US3783120A - Mercury cathode electrolytic cells - Google Patents

Mercury cathode electrolytic cells Download PDF

Info

Publication number
US3783120A
US3783120A US00191265A US3783120DA US3783120A US 3783120 A US3783120 A US 3783120A US 00191265 A US00191265 A US 00191265A US 3783120D A US3783120D A US 3783120DA US 3783120 A US3783120 A US 3783120A
Authority
US
United States
Prior art keywords
cell
cathode
cells
mercury
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00191265A
Inventor
J Peck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PPG Industries Inc
Original Assignee
PPG Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PPG Industries Inc filed Critical PPG Industries Inc
Application granted granted Critical
Publication of US3783120A publication Critical patent/US3783120A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/36Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in mercury cathode cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/033Liquid electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/30Cells comprising movable electrodes, e.g. rotary electrodes; Assemblies of constructional parts thereof
    • C25B9/303Cells comprising movable electrodes, e.g. rotary electrodes; Assemblies of constructional parts thereof comprising horizontal-type liquid electrode
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells

Definitions

  • a mercury amalgam cathode electrolytic cell useful for the electrolysis of aqueous alkali metal chloride solutions is disclosed.
  • the electrolytic cell includes means for reducing or eliminating the 'elects of electromagnetic Alields induced in the mercury amalgam cathode by the various electrical currents in the vicinity of the cell.
  • Aqueous alkali metal chloride solutions as lithium chloride, sodium chloride, and potassium chloride, are electrolyzed to yield alkali metal hydroxides and chlorine. This electrolysis is carried out commercially in two types of cells--the diaphragm cell and the mercury cell. A typical mercury cell is shown diagrammatically in FIG. 1.
  • a mercury cell has a conducting surface inclined slightly from the horizontal in the longitudinal direction. Typically, this conducting surface is a steel plate.
  • a mercury amalgam film usually about 1A of an inch to about 1A of an inch or more in thickness, flows across this plate in the direction of the inclination of the plate. Flowing on top of the amalgam is the electrolyte, that is, the aqueous alkali metal chloride solution.
  • Anodes typically carbonanodes, or noble metal coated, or noble metal oxide coated titanium anodes, are usually spaced about 1A of an inch to about 3716 of an inch above the mercury sunface'.
  • pluralities of such cells are arranged in series substantially as illustrated in FIG. 4.
  • two or more rows of cells are assembled in side-by-side relationship with the positive terminal of the power source being connected to the anode of the end cell of one row and the negative terminal of the said power source being connected to the cathode of the end cell of the other row.
  • Each of the cells is connected in series, the cathode of one cell being connected to the anode of the next adjacent cell ofthe series.
  • a bus bar crosses from the cathode of the cell at such opposite end of one row ice of the front end cells, separated therefrom, and substantially parallel to such sides.
  • a cell circuit there may be 30 to 80 cells in a cell room, forming what may be called a cell circuit, although there may be more or less, and more rows of cells may be installed in a circuit. Generally, however, there are two rows of cells, and half of the cells are in each row.
  • this erratic behavior of the cells is due to the erratic behavior of the mercury cathode. It has now been found that at high currents the mercury no longer ows evenly along and down the base plate. Instead, bare spots develop on some areas of the plate while in other areas of the plate the mercury churns violently. This churning frequently becomes severe enough to allow the mercury to come into actual physical contact with the anodes, short circuiting the cell. The shorting causes the high consumption rate of the carbon anodes and the stripping of the metallic anodes, while the bare spots cause the liberation of hydrogen.
  • the four corner cells in the cell room that is, the two cells nearest the power supply and the two cells nearest the cross-over bus bars, are the cells where this erratic behavior takes place or, at least, is most noticeable.
  • the other cells that is, the ones nearer the center of the cell room and more remote from the bus bars, appear to be unaffected or less affected by the erratic behavior of the corner cells.
  • Controlling the direction of the horizontal component of the current ow to realize good cell operation and offset at least a portion of the electromagnetic lields induced in the amalgam cathode is especially appropriate when currents upwards of 150,000 amperes are supplied to the cells by a conductor, as a cross-over bus bar, which extends parallel to the direction of the ilow of the mercury-amalgam electrode and is relatively close, say from about l to about 50 feet, from the end of the cells.
  • Other factors such as the mechanical problem of maintaining the inclined conducting surface perfectly flat, may, as a practical matter, limit the size of mercury-amalgam cells, thereby limiting the maximum current How in mercuryamalgam electrolytic cells to about 750,000 amperes. Nevertheless, this invention is applicable to cell currents operating above such currents.
  • FIG. 1 is a cut-away diagrammatic drawing of atypical mercury electrolytic cell.
  • FIG. 2 is a sectional view along plane II-II of FIG. 1.
  • FIG. 3 is a sectional view along plane III-III of FIG. 2.
  • FIG. 4 is a diagrammatic layout of a typical mercury cathode cell room.
  • FIG. 5 is a diagrammatic view of two end cells in an electrolytic cell circuit, the actual slope of the cells being somewhat exaggerated, and the associated crossover bus bar showing several embodiments of the invention.
  • FIG. 6 is a schematic side elevation of a typical mercury cathode electrolytic cell.
  • FIG. 7 shows the direction of the current flow in the cell shown in FIG. 6.
  • FIG. 8 shows the current distribution across the cell shown in FIG. 6.
  • FIG. 9 diagrammatically shows two end cells, associated cross-over
  • FIG. 10 is a schematic side elevation showing one embodiment of the present invention in which a cathode bus connection is made at a central area of the cell (near the longitudinal axis of the cell) as well as at the side opposite the anode connection.
  • FIG. 1l shows the direction of the current flow in the cell shown in FIG. 10.
  • FIG. 12 shows the current distribution in the cell shown in FIG. l0.
  • FIG. 13 diagrammatically shows two end cells, associated cross-over bus bars, and the directions of the current and amalgam ows for the cells of FIG. 10.
  • FIG. 14 is a schematic side elevation showing another embodiment of the present invention in which the cathode bus connection is made at the same side of the cell as the anode connection as well as at the opposite end of the cell.
  • FIG. 15 shows the direction of the current ow in the cell shown in FIG. 14.
  • FIG. 16 shows the current distribution across the cell shown in FIG. 14.
  • FIG. 17 diagrammatically shows two end cells, associated cross-over bus bars, and the direction of the current and amalgam ows for the cells of FIG. 14.
  • FIG. 18 is a schematic side elevation showing another embodiment of the present invention wherein the cathode bus connection is on the same side of the cell as the anode connection.
  • FIG. 19 shows the direction of the current ow in the cell shown in FIG. 18.
  • FIG. 20 shows the current distribution across the cell shown in FIG. 18.
  • FIG. 21 diagrammatcally shows two end cells, associated cross-over bus bars, and the direction of the current and amalgam flows for the cells of FIG. 18.
  • FIG. 22 is a schematic side elevation showing an ern- Ibodiment of the present invention wherein the cathode bus connection is at the same side of the cell as the anode connection but positioned outward of the anode connection.
  • FIG. 23 shows the direction of the current flow in the cell shown in FIG. 22.
  • FIG. 24 shows the current distribution across the cell shown in FIG. 22.
  • FIG. 25 diagrammatically shows two end cells, associated cross-over bus bars, and the direction of the current and amalgam flows for thel cells of FIG. 22.
  • FIGS. 6, 10, 14, 18, and 22 differ from each other principally in the location of the cathode bus connection or connections.
  • FIGS. 7, 11, 15, 19, and 23 show the resulting direction of the current ow for each of the locations of the cathode bus connection with respect to the direction of the mercury flow.
  • FIGS. 8, 12, 16, 20, and 24 is a graph showing generally the magnitude of current at given points across the cell for each of the locations of the cathode bus connection.
  • the vertical axis represents the amperage
  • the horizontal axis represents the width of the cell.
  • a current represented as being above the zero axis and having a positive value tends to produce a magnetic mercury ilow counter to the gravitational mercury dlow.
  • a current flowing in the opposite direction tends to produce a magnetic mercury flow in the same direction as the gravitational mercury flow.
  • the vertical axis represents relative magnitudes only and has no absolute signicance.
  • the horizontal coordinates a, b, c, d, and e represent locations across the width of the cell. Points a and e represent the edges of the cell. Points b and d represent intermediate points on the bottom of the cell. Point c represents the central area of the cell.
  • FIGS. 9, 13, 17, 21, and 25 show the directions of gravitational mercury ow, the current llow in the crossoverbus bars, the current ilow in the cathode bus bars, and the current ow in the conducting surface and mercury amalgam.
  • the arrows are for the purpose of indicating direction only and do not represent magnitudes or locations.
  • This-invention is useful in improving the performance of the various mercury-amalgam cathode electrolytic cells known in the art.
  • Various embodiments of mercury-amalgam cathode electrolytic cells are known in the art. In general, such cells have the simplified ow diagram shown in U.S. Pat. 2,544,138, granted Mar. 6, 1951.
  • Other mercury-amalgam cathode cells are shown in U.S. Pat. 3,445,- 373, granted May 20, 1969; U.S. Pat. 3,042,602, granted July 3, 1962; U.S. Pat. 2,704,743, granted Mar. 22, 1955; and U.S. Pat. 2,550,231, granted Apr. 24, 1951, as well as in R. B.
  • a typical mercury-amalgam cathode electrolytic cell may be constructed substantially as shown in FIG. 1.
  • the cell itself stands on insulated legs 1.
  • the legs support the base of the cell 2.
  • the base of the cell may be concrete or some other suitably chlorine-resistant material with the conducting steel plate S mounted directly on top of it.
  • the sides of the cell are formed from vertical extensions of the base of the cell.
  • the conducting surface is typically a steel base plate inclined in the longitudinal direction, for example at an angle of about 11/z to about 2 from the horizontal as shown in FIG. 3.
  • cathode conductors 6 connecting the steel plate to the cathode bus bar 7.
  • the mercury-amalgam 8 llows as a thin stream along the upper surface of the steel plate in the direction of the inclination, its thickness often varying from about 1A inch to about 1A inch.
  • the mercury is fed to the cell at the higher end 9 of the base plate from a denuder. From there, under the influence of gravity, the mercury flows downwardly the length of steel plate 5 and exits to the denuder at the lower end 10 of the base.
  • the flowing mercury is the .5 cathode of the electrolytic cell, alkali metal being liberated at the mercury cathode and forming an amalgam wlth the mercury cathode.
  • the mercury fed to the cell is lean in alkali metal, typically being essentially free of alkali metal, rarely having an alkali metal content of more than about .0l percent by weight, while the amalgam ex1ting the cell is richer in alkali metal, typically having an alkali metal content of about .2 to about .4 percent by weight.
  • the anodes Positioned a short distance above the amalgam, for example about z inch to about V16 inch above the upper surface of the amalgam, are the anodes 11.
  • the anodes may be either graphite or a suitably conducting metal with a corrosion-resistant, electrically conductive surface, or they may be of other conducting materials resistant to the electrolyte.
  • a layer of aqueous alkali metal chloride electrolyte flows above the cathode, partially immersing the anodes.
  • the alkali metal chloride may be litlnum chloride, sodium chloride, or potassium chloride. It is usually sodium chloride.
  • the aqueous alkali metal chloride typically containing from about 200 to about 300 grams per liter of alkali metal chloride, llows on top of and in substantially the same direction as the amalgam.
  • this invention is also useful in improving the performance of electrolytic cells where the OW f the electrolyte is diagonal to, or even countercurrent to, the ilow of the amalgam.
  • the alkali metal chloride solution, or electrolyte enters the cell and iiows, under the force of gravity, to the lower end of the cell.
  • a constant hydrostatic head of electrolyte maintained by means well known in the art, provides a constant ow rate.
  • the anode stems 13 protrude through the top of the cell 12 and are connected to and support the anodes 11. Chlorine gas is evolved on the surface of the anode and rises through the electrolyte being recovered through suitable fittings (now shown) in the top of the cell.
  • the anode stems 13 are electrical conductors that breach the top of the cell and electrically connect the anodes to the anode bus bars 14.
  • the top of the cell 12 is constructed of exible rubber or other suitable insulating, non-reactive, flexible material and mounted on top of the base structure. Above the top of the cell is a structure from which the anodes are adjustably mounted for the purpose of adjusting the spacing between the amalgam and the opposed anode surface.
  • the base member 2 may be eliminated, the conducting surface 5 sitting directly on the insulating legs 1.
  • the conducting surface may be in the form of a fiat plate 5 or it may be in the form of a trough or channel. When the conducting surface is in the form of a trough, the conducting surface may be joined directly to the top 12 at an insulated joint.
  • the top 12 can be in one of various shapes. While one row of anode stems 13 per anode bus bar 14 is shown, one anode bus bar may service a plurality of anode stems or conductors. While in the cell illustrated in FIG.
  • present electrolytic cells may have various numbers of anodes across the width and length of the cell.
  • the cathode conductor 6 may be in the form of an I-beam, extending the length of the cell, parallel to the mercury flow.
  • the conductor may be connected with one or more bus bars 7 which may be spaced along the length of the conductor 6.
  • the ow of electric current in the cell is typically from an adjacent electrolytic cell.
  • the current flow is to or from opposite electrolytic cells, as 21 and 22, through long cross-over bus bars, as 24, 25, and 26 in FIG. 4, which are essentially parallel to the flow of the mercury amalgam.
  • the current is fed to the anode bus bars 14 through the anode bus bars to the anode conductor 13, from the anode conductor to the anode 11, from the anode through the electrolyte to the cathode 8.
  • the current goes through the cathode to the base plate 5, from the base plate to the cathode conductors 6, and from the cathode conductors to the cathode bus bars 7. Then, for typical cells, the cathode bus bars conduct the current to an adjacent electrolytic cell. For the corner cells, as 20, 21, 22, and 23 of FIG. 4, current is conducted along long bus bars 24, 25, and 26, essentially parallel to the flow of mercury.
  • An electric charge in motion as an electrical current flowing through a conductor, sets up a magnetic field in the space around it.
  • the direction of the electromagnetic fields so induced is given by the Right Hand Rule, while the magnitude of the lield at any point is given by the Biot-Savart Law.
  • the anode bus bars 14 are above the cell, the cathode bus bars 7 are underneath the cell, and the conducting base plate 5 is within the cell.
  • the amalgam is subject to the cumulative effects of all three of these internally induced electromagnetic elds.
  • the amalgam is influenced both by fields generated by current flows within the cell and by fields generated by current flows outside the cell, i.e., in the cross-over bus bars and the power supply bus bars.
  • the alkali metal amalgam in the end cells is most influenced by the external magnetic fields induced by the current flows in the cross-over or power supply bus bars running along the side of the cell.
  • other fields which have a lesser influence are induced by the current flow in the anode bus bar and in the conducting surface.
  • Other lfields having a still lesser influence are induced by the current ilow in the cathode bus bar.
  • the cumulative influence of the electromagnetic fields induced by the anode bus bar and the conducting surface is greater than the inuence of the electromagnetic field induced by the cathode bus bar because of the different locations of these conductors relative to each other and to the flowing amalgam cathode.
  • the anode bus bar extends across the top of the cell for about one-half of the width of the flowing amalgam cathode, and the conducting surface extends across the entire width of the iiowing amalgam cathode. Therefore, the electromagnetic fields induced by the anode bus bar and conducting surface act essentially vertically on the iiowing mercuryamalgam cathode.
  • the cathode bus bar extends under the conducting surface for only the minimum distance necessary to mechanically connect the cathode bus bar to the conducting surface.
  • a typical electrolytic cell may have cathode bus bars only at cathode conductor 40. Therefore, in a typical electrolytic cell the electromagnetic field induced by the cathode bus bar acts at an angle on the amalgam and, therefore, exerts less of an effect. It will be noted that since the cathode conductor (or conductors) 40 is located at the side of the cell, a substantial part of the current in the mercury Hows toward the side of the cell having the current conductor, either through the mercury itself or through the conducting bottom. The direction of this flow for a typical cell as shown in FIG. 7.
  • the electrolytic cells at the corners of the cell circuit or cell room cells, 21 and 23 in FIG. 4, are under the influence of electromagnetic fields induced by the current in the cross-over but bars, 24, 25, and 26, and cells 20 and 22 are under the influence of the power supply bus bars 126.
  • the electromagnetic eld induced by the current flow in the cathode bus bar acts more directly on the amalgam. Accordingly, the direction of the electromagnetic eld induced by the conducting surface is reversed or at least modified, whereby the elects of the externally induced electromagnetic fields, such as those induced by the power supply bus bars or the cross-over bus bars, can be reduced.
  • a mercury cell circuit is conventionally installed as illustrated in FIG. 4, with the cells in rows, and the individual cells being longitudinally aligned in side-by-side relationship.
  • Power source bus bars 126 run along the side of the cells adjacent to the power sources, from the power source to the cell anode connections. In like manner, the crossover bus bars 24, 25, and 26 run along the opposite side of the end cells 21 and 23 which are located at the opI posite ends of the rows.
  • each cell has been installed essentially as illustrated in FIG. 6 with the anode bus bar coming from the cathode connection of the next adjacent cell up the series toward the positive side of the power source and a cathode conductor 40 running longitudinally along the bottom of the cell, adjacent to that side of the cell which is opposite to the side of the cell from Which the anode bus bar cornes.
  • current owing downward from the anodcs mounted across the cell goes to the amalgam and then laterally through the amalgam and conducting surface to the cathode conductor at the side of the cell.
  • the cathode bus bar current ows in direction 52, to the next cell, or to the cross-over bus bars, from the far side of the cell, as shown by the arrow beneath in cell in FIG. 7.
  • the current llowing through the amalgam and conducting surface gradually rises in a lateral direction from point a to point d.
  • Point d is the locus of conductor 40.
  • FIG. 8 As well as FIGS. 12, 16, 20, and 24, current flowing in one direction is shown as positive or above the horizontal axis and current owing in the opposite direction is shown as negative or below the horizontal axis. It has been observed that the current shown as positive tends to produce a magnetic ow of the mercury counter to the gravitational flow of the mercury, and the current shown as negative tends to produce a magnetic lield that is in the same direction as that of the gravitational ow of the mercury.
  • FIG. 9 diagrammatically illustrates the current relationships in the end cells 21 and 23 of a conventional installation which end cells are opposite the cross-over bus bars 24, 25, and 26.
  • Mercury flow in cell 23 ows in direction 71 toward the space between the two cells 21 and 23.
  • current ows through the amalgam and the conducting surface in direction 73, that is, away from the side nearest the next adjacent cell in the row and toward the side nearest the bus bars 24 and 25.
  • the mercury flows in direction 71 which is also from the outer end of the cell toward the central space between cells 21 and 23.
  • the direction of mercury ow in cell 21 is opposite that in cell 23.
  • current flow through the amalgam and the conducting surface is away from the side of the cell where cross-over bus bars 24, 25, and 26 are located because the cathode conductor is disposed on the side of the cell which is remote from the cross-over bus bars.
  • FIGS. l0, 14, 18, and 22 illustrate a suitable manner by which this may be accomplished.
  • a further cathode conductor is disposed longitudinally of the cell, essentially along the central longitudinal axis of the cell.
  • This conductor 42 is in addition to conductor 40.
  • the horizontal component of the current ow is substantially as shown by 57 in FIG. 15.
  • This current distribution imparts a magnetic ow to the cathode opposed to the gravitational ow of the cathode in that part of the cell where the horizontal component of the current flow in the mercury and the conducting surface is away from the cross-over bus bar in cell 21, and toward the cross-over bus bar in cell 23.
  • a magnetic ow in the same direction as the gravitational ow is imparted to the cathode in that part of the cell where the horizontal com ponent of the current flow is toward the anode connection 41 in FIG. 14. This is illustrated most clearly by the cathode-amalgam current 73 of FIG. 17.
  • Arrows 72 indicate the 110W of the current underneath the cell from the cathode conductors 40 and 43.
  • current flows toward both sides because of the location of conductors 40 and 43 on opposite sides.
  • the magnitude of the magnetic eld counter to the gravitational mercury ow is greatly reduced or cancelled out because of the lower magnitude and direction of the current ow as shown in FIG. 16.
  • cathode connector 40 may be eliminated and only a single connector, 48, provided. This is shown at 43 of FIG. 18.
  • the horizontal component of the current flow in the cell is substantially opposite in direction to the direction of ow in the embodiment shown in FIGS. 69, inclusive, and is in the direction illustrated by arrow 58 in FIG. 19.
  • the resulting current distribution in the cell is such that the magnetic ow of the cathode is substantially the same as the gravitational flow of the cathode.
  • the cathode bus bar current 72 resulting from the arrangement shown in FIG. 18 is substantially opposed to the amalgam current 73.
  • the only part of the cell where the magnetic ow is opposed to the gravitational ow is that part of the cell between the cathode bus connection and the adjacent side of the cell, that is, the area between a and b in FIG. 20.
  • the cathode bus connection 44 in FIG. 22 (44 in FIG. 5) is made at or near the cell wall, the resulting horizontal component of the current flow in the cell is substantially as shown in FIG. 23.
  • the directions of current -ow through the amalgam and conducting surface are as shown by arrows 73 of FIG. 25, and the directions of the current ow through the bus bar conductor under the cell are as shown by arrows 72 of FIG. 25.
  • the horizontal component of the current distribution is then substantially as shown in FIG. 24 and the magnetic ow of the cathode is in the same direction as the gravitational tlow of the cathode throughout the entire cell.
  • the cathode bus bars leading from the cathode conductors extend under the cell for the entire width of the conducting base plate.
  • FIG. diagrammatically illustrates in somewhat greater detail the arrangement of the two end cells 21 and 23 opposite the cross-over bus bars 24 and 2S, using the cathode connectors 43 or 44 shown in either FIG. 18 or 22, respectively.
  • cell 21 a plurality of cathode conductors 43 are connected to the cathode bus bars 30 leading to crossover bus bars 24 and 25. These conductors 43 are either at or near the side of the cell remote from the cross-over bus bars.
  • 'Cell 21 and cell 23 are sloped in opposite directions so that mercury flows in opposite directions.
  • the cathode connections 43 are disposed along the side nearest the cross-over bus bars.
  • the cathode conductors 43 may comprise spaced individual conductors as shown, connected to several bus bars, or one or more bus -bars may be connected to a cathode conductor which extends along the entire length of the cell. While this drawing and discussion have emphasized the cells adjacent to the crossover bus bars, it is clear that these comments apply equally to the cells adjacent to the power supply bus bars 126. That is, in cell 22, a cathode conductor 42, 43, or 44 is disposed at the center axis or at least nearer the side of the cell which is remote from the power source bus bars, this being similar to cell 21 of FIG. 5, and the cathode conductors of cell 20 being disposed nearer the side which is nearest to the power source bus bars.
  • the intermediate cells need not ⁇ and in many cases will not have these precautions. Thus, they are usually constructed as indicated in FIG. 6 although the cathode conductors of these cells may be as illustrated in FIGS. 10, 14, 18, and 22, if desired.
  • connections 40 and 42 are shown with bus bars in phantom. These connnections may be provided so that the other embodiments illustrated in FIGS. l0 and 14 may be resorted to.
  • the contemplated room has 70 cells, arranged in two rows of 35 cells each, as shown in FIG. 4.
  • the end cells have a conducting surface 6 feet wide by 68 feet long, inclined at an angle of 1.5 fnom the horizontal toward the center of the cell room.
  • the cells are electrically connected in series, with the power source being connected to the anode of the rst cell in the one row by bus bars.
  • the cells in the row are electrically connected to each other, cathode to anode.
  • the cathode ofthe last cell in the row is connected to the anode of the opposite cell inthe next row by cross-over bus bars as 24 and 25 of FIG. 5.
  • the cells in this row are electrically connected to each other, cathode to anode, the cathode of the cell at the front of the row being connected to the power source.
  • the power source bus bar is 9 feet from the sides of the front cells in the rows and joins the power source to the front cells in the rows.
  • the feed to the cells is a brine having from about 200 to Iabout 300 grams per liter of sodium chloride and an amalgam having about .01 percent by weight sodium.
  • the product is an amalgam having about .2 to about .4 percent sodium and 10 tons per day per cell of chlorine.
  • the two cells at the ends of the respective rows are connected to each other by cross-over bus bars.
  • One crossover bus bar joins one anode bus bar to one cathode bus bar.
  • the cross-over bus bars constructed of aluminum, are 11A inch by 20 inches in cross section. They have a center-to-center distance between bus bars of 21/2 inches.
  • the bus bar nearest the side of the cells is 9 feet from the cell sides, the other bus bars being arranged outwardly therefrom.
  • the cathode bus bars are connected to conductors 40 beneath and running substantially the entire length of the conducting surface on that side of the conducting surface requiring the shortest cathode bus bars and corresponding to 40 of FIG. 5.
  • the circuit is operated at 150,000 amperes. At this current flow the end cells nearest the power source bus bars and the cross-over bus bars develop short circuits.
  • EXAM PLE II The cell room of Example I is used except that the cathode bus bars in both end cells adjacent to the crossover bus bars are run half way under the conducting surface perpendicular to the direction of the mercury W and are connected to ya conductor which is disposed substantially along the longitudinal central axis of the cell running the entire length thereof and corresponding to 4Z in FIG. 5. In order to prevent short circuiting in the two end cells nearest the power source, they are shorted out of the system. The cell circuit can be operated at a current of 350,000 amperes without observing short circuiting in the end cells adjacent to the cross-over bus bars.
  • EXAMPLE III The cell room of Example I is used except that the cathode bus bars in both of the end cells adjacent to the cross-over bus bars are run under substantially the entire width of the conducting surface perpendicular to the direction of the mercury ilow and connected to conductor 43 on the side of the conducting surface requiring the longest cathode bus bars, running the entire length of the conducting surface and corresponding to 43 of FIG. 5. In order to prevent short circuits in the two cells nearest the power source, they are shorted out of the system. The cell circuit can be operated at 450,000 amperes and no seriously adverse elects will occur in the end cells adjacent to the cross-over bus bars.
  • Example II is repeated with the two front cells nearest the power source in the circuit.
  • the cathode bus bars in both front cells adjacent to the power supply are run halfway under the conducting surface in a direction perpendicular to the mercury flow and connected to conductors midway across the width of the conducting surface, running the entire length thereof and corresponding to 42 in FIG. 5.
  • the cell circuit can be operated at a current of 350,000 amperes before any short circuiting in the front cells nearest the power source will be observed.
  • EXAMPLE V Example III is repeated with the two front cells nearest the power source in the circuit.
  • the cathode bus bars in both of the front cells nearest the power supply are run substantially under the entire width of the conducting surface perpendicular to the direction of the mercury ow and connected to conductors on the side of the conducting surface requiring the longest cathode bus bar, running the entire length of the conducting surface in the direction of the mercury ow and corresponding to 43 in FIG. 5.
  • the cell circuit can be operated at a current of 450,000 amperes before any seriously adverse effects will occur in the front cells adjacent to the power source.
  • EXAMPLE VI The cell room of Example I is used.
  • the cathode bus bar connectors of both of the end cells adjacent to the cross-over bus bars are installed under the conducting sur face in diagonal relationship to the length of the cell so that at the end of the cell nearest the end of the opposite cell the cathode bus bar extends under the entire Width of the conducting surface, while at the end of the cell furthest from the opposite cell the cathode bus bar does not extend under the conducting surface for an appreciable distance. Satisfactory performance is obtained at 400,000 amperes.
  • an electrolytic cell circuit used for the electrolysis of alkali metal chlorides at a current in excess of 150,000 amperes and comprising:
  • said electrolytic cells being electrically connected in series
  • said electrolytic cells being arranged in substantially parallel rows
  • each of said rows having a pair of end cells
  • two of said end cells being the first and last cells in said series circuit and being electrically connected to said power source
  • one of the end cells electrically connected to said crossover bus bar being a mercury amalgam cathode electrolytic cell and having a conducting surface, a cathode bus bar adapted to conduct electrical current to said conducting surface, a owing mercury amalgam cathode flowing as a single stream over said conducting surface, a solid anode, an anode bus bar adapted for conducting current from said cell, and an anode bus bar conductor connecting said anode to said bus bar,
  • the said cross-over bus bar being adapted to conduct current from one of said end cells to the other of said end cells whereby an electromagnetic eld having an effect on the yflowing mercury amalgam cathode in one of said end cells is induced in said crossover bus bar,
  • an electrolytic cell circuit used for the electrolysis of alkali metal chlorides at a current in excess of 150,000 amperes and comprising:
  • said electrolytic cells being electrically connected in series
  • each of said rows having a pair of end cells
  • the said power source bus bars electrically connecting said rst and last cells in said series circuit to said power source, one of the said cells connected to said power source by said power source bus bars being a mercury amalgam cathode electrolytic cell and having a conducting surface, a cathode bus bar adapted to conduct electrical current to said conducting surface, a flowing mercury amalgam cathode flowing as a single stream over said conducting surface, a solid anode, an anode bus bar adapted for conducting current from said cell, and an anode bus bar conductor connecting said anode to said bus bar, the said power source bus bars being adapted to carry electrical current between the said first and last cells in said series circuit and the said power source whereby an electromagnetic eld having an effect on the owing mercury amalgam cathode in one of the said end cells connected to said power source by said power source bus bars is induced in the said power source bus bars, the improvement which comprises the said cathode bus bar in the said mercury amalgam cathode electrolytic cell being located under substantially all of the width of the said conducting
  • each of said cells having an inclined conducting surface, a cathode bus bar adapted to conduct electrical current to said electrolytic cell, a flowing mercury amalgam cathode flowing as a single stream over said inclined conducting surface, a solid anode, an anode bus bar adapted for conducting current from said cell, and an anode bus bar conductor connecting said anode to said bus bar,
  • each of said electrolytic cells incline downward toward the end of the cell which is nearest the other cell

Abstract

A mercury amalgam cathode electrolytic cell useful for the electrolysis of aqueous alkali metal chloride solutions is disclosed. The electrolytic cell includes means for reducing or eliminating the effects of electromagnetic fields induced in the mercury amalgam cathode by the various electrical currents in the vicinity of the cell.

Description

E@ G. PECK. JR
MERCURY CATHODE ELECTROLYTIC CELLS Original Filed March .Y 1970 4 Sheets-Sheet :y
J. G. PECK, .1R 3,?@32
MERCURY CATHODE ELECI'ROLYTUT CELLS Original Filed March 1: 197C 4 Sheets-Sheet l 25 gifs-a ze ik MVM J. G. PECK, JR 3,73l2@ MERCURY UATHODE ELECTROLYTIC CELLS Original. Filed March 1,) i976 4 Sheets-Sheet L,
AI. W om @vom FM m @Rf N mw Mm n @mm \.N AI W5 @l PWS. Jl. VRL.: m n On. M n Om M www @muy Mw um N mmm mmm ou@ Mmm w w @WQ ,m M M .WHLS M Wm MM mm @HLX JV, r w .v MI. PIUIV NMF mw@ mm @i PJ @ETLQ i United States Patent O 3,783,120 MERCURY CATHODE ELECTROLYTIC CELLS James G. Peck, Jr., Lake Charles, La., assignor to PPG Industries, Inc., Pittsburgh, Pa.
Original application Mar. 9, 1970, Ser. No. 17,505, now Patent No. 3,691,036. Divided and this application Oct. 21, 1971, Ser. No. 191,265
Int. Cl. C22d 1 04 U.S. Cl. 204-219 3 Claims i ABSTRACT F THE DISCLOSURE A mercury amalgam cathode electrolytic cell useful for the electrolysis of aqueous alkali metal chloride solutions is disclosed. The electrolytic cell includes means for reducing or eliminating the 'elects of electromagnetic Alields induced in the mercury amalgam cathode by the various electrical currents in the vicinity of the cell.
CROSS REFERENCE TO RELATED APPLICATION This is a division of U.S. application Ser. No. 17,505, led Mar. 9, 1970, now U.S. Pat. 3,691,036.
Aqueous alkali metal chloride solutions, as lithium chloride, sodium chloride, and potassium chloride, are electrolyzed to yield alkali metal hydroxides and chlorine. This electrolysis is carried out commercially in two types of cells--the diaphragm cell and the mercury cell. A typical mercury cell is shown diagrammatically in FIG. 1.
A mercury cell has a conducting surface inclined slightly from the horizontal in the longitudinal direction. Typically, this conducting surface is a steel plate. A mercury amalgam film, usually about 1A of an inch to about 1A of an inch or more in thickness, flows across this plate in the direction of the inclination of the plate. Flowing on top of the amalgam is the electrolyte, that is, the aqueous alkali metal chloride solution. Anodes, typically carbonanodes, or noble metal coated, or noble metal oxide coated titanium anodes, are usually spaced about 1A of an inch to about 3716 of an inch above the mercury sunface'.
In a typical cell room, pluralities of such cells are arranged in series substantially as illustrated in FIG. 4. As there shown, two or more rows of cells are assembled in side-by-side relationship with the positive terminal of the power source being connected to the anode of the end cell of one row and the negative terminal of the said power source being connected to the cathode of the end cell of the other row. Each of the cells is connected in series, the cathode of one cell being connected to the anode of the next adjacent cell ofthe series.
At the opposite end of the rows a bus bar crosses from the cathode of the cell at such opposite end of one row ice of the front end cells, separated therefrom, and substantially parallel to such sides.
Typically, there may be 30 to 80 cells in a cell room, forming what may be called a cell circuit, although there may be more or less, and more rows of cells may be installed in a circuit. Generally, however, there are two rows of cells, and half of the cells are in each row.
In a normally running mercury-amalgam electrolytic cell, chlorine gas is liberated at the anode, and the alkali metal is liberated at the cathode, the alkali metal forming an amalgam with the mercury. It has been observed, however, that at high currents, on the order of about 150,000 amperes or more, liowing through the cells or bus bars, cell performance becomes highly erratic. Chlorine production drops. Large amounts of hydrogen are liberated. Currents surge to high levels. Carbon anode consumption becomes prohibitive as large quantities of carbon monoxide and carbon dioxide are liberated. In cells with metal or metallic oxide coated anodes, the coating is stripped ol of the anodes. This effect is rst observed at around 150,000 amperes and worsens with increasing amperage.
According to this invention, it has been found that this erratic behavior of the cells is due to the erratic behavior of the mercury cathode. It has now been found that at high currents the mercury no longer ows evenly along and down the base plate. Instead, bare spots develop on some areas of the plate while in other areas of the plate the mercury churns violently. This churning frequently becomes severe enough to allow the mercury to come into actual physical contact with the anodes, short circuiting the cell. The shorting causes the high consumption rate of the carbon anodes and the stripping of the metallic anodes, while the bare spots cause the liberation of hydrogen.
The four corner cells in the cell room, that is, the two cells nearest the power supply and the two cells nearest the cross-over bus bars, are the cells where this erratic behavior takes place or, at least, is most noticeable. The other cells, that is, the ones nearer the center of the cell room and more remote from the bus bars, appear to be unaffected or less affected by the erratic behavior of the corner cells.
According to this invention, it has now been found that this erratic performance of mercury cells during the electrolysis of alkali metal chloride solutions can be overcome by establishing and maintaining, during electrolysis, an electromagnetic field which is opposed to, and reduces the effect of, the electromagnetic field generated by current llow in the cross-over bus bars or in the power supply bus bars. Thus, the adverse effects which the externally induced electromagnetic lields generated in such bus bars may have on the mercury cathode are suppressed suiciently, for example, by properly locating the input and output leads of the corner cells in diierent positions relative to each other, thereby providing for current flow in a dilferent direction either through the mercury-amalgam cathode or through the cathode conducting surface, or through both. This changes the vector component of the electromagnetic fields operating on the amalgam cathode.
Controlling the direction of the horizontal component of the current ow to realize good cell operation and offset at least a portion of the electromagnetic lields induced in the amalgam cathode is especially appropriate when currents upwards of 150,000 amperes are supplied to the cells by a conductor, as a cross-over bus bar, which extends parallel to the direction of the ilow of the mercury-amalgam electrode and is relatively close, say from about l to about 50 feet, from the end of the cells. Other factors, such as the mechanical problem of maintaining the inclined conducting surface perfectly flat, may, as a practical matter, limit the size of mercury-amalgam cells, thereby limiting the maximum current How in mercuryamalgam electrolytic cells to about 750,000 amperes. Nevertheless, this invention is applicable to cell currents operating above such currents.
For a more complete understanding of the present invention, reference is made to the accompanying drawings in which:
FIG. 1 is a cut-away diagrammatic drawing of atypical mercury electrolytic cell.
FIG. 2 is a sectional view along plane II-II of FIG. 1.
FIG. 3 is a sectional view along plane III-III of FIG. 2.
FIG. 4 is a diagrammatic layout of a typical mercury cathode cell room.
FIG. 5 is a diagrammatic view of two end cells in an electrolytic cell circuit, the actual slope of the cells being somewhat exaggerated, and the associated crossover bus bar showing several embodiments of the invention.
FIG. 6 is a schematic side elevation of a typical mercury cathode electrolytic cell.
FIG. 7 shows the direction of the current flow in the cell shown in FIG. 6.
FIG. 8 shows the current distribution across the cell shown in FIG. 6.
FIG. 9 diagrammatically shows two end cells, associated cross-over |bus bars, and the directions of current and amalgam ows, respectively, for the cells of FIG. 6.
FIG. 10 is a schematic side elevation showing one embodiment of the present invention in which a cathode bus connection is made at a central area of the cell (near the longitudinal axis of the cell) as well as at the side opposite the anode connection.
FIG. 1l shows the direction of the current flow in the cell shown in FIG. 10.
FIG. 12 shows the current distribution in the cell shown in FIG. l0.
FIG. 13 diagrammatically shows two end cells, associated cross-over bus bars, and the directions of the current and amalgam ows for the cells of FIG. 10.
FIG. 14 is a schematic side elevation showing another embodiment of the present invention in which the cathode bus connection is made at the same side of the cell as the anode connection as well as at the opposite end of the cell.
FIG. 15 shows the direction of the current ow in the cell shown in FIG. 14.
FIG. 16 shows the current distribution across the cell shown in FIG. 14.
FIG. 17 diagrammatically shows two end cells, associated cross-over bus bars, and the direction of the current and amalgam ows for the cells of FIG. 14.
FIG. 18 is a schematic side elevation showing another embodiment of the present invention wherein the cathode bus connection is on the same side of the cell as the anode connection.
FIG. 19 shows the direction of the current ow in the cell shown in FIG. 18.
FIG. 20 shows the current distribution across the cell shown in FIG. 18.
FIG. 21 diagrammatcally shows two end cells, associated cross-over bus bars, and the direction of the current and amalgam flows for the cells of FIG. 18.
FIG. 22 is a schematic side elevation showing an ern- Ibodiment of the present invention wherein the cathode bus connection is at the same side of the cell as the anode connection but positioned outward of the anode connection.
FIG. 23 shows the direction of the current flow in the cell shown in FIG. 22.
FIG. 24 shows the current distribution across the cell shown in FIG. 22.
FIG. 25 diagrammatically shows two end cells, associated cross-over bus bars, and the direction of the current and amalgam flows for thel cells of FIG. 22.
FIGS. 6, 10, 14, 18, and 22 differ from each other principally in the location of the cathode bus connection or connections. FIGS. 7, 11, 15, 19, and 23 show the resulting direction of the current ow for each of the locations of the cathode bus connection with respect to the direction of the mercury flow. In FIGS. 8, 12, 16, 20, and 24 is a graph showing generally the magnitude of current at given points across the cell for each of the locations of the cathode bus connection. The vertical axis represents the amperage, and the horizontal axis represents the width of the cell. A current represented as being above the zero axis and having a positive value tends to produce a magnetic mercury ilow counter to the gravitational mercury dlow. A current flowing in the opposite direction, represented as being below the zero axis and having a negative value, tends to produce a magnetic mercury flow in the same direction as the gravitational mercury flow. In FIGS. 8, 12, 16, 20, and 24 the vertical axis represents relative magnitudes only and has no absolute signicance. The horizontal coordinates a, b, c, d, and e represent locations across the width of the cell. Points a and e represent the edges of the cell. Points b and d represent intermediate points on the bottom of the cell. Point c represents the central area of the cell.
FIGS. 9, 13, 17, 21, and 25 show the directions of gravitational mercury ow, the current llow in the crossoverbus bars, the current ilow in the cathode bus bars, and the current ow in the conducting surface and mercury amalgam. In FIGS. 9, 13, 17, 2l, and 25, the arrows are for the purpose of indicating direction only and do not represent magnitudes or locations.
This-invention is useful in improving the performance of the various mercury-amalgam cathode electrolytic cells known in the art. Various embodiments of mercury-amalgam cathode electrolytic cells are known in the art. In general, such cells have the simplified ow diagram shown in U.S. Pat. 2,544,138, granted Mar. 6, 1951. Other mercury-amalgam cathode cells are shown in U.S. Pat. 3,445,- 373, granted May 20, 1969; U.S. Pat. 3,042,602, granted July 3, 1962; U.S. Pat. 2,704,743, granted Mar. 22, 1955; and U.S. Pat. 2,550,231, granted Apr. 24, 1951, as well as in R. B. MacMullin, Electrolysis of Brines in Mercury Cells, in Sconce, ed., Chlorine, Reinhold Publishing Co., New York, N.Y. (1962). A typical mercury-amalgam cathode electrolytic cell may be constructed substantially as shown in FIG. 1. The cell itself stands on insulated legs 1. The legs support the base of the cell 2. The base of the cell may be concrete or some other suitably chlorine-resistant material with the conducting steel plate S mounted directly on top of it. The sides of the cell are formed from vertical extensions of the base of the cell.
The conducting surface is typically a steel base plate inclined in the longitudinal direction, for example at an angle of about 11/z to about 2 from the horizontal as shown in FIG. 3. At various locations in the bottom of the cell are cathode conductors 6 connecting the steel plate to the cathode bus bar 7. The mercury-amalgam 8 llows as a thin stream along the upper surface of the steel plate in the direction of the inclination, its thickness often varying from about 1A inch to about 1A inch. As illustrated in FIG. 3, the mercury is fed to the cell at the higher end 9 of the base plate from a denuder. From there, under the influence of gravity, the mercury flows downwardly the length of steel plate 5 and exits to the denuder at the lower end 10 of the base. The flowing mercury is the .5 cathode of the electrolytic cell, alkali metal being liberated at the mercury cathode and forming an amalgam wlth the mercury cathode. The mercury fed to the cell is lean in alkali metal, typically being essentially free of alkali metal, rarely having an alkali metal content of more than about .0l percent by weight, while the amalgam ex1ting the cell is richer in alkali metal, typically having an alkali metal content of about .2 to about .4 percent by weight.
Positioned a short distance above the amalgam, for example about z inch to about V16 inch above the upper surface of the amalgam, are the anodes 11. The anodes may be either graphite or a suitably conducting metal with a corrosion-resistant, electrically conductive surface, or they may be of other conducting materials resistant to the electrolyte. A layer of aqueous alkali metal chloride electrolyte flows above the cathode, partially immersing the anodes. The alkali metal chloride may be litlnum chloride, sodium chloride, or potassium chloride. It is usually sodium chloride. The aqueous alkali metal chloride, typically containing from about 200 to about 300 grams per liter of alkali metal chloride, llows on top of and in substantially the same direction as the amalgam. However, this invention is also useful in improving the performance of electrolytic cells where the OW f the electrolyte is diagonal to, or even countercurrent to, the ilow of the amalgam.
As shown in FIG. 3, the alkali metal chloride solution, or electrolyte, enters the cell and iiows, under the force of gravity, to the lower end of the cell. A constant hydrostatic head of electrolyte, maintained by means well known in the art, provides a constant ow rate.
The anode stems 13 protrude through the top of the cell 12 and are connected to and support the anodes 11. Chlorine gas is evolved on the surface of the anode and rises through the electrolyte being recovered through suitable fittings (now shown) in the top of the cell. The anode stems 13 are electrical conductors that breach the top of the cell and electrically connect the anodes to the anode bus bars 14. The top of the cell 12 is constructed of exible rubber or other suitable insulating, non-reactive, flexible material and mounted on top of the base structure. Above the top of the cell is a structure from which the anodes are adjustably mounted for the purpose of adjusting the spacing between the amalgam and the opposed anode surface.
There are other, equivalent, mercury-amalgam cathode electrolytic cell structures. For instance, the base member 2 may be eliminated, the conducting surface 5 sitting directly on the insulating legs 1. The conducting surface may be in the form of a fiat plate 5 or it may be in the form of a trough or channel. When the conducting surface is in the form of a trough, the conducting surface may be joined directly to the top 12 at an insulated joint. The top 12 can be in one of various shapes. While one row of anode stems 13 per anode bus bar 14 is shown, one anode bus bar may service a plurality of anode stems or conductors. While in the cell illustrated in FIG. l, six anodes 11 are shown longitudinally, present electrolytic cells may have various numbers of anodes across the width and length of the cell. The cathode conductor 6 may be in the form of an I-beam, extending the length of the cell, parallel to the mercury flow. The conductor may be connected with one or more bus bars 7 which may be spaced along the length of the conductor 6.
The ow of electric current in the cell is typically from an adjacent electrolytic cell. In the case ,of the corner cells in a cell room or cell circuit, as 20, 21, 22, and 23 in FIG. 4, the current flow is to or from opposite electrolytic cells, as 21 and 22, through long cross-over bus bars, as 24, 25, and 26 in FIG. 4, which are essentially parallel to the flow of the mercury amalgam. The current is fed to the anode bus bars 14 through the anode bus bars to the anode conductor 13, from the anode conductor to the anode 11, from the anode through the electrolyte to the cathode 8. The current goes through the cathode to the base plate 5, from the base plate to the cathode conductors 6, and from the cathode conductors to the cathode bus bars 7. Then, for typical cells, the cathode bus bars conduct the current to an adjacent electrolytic cell. For the corner cells, as 20, 21, 22, and 23 of FIG. 4, current is conducted along long bus bars 24, 25, and 26, essentially parallel to the flow of mercury.
An electric charge in motion, as an electrical current flowing through a conductor, sets up a magnetic field in the space around it. The direction of the electromagnetic fields so induced is given by the Right Hand Rule, while the magnitude of the lield at any point is given by the Biot-Savart Law. Typically in an alkali metal amalgam electrolytic cell, the anode bus bars 14 are above the cell, the cathode bus bars 7 are underneath the cell, and the conducting base plate 5 is within the cell. There is a horizontal current flow in each of or resulting from each of these conductors. Each of these horizontal current flows establishes a magnetic field around itself. The amalgam is subject to the cumulative effects of all three of these internally induced electromagnetic elds.
The amalgam is influenced both by fields generated by current flows within the cell and by fields generated by current flows outside the cell, i.e., in the cross-over bus bars and the power supply bus bars. The alkali metal amalgam in the end cells is most influenced by the external magnetic fields induced by the current flows in the cross-over or power supply bus bars running along the side of the cell. However, other fields which have a lesser influence are induced by the current flow in the anode bus bar and in the conducting surface. Other lfields having a still lesser influence are induced by the current ilow in the cathode bus bar.
The cumulative influence of the electromagnetic fields induced by the anode bus bar and the conducting surface is greater than the inuence of the electromagnetic field induced by the cathode bus bar because of the different locations of these conductors relative to each other and to the flowing amalgam cathode. The anode bus bar extends across the top of the cell for about one-half of the width of the flowing amalgam cathode, and the conducting surface extends across the entire width of the iiowing amalgam cathode. Therefore, the electromagnetic fields induced by the anode bus bar and conducting surface act essentially vertically on the iiowing mercuryamalgam cathode.
By way of contrast, in a typical electrolytic cell the cathode bus bar extends under the conducting surface for only the minimum distance necessary to mechanically connect the cathode bus bar to the conducting surface. For example, a typical electrolytic cell may have cathode bus bars only at cathode conductor 40. Therefore, in a typical electrolytic cell the electromagnetic field induced by the cathode bus bar acts at an angle on the amalgam and, therefore, exerts less of an effect. It will be noted that since the cathode conductor (or conductors) 40 is located at the side of the cell, a substantial part of the current in the mercury Hows toward the side of the cell having the current conductor, either through the mercury itself or through the conducting bottom. The direction of this flow for a typical cell as shown in FIG. 7.
The electrolytic cells at the corners of the cell circuit or cell room cells, 21 and 23 in FIG. 4, are under the influence of electromagnetic fields induced by the current in the cross-over but bars, 24, 25, and 26, and cells 20 and 22 are under the influence of the power supply bus bars 126. In accordance with this invention, it has been found that by controlling the internal currents, particularly the direction thereof, for example, by changing the location of the cathode bus bar with respect to the conducting surface and the amalgam, the electromagnetic eld induced by the current flow in the cathode bus bar acts more directly on the amalgam. Accordingly, the direction of the electromagnetic eld induced by the conducting surface is reversed or at least modified, whereby the elects of the externally induced electromagnetic fields, such as those induced by the power supply bus bars or the cross-over bus bars, can be reduced.
A mercury cell circuit is conventionally installed as illustrated in FIG. 4, with the cells in rows, and the individual cells being longitudinally aligned in side-by-side relationship.
Power source bus bars 126 run along the side of the cells adjacent to the power sources, from the power source to the cell anode connections. In like manner, the crossover bus bars 24, 25, and 26 run along the opposite side of the end cells 21 and 23 which are located at the opI posite ends of the rows.
In the interest of reducing the length of the bus bars between the cells, each cell has been installed essentially as illustrated in FIG. 6 with the anode bus bar coming from the cathode connection of the next adjacent cell up the series toward the positive side of the power source and a cathode conductor 40 running longitudinally along the bottom of the cell, adjacent to that side of the cell which is opposite to the side of the cell from Which the anode bus bar cornes. In this instance current owing downward from the anodcs mounted across the cell goes to the amalgam and then laterally through the amalgam and conducting surface to the cathode conductor at the side of the cell. This creates a gradually increasing amount of current flow through the amalgam and conductive plate in a direction 51 generally shown from left to right in FIG. 7. The cathode bus bar current ows in direction 52, to the next cell, or to the cross-over bus bars, from the far side of the cell, as shown by the arrow beneath in cell in FIG. 7.
As shown in FIG. 8, the current llowing through the amalgam and conducting surface gradually rises in a lateral direction from point a to point d. Point d is the locus of conductor 40. On the opposite side of the conductor, current flows in the opposite direction; that is, from point e to point d.
In FIG. 8, as well as FIGS. 12, 16, 20, and 24, current flowing in one direction is shown as positive or above the horizontal axis and current owing in the opposite direction is shown as negative or below the horizontal axis. It has been observed that the current shown as positive tends to produce a magnetic ow of the mercury counter to the gravitational flow of the mercury, and the current shown as negative tends to produce a magnetic lield that is in the same direction as that of the gravitational ow of the mercury.
FIG. 9 diagrammatically illustrates the current relationships in the end cells 21 and 23 of a conventional installation which end cells are opposite the cross-over bus bars 24, 25, and 26. Mercury flow in cell 23 ows in direction 71 toward the space between the two cells 21 and 23. At the same time, because of the location of the cathode conductor 40 shown in FIG. 6, current ows through the amalgam and the conducting surface in direction 73, that is, away from the side nearest the next adjacent cell in the row and toward the side nearest the bus bars 24 and 25.
Considering now the opposed cell 21, the mercury flows in direction 71 which is also from the outer end of the cell toward the central space between cells 21 and 23. Thus, the direction of mercury ow in cell 21 is opposite that in cell 23. Also, current flow through the amalgam and the conducting surface is away from the side of the cell where cross-over bus bars 24, 25, and 26 are located because the cathode conductor is disposed on the side of the cell which is remote from the cross-over bus bars.
In this cell arrangement the erratic performance of the cells discussed above is encountered, especially in the corner cells.
These diliiculties may be avoided according to this invention by providing means which change the over-all direction of the current liow through the amalgam and the conducting surface 5, especially in the end cells. FIGS. l0, 14, 18, and 22 illustrate a suitable manner by which this may be accomplished. Thus, as shown in FIG. l0, a further cathode conductor is disposed longitudinally of the cell, essentially along the central longitudinal axis of the cell. This conductor 42 is in addition to conductor 40.
By making an additional cathode bus connection at 42 in FIG. 10, the horizontal component of the current flow is divided into two parts, 53 and 54 of FIG. 11. This produces a current distribution of the kind shown in FIG. 12 which rises to a lesser maximum than does the current distribution shown in FIG. 8 but still tends to produce a magnetic ow of the cathode opposite the gravitational tlow of the cathode. The magnetic ow so produced is less than the magnetic ow produced in the arrangement of FIGS. 6 to 9. In such a case the current ows in cell 21 from the side of the cell remote from the cross-over bus bars toward the conductor 42 in the direction illustrated by arrow 53, and on the opposite side of the center of conductor 42 the current ows to both conductors 40 and 42 as generally illustrated by arrow 54. Also, current iows through the cathode bus bar from conductor 42 as shown by arrow 72 in FIG. 13. The flows of the mercury in cell 21 are shown by arrow 71 and the current flows are illustrated by arrows 73 and 72 of FIG. 13.
When the additional cathode conductor is disposed at the opposite edge of the cell, i.e., in cell 23 on the side remote from the cross-over bus bar, and in cell 21 on the side nearest such cross-over bus bar, as at 43 in FIG. 14, the horizontal component of the current ow is substantially as shown by 57 in FIG. 15. This gives a current distribution of the kind shown in FIG. 16. This current distribution imparts a magnetic ow to the cathode opposed to the gravitational ow of the cathode in that part of the cell where the horizontal component of the current flow in the mercury and the conducting surface is away from the cross-over bus bar in cell 21, and toward the cross-over bus bar in cell 23. A magnetic ow in the same direction as the gravitational ow is imparted to the cathode in that part of the cell where the horizontal com ponent of the current flow is toward the anode connection 41 in FIG. 14. This is illustrated most clearly by the cathode-amalgam current 73 of FIG. 17.
Arrows 72 indicate the 110W of the current underneath the cell from the cathode conductors 40 and 43. In this embodiment, current flows toward both sides because of the location of conductors 40 and 43 on opposite sides. The magnitude of the magnetic eld counter to the gravitational mercury ow is greatly reduced or cancelled out because of the lower magnitude and direction of the current ow as shown in FIG. 16.
If desired, cathode connector 40 may be eliminated and only a single connector, 48, provided. This is shown at 43 of FIG. 18. In this case, the horizontal component of the current flow in the cell is substantially opposite in direction to the direction of ow in the embodiment shown in FIGS. 69, inclusive, and is in the direction illustrated by arrow 58 in FIG. 19. As seen in FIG. 20, the resulting current distribution in the cell is such that the magnetic ow of the cathode is substantially the same as the gravitational flow of the cathode.
As seen in FIG. 2l, the cathode bus bar current 72 resulting from the arrangement shown in FIG. 18 is substantially opposed to the amalgam current 73. The only part of the cell where the magnetic ow is opposed to the gravitational ow is that part of the cell between the cathode bus connection and the adjacent side of the cell, that is, the area between a and b in FIG. 20.
It', however, the cathode bus connection 44 in FIG. 22 (44 in FIG. 5) is made at or near the cell wall, the resulting horizontal component of the current flow in the cell is substantially as shown in FIG. 23. The directions of current -ow through the amalgam and conducting surface are as shown by arrows 73 of FIG. 25, and the directions of the current ow through the bus bar conductor under the cell are as shown by arrows 72 of FIG. 25. The horizontal component of the current distribution is then substantially as shown in FIG. 24 and the magnetic ow of the cathode is in the same direction as the gravitational tlow of the cathode throughout the entire cell.
As is especially evident from FIGS. 12, 16, 20, and 24, when the cathode bus bar connection is such that the cathode bus bar extends for one half or more of the width of the conducting base plate, as in FIGS. 10, 14, 18, and 22, or 42 of FIG. 5, the magnitude of the internally induced electromagnetic eld in opposition to the gravitational flow of the cathode is substantially reduced and satisfactory operation of the cell above 150,000 :amperes up to about 350,000 amperes or even higher is obtained. Even better results are obtained when the cathode connection is made at conductor 43 or 44 of FIG. 18 or 22, respectively, so that all of the current flows as indicated in FIGS. 19, 23, 24, and 25, and the cathode bus bars leading from the cathode conductors extend under the cell for the entire width of the conducting base plate. The best results, especially above 350,000 amperes, are obtained when the cathode connection is made at a location such that all of the cathode bus bars extend substantially the entire width of the conductiing base plate, as at 44 and FIGS. 22 through 25.
FIG. diagrammatically illustrates in somewhat greater detail the arrangement of the two end cells 21 and 23 opposite the cross-over bus bars 24 and 2S, using the cathode connectors 43 or 44 shown in either FIG. 18 or 22, respectively. In cell 21 a plurality of cathode conductors 43 are connected to the cathode bus bars 30 leading to crossover bus bars 24 and 25. These conductors 43 are either at or near the side of the cell remote from the cross-over bus bars.
'Cell 21 and cell 23 are sloped in opposite directions so that mercury flows in opposite directions. Thus, in cell 23 the cathode connections 43 are disposed along the side nearest the cross-over bus bars.
'It will be understood that the cathode conductors 43 may comprise spaced individual conductors as shown, connected to several bus bars, or one or more bus -bars may be connected to a cathode conductor which extends along the entire length of the cell. While this drawing and discussion have emphasized the cells adjacent to the crossover bus bars, it is clear that these comments apply equally to the cells adjacent to the power supply bus bars 126. That is, in cell 22, a cathode conductor 42, 43, or 44 is disposed at the center axis or at least nearer the side of the cell which is remote from the power source bus bars, this being similar to cell 21 of FIG. 5, and the cathode conductors of cell 20 being disposed nearer the side which is nearest to the power source bus bars.
The intermediate cells need not `and in many cases will not have these precautions. Thus, they are usually constructed as indicated in FIG. 6 although the cathode conductors of these cells may be as illustrated in FIGS. 10, 14, 18, and 22, if desired.
It will be noted that in FIG. 5 connections 40 and 42 are shown with bus bars in phantom. These connnections may be provided so that the other embodiments illustrated in FIGS. l0 and 14 may be resorted to.
In order that those skilled in the art may more completely understand the present invention and the preferred methods bywhich the same may be carried into effect, the following specific examples are offered.
EXAMPLE I The contemplated room has 70 cells, arranged in two rows of 35 cells each, as shown in FIG. 4. The end cells have a conducting surface 6 feet wide by 68 feet long, inclined at an angle of 1.5 fnom the horizontal toward the center of the cell room. The cells are electrically connected in series, with the power source being connected to the anode of the rst cell in the one row by bus bars.
The cells in the row are electrically connected to each other, cathode to anode. The cathode ofthe last cell in the row is connected to the anode of the opposite cell inthe next row by cross-over bus bars as 24 and 25 of FIG. 5. The cells in this row are electrically connected to each other, cathode to anode, the cathode of the cell at the front of the row being connected to the power source. The power source bus bar is 9 feet from the sides of the front cells in the rows and joins the power source to the front cells in the rows.
The feed to the cells is a brine having from about 200 to Iabout 300 grams per liter of sodium chloride and an amalgam having about .01 percent by weight sodium. The product is an amalgam having about .2 to about .4 percent sodium and 10 tons per day per cell of chlorine.
The two cells at the ends of the respective rows are connected to each other by cross-over bus bars. One crossover bus bar joins one anode bus bar to one cathode bus bar. The cross-over bus bars, constructed of aluminum, are 11A inch by 20 inches in cross section. They have a center-to-center distance between bus bars of 21/2 inches.
The bus bar nearest the side of the cells is 9 feet from the cell sides, the other bus bars being arranged outwardly therefrom. The cathode bus bars are connected to conductors 40 beneath and running substantially the entire length of the conducting surface on that side of the conducting surface requiring the shortest cathode bus bars and corresponding to 40 of FIG. 5. The circuit is operated at 150,000 amperes. At this current flow the end cells nearest the power source bus bars and the cross-over bus bars develop short circuits.
EXAM PLE II The cell room of Example I is used except that the cathode bus bars in both end cells adjacent to the crossover bus bars are run half way under the conducting surface perpendicular to the direction of the mercury W and are connected to ya conductor which is disposed substantially along the longitudinal central axis of the cell running the entire length thereof and corresponding to 4Z in FIG. 5. In order to prevent short circuiting in the two end cells nearest the power source, they are shorted out of the system. The cell circuit can be operated at a current of 350,000 amperes without observing short circuiting in the end cells adjacent to the cross-over bus bars.
EXAMPLE III The cell room of Example I is used except that the cathode bus bars in both of the end cells adjacent to the cross-over bus bars are run under substantially the entire width of the conducting surface perpendicular to the direction of the mercury ilow and connected to conductor 43 on the side of the conducting surface requiring the longest cathode bus bars, running the entire length of the conducting surface and corresponding to 43 of FIG. 5. In order to prevent short circuits in the two cells nearest the power source, they are shorted out of the system. The cell circuit can be operated at 450,000 amperes and no seriously adverse elects will occur in the end cells adjacent to the cross-over bus bars.
EXAMPLE IV Example II is repeated with the two front cells nearest the power source in the circuit. The cathode bus bars in both front cells adjacent to the power supply are run halfway under the conducting surface in a direction perpendicular to the mercury flow and connected to conductors midway across the width of the conducting surface, running the entire length thereof and corresponding to 42 in FIG. 5. The cell circuit can be operated at a current of 350,000 amperes before any short circuiting in the front cells nearest the power source will be observed.
EXAMPLE V Example III is repeated with the two front cells nearest the power source in the circuit. The cathode bus bars in both of the front cells nearest the power supply are run substantially under the entire width of the conducting surface perpendicular to the direction of the mercury ow and connected to conductors on the side of the conducting surface requiring the longest cathode bus bar, running the entire length of the conducting surface in the direction of the mercury ow and corresponding to 43 in FIG. 5. The cell circuit can be operated at a current of 450,000 amperes before any seriously adverse effects will occur in the front cells adjacent to the power source.
EXAMPLE VI The cell room of Example I is used. The cathode bus bar connectors of both of the end cells adjacent to the cross-over bus bars are installed under the conducting sur face in diagonal relationship to the length of the cell so that at the end of the cell nearest the end of the opposite cell the cathode bus bar extends under the entire Width of the conducting surface, while at the end of the cell furthest from the opposite cell the cathode bus bar does not extend under the conducting surface for an appreciable distance. Satisfactory performance is obtained at 400,000 amperes.
While there are described above a number of specific embodiments of the present invention, it is obviously possible to produce other embodiments and various equivalent modifications thereof without departing from the spirit of the invention. Having set forth the general nature and specific embodiments of the present invention, the scope thereof is now particularly pointed out in the appended claims.
What is claimed is:
1. In an electrolytic cell circuit used for the electrolysis of alkali metal chlorides at a current in excess of 150,000 amperes and comprising:
a power source,
a plurality of electrolytic cells,
said electrolytic cells being electrically connected in series,
said electrolytic cells being arranged in substantially parallel rows,
each of said rows having a pair of end cells,
two of said end cells being the first and last cells in said series circuit and being electrically connected to said power source,
a cross-over bus bar electrically connecting an end cell in one of said rows to an end cell in another of said rows,
one of the end cells electrically connected to said crossover bus bar being a mercury amalgam cathode electrolytic cell and having a conducting surface, a cathode bus bar adapted to conduct electrical current to said conducting surface, a owing mercury amalgam cathode flowing as a single stream over said conducting surface, a solid anode, an anode bus bar adapted for conducting current from said cell, and an anode bus bar conductor connecting said anode to said bus bar,
the said cross-over bus bar being adapted to conduct current from one of said end cells to the other of said end cells whereby an electromagnetic eld having an effect on the yflowing mercury amalgam cathode in one of said end cells is induced in said crossover bus bar,
the improvement which comprises the said cathode bus bar in said mercury amalgam cathode end cell being located under substantially all of the width of said conducting surface whereby substantially all of the current from said cathode passes under substantially all of the width of said conducting surface so that the effects of the electromagnetic field induced by the said cross-over bus bar in the said flowing mercury amalgam cathode are reduced.
2. In an electrolytic cell circuit used for the electrolysis of alkali metal chlorides at a current in excess of 150,000 amperes and comprising:
a power source,
a plurality of electrolytic cells,
said electrolytic cells being electrically connected in series,
the cells in said series circuit being arranged in substantially parallel rows,
each of said rows having a pair of end cells,
two of said end cells being the first and last cells in the said series circuit,
power source bus bars electrically connecting said rst and last cells in said series circuit to said power source, one of the said cells connected to said power source by said power source bus bars being a mercury amalgam cathode electrolytic cell and having a conducting surface, a cathode bus bar adapted to conduct electrical current to said conducting surface, a flowing mercury amalgam cathode flowing as a single stream over said conducting surface, a solid anode, an anode bus bar adapted for conducting current from said cell, and an anode bus bar conductor connecting said anode to said bus bar, the said power source bus bars being adapted to carry electrical current between the said first and last cells in said series circuit and the said power source whereby an electromagnetic eld having an effect on the owing mercury amalgam cathode in one of the said end cells connected to said power source by said power source bus bars is induced in the said power source bus bars, the improvement which comprises the said cathode bus bar in the said mercury amalgam cathode electrolytic cell being located under substantially all of the width of the said conducting surface whereby substantially all of the current from said cathode passes under substantially all of the width of said conducting surface so that the effects of the electromagnetic field induced by the said power source in the said flowing mercury amalgam cathode are reduced. 3. In an electrolytic cell circuit adapted for the electrolysis of alkali metal chlorides and comprising:
two electrolytic cells, each of said cells having an inclined conducting surface, a cathode bus bar adapted to conduct electrical current to said electrolytic cell, a flowing mercury amalgam cathode flowing as a single stream over said inclined conducting surface, a solid anode, an anode bus bar adapted for conducting current from said cell, and an anode bus bar conductor connecting said anode to said bus bar,
wherein the said electrolytic cells are in spaced end-toend relationship to each other,
wherein the inclined conducting surfaces in each of said electrolytic cells incline downward toward the end of the cell which is nearest the other cell,
wherein the said electrolytic cells are electrically connected in series,
14 a cross-over bus bar electrically connecting the anode References Cited gilgugf said cells to the cathode of the other of UNITED STATES PATENTS the said cross-over bus bar extending along both of said 3,672,973 6/ 1972 De Nora et al 204--220 electrolytic cells parallel to the mercury flow, 5 3,567,615 3/ 1971 NICOlalSen 204-219 the improvement which comprises locating the cathode 3,042,602 7/1962 De Nora 204-250 X lousbar under substantially all of the width of the FOREIGN PATENTS inclined conductmg surface transversely to the mercury 110W whereby substantially all of the current 190,351 10/1967 U-SSR 204-219 from said cathode passes under substantially all of the width of said conducting surface so that the 10 JOHN H MACK Primary'EXammer electromagnetic field induced in the cross-over bus D. R. VALENTINE, Assistant Examiner bar and acting on the flowing mercury amalgam Us C1 XR cathode 1s counter-acted, 204 220
US00191265A 1970-03-09 1971-10-21 Mercury cathode electrolytic cells Expired - Lifetime US3783120A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US1750570A 1970-03-09 1970-03-09
US19126571A 1971-10-21 1971-10-21

Publications (1)

Publication Number Publication Date
US3783120A true US3783120A (en) 1974-01-01

Family

ID=26689964

Family Applications (2)

Application Number Title Priority Date Filing Date
US17505A Expired - Lifetime US3691036A (en) 1970-03-09 1970-03-09 Method of operating a mercury-amalgam cathode electrolytic cell
US00191265A Expired - Lifetime US3783120A (en) 1970-03-09 1971-10-21 Mercury cathode electrolytic cells

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US17505A Expired - Lifetime US3691036A (en) 1970-03-09 1970-03-09 Method of operating a mercury-amalgam cathode electrolytic cell

Country Status (6)

Country Link
US (2) US3691036A (en)
BE (1) BE763939A (en)
DE (1) DE2110340A1 (en)
FR (1) FR2078762A5 (en)
GB (1) GB1331347A (en)
NL (1) NL7103074A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1172461A1 (en) * 2000-07-13 2002-01-16 CHIKUMA, Toichi Electrolysis method and apparatus

Also Published As

Publication number Publication date
NL7103074A (en) 1971-09-13
GB1331347A (en) 1973-09-26
DE2110340A1 (en) 1971-09-23
BE763939A (en) 1971-09-08
FR2078762A5 (en) 1971-11-05
US3691036A (en) 1972-09-12

Similar Documents

Publication Publication Date Title
GB1235570A (en) Electrolytic cells
CA1043732A (en) Electrochemical cell
US3839179A (en) Electrolysis cell
US4134806A (en) Metal anodes with reduced anodic surface and high current density and their use in electrowinning processes with low cathodic current density
GB794421A (en) Improvements in or relating to electrolytic cells
SU682143A3 (en) Apparatus for compensating for magnetic field in group of aluminium electrolyzers
US3785951A (en) Electrolyzer comprising diaphragmless cell spaces flowed through by the electrolyte
KR850003912A (en) Electrolytic Device for Aluminum Production
US3783120A (en) Mercury cathode electrolytic cells
US4396483A (en) Arrangement of busbars for electrolytic reduction cells
US1465034A (en) Process for the electrolytic deposition of copper
US4110179A (en) Process and device for the production of aluminium by the electrolysis of a molten charge
DE2357550A1 (en) BIPOLAR ELECTROLYTIC DIAPHRAGMA CELL WITH A FRICTION-WELDED CURRENT / CONNECTOR
US3775281A (en) Plant for production of aluminum by electrolysis
US2824057A (en) Electrolytic reduction cell for producing aluminum
US2874110A (en) Electrolytic reduction cell for producing aluminum
US2999801A (en) Apparatus for supplying current to high amperage electrolytic cells
US2761830A (en) Wiring arrangement for a series of electrolytic cells
US3308043A (en) Method of discharging amalgam for inclined plane mercury cells
KR860006575A (en) Hall-Heroult electrolytic cell with asymmetric cathode rod and asymmetric thermal insulator
US4359377A (en) Busbar arrangement for electrolytic cells
GB1335221A (en) Support assemblies for electrolytic deposition on contact elements
US467484A (en) stalmann
FI121472B (en) Method for Arranging Electrodes in the Electrolysis Process, Electrolysis System and Method Use, and / or System Use
US3944479A (en) Anode base structure