • the screwed lever 26 is provided with a reciprocating screw thread, the direction of the lever rotation need not be reversed in making the cutter blade travel back and forth alternately on the screwed lever 26.
  • the clutches at the second and the third position are switched to their interlocked position respectively. Consequently, the cores held at these positions begin to rotate counterclockwise. Since the core at the third position need not be rotated any longer after the cut of sheet has been wound up on the roll, the clutch 15 at this position may be so adapted as to be switched back to its disconnected position thereafter.
  • a timer 28 may be inserted in the circuit which is feeding electric current to the clutch 15 at the third position. This timer 28 has only to be set so that the supply of electric current to the clutch will be discontinued upon lapse of the time which is required for completely winding the cut end of sheet.
  • a roller 29 may be disposed in such condition that the roller will come into contact with the outer surface of the sheet wound on the core at the third position. Then, the roller 29 enables the bonding agent 19 placed at the tail end of sheet to be fastened safely to the underlying sheet, completing the roll end sealing of sheet.
  • 30 and 30 denote sliptype current collector and brush which are used for feeding electric current to the clutch 15 at the second position so as to rotate the core placed at that position.
  • 31 and 31 denote slip-type current collector and brush which serve to feed electric current to the clutch 15 at the third position so as to rotate the core placed at that position.
  • the sheet rewinding operation can be continued fully automatically until the feed sheet 1 is used up, ifa device for removing the core together with the roll of sheet wound thereon from the spindle at the fourth position and a device for mounting an empty core on the spindle at the first position are additionally installed and they are operated respectively for the purposes mentioned each time the main shaft completes its rotation.
  • Grooves 32 may be formed annularly at fixed intervals on the outside of each spindle. While the core is being advanced from the first position to the second position, the core is made to rotate and pass under blades 33 which are regularly spaced. Then, the core while on the spindle can be cut crosswise by lowering these blades 33 until their edges protrude into the said grooves 32. At a position anterior to the bonding agent applying means 2, blades 34 for cutting the sheet 1 may be disposed so as to fallin the same planes as the said blades 33, whereby the sheet 1' can be divided into parallel strips. The strips of sheet, thereafter, are wound on the corresponding divided portions of the core.
  • annular blade grooves may be formed on the depressor roll 5 at the same intervals as the blades 34 so as to receive the protruding edges of these blades 34. Consequently, the blades and the corresponding blade grooves provide means for cutting the sheet into strips.
  • 35 and 35' are current collector and brush which are installed for the purpose of cutting the core crosswise.
  • the bonding agent applying means applies the bonding agent 19 on the upper surface of the sheet after the core stationed and rotated at the second position has wound up the predetermined amount of sheet, Then, while the core at the second position is being advanced without rotation to the next position and the core at the first position is simultaneously being advanced to the second position, the depressor roll which tends to come into contact with the outer surface of the core at the second position is kept out of the point of contact. While the depressor roll is kept in its retracted position, the bonding agent 19 applied on the sheet is moved so that it may straddle the said point of contact. Thereafter, the depressor roll is brought into contact with the outer surface of the core at the second position and the sheet is cut at a point anterior to the said point of contact so that the bonding 7 agent is divided into the front and the rear position.
  • the cores are rotated to permit the forward end of sheet and the tail end of sheet to be sealed respectively.
  • the rewinding of a large feed roll of sheet into small rolls of sheet can be accomplished with high efficiency.
  • a sheet rewinder wherein a core is rotated to draw out a sheet from a feed roll, the rotation of the core being stopped after the core has wound up a predetermined amount of sheet
  • said sheet rewinder comprising in combination, a means for applying a bonding agent to the sheet at a point intervening between the feed roll and the core while the cores rotation is suspended; a depressor roll disposed relative a core winding location and adapted to apply force against the sheet and towards contact with the outer surface of the core at a point intervening between the said bonding agent applying means and the core, said depressor roll disposed for retracting movement by the increasing diameter of the roll of sheet on the core; means for winding sheet material on the core; an angular rotating means for advancing the core having a predetermined amount of sheet wound thereon to a position free from contact with the depressor roll and subsequent to the application of the bonding agent by the bonding agent applying means; means for simultaneously advancing a new core to the core winding location at a position opposite the
  • a sheet rewinder wherein a core is rotated to draw out a sheet from a feed roll, the rotation of the core being stopped after the core has wound up a predetermined amount of sheet
  • said sheet rewinder comprising in combination, a means for applying a bonding agent to the sheet at a point intervening between the feed roll and the core while the cores rotation is suspended; a depressor roll disposed relative a core winding location and adapted to apply force against the sheet and towards contact with the outer surface of the core at a point intervening between the said bonding agent applying means and the core; said depressor roll disposed for retracting movement by the increasing diameter of the roll of sheet on the core; means for winding sheet material on the core; an angular rotating means for advancing the core having a predetermined amount of sheet wound thereon to a position free from contact with the depressor roll and subsequent to the application of the bonding agent by the bonding agent applying means; means for simultaneously advancing a new core to the core winding location at a position opposite the

Landscapes

  • Replacement Of Web Rolls (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

In the rewinding of a sheet from a feed roll onto smaller rolls, a bonding agent is applied to the upper surface of the sheet after a predetermined amount of the sheet has been wound to a predetermined tension and the sheet is cut so as to divided the area to which bonding agent has been applied to the front and rear. The front portion serves as a seal for the roll already wound while the rear portion serves to fasten the sheet to a new core.

Description

United States Patent [191 Kataoka SHEET REWINDER [76] Inventor: Hiroshi Kataoka, 5-8, Asahi l-chome, Iyomishima, Japan [22] Filed: Dec. 17, 1971 [21] Appl. No.1 209,074
[30] Foreign Application Priority Data Dec. 18, 1970 Japan 45/113030 [52] US. Cl 242/56 A, 242/56.2, 242/64 [51] Int. Cl B65h 19/26, B65h 19/06 [58] Field of Search 242/56 A, 56 R, 64,
[56] References Cited UNITED STATES PATENTS Young 242/56 R [451 Jan. 8, 1974 3,342,434 9/1967 Conrad 242/56 A X 3,383,062 5/1968 Meihofer... 242/56 R 3,377,032 4/1968 Jacobs 242/56 R Primary Examiner-George F. Mautz Assistant Examiner-Edward J. McCarthy Att0rneyKurt Kelman 5 7] ABSTRACT In the rewinding of a sheet from a feed roll onto smaller rolls, a bonding agent is applied to the upper surface of the sheet after a predetermined amount of the sheet has been wound to a predetermined tension and the sheet is cut so as to divided the area to which bonding agent has been applied to the front and rear. The front portion serves as a seal for the roll already wound while the rear portion serves to fasten the sheet to a new core.
8 Claims, 8 Drawing Figures PAIENTED JAN 3, 784. 122
1 sum 1 or a PATENTED JAN 8 74 sum 3 0F 4 PMENTEU JAN 8 3, 7 84. 12 2 I saw u M 4 -ATTORNEY INVENTOR SHEET REWINDER This invention relates to a rewinder adapted to draw a feed sheet from a large roll of feed sheet and rewind the drawn sheet into small rolls. While the sheet is being wound on a rotating core, the decompressor roll is held down to press the sheet against the outer surface of the roll so as to permit the sheet to be wound around the core with a predetermined amount of tension. Bonding agent is applied to the upper surface of the sheet so that a bonding agent film is formed to a fixed length on the sheet. The sheet is cut so that the bonding agent film is divided into two portions; front and rear portions. The rear portion of the bonding agent film which now falls at the forward end of supply sheet is used to fasten that end of sheet onto a new core to start the winding of sheet thereon. The front portion of the bonding agent film which now falls at the tail end of the cutoff portion of the sheet is used to fasten that end of sheet onto the underlying portion of sheet already wound on the core to complete the sheet winding. It is an object of the present invention to cause the front portion of the bonding agent film to be moved farther from the point of contact so as to keep that portion from coming into contact with the core before the aforesaid depressor roll is brought into contact with the outer surface of the core, thereafter bring the depressor roll into contact with the core and subsequently rotating the two cores so as to effect the said fastening of the two ends of bonding agent film.
This invention is described hereinafter with reference to the illustrated embodiments.
FIG. 1 is a schematic side view of the entire rewinder in the state following completion of the cores winding motion,
FIG. 2 is a side view of a part of the rewinder in the state in which a turret is in the process of making an angular rotation subsequent to completion of the cores winding motion,
FIG. 3 is a side view of a part of the rewinder in the state in which the angular rotation of the turret has already been completed and the sheet is being cut by a cutting device,
FIG. 4 is a side view of a part of the rewinder in the state in which the sheet cutting has been completed and the cores winding motion has been resumed,
FIG. 5 and FIG. 6 are side views of depressor rolls which differ in design from the depressor rolls illustrated in FIG. 1 through FIG. 4;
FIG. 7 is a plan view showing a part of the turret in section, and
FIG. 8 is a side view of the turret as seen in a direction different from that of FIG. 1.
The supply sheet wound in a roll 1 is mounted rotatably on a suitable support. The sheet 1' paid off the roll is passed under a bonding agent applying means 2 and over a pair of rolls 3 and 3. It is then passed over a depressor roll 5 which is held in contact with a core 4. By the counterclockwise rotation of the core 4, the sheet 1' is wound up around the core, with the upper surface of sheet facing toward the core.
The depressor roll 5 is supported at the free end of a swing arm 6. The swing arm 6 is pushed out as by the piston of a piston type actuator 7 to confer energy for bringing the depressor roll 5 into contact with the outer surface of the core 4. As the winding of sheet around the core progresses and the diameter of the roll of sheet increases gradually, the depressor roll 5 is pushed back proportionally and the piston of the actuator 7 retracts by forcing the fluid (such as, for example, air) out of the cylinder through a throttle, causing the swing arm 6 to swing in the direction opposite that of energy exertion. The fact that the core has wound up a predetermined amount of feed sheet (a full core) is determined by using, as a parameter, the position to which the swing arm 6 has been swung back in the direction opposite that of energy exertion, the total diameter of the roll of sheet or the total length of feed sheet paid off the roll 1. When this fact is sensed through such parameter, the rotation of the core 4 for sheet winding is stopped in the manner described hereinafter.
In order to draw the supply sheet from the roll 1 and wind up the drawn sheet, the core 4 rotates itself counterclockwise. It is held in position indirectly by an angularly rotatable main shaft 10 which is disposed lateral thereto. It, therefore, can be revolved around the main shaft in consequence of the rotation of the main shaft.
In the illustrated embodiment, the main shaft 10 is adapted so as to produce an angular rotation, at a time. At one end thereof is fastened a disk 11. On the circumference of the disk 11, four spindles 12 are disposed parallel to the main shaft, spaced equally by intervals of 90 and supported in position each by a bearing provided with a one-way clutch 13 which is rotatable only in the counterclockwise direction and not rotatable in the clockwise direction. The aforementioned core 4 is inserted'around the said spindle 12.
When the main shaft is brought to a stop after an angular rotation, the first spindle assumes the first position at which a new core is set in position on the spindle, the second spindle assumes the second position at which the core set thereon winds up the feed sheet while it is kept in contact with the depressor roll 5, the third spindle assumes the third position at which the tail end of the sheet wound on the core is fastened, and the fourth spindle assumes the fourth position at which the roll of sheet already wound on the core is removed from the spindle.
Setting of a new core on the spindle at the first position and removal of a full core from the spindle at the fourth position may be effected either manually or automatically with a mechanical means. The spindle 12 can be that which has an equiangular hexagonal section, so that it may be inserted fast in the inner hollow of the core and rotated in conjunction with the core.
At the protruding end of the main shaft 10 which penetrates through the disk 11, a large toothed wheel 14 may be mounted freely so as to be rotated relatively to the main shaft 10. This toothed wheel is continuously rotated by motive power.
Each spindle l2 is-interlocked with a shaft 6 via an electromagnetic on-off clutch 15. The shaft 16 has a small toothed wheel 17 fitted thereon and, by the agency thereof, is meshed with the said large toothed wheel 14. The said shaft 16 may also be supported opposite the disk. This disk 11 may be substituted by a set of radially arranged spokes.
Consequently, the winding of feed sheet by the counterclockwise rotation of the core 4 at the second position is effected so long as the on-off clutch 15 of the spindle 12 holding the said core 4 in position remains in the interlocked position (ON status). From this, it is clear that the said on-off clutch 15 has only to be switched to its disconnected position (OFF status) in order that the core 4 may cease its rotation the moment the aforesaid status of full core is sensed as mentioned previously.
When the core at the second position has wound up the predetermined amount of sheet thereon and, as a consequence, ceases its rotation, the bonding agent applying means 2 descends to a point intervening between the rolls 3 and 3, applies bonding agent 19 sideways onto the upper surface of the sheet 1', and ascends back to its former position. In the place of the bonding agent applying means, there may be used a means adapted to attach a piece of two-face adhesive tape to the upper surface of the sheet 1. When the application of bonding agent is completed, the main shaft 10 rotates one quarter of a circle, causing the core held at the second position to be advanced to the third position and the core held at the first position to the second position respectively.
In this case, the core which is being advanced from the second position to the third position by the 90 rotation of the main shaft tends to rotate clockwise because of a pull given by the sheet wound thereon. Since the spindle 12 is supported in position, as mentioned previously, by a bearing which is provided with a oneway clutch 13, however, the core is prevented from being rotated clockwise. As a consequence, the core draws the last portion of sheet out of the roll to a length corresponding to the distance travelled by the core because of the 90 rotation of the main shaft. The sheet 1' is passed over half of the circumference of the depressor roll and is pulled by the core which is in motion from the second position to the third position. Even if the core, while in transit from the second position to the third position after having wound up the predetermined amount of sheet at the second position, passes the point at which the depressor roll 5 will afterward come into contact therewith, the component of the said tension keeps the depressor roll 5 in a state pushed away in the direction opposite that of energy exertion. This condition lasts until the core has completed its travel from the second position to the third position. In the meantime, the core at the first position can be advanced to the second position without coming into contact with the upper surface of the sheet 1'.
While the main shaft is rotating one quarter of a circle, the shaft around which the feed roll 1 is mounted actuates brakes 21 to control its free rotation. The rotation of the feed roll is so regulated that the sheet may not be broken by the tension which builds up in the sheet in consequence of the 90 rotation of the main shaft.
The aforesaid one-way clutch 13 serves the purpose of preventing the spindle 12 from being rotated clockwise while the core at the second position is being advanced to the third position in consequence of the 90 rotation of the main shaft. Therefore, it may be utilized as a substitute for a braking means.
When the 90 rotation of the main shaft is completed, the brakes 2l are released to render the shaft 20 freely rotatable. Consequently, the tension which has kept the depressor roll 5 in a retracted condition is relieved and the depressor roll 5 is returned, by the energy exerted thereon, to where it is brought into contact with the outer surface of the core which has recently assumed the second position. Thus, it presses the sheet 1 against the core, causing the rear portion 19a of the bonding .agent 19 applied to the upper surface of the sheet I to adhere to the core which is now held at the second position.
When the sheet 1' is drawn out of the core while the core is being advanced from the second position to the third position in consequence of the 90 rotation of the main shaft, the bonding agent 19 applied to the sheet 1 by the bonding agent applying means 2 is essentially required to be moved to a position such that the front portion 19b and the rear portion 190 thereof fall on both sides of the point at which the depressor roll 5 comes into contact with the core which has just assumed the second position. For this purpose, the position at which the bonding agent is applied to the sheet by the bonding agent applying means must be fixed in accordance with the diameter of the roll of sheet to be Wound on the core. Denoted by 18 is a regulator adapted to move the bonding agent applying means 2 in the direction of the length of sheet 1' so as to adjust the position of bonding agent application for the purpose mentioned above. The said regulator 18 may be omitted, of course, where the sheet rewinder of this invention is used for rewinding a feed sheet having a fixed thickness into rolls each containing a fixed length of sheet without exception.
The component of the tension which builds up in the sheet 1' while the sheet 1 is being drawn out of roil in consequence of the rotation of the main shaft keeps the depressor roll 5 in a retracted position. While the depressor roll 5 is kept in that position, the front portion 19b of the bonding agent 19 is allowed to pass the point of contact without being brought into contact, on its upper surface, with the core which is being advanced to the second position.
While the angular rotation of the main shaft is in process, the depressor roll 5 must be safely retained in its retracted position and the front portion 19b of the bonding agent must be allowed, with absolute certainty, to pass the said point of contact without being brought into contact with the core which is in transit to the second position. For this purpose, there may be incorporated a device which serves to temporarily immobilize the depressor roll in its retracted position into which the roll has been driven back by the increasing diameter of the roll of sheet wound on the core at the second position.
Where the energy exerted on the depressor roll 5 originates in the piston type actuator 7, the port formed for the passage of the fluid (such as, for example, air) into and out of the cylinder may be blocked by an electromagnetic valve while the angular rotation of the main shaft is in process. As a result, the piston is restricted from movingin either of the forward and backward directions. After the angular rotation of the main shaft has been completed, the valve may be switched so as to permit the piston to move forward. In the case of a the embodiment of FIG. 5 in which the energy to be exerted originates in the traction which is produced by a spring 22, a claw member 23 is required to engage with a projection 6' on the swing arm 6 after the depressor roll has been brought to its retracted position. ln this case, the claw member 23 should be so adapted as to be movable along a circular locus described around the fulcrum 6" of the swing arm as the center, so that the required engagement with the projection 6 may be obtained at a fixed position which is determined by the desired diameter of the roll of sheet wound on the core. At the same time, it is necessary to provide a release means 24 (such as, for example, a solenoid) which, on completion of the angular rotation of the main shaft, pushes the claw member 23 against the energy being exerted thereto so as to release the engagement thereof with the projection 6.
FIG. 6 illustrates a depressor roll 5 which is constructed so as to be gravitationally brought into contact with the core. The embodiment illustrated here is not provided with any means which serves the purpose of retaining the depressor roll 5 in its retracted position into which the roll has been pushed back by the increasing diameter of the roll of sheet wound on the core. The arm 6 for suspending the depressor roll 5 is extended beyond the fulcrum 6". On the said extension of the arm, there is fixed a balance weight w which lessens the gravity of the depressor roll 5, so that the force with which the roll comes into contact with the surface of the core may be decreased to produce a mild impact between the two surfaces at the time of contact. Consequently, the component of the tension which builds up on the sheet 1' in consequence of the angular rotation of the main shaft suffices for the purpose of keeping the depressed roll securely in its retracted position. By using the balance weight w of the type shown in FIG. 1 through FIG. 4, incl., or of the type shown in FIG. 5, it is made possible to lessen the gravity of the depressor roll 5, lower the pressure requirement for the actuator 7, or decrease the resilience of the spring 22.
After the main shaft 10 has completed its angular rotation and the depressor roll 5 has been brought into contact with the outer surface of the core at the second position, the cutter blade cuts the sheet 1' in the direction of its width at a point anterior to the point of contact between the depressor roll 5 and the core and at a position at which the front portion 19b of the bonding agent 19 is fastened to the sheet 1.
The said cutter blade 25 is supported in position by means of the screwed lever 26 and the guide 27 which are disposed parallel with each other below the sheet 1 in the direction of the sheets width. The cutting of the sheet is effected by rotating the screw lever 26 so as to move the cutter blade across the sheet from outside one edge of the sheet to outside the other edge. The subsequent round of cutting may be effected by reversing the direction of the movement of the cutter blade. When the screwed lever 26 is provided with a reciprocating screw thread, the direction of the lever rotation need not be reversed in making the cutter blade travel back and forth alternately on the screwed lever 26.
After the cutter blade 25 has cut the sheet 1', the clutches at the second and the third position are switched to their interlocked position respectively. Consequently, the cores held at these positions begin to rotate counterclockwise. Since the core at the third position need not be rotated any longer after the cut of sheet has been wound up on the roll, the clutch 15 at this position may be so adapted as to be switched back to its disconnected position thereafter. For this purpose, a timer 28 may be inserted in the circuit which is feeding electric current to the clutch 15 at the third position. This timer 28 has only to be set so that the supply of electric current to the clutch will be discontinued upon lapse of the time which is required for completely winding the cut end of sheet.
Along the outside of the third position, a roller 29 may be disposed in such condition that the roller will come into contact with the outer surface of the sheet wound on the core at the third position. Then, the roller 29 enables the bonding agent 19 placed at the tail end of sheet to be fastened safely to the underlying sheet, completing the roll end sealing of sheet.
From the spindle which has been advanced to the fourth position, a small roll of sheet having a sealed end is removed together with the core. An empty core is set in position on the spindle which has been returned to the first position.
Referring to the drawings, 30 and 30 denote sliptype current collector and brush which are used for feeding electric current to the clutch 15 at the second position so as to rotate the core placed at that position. Similarly, 31 and 31 denote slip-type current collector and brush which serve to feed electric current to the clutch 15 at the third position so as to rotate the core placed at that position.
According to this invention, therefore, the sheet rewinding operation can be continued fully automatically until the feed sheet 1 is used up, ifa device for removing the core together with the roll of sheet wound thereon from the spindle at the fourth position and a device for mounting an empty core on the spindle at the first position are additionally installed and they are operated respectively for the purposes mentioned each time the main shaft completes its rotation.
Grooves 32 may be formed annularly at fixed intervals on the outside of each spindle. While the core is being advanced from the first position to the second position, the core is made to rotate and pass under blades 33 which are regularly spaced. Then, the core while on the spindle can be cut crosswise by lowering these blades 33 until their edges protrude into the said grooves 32. At a position anterior to the bonding agent applying means 2, blades 34 for cutting the sheet 1 may be disposed so as to fallin the same planes as the said blades 33, whereby the sheet 1' can be divided into parallel strips. The strips of sheet, thereafter, are wound on the corresponding divided portions of the core. In this case, annular blade grooves may be formed on the depressor roll 5 at the same intervals as the blades 34 so as to receive the protruding edges of these blades 34. Consequently, the blades and the corresponding blade grooves provide means for cutting the sheet into strips.
Denoted by 35 and 35' are current collector and brush which are installed for the purpose of cutting the core crosswise.
According to this invention, the bonding agent applying means applies the bonding agent 19 on the upper surface of the sheet after the core stationed and rotated at the second position has wound up the predetermined amount of sheet, Then, while the core at the second position is being advanced without rotation to the next position and the core at the first position is simultaneously being advanced to the second position, the depressor roll which tends to come into contact with the outer surface of the core at the second position is kept out of the point of contact. While the depressor roll is kept in its retracted position, the bonding agent 19 applied on the sheet is moved so that it may straddle the said point of contact. Thereafter, the depressor roll is brought into contact with the outer surface of the core at the second position and the sheet is cut at a point anterior to the said point of contact so that the bonding 7 agent is divided into the front and the rear position.
Subsequently, the cores are rotated to permit the forward end of sheet and the tail end of sheet to be sealed respectively. Thus, the rewinding of a large feed roll of sheet into small rolls of sheet can be accomplished with high efficiency.
What is claimed is:
1. In a sheet rewinder wherein a core is rotated to draw out a sheet from a feed roll, the rotation of the core being stopped after the core has wound up a predetermined amount of sheet, said sheet rewinder comprising in combination, a means for applying a bonding agent to the sheet at a point intervening between the feed roll and the core while the cores rotation is suspended; a depressor roll disposed relative a core winding location and adapted to apply force against the sheet and towards contact with the outer surface of the core at a point intervening between the said bonding agent applying means and the core, said depressor roll disposed for retracting movement by the increasing diameter of the roll of sheet on the core; means for winding sheet material on the core; an angular rotating means for advancing the core having a predetermined amount of sheet wound thereon to a position free from contact with the depressor roll and subsequent to the application of the bonding agent by the bonding agent applying means; means for simultaneously advancing a new core to the core winding location at a position opposite the depressor roll; means for restricting the supply roll rotation and means for keeping said depressor roll in retracted position during the angular rotation of the angular rotating means;-and a means for cutting the sheet in the direction of its width at a point immediately anterior to the said point of contact and within the area of applied bonding agent, the bonding agent applied to the sheet being moved to the cutting means location by means that the sheet is paid out in consequence of the angular rotation of the angular rotating means while rotation of the supply roll is restricted, the applied bonding agent being disposed opposite the sheet cutting means and being severed thereby.
2. The sheet rewinder of claim 1 wherein a sheet from the feed roll is severed into a plurality of strips by cutting blades disposed relative the depressor roll and in cooperation therewith.
3. The sheet rewinder of claim 1 wherein a core is severed into a plurality of cores by blades disposed relative the angular rotating means at a location prior to advancing a new core to core winding location.
4. The sheet rewinder of claim 1 wherein a roller is disposed relative the angular rotating means at a location for placing the tail end of a severed sheet containing bonding agent into fastening position onto an underlying sheet of a sheet wound core.
5. In a sheet rewinder wherein a core is rotated to draw out a sheet from a feed roll, the rotation of the core being stopped after the core has wound up a predetermined amount of sheet, said sheet rewinder comprising in combination, a means for applying a bonding agent to the sheet at a point intervening between the feed roll and the core while the cores rotation is suspended; a depressor roll disposed relative a core winding location and adapted to apply force against the sheet and towards contact with the outer surface of the core at a point intervening between the said bonding agent applying means and the core; said depressor roll disposed for retracting movement by the increasing diameter of the roll of sheet on the core; means for winding sheet material on the core; an angular rotating means for advancing the core having a predetermined amount of sheet wound thereon to a position free from contact with the depressor roll and subsequent to the application of the bonding agent by the bonding agent applying means; means for simultaneously advancing a new core to the core winding location at a position opposite the depressor roll; a means for restricting the supply roll rotation during angular rotation of the angular rotating means; means for holding the depressor roll securely in retracted position during aforesaid angular rotation; means for releasing the hold of the depressor roll by said means after completion of rotation of the angular rotating means; and a means for cutting the sheet in the direction of its width and within the-area of applied bonding agent, the bonding agent applied to the sheet being moved to the cutting means location by means that the sheet is paid out in consequence of the angular rotation of the angular rotating means while rotation of the supply roll is restricted, the applied bonding agent being disposed opposite the sheet cutting means and being severed thereby.
6. The sheet rewinder of claim 5 wherein a sheet from the feed roll is severed into a plurality of strips by cutting blades disposed relative the depressor roll and in cooperation therewith.
7. The sheet rewinder of claim 5 wherein a core is severed into a plurality of cores by blades disposed relative the angular rotating means at a location prior to advancing a new core to core winding location.
8. The sheet rewinder of claim 5 wherein a roller is disposed relative the angular rotating means at a location for placing the tail end of a severed sheet containing bonding agent into fastening position onto an underlying sheet of a sheet wound core.

Claims (8)

1. In a sheet rewinder wherein a core is rotated to draw out a sheet from a feed roll, the rotation of the core being stopped after the core has wound up a predetermined amount of sheet, said sheet rewinder comprising in combination, a means for applying a bonding agent to the sheet at a point intervening between the feed roll and the core while the core''s rotation is suspended; a depressor roll disposed relative a core winding location and adapted to apply force against the sheet and towards contact with the outer surface of the core at a point intervening between the said bonding agent applying means and the core, said depressor roll disposed for retracting movement by the increasing diameter of the roll of sheet on the core; means for winding sheet material on the core; an angular rotating means for advancing the core having a predetermined amount of sheet wound thereon to a position free from contact with the depressor roll and subsequent to the application of the bonding agent by the bonding agent applying means; means for simultaneously advancing a new core to the core winding location at a position opposite the depressor roll; means for restricting the supply roll rotation and means for keeping said depressor roll in retracted position during the angular rotation of the angular rotating means; and a means for cutting the sheet in the direction of its width at a point immediately anterior to the said point of contact and within the area of applied bondIng agent, the bonding agent applied to the sheet being moved to the cutting means location by means that the sheet is paid out in consequence of the angular rotation of the angular rotating means while rotation of the supply roll is restricted, the applied bonding agent being disposed opposite the sheet cutting means and being severed thereby.
2. The sheet rewinder of claim 1 wherein a sheet from the feed roll is severed into a plurality of strips by cutting blades disposed relative the depressor roll and in cooperation therewith.
3. The sheet rewinder of claim 1 wherein a core is severed into a plurality of cores by blades disposed relative the angular rotating means at a location prior to advancing a new core to core winding location.
4. The sheet rewinder of claim 1 wherein a roller is disposed relative the angular rotating means at a location for placing the tail end of a severed sheet containing bonding agent into fastening position onto an underlying sheet of a sheet wound core.
5. In a sheet rewinder wherein a core is rotated to draw out a sheet from a feed roll, the rotation of the core being stopped after the core has wound up a predetermined amount of sheet, said sheet rewinder comprising in combination, a means for applying a bonding agent to the sheet at a point intervening between the feed roll and the core while the core''s rotation is suspended; a depressor roll disposed relative a core winding location and adapted to apply force against the sheet and towards contact with the outer surface of the core at a point intervening between the said bonding agent applying means and the core; said depressor roll disposed for retracting movement by the increasing diameter of the roll of sheet on the core; means for winding sheet material on the core; an angular rotating means for advancing the core having a predetermined amount of sheet wound thereon to a position free from contact with the depressor roll and subsequent to the application of the bonding agent by the bonding agent applying means; means for simultaneously advancing a new core to the core winding location at a position opposite the depressor roll; a means for restricting the supply roll rotation during angular rotation of the angular rotating means; means for holding the depressor roll securely in retracted position during aforesaid angular rotation; means for releasing the hold of the depressor roll by said means after completion of rotation of the angular rotating means; and a means for cutting the sheet in the direction of its width and within the area of applied bonding agent, the bonding agent applied to the sheet being moved to the cutting means location by means that the sheet is paid out in consequence of the angular rotation of the angular rotating means while rotation of the supply roll is restricted, the applied bonding agent being disposed opposite the sheet cutting means and being severed thereby.
6. The sheet rewinder of claim 5 wherein a sheet from the feed roll is severed into a plurality of strips by cutting blades disposed relative the depressor roll and in cooperation therewith.
7. The sheet rewinder of claim 5 wherein a core is severed into a plurality of cores by blades disposed relative the angular rotating means at a location prior to advancing a new core to core winding location.
8. The sheet rewinder of claim 5 wherein a roller is disposed relative the angular rotating means at a location for placing the tail end of a severed sheet containing bonding agent into fastening position onto an underlying sheet of a sheet wound core.
US00209074A 1970-12-18 1971-12-17 Sheet rewinder Expired - Lifetime US3784122A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP45113030A JPS4837942B1 (en) 1970-12-18 1970-12-18

Publications (1)

Publication Number Publication Date
US3784122A true US3784122A (en) 1974-01-08

Family

ID=14601676

Family Applications (1)

Application Number Title Priority Date Filing Date
US00209074A Expired - Lifetime US3784122A (en) 1970-12-18 1971-12-17 Sheet rewinder

Country Status (5)

Country Link
US (1) US3784122A (en)
JP (1) JPS4837942B1 (en)
DE (1) DE2162775C3 (en)
FR (1) FR2118790A5 (en)
GB (1) GB1327368A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3881665A (en) * 1973-12-28 1975-05-06 Wavin Bv Device for producing roll-shaped packets of bags of plastic
US3997387A (en) * 1973-06-08 1976-12-14 Nishimura Seisakusho Co., Ltd. Apparatus for applying leading tips to a continuous sheet material and cutting the same
US4160529A (en) * 1977-06-02 1979-07-10 Hutzenlaub Armin S P Roller winding machine for the formation of single reels
US4523725A (en) * 1983-01-28 1985-06-18 Advanced Technology Business Creation, Inc. Apparatus for driving tapes
US4541583A (en) * 1985-01-09 1985-09-17 Mobil Oil Corporation Continuous layon roller film winder
US4690346A (en) * 1985-01-25 1987-09-01 Tanaka Seiki Co., Ltd. Tape winding machine
US4697755A (en) * 1984-08-27 1987-10-06 Hiroshi Kataoka Rewinder with slitter
US5215276A (en) * 1990-12-21 1993-06-01 Kabushikigaisha Tokyo Kikai Seisakusho Remaining paper rewinding device in a printing system
US5226612A (en) * 1991-02-15 1993-07-13 Muelfarth Werner Apparatus for winding webs or material
US5795432A (en) * 1991-05-10 1998-08-18 Jagenberg Aktiengesellschaft Coiling machine with adhesive strip applicator
US5845867A (en) * 1997-10-10 1998-12-08 The Black Clawson Company Continuous winder
US5909856A (en) * 1997-03-05 1999-06-08 Myer; William R. Duplex slitter/rewinder with automatic splicing and surface/center winding
US5950958A (en) * 1995-10-04 1999-09-14 Valmet Corporation Method in winding of a web, in particular of a paper or board web
US20030150546A1 (en) * 2002-02-06 2003-08-14 Kataoka Machine Co., Ltd. Sheet slitter-winder
US6708916B2 (en) * 2001-10-11 2004-03-23 Fuji Tekko Co., Ltd. Method of winding sheet web coated with pressure-sensitive adhesive
US20060076449A1 (en) * 2004-10-11 2006-04-13 Voith Paper Patent Gmbh Method for threading a material web into a rewinder and rewinder
US20070102560A1 (en) * 2005-11-04 2007-05-10 Mcneil Kevin B Process for winding a web material
US20070102559A1 (en) * 2005-11-04 2007-05-10 Mcneil Kevin B Rewind system
US20070261246A1 (en) * 2004-10-05 2007-11-15 Gerd Kasselmann Cutting and Transport Device for Webs of Material
US20080191086A1 (en) * 2005-05-30 2008-08-14 Adolf Tauber Apparatus For Winding Up at Least Two Material Webs
US20090250544A1 (en) * 2008-04-08 2009-10-08 Pasquale Robert A Tail Free Transfer Winder
US20090266927A1 (en) * 2006-09-26 2009-10-29 Colines S.P.A. Winding plant for use in plastic film production lines, in particular, extendable plastic films, and winding method of plastic film rolls
CN103204404A (en) * 2012-01-11 2013-07-17 中山市和美塑胶材料有限公司 Device and method for cutting wide coiled material
US20140144578A1 (en) * 2011-08-10 2014-05-29 Tesa Se Method for producing an adhesive tape with a protruding liner

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2437237C3 (en) * 1974-08-02 1981-08-20 Estel Hoesch Werke Ag, 4600 Dortmund reel
DE3034674C2 (en) * 1980-09-13 1983-10-06 Albert-Frankenthal Ag, 6710 Frankenthal Winding roll carrier
DE3308271A1 (en) * 1983-03-09 1984-09-20 Jagenberg AG, 4000 Düsseldorf DEVICE FOR REWINDING LENGTH-SIDED SHEETS AND METHOD FOR WINDING REELS / CASE CHANGE
FI69820C (en) * 1983-05-12 1986-05-26 Waertsilae Oy Ab ANORDNING FOER RULLNING AV MATERIALBANA
DE3423987A1 (en) * 1984-06-29 1986-01-09 Lenox Europa Maschinen GmbH, 7312 Kirchheim ROLL WRAPPING MACHINE FOR PAPERS AND THE LIKE
DE3611895A1 (en) * 1986-04-09 1987-10-15 Jagenberg Ag METHOD AND DEVICE FOR AUTOMATICALLY SEPARATING AND REWINDING A MATERIAL
DE4004655A1 (en) * 1990-02-15 1991-08-22 Bastian Wickeltechnik Gmbh Winder machine for extensible sheeting - has winder sleeves, contact roller pivoting on pivot axle, and drive mechanism
DE4029180A1 (en) * 1990-09-14 1992-03-19 Jagenberg Ag METHOD AND DEVICE FOR CHANGING REELS
US5413656A (en) * 1990-09-14 1995-05-09 Jagenberg Aktiengesellschaft Method and device for exchanign windings rolls
DE4116963A1 (en) * 1991-05-24 1992-11-26 Hans Heuser Maschinen Und Mess Roll cutting and winding machine with adhesive fastening - applies one double sided adhesive strip to material web prior to cutting process
DE4116964C2 (en) * 1991-05-24 1994-03-31 Hans Heuser Maschinen Und Mess Roll cutting and winding machine
US5314132A (en) * 1991-11-26 1994-05-24 Mitsubishi Jukogyo Kabushiki Kaisha Method for changing spools and apparatus therefor
DE4415316C2 (en) * 1994-05-02 1998-03-12 Kleinewefers Gmbh Roll winding machine
US6405969B1 (en) 1995-06-07 2002-06-18 3M Innovative Properties Company Coreless adhesive tape winding mandrel and method
US5620544A (en) * 1995-06-07 1997-04-15 Minnesota Mining And Manufacturing Company Tape roll liner/tab, application apparatus and method
DE10206575A1 (en) * 2002-02-18 2003-08-21 Voith Paper Patent Gmbh Method for forming reels of paper comprises severing web when reel change is required using cutter immediately in front of nip which incorporates system for holding cut edge against new core, e.g. adhesive
DE10206576A1 (en) * 2002-02-18 2003-08-28 Voith Paper Patent Gmbh Means for transferring a running web of material to a winding core and method for its use
DE10309049A1 (en) * 2003-03-01 2004-09-09 Voith Paper Patent Gmbh Process and assembly to remove a first paper roll from a winding assembly and replace this by an empty hub forming the next roll
DE10343448A1 (en) * 2003-09-19 2005-04-14 Voith Paper Patent Gmbh Preparing wound roll of e.g. paper for further processing, produces adhesive region on outer layer using automatic coating unit
FI20105848A0 (en) * 2010-08-13 2010-08-13 Metso Paper Inc A method for winding and winding a fibrous web
US10351377B2 (en) * 2015-08-03 2019-07-16 Elsner Engineering Works, Inc. Ultrasonic roll tail closure of non-woven web material method and apparatus
CN108128648A (en) * 2017-12-08 2018-06-08 南京航空航天大学 A kind of continuous high-efficient blanket collection device
CN110295511A (en) * 2019-07-03 2019-10-01 安徽宏润工业设备安装有限公司 A kind of paper making equipment
CN114940398A (en) * 2022-06-01 2022-08-26 常州市荣驰包装机械有限公司 Material receiving frame

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3342434A (en) * 1965-07-23 1967-09-19 Georgia Pacific Corp Web winding apparatus
US3377032A (en) * 1965-08-25 1968-04-09 Beloit Eastern Corp Core enveloper
US3383062A (en) * 1965-06-30 1968-05-14 Black Clawson Co Method and apparatus for continuously winding web material with constant tension
US3472462A (en) * 1967-11-02 1969-10-14 Dusenbery Co John Turret winder for tape

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1952205C3 (en) * 1968-10-17 1973-10-31 Inta-Roto, Inc., Richmond, Va. (V.St.A.) Method for the automatic continuous winding up endlessly the web-shaped goods, in particular from several juxtaposed partial webs existing goods, and device for carrying out the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3383062A (en) * 1965-06-30 1968-05-14 Black Clawson Co Method and apparatus for continuously winding web material with constant tension
US3342434A (en) * 1965-07-23 1967-09-19 Georgia Pacific Corp Web winding apparatus
US3377032A (en) * 1965-08-25 1968-04-09 Beloit Eastern Corp Core enveloper
US3472462A (en) * 1967-11-02 1969-10-14 Dusenbery Co John Turret winder for tape

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3997387A (en) * 1973-06-08 1976-12-14 Nishimura Seisakusho Co., Ltd. Apparatus for applying leading tips to a continuous sheet material and cutting the same
US3881665A (en) * 1973-12-28 1975-05-06 Wavin Bv Device for producing roll-shaped packets of bags of plastic
US4160529A (en) * 1977-06-02 1979-07-10 Hutzenlaub Armin S P Roller winding machine for the formation of single reels
US4523725A (en) * 1983-01-28 1985-06-18 Advanced Technology Business Creation, Inc. Apparatus for driving tapes
US4697755A (en) * 1984-08-27 1987-10-06 Hiroshi Kataoka Rewinder with slitter
US4541583A (en) * 1985-01-09 1985-09-17 Mobil Oil Corporation Continuous layon roller film winder
US4690346A (en) * 1985-01-25 1987-09-01 Tanaka Seiki Co., Ltd. Tape winding machine
US5215276A (en) * 1990-12-21 1993-06-01 Kabushikigaisha Tokyo Kikai Seisakusho Remaining paper rewinding device in a printing system
US5226612A (en) * 1991-02-15 1993-07-13 Muelfarth Werner Apparatus for winding webs or material
US5795432A (en) * 1991-05-10 1998-08-18 Jagenberg Aktiengesellschaft Coiling machine with adhesive strip applicator
US5950958A (en) * 1995-10-04 1999-09-14 Valmet Corporation Method in winding of a web, in particular of a paper or board web
US5909856A (en) * 1997-03-05 1999-06-08 Myer; William R. Duplex slitter/rewinder with automatic splicing and surface/center winding
US5845867A (en) * 1997-10-10 1998-12-08 The Black Clawson Company Continuous winder
WO1999019242A1 (en) * 1997-10-10 1999-04-22 Black Clawson Company, Inc. Continuous winder
US6708916B2 (en) * 2001-10-11 2004-03-23 Fuji Tekko Co., Ltd. Method of winding sheet web coated with pressure-sensitive adhesive
US20030150546A1 (en) * 2002-02-06 2003-08-14 Kataoka Machine Co., Ltd. Sheet slitter-winder
US7100657B2 (en) * 2002-02-06 2006-09-05 Kataoka Machine Co., Ltd. Sheet slitter-winder
US20070261246A1 (en) * 2004-10-05 2007-11-15 Gerd Kasselmann Cutting and Transport Device for Webs of Material
US20060076449A1 (en) * 2004-10-11 2006-04-13 Voith Paper Patent Gmbh Method for threading a material web into a rewinder and rewinder
US20080191086A1 (en) * 2005-05-30 2008-08-14 Adolf Tauber Apparatus For Winding Up at Least Two Material Webs
US7896283B2 (en) * 2005-05-30 2011-03-01 Sml Maschinengesellschaft M.B.H. Apparatus for winding up at least two material webs
US7546970B2 (en) * 2005-11-04 2009-06-16 The Procter & Gamble Company Process for winding a web material
US20070102559A1 (en) * 2005-11-04 2007-05-10 Mcneil Kevin B Rewind system
US20070102560A1 (en) * 2005-11-04 2007-05-10 Mcneil Kevin B Process for winding a web material
US8800908B2 (en) * 2005-11-04 2014-08-12 The Procter & Gamble Company Rewind system
US9365378B2 (en) 2005-11-04 2016-06-14 The Procter & Gamble Company Rewind system
US20090266927A1 (en) * 2006-09-26 2009-10-29 Colines S.P.A. Winding plant for use in plastic film production lines, in particular, extendable plastic films, and winding method of plastic film rolls
US8181898B2 (en) * 2006-09-26 2012-05-22 Colines S.P.A. Winding plant for use in plastic film production lines, in particular, extendable plastic films, and winding method of plastic film rolls
US20090250544A1 (en) * 2008-04-08 2009-10-08 Pasquale Robert A Tail Free Transfer Winder
US20140144578A1 (en) * 2011-08-10 2014-05-29 Tesa Se Method for producing an adhesive tape with a protruding liner
KR20140066185A (en) * 2011-08-10 2014-05-30 테사 소시에타스 유로파에아 Method for producing an adhesive tape with a protruding liner
US9328263B2 (en) * 2011-08-10 2016-05-03 Tesa Se Method for producing an adhesive tape with a protruding liner
KR101903953B1 (en) 2011-08-10 2018-10-04 테사 소시에타스 유로파에아 Method for producing an adhesive tape with a protruding liner
CN103204404A (en) * 2012-01-11 2013-07-17 中山市和美塑胶材料有限公司 Device and method for cutting wide coiled material

Also Published As

Publication number Publication date
FR2118790A5 (en) 1972-07-28
JPS4837942B1 (en) 1973-11-14
DE2162775C3 (en) 1987-04-16
DE2162775B2 (en) 1981-04-30
DE2162775A1 (en) 1972-07-06
GB1327368A (en) 1973-08-22

Similar Documents

Publication Publication Date Title
US3784122A (en) Sheet rewinder
US3871595A (en) Automatic winding and cutting apparatus for webs
US4529141A (en) Method and apparatus for rewinding, severing and transferring web-like material
US3552670A (en) Web winding apparatus
US4422588A (en) Slitter-rewinder system
US5178717A (en) Adhesive applicator
US2984425A (en) Spool winding machine
GB1569054A (en) Method of recoiling slit material
US2703681A (en) Paper machinery
US4003525A (en) Strip material unwinding device
US3127122A (en) Rewinding mechanism for printing machines
CN109516258B (en) Control method and control system for automatic reel change of coating machine without shutdown
US3161363A (en) Winding machine
US3035787A (en) Automatic joining device for reeled band materials
US3245861A (en) Web splicer
US4126279A (en) Winding devices for spooling yarns
US3411732A (en) Fully automatic reel changer
US1986680A (en) Winding machine
US1801378A (en) Winding machine
EP0716997B1 (en) Method and assembly for cutting a web
US5221056A (en) Pneumatically controlled spooling apparatus
GB1502814A (en) Device for applying adhesive tape to a wire coil
JP2637169B2 (en) Method and apparatus for forming a reserve system
US3585779A (en) Apparatus for winding ribbon material applying wrapping tape thereto
US3486317A (en) Tensioning device for helical wrapping