US3782245A - Pressure balanced radial piston machine - Google Patents

Pressure balanced radial piston machine Download PDF

Info

Publication number
US3782245A
US3782245A US00172706A US3782245DA US3782245A US 3782245 A US3782245 A US 3782245A US 00172706 A US00172706 A US 00172706A US 3782245D A US3782245D A US 3782245DA US 3782245 A US3782245 A US 3782245A
Authority
US
United States
Prior art keywords
pressure
rotor
control
balancing
radial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00172706A
Other languages
English (en)
Inventor
U Aldinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Application granted granted Critical
Publication of US3782245A publication Critical patent/US3782245A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03CPOSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
    • F03C1/00Reciprocating-piston liquid engines
    • F03C1/22Reciprocating-piston liquid engines with movable cylinders or cylinder
    • F03C1/24Reciprocating-piston liquid engines with movable cylinders or cylinder in which the liquid exclusively displaces one or more pistons reciprocating in rotary cylinders
    • F03C1/2407Reciprocating-piston liquid engines with movable cylinders or cylinder in which the liquid exclusively displaces one or more pistons reciprocating in rotary cylinders having cylinders in star or fan arrangement, the connection of the pistons with an actuated element being at the outer ends of the cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03CPOSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
    • F03C1/00Reciprocating-piston liquid engines
    • F03C1/02Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders
    • F03C1/04Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders with cylinders in star or fan arrangement
    • F03C1/0403Details, component parts specially adapted of such engines
    • F03C1/0435Particularities relating to the distribution members
    • F03C1/0438Particularities relating to the distribution members to cylindrical distribution members

Definitions

  • ABSTRACT 30 1F A 1' t' P t D t 1 orelggn pp on no" y a a
  • the conduit system of the control member includes 3,082,696 3/1963 Henrichsen 91/489 check valves preventing communication between the 3,604,314 9/1971 Steiner 91/505 high pressure port and the low pressure port. 3,548,719 12/1970 Tobias 91/498 3,199,461 8/1965 4 Claims, 3 Drawing Figures Wolf 91/6.5
  • the present invention relates to a radial piston machine, which may operate as a pump or hydraulic motor, and comprises an endless cam surface for reciprocating the radial pistons in cylinder chambers of the rotor which rotates on a stationary control member which acts as journal, and has pressure ports communicating with the inlet and outlet means of the machine.
  • pressures act on the pistons on the pressure side of the machine substantially in radial direction.
  • the pressure forces can be divided into components one of which is hydrostatically equalized, while the other components of the piston forces together produce a resultant force which has the effect that the rotor abuts at the inner dead center position of the respective piston on the control journal member, and exerts a transverse force on the same.
  • German Offenlegungs-schrift 1,453,629 discloses the provision of grooves on the control member in the region of the pressure ports.
  • Another object of the invention is to balance the cylinder rotor with the radial pistons so that no inward pressure is exerted on the control journal member.
  • the objects of the invention are obtained by providing a pressure area on a portion of a control journal member which is located in the region of the inner dead center position of the pistons.
  • the pressure area is connected by conduit means with the high pressure side of the machine.
  • FIG. 1 is a cross-sectional view illustrating a reversible radial piston machine in accordance with a first embodiment'of the invention
  • FIG. 2 is an axial sectional view taken on line 11-11 in FIG. 1;
  • FIG. 3 is a cross-sectional view illustrating a nonreversable radial piston machine in accordance with a second embodiment of the invention
  • FIG. 4 is a fragmentary cross-sectional view of a radial piston machine according to the prior art, and includes a diagrammatic illustration of the distribution of the forces created during operation of the machine, and acting on the control journal member;
  • FIG. 4a is a schematic force diagram.
  • a radial piston machine according to the embodiment of the invention illustrated in FIGS. 1 and 2 has a housing 1, closed by a cover 4, and provided with confronting slide faces 9a along which corresponding slide faces of a displacement ring 9 can slide when the manual wheel 12 is rotated together with a spindle l0 engaging a nut secured to displacement ring 9.
  • Spindle I0 is mounted in a bracket 11 secured to housing 1.
  • the displacement ring 9 can be moved by spindle from the illustrated end position to an other end position while compressing the spring lla which supports the displacement ring 9 in the housing 1.
  • Displacement ring 9 has an inner endless cam surface 8.
  • the port 14 communicates with an axially extending bore 17, while the port 115 communicates with the corresponding axial conduit 18.
  • the conduits 17 and 18 constitute inlet means and outlet means for the fluid pumped by the machine, or supplied to the machine when the same is operated as a hydraulic motor.
  • control portions 16 which separate the arcuate ports 14 and 15, have outer face portions 19 and 20, respectively, forming portions of the cylindrical outer surface of the control journal member 3.
  • Control portions 16, and the surface portions 19 and 20 are substantially located in an axial plane in which the eccentricity of the endless cam surface 8 in relation to the axis of the control journal member 3 can be adjusted, and in which the inner and outer dead center positions of the pistons are located.
  • Each of the ports 14 and 15 communicates with a channel 21 or 22, respectively into which open radial stepped bores 24 and 25, respectively which communicate with an annular channel 23 surrouding the control journal member 3 and being located in the outer cylindrical surface of the same.
  • the stepped cylindrical bores 24,25 form valve seats for the balls of check valves 26, 27.
  • a third radial bore 28 connects the annular channel 23 with an axially extending channel 29 which is closed by a closure means 29a and communicates with a valve chamber 31 in which a valve element 32 is located.
  • Valve chamber 31 connects two portions and 30" of a straight diametrical bore 30, the outer ends of the bore portions 30', 30" opening; into balancing grooves33" and 33 which confront the inner open ends of the cylinder chambers which pass over the-respective balancing groove rotation of rotor 2.
  • FIGS. 4 and 4a a radial piston pump of the type with which the present invention is concerned is shown, without the novel features of the invention.
  • the center of the endless cam surface 108 is shown to be eccentric to the axis of the control journal member 103, and of the rotor 102, as indicated at e.
  • the port 137 communicates with the three cylinder chambers 105 of a group of cylinder chambers in which radial pistons 106 including slide shoes 107 are mounted in a position in which slide shoes 107 slide on the eccentric cam surface 108, so that the pistons are reciprocated.
  • the port 137 is assumed to be the pressure port, so that pressure forces act in inward direction.
  • the forces can be divided into a force component P acting at the axis of the respective slide shoe 107, and a force P perpendicularly to the respective force P
  • the deviation of the force P from the radial direction is due to the eccentricity of the cam surface 108.
  • the components P are hydrostatically equalized, while the transverse components P of the piston forces acting on the pressure side of the machine, can be geometrically added as shown in FIG. 4a so that a resultant force P is obtained.
  • the resultant force P has the effect that the cylinder rotor 102 abuts the control journal member 103 when the respective piston is in the inner dead center position.
  • a force is exerted on the control journal member 3 of the embodiment of FIGS. 1 and 2 which, however is compensated by the pressure of the pressure fluid supplied to the respective balancing groove 33 or 33' according to the invention.
  • the effective area of the balancing groove is selected so that the outward force, reacting against the pressure in the working chamber, balances the radial inwardly directed force produced in the working chamber by the piston which passes over the balancing groove in the inner dead center position.
  • Pressure fluid flows from the annular channel 23 into the radial bore 28, and through the axially extending channel formed by the closed bore 29 to the valve chamber 31.
  • the valve element 32 is always driven to that side and is pressed on the opening of that bore portion 30', 30", where the largest play exists between teh control journal member 3 and the cylinder'rotor'2.
  • Pressure fluid gets now, for example, through the bore portion 30' into the balancing groove 33. There a pressure field is built up.
  • the pressure field of the fluid in the balancing groove 33 acts on the surface 19 of the respective control portion 16, and opposes theabovedescribed resultant force P
  • the adjusting spindle 10 is operated to displace the cam ring 9 to its other end position, so that the inner dead center position of the pistons 6 is located at the surface 20 of the respective other control portion 16, the port 14 becomes the high pressure port, and the port 15 becomes the low pressure port where action is exerted.
  • the pressure fluid for balancing the forces flows from the high pressure port 14 through the closed bore 21 and the opened check valve 24 to teh annular channel 23.
  • Check valve 25 prevents a flow of the pressure fluid into the closed bore 22 which communicates with the low pressure port.
  • the pressure fluid flows from the annular channel 23 through the radial bore 28 and the axially extending closed bore 29 into the valve chamber 31.
  • the valve element 32 closes the bore portion of the transverse bore 30, and the pressure fluid flows the bore portion 30" into the balancing groove 33 so that a pressure area is produced which balances the force acting on the surface portion 20 of the other control portion 16 of the control journal member 3.
  • annular channel 23 is connected in both operational conditions with the high pressure port of the machine. Furthermore, due to the function of the valve element 32, there is always a balancing pressure area located opposite the surface portion of the control journal member 3 where the resultant force P acts.
  • FIG. 3 The embodiment illustrated in FIG. 3 is simplified as compared with the embodiment of FIGS. 1 and 2, but the machine is not reversible. Corresponding parts are indicated by the same reference numeral as in FIGS. 1 and 2.
  • the machine has a housing 35 with an endless cam surface 8 whose center is eccentric to the axis of the control journal member 36.
  • Pistons 6 are mounted for radial movement in cylinder bores 5 of the cylinder rotor, and have slide shoes 7 mounted on the piston 6 for angular movement, and sliding under pressure along the cam surface 8.
  • Control journal member 36 has two diametrically spaced high pressure and low pressure ports 37, 38 which are separated by control portions 39.
  • An axially extending bore 40 in the control journal member communicates with the port 37, and a corresponding axially extending bore 41 communicates with the port 38 forming inlet and outlet conduits for the pressure fluid.
  • port 37 is the high pressure port and port 38 is the low pressure port.
  • a duct 42 directly connects a balancing groove 43 on the outer surface 44 of one control portion 39 of the control journal member 2 with the high pressure port 37.
  • the balancing groove 43 is located directly opposite the inner dead center position of the respective piston 6 in the axial plane in which the centers of the endless cam surface 8 and of the control journal member 36 are eccentrically spaced from each other.
  • Pressure fluid flows from the pressure port 37 through duct 42 directly into the balancing groove 43 so that a pressure area is created which opposes the resultant force P acting on one side of the control journal member 2, as explained with reference to FIGS. 4 and 4a.
  • Pressure balanced radial piston machine comprising supporting means including a housing and an endless cam surface; rotor means mounted in said housing and having a rotor axis eccentric to said cam surface in an axial plane, said rotor means having angularly spaced cylinder chambers, and piston means mounted in said cylinder chambers for radial movement and having outer ends sliding on said cam surface so that said piston means are reciprocated; a stationary control member supporting said rotor means for rotation about said rotor axis, and having diametrically spaced high pressure and low pressure ports communicating with fluid inlet and outlet means, and also communicating, respectively, with groups of said cylinder chambers located on opposite sides of said axial plane, said control member having two diametrically spaced control portions located between said high pressure and low pressure ports whereby inward pressure is exerted by said rotor means on one control portion in said axial plane when the piston means passing over said one control portion is in the inner dead center position, each of said control portions having a balancing groove, respectively, confronting the inner
  • said first duct means include two first channels connected with said ports, respectively, an annular channel surrounding said control member, check valves connecting said first channels with said annular channel, and an axially extending channel communicating with said annular channel and with said valve chamber.
  • said supporting means include a displacement ring mounted in said housing for movement in said one axial plane and having said endless cam surface movable with said displacement ring between two end positions; means for moving said displacement ring between said two end positions in which said inward pressure acts on said two control portions, respectively; and comprising means for rotating said rotor means in opposite directions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)
  • Hydraulic Motors (AREA)
US00172706A 1970-08-20 1971-08-18 Pressure balanced radial piston machine Expired - Lifetime US3782245A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19702041328 DE2041328A1 (de) 1970-08-20 1970-08-20 Radialkolbenmaschine

Publications (1)

Publication Number Publication Date
US3782245A true US3782245A (en) 1974-01-01

Family

ID=5780242

Family Applications (1)

Application Number Title Priority Date Filing Date
US00172706A Expired - Lifetime US3782245A (en) 1970-08-20 1971-08-18 Pressure balanced radial piston machine

Country Status (6)

Country Link
US (1) US3782245A (enExample)
JP (1) JPS4816924B1 (enExample)
CS (1) CS166285B2 (enExample)
DE (1) DE2041328A1 (enExample)
FR (1) FR2104556A5 (enExample)
GB (1) GB1314642A (enExample)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4018139A (en) * 1974-08-08 1977-04-19 Societe Anonyme Francaise Du Ferodo Rotary hydraulic machine
US4627793A (en) * 1984-06-13 1986-12-09 Nippondenso Co., Ltd. Motor-driven radial plunger pump
US4652215A (en) * 1984-04-12 1987-03-24 Nippondenso Co., Ltd. Variable capacity radial piston pump
US5592818A (en) * 1994-07-26 1997-01-14 Eaton Corporation Reversible hydrostatic transmission with dump valve
WO2021116835A1 (en) * 2019-12-10 2021-06-17 Ghsp, Inc. Ball piston pump

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011076076A1 (de) * 2011-05-18 2012-09-20 Continental Automotive Gmbh Pumpe

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3082696A (en) * 1959-09-30 1963-03-26 North American Aviation Inc Hydraulic pump or motor
US3084633A (en) * 1957-09-09 1963-04-09 North American Aviation Inc Hydraulic pump or motor
US3199461A (en) * 1963-05-27 1965-08-10 Cessna Aircraft Co Hydraulic pump or motor
GB1185697A (en) * 1966-05-16 1970-03-25 Citroen Sa Andre Improvements in Hydraulic Machines with Adjustable Valve Timing Adapted to Operate as Pumps or Motors
US3548719A (en) * 1969-05-27 1970-12-22 Jaromir Tobias High efficiency radial piston pump or motor with improved flow pattern
US3604314A (en) * 1968-05-06 1971-09-14 Mannesmann Meer Ag Hydrostatic axial piston machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3084633A (en) * 1957-09-09 1963-04-09 North American Aviation Inc Hydraulic pump or motor
US3082696A (en) * 1959-09-30 1963-03-26 North American Aviation Inc Hydraulic pump or motor
US3199461A (en) * 1963-05-27 1965-08-10 Cessna Aircraft Co Hydraulic pump or motor
GB1185697A (en) * 1966-05-16 1970-03-25 Citroen Sa Andre Improvements in Hydraulic Machines with Adjustable Valve Timing Adapted to Operate as Pumps or Motors
US3604314A (en) * 1968-05-06 1971-09-14 Mannesmann Meer Ag Hydrostatic axial piston machine
US3548719A (en) * 1969-05-27 1970-12-22 Jaromir Tobias High efficiency radial piston pump or motor with improved flow pattern

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4018139A (en) * 1974-08-08 1977-04-19 Societe Anonyme Francaise Du Ferodo Rotary hydraulic machine
US4652215A (en) * 1984-04-12 1987-03-24 Nippondenso Co., Ltd. Variable capacity radial piston pump
US4627793A (en) * 1984-06-13 1986-12-09 Nippondenso Co., Ltd. Motor-driven radial plunger pump
US5592818A (en) * 1994-07-26 1997-01-14 Eaton Corporation Reversible hydrostatic transmission with dump valve
WO2021116835A1 (en) * 2019-12-10 2021-06-17 Ghsp, Inc. Ball piston pump
US12398706B2 (en) 2019-12-10 2025-08-26 Ghsp, Inc. Ball piston pump

Also Published As

Publication number Publication date
GB1314642A (en) 1973-04-26
DE2041328A1 (de) 1972-02-24
JPS4816924B1 (enExample) 1973-05-25
SU382307A3 (enExample) 1973-05-22
FR2104556A5 (enExample) 1972-04-14
CS166285B2 (enExample) 1976-02-27

Similar Documents

Publication Publication Date Title
US2821932A (en) Fluid pumps or engines of the piston type
US3967541A (en) Control system for axial piston fluid energy translating device
US4807519A (en) Piston machine with changeable displacement
GB1030991A (en) Hydraulic pump or motor
US3790307A (en) Flow control arrangement for a piston pump
GB992095A (en) Variable displacement pump
US3661055A (en) Multi-cylinder barrel hydraulic pumps or motors
US2984223A (en) Fluid apparatus
US3782245A (en) Pressure balanced radial piston machine
US3800673A (en) Wear equalizing arrangement for the valve plate of an axial piston machine
US3747477A (en) Variable volume hydraulic apparatus
US2709408A (en) Variable displacement radial piston pump
US2741993A (en) Pump or motor for high hydraulic pressures
US3810418A (en) Center ring arrangement for a radial piston machine
US3066613A (en) Pump or motor device
US3802321A (en) Rotor balancing arrangement for axial piston machines
US2809594A (en) Fluid pressure mechanism
GB1237739A (en) Improvements in or relating to power transmission
US2698585A (en) Radial piston-type hydraulic pump
US3024736A (en) Rotary hydrostatic machine
US3155047A (en) Power transmission
US3949647A (en) Hydraulic mechanism, such as a motor or a pump, having radial pistons adapted to perform a plurality of strokes per revolution
US2528739A (en) High-pressure pump
USRE26519E (en) Variable displacement pump
US2498911A (en) Control of end clearances of rotors