US3781601A - Optical generator of an electrostatic field having longitudinal oscillation at light frequencies for use in an electrical circuit - Google Patents

Optical generator of an electrostatic field having longitudinal oscillation at light frequencies for use in an electrical circuit Download PDF

Info

Publication number
US3781601A
US3781601A US00224034A US3781601DA US3781601A US 3781601 A US3781601 A US 3781601A US 00224034 A US00224034 A US 00224034A US 3781601D A US3781601D A US 3781601DA US 3781601 A US3781601 A US 3781601A
Authority
US
United States
Prior art keywords
generator
optical
tube
electrodes
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00224034A
Inventor
P Imris
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ECOTROL Inc
Original Assignee
ECOTROL Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ECOTROL Inc filed Critical ECOTROL Inc
Application granted granted Critical
Publication of US3781601A publication Critical patent/US3781601A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J17/00Gas-filled discharge tubes with solid cathode
    • H01J17/02Details
    • H01J17/04Electrodes; Screens
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/02Details
    • H05B41/04Starting switches

Definitions

  • ABSTRACT An optical generator of an electrostatic field at light frequencies for use in an electrical circuit, said generator having a pair of spaced apart electrodes in a gasfilled tube of quartz glass or similar material with at least one condenser cap or plate adjacent one electrode and a dielectric-filled container enclosing the tube, the generator substantially increasing the electrical efficiency of the electrical circuit.
  • This invention relates to improved electrical circuits, and, more particularly, to circuits utilizing an optical generator of an electrostatic field at light frequencies.
  • the measure of the efficiency of an electrical circuit may broadly be defined as the ratio of the output energy in the desired form (such as light in a lighting circuit) to the input electrical energy.
  • the efficiency of many circuits has not been very high. For example, in a lighting circuit using 40 watt fluorescent lamps, only about 8.8 watts of the input energy per lamp is actually converted to visible light, thus representing an efficiency of only about 22 percent. The remaining 31.2 watts are dissipated primarily in the form of heat.
  • the present invention utilizes an optical electrostatic generator which is effective for producing high frequencies in the visible light range of about 10 to 10 Hz.
  • the operation and theory of the optical electrostatic generator has been described and discussed in my co-pending application, Ser. No. 5,248, filed Jan. 23, 1970.
  • the present optical electrostatic generator does not perform in accordance with the accepted norms and standards of ordinary electromagnetic frequencies.
  • the optical electrostatic generator as utilized in the present invention can generate a wide range of frequencies between several Hertz and those in the light frequency. Accordingly, it is an object of the present invention to provide improved electrical energy circuits utilizing my optical electrostatic generator whereby the output energy in the desired form will be substantially more efficient than heretofore possible with standard circuit techniques and equipment. It is a further object of the present invention to provide such a circuit for use in fluorescent lighting or other lighting circuits. It is also an object of the present invention to provide a circuit which may be utilized in conjunction with electrostatic precipitators for dust and particle collection and removal, as well as many other purposes which will be apparent to those skilled in the art as set forth hereinafter.
  • FIG. 1 is a schematic layout showing an optical electrostatic generator of the present invention utilized in a lighting circuit for fluorescent lamps;
  • FIG. 2 is a schematic layout of a high voltage circuit incorporating an optical electrostatic generator
  • FIG. 2a of the drawings is a sectional view through a portion of the generator.
  • FIG. 3 is a schematic sectional view showing an optical electrostatic generator in accordance with the present invention particularly for use in alternating current circuits, although it may also be used in direct current circuits.
  • FIG. 1 a low voltage circuit utilizing an optical electrostatic generator in accordance with the present invention is shown.
  • a source of alternating current electrical energy 10 is connected to a lighting circuit.
  • a rectifier 12 Connected to one tap of the power source 10 is a rectifier 12 for utilization when direct current is required.
  • the illustrated circuit is provided with a switch 14 which may be opened or closed depending upon whether or not direct or alternating current is desired.
  • a switch 16 is provided and closed when the circuit requires alternating current, in which case switch 14 is open. When switch 16 is open and 14 is closed, the circuit is operating as a direct current circuit.
  • a conductor 18 which is connected to an optical electrostatic generator 20 in accordance with the present invention.
  • the conductor 18 is passed through an insulator 22 and connected to an electrode 24.
  • an electrode 24 Spaced from the electrode 24 is a second electrode 25.
  • a quartz glass tube 26 which is filled with an ionizeable gas 28 such as xenon.
  • the gas may be of any other suitable ionizeable gas such as argon, krypton, neon, nitrogen or hydrogen, as well as the vapor of metals such as mercury or sodium.
  • each end of the tube 26 and adjacent to each electrode 24 and 25 are condenser plates 30 and 32 in the form of caps.
  • a conductor is connected to electrode 25 and passed through a second insulator 34.
  • a metal envelope in the form of a thin sheet of copper or other metal such as aluminum.
  • the envelope 36 is spaced from the conductors leading into and out of the generator by means of the insulators 22 and 34.
  • the envelope 36 is filled with a dielectric material such as transformer oil, highly purified distilled water, nitrobenzene or any other suitable liquid dielectric.
  • the dielectric may be a solid such as ceramic material with relatively small molecules.
  • a conductor 40 is connected to electrode 25, passed through insulator 24 and then connected to a series of fluorescent lamps 42 which are arranged in series connection. It is the lamps 42 which will be the measure of the efficiency of the circuit containing the optical electrostatic generator 20.
  • a conductor 44 completes the circuit from the fluorescent lamps to the tap of the source of the electrical energy 10.
  • the circuit is connected to a ground 46 by means of another conductor 48.
  • the envelope 36 is also grounded by lead 50 and in the illustrated diagram lead 50 is connected to the conductor 44.
  • the condenser caps or plates 30 and 32 form a relative condenser with the discharge tube.
  • a high voltage is applied to the electrode of the discharge tube the ions of gas are excited and brought to a higher potential than their environment, i.e., the envelope and the dielectric surrounding it.
  • the ionized gas in lamp performance and efficiency for each of the tests set forth in Table 1 is shown. The following is a description of the data set forth in each of the columns of the Tables 1 and 11.
  • the optical electrostatic generator 1n- 60 1818 330 090 3 200 cludes a quartz glass tube filled in with xenon, with se- 19 53 .1818 291 9.63 3,200 ries of different tubes being used because of the differ- 20 50 1813 275 3,200 21... 23 .1818 126 4.18 3.200 cm Pressures tested- 22 13 .1818 71 2.35 3.200
  • Table l is the data to be obtained relating 23 8 -13l3 44 3,200 24 5 .1818 27 0.90 3.200
  • the total power input is 227.7 watts for the optical generator and 1,090 watts for 100 fluorescent lamps or a total of 1,318 watts.
  • the total power input normally required to operate the 100 fluorescent lamps in a normal circuit would be 40 watts times 100 or 4,000 watts.
  • about 2,680 watts of energy are saved.
  • Table l is an example of the functioning of this invention for a particular fluorescent lamp (40 watt, coolwhite). However, similar data can be obtained for other lighting applications by those skilled in the art.
  • FIG. 2 a circuit is shown using an optical electrostatic generator 20a similar to generator 20 of FIG. 1.
  • generator 20 only one condenser cap 32a is used and it is preferably of triangular cross-sectional design.
  • the second electrode 25a is connected directly by a conductor back into the return conductor 52, similar to the arrangement shown in my co-pending application, Ser. No. 5,248, filed Jan. 23, 1970. i
  • This arrangement is preferably for very high voltage circuits and the generator is particularly suited for di- In FIG. 2, common elements have received the same number indicators as in FIG. 1.
  • FIG. 3 still another emboidment of an optical electrostatic generator 20b is shown.
  • This generator is particularly suited for use with alternating current circuits.
  • the condenser plates 30b and 32b have flanges 54 and 56 extending outwardly towards the envelope 36.
  • the high voltage embodiment may be useable in a variety of circuits such as flash lamps, high speed controls, laser beams, and high energy pulses.
  • the generator is also particularly useable in a circuit including electrostatic particle precipitation in air pollution control devices, chemical synthesis in electrical discharge systems such as ozone generators, and charging means for high voltage generators of the VandelGraff type, as well as particle accelerators.
  • An optical generator of an electrostatic field at light frequencies in electrical circuit means including a power load comprising:
  • a gaseous discharge tube including a pair of spaced electrodes, an enclosing envelope permitting the transmission of light frequencies therethrough and an ionizeable gas therein;
  • An optical electrostatic generator as defined in claim 1 wehrein the conductive envelope is grounded.

Abstract

An optical generator of an electrostatic field at light frequencies for use in an electrical circuit, said generator having a pair of spaced apart electrodes in a gas-filled tube of quartz glass or similar material with at least one condenser cap or plate adjacent one electrode and a dielectric-filled container enclosing the tube, the generator substantially increasing the electrical efficiency of the electrical circuit.

Description

United States Patent [191 Imris [111 3,781,601 Dec. 25, 1973 OPTICAL GENERATOR OF AN ELECTROSTATIC FIELD HAVING LONGITUDINAL OSCILLATION AT LIGHT FREQUENCIES FOR USE IN AN ELECTRICAL CIRCUIT [75] Inventor: Pavel Imris, West Haven, Conn. [73] Assignee: Ecotrol Inc., Columbia, Md. [22] Filed: Feb. 7, 1972 [21] Appl. No.: 224,034
Related US. Application Data [63] Continuation-impart of Ser. No. 5,248, Jan. 23,
1970, abandoned.
[52] US. Cl 315/227, 55/139, 55/152,
313/217, 313/313 [51] Int. Cl .L H0lj 17/04, HOSb 37/00 [58] Field of Search 55/123, 139, 152;
313/313, 217; 315/227, DIG. 5
[5 6] References Cited UNITED STATES PATENTS 1,861,621 6/1932 Buttolph 315/58 3,303,377 2/1967 Jansen et a1. 313/217 X 2,251,451 8/1941 Heinrich 55/139 X Primary Examiner-Roy Lake Assistant Examiner-Lawrence J. Dahl Attorney-Kenneth E. Prince and Arthur P. Savage [5 7] ABSTRACT An optical generator of an electrostatic field at light frequencies for use in an electrical circuit, said generator having a pair of spaced apart electrodes in a gasfilled tube of quartz glass or similar material with at least one condenser cap or plate adjacent one electrode and a dielectric-filled container enclosing the tube, the generator substantially increasing the electrical efficiency of the electrical circuit.
8 Claims, 4 Drawing Figures OPTICAL GENERATOR OF AN ELECTROSTATIC FIELD HAVING LONGITUDINAL OSCILLATION AT LIGHT FREQUENCIES FOR USE IN AN ELECTRICAL CIRCUIT This application is a continuation-in-part of my copending application, Ser. No. v5248, filed Jan. 23, 1970 and assigned to the same assignee, now abandoned, of which copending application, Ser. No. 206,605, filed Dec. 10, 1971, is a continuation.
BACKGROUND OF THE INVENTION This invention relates to improved electrical circuits, and, more particularly, to circuits utilizing an optical generator of an electrostatic field at light frequencies.
The measure of the efficiency of an electrical circuit may broadly be defined as the ratio of the output energy in the desired form (such as light in a lighting circuit) to the input electrical energy. Heretofore, the efficiency of many circuits has not been very high. For example, in a lighting circuit using 40 watt fluorescent lamps, only about 8.8 watts of the input energy per lamp is actually converted to visible light, thus representing an efficiency of only about 22 percent. The remaining 31.2 watts are dissipated primarily in the form of heat.
It has been suggested with lighting circuits having fluorescent lamps to increase the frequency of the applied current. While at the normal operating frequency of 60 Hz. the efficiency is 22 percent, if the frequency is increased to 10 Hz, the efficiency would only be about 25.5 percent. Also, the efficiency would only be 35 percent if the frequency was increased to 10 Hz.
SUMMARY OF THE PRESENT INVENTION The present invention utilizes an optical electrostatic generator which is effective for producing high frequencies in the visible light range of about 10 to 10 Hz. The operation and theory of the optical electrostatic generator has been described and discussed in my co-pending application, Ser. No. 5,248, filed Jan. 23, 1970. As stated in my co-pending application, the present optical electrostatic generator does not perform in accordance with the accepted norms and standards of ordinary electromagnetic frequencies.
The optical electrostatic generator as utilized in the present invention can generate a wide range of frequencies between several Hertz and those in the light frequency. Accordingly, it is an object of the present invention to provide improved electrical energy circuits utilizing my optical electrostatic generator whereby the output energy in the desired form will be substantially more efficient than heretofore possible with standard circuit techniques and equipment. It is a further object of the present invention to provide such a circuit for use in fluorescent lighting or other lighting circuits. It is also an object of the present invention to provide a circuit which may be utilized in conjunction with electrostatic precipitators for dust and particle collection and removal, as well as many other purposes which will be apparent to those skilled in the art as set forth hereinafter.
DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic layout showing an optical electrostatic generator of the present invention utilized in a lighting circuit for fluorescent lamps;
FIG. 2 is a schematic layout of a high voltage circuit incorporating an optical electrostatic generator;
FIG. 2a of the drawings is a sectional view through a portion of the generator; and
FIG. 3 is a schematic sectional view showing an optical electrostatic generator in accordance with the present invention particularly for use in alternating current circuits, although it may also be used in direct current circuits.
DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS Referring to the drawings and to FIG. 1 in particular, a low voltage circuit utilizing an optical electrostatic generator in accordance with the present invention is shown. As shown in FIG. 1, a source of alternating current electrical energy 10 is connected to a lighting circuit. Connected to one tap of the power source 10 is a rectifier 12 for utilization when direct current is required. The illustrated circuit is provided with a switch 14 which may be opened or closed depending upon whether or not direct or alternating current is desired. A switch 16 is provided and closed when the circuit requires alternating current, in which case switch 14 is open. When switch 16 is open and 14 is closed, the circuit is operating as a direct current circuit.
Extending from the switches 14 and 16 is a conductor 18 which is connected to an optical electrostatic generator 20 in accordance with the present invention. The conductor 18 is passed through an insulator 22 and connected to an electrode 24. Spaced from the electrode 24 is a second electrode 25. Enclosing the electrodes 24 and 25, which preferably are of tungsten metal or similar materials, is a quartz glass tube 26 which is filled with an ionizeable gas 28 such as xenon. The gas may be of any other suitable ionizeable gas such as argon, krypton, neon, nitrogen or hydrogen, as well as the vapor of metals such as mercury or sodium.
Surrounding each end of the tube 26 and adjacent to each electrode 24 and 25 are condenser plates 30 and 32 in the form of caps. A conductor is connected to electrode 25 and passed through a second insulator 34. Surrounding the tube, electrodes and condenser caps is a metal envelope in the form of a thin sheet of copper or other metal such as aluminum. The envelope 36 is spaced from the conductors leading into and out of the generator by means of the insulators 22 and 34. The envelope 36 is filled with a dielectric material such as transformer oil, highly purified distilled water, nitrobenzene or any other suitable liquid dielectric. In addition, the dielectric may be a solid such as ceramic material with relatively small molecules.
A conductor 40 is connected to electrode 25, passed through insulator 24 and then connected to a series of fluorescent lamps 42 which are arranged in series connection. It is the lamps 42 which will be the measure of the efficiency of the circuit containing the optical electrostatic generator 20. A conductor 44 completes the circuit from the fluorescent lamps to the tap of the source of the electrical energy 10. In addition, the circuit is connected to a ground 46 by means of another conductor 48. The envelope 36 is also grounded by lead 50 and in the illustrated diagram lead 50 is connected to the conductor 44.
As set forth in my previously identified application, the condenser caps or plates 30 and 32 form a relative condenser with the discharge tube. When a high voltage is applied to the electrode of the discharge tube the ions of gas are excited and brought to a higher potential than their environment, i.e., the envelope and the dielectric surrounding it. At this point the ionized gas in lamp performance and efficiency for each of the tests set forth in Table 1 is shown. The following is a description of the data set forth in each of the columns of the Tables 1 and 11.
effect becomes one plate of a relative condenser in co- 5 7 W operation with the condenser caps or plates 30 and 32.
When this relative condenser is discharged the elec g discharge tube tncal current does not decrease as would normally be C Gas pressure in tube in torrs. expected. Instead, it remains substantially constant due D 1" volts per cm. of length between the to the relationship between the relative condenser and electrodes. an absolute condenser which is formed between the 5 density measumd "f w P square mm. of tube cross sectional area. ionized gas and the spaced metal envelope 36. An OSCll- Cum, mezwmed in am lation effect occurs in the relative condenser but the G 6 5- in T PEI cm. 0 eng e ween e e CCIIO 6S. electrical condition in the absolute condenser remains H voltage lamp, measured in mm substantially constant. K Current measured in amps.
L Resistance calculated. As also described in the co-pending application, Ser. M Input power per lamp calculated in am No. 5,248, there is an osc1llat1on effect between the N l ight output, measured in lumens.
TABLE 1 Optical generator section B c D e F 0 Type of discharge Pressure Field str. Current Power str. Test No lamp of Xe across lamp density Current across lamp (Torr) (V/cm.) (A/mmfi) (A) (W/cm.)
ionized gas in the discharge lamp and the metallic enve- TABLE 11 5 A 9 m lope 36. The oscillation effect between the ionized gas and the envelope 36 will be present if the condenser Fluorescent lamp 56cm caps are eliminated but the efficiency of the electro- H K L M N static generator will be substantially decreased. Input Light The face of the electrode can be any desired shape. Test No, voltage Current Resistance energy output However, a conical point of 60 has been found to be (V) (m (L I umen satisfactory and it is believed to have an influence on 220 01818 1,210 4000 3,200 the efi'iciency of the generator. 2... 218 .1818 1,199 39.63 3,200 In addition, the type of gas selected for use in the {gig g'ggg tube 26 as well as the pressure of the gas in the tube 5:: 200 11818 11100 36:36 3200 also effect the efficienc of the enerator and in 195 1818 1,072 35-45 3,200 th f l t 7... 190 .1818 1,045 34.54 3.200 e e lclency 6 clrcult s... 182 .1818 1,001 33.08 3,200 To demonstrate the increaed efficiency of an electri- 9.. 175 .1818 962 31.81 3.200 cal circuit utilizing the optical electrostatic generator 1 of the present invention as well as the relationship be- 12... 130 .1818 715 23.63 31200 tween gas pressure and electrical efficiency, a circuit 13m 616 20-36 3300 14... 100 .1818 550 18.18 3,200 similar to that shown in FIG. 1 may be used w1th 100 15m 85 18]8 467 |5 45 3,200 standard 40 watt, cool-white fluorescent lamps ar- 75 1818 412 13- 3 ,2 17... 67 .1818 368 12.18 3,200 ranged in series. The optical electrostatic generator 1n- 60 1818 330 090 3 200 cludes a quartz glass tube filled in with xenon, with se- 19 53 .1818 291 9.63 3,200 ries of different tubes being used because of the differ- 20 50 1813 275 3,200 21... 23 .1818 126 4.18 3.200 cm Pressures tested- 22 13 .1818 71 2.35 3.200 Set forth in Table l is the data to be obtained relating 23 8 -13l3 44 3,200 24 5 .1818 27 0.90 3.200
to the optical electrostatic generator. In Table II the rect current useage. if A R (current [A]/Current Density [A/mm ])/1r W L( V/cm)A For example, for Test No. 18 in Table I, the current is 0.1818 A (column F), the current density 0.000353 A/mm (column B), and the voltage distribution is 122.8 V/cm (column D); therefore R (O.l8l8A/0.000353 A/mm) /3.l4 12.80 mm- L (12.80 mm) (8) 102.4 mm or 10.2 cm W=(l0.2 cm) (122.8 V/cm) (0.1818A) =227.7 VA
or 227.7 Watts The percent efficiency of operation of the fluorescent lamps in Test No. 18 can be calculated from the following equation:
' Eff. (Output Energy )/(Input Energy) x 100 Across a single fluorescent lamp, the voltage is 60 V and the current is 0.1818 A; therefore, the input energy to the lamp 42 is 10.90 W. The output of the fluorescent lamp is 3,200 lumens which represent 8.8 W power of light energy. Thus, the one fluorescent lamp is operating at 80.7 percent efficiency under these conditions.
However, when the optical generator is the same as described for Test No. 18 and there are 100 fluorescent I lamps in series in the circuit, the total power input is 227.7 watts for the optical generator and 1,090 watts for 100 fluorescent lamps or a total of 1,318 watts. The total power input normally required to operate the 100 fluorescent lamps in a normal circuit would be 40 watts times 100 or 4,000 watts. Thus, by using the optical generator in the circuit, about 2,680 watts of energy are saved.
Table l is an example of the functioning of this invention for a particular fluorescent lamp (40 watt, coolwhite). However, similar data can be obtained for other lighting applications by those skilled in the art.
In FIG. 2 a circuit is shown using an optical electrostatic generator 20a similar to generator 20 of FIG. 1. In generator 20 only one condenser cap 32a is used and it is preferably of triangular cross-sectional design. In addition, the second electrode 25a is connected directly by a conductor back into the return conductor 52,, similar to the arrangement shown in my co-pending application, Ser. No. 5,248, filed Jan. 23, 1970. i
This arrangement is preferably for very high voltage circuits and the generator is particularly suited for di- In FIG. 2, common elements have received the same number indicators as in FIG. 1.
In FIG. 3, still another emboidment of an optical electrostatic generator 20b is shown. This generator is particularly suited for use with alternating current circuits. In this embodiment the condenser plates 30b and 32b have flanges 54 and 56 extending outwardly towards the envelope 36. While the utilization of the optical electrostatic generator has been described in use in a fluorescent lighting circuit, it is to be understood that many other types of circuits may be used. For example, the high voltage embodiment may be useable in a variety of circuits such as flash lamps, high speed controls, laser beams, and high energy pulses. The generator is also particularly useable in a circuit including electrostatic particle precipitation in air pollution control devices, chemical synthesis in electrical discharge systems such as ozone generators, and charging means for high voltage generators of the VandelGraff type, as well as particle accelerators.
To those skilled in the art many other uses and circuits will be apparent.
What is claimed:
1. An optical generator of an electrostatic field at light frequencies in electrical circuit means including a power load, said generator comprising:
1. a gaseous discharge tube including a pair of spaced electrodes, an enclosing envelope permitting the transmission of light frequencies therethrough and an ionizeable gas therein;
2. at least one relative condenser plate adjacent one of said electrodes but spaced therefrom;
3. a dielectric surrounding said gaseous tube; and
4. an electrically conductive envelope enclosing said tube and dielectric but insulated from said electrodes and forming with said tube and condenser plate an absolute condenser.
2. An optical electrostatic generator as defined in claim 1 wherein said electrodes time gaseous discharge tube have a conical shape.
3. An optical electrostatic generator as defined in claim 2 wherein said electrodes have 60 conical ends.
4. An optical electrostatic generator as defined in claim 1 wherein relative condenser plates are adjacent each electrode.
5. An optical electrostatic generator as defined in claim 1 wherein the electrical circuit is a series con- }nected lighting circuit containing at least one fluorescent lamp.
6. An optical electrostatic generator as defined in claim 1 wherein the electrical circuit includes an electrostatic dust percipitator apparatus.
7. An optical electrostatic generator as defined in claim 1 wehrein the conductive envelope is grounded.
8. An optical generator as defined in claim 1 wherein an increase in gaeous pressure in torrs in the gaseous discharge tube causes an increase in'the efficiency of the circuit containing said generator. u

Claims (11)

1. An optical generator of an electrostatic field at light frequencies in electrical circuit means including a power load, said generator comprising: 1. a gaseous discharge tube including a pair of spaced electrodes, an enclosing envelope permitting the transmission of light frequencies therethrough and an ionizeable gas therein; 2. at least one relative condenser plate adjacent one of said electrodes but spaced therefrom; 3. a dielectric surrounding said gaseous tube; and 4. an electrically conductive envelope enclosing said tube and dielectric but insulated from said electrodes and forming with said tube and condenser plate an absolute condenser.
2. at least one relative condenser plate adjacent one of said electrodes but spaced therefrom;
2. An optical electrostatic generator as defined in claim 1 wherein said electrodes in the gaseous discharge tube have a conical shape.
3. An optical electrostatic generator as defined in claim 2 wherein said electrodes have 60* conical ends.
3. a dielectric surrounding said gaseous tube; and
4. an electrically conductive envelope enclosing said tube and dielectric but insulated from said electrodes and forming with said tube and condenser plate an absolute condenser.
4. An optical electrostatic generator as defined in claim 1 wherein relative condenser plates are adjacent each electrode.
5. An optical electrostatic generator as defined in claim 1 wherein the electrical circuit is a series connected lighting circuit containing at least one fluorescent lamp.
6. An optical electrostatic generator as defined in claim 1 wherein the electrical circuit includes an electrostatic dust percipitator apparatus.
7. An optical electrostatic generator as defined in claim 1 wehrein the conductive envelope is grounded.
8. An optical generator as defined in claim 1 wherein an increase in gaeous pressure in torrs in the gaseous discharge tube causes an increase in the efficiency of the circuit containing said generator.
US00224034A 1972-02-07 1972-02-07 Optical generator of an electrostatic field having longitudinal oscillation at light frequencies for use in an electrical circuit Expired - Lifetime US3781601A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US22403472A 1972-02-07 1972-02-07

Publications (1)

Publication Number Publication Date
US3781601A true US3781601A (en) 1973-12-25

Family

ID=22839025

Family Applications (1)

Application Number Title Priority Date Filing Date
US00224034A Expired - Lifetime US3781601A (en) 1972-02-07 1972-02-07 Optical generator of an electrostatic field having longitudinal oscillation at light frequencies for use in an electrical circuit

Country Status (1)

Country Link
US (1) US3781601A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4260933A (en) * 1979-12-10 1981-04-07 Jerry Volland Selective frequency optical generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4260933A (en) * 1979-12-10 1981-04-07 Jerry Volland Selective frequency optical generator

Similar Documents

Publication Publication Date Title
JP3634870B2 (en) Radiation source
US2643297A (en) Gas discharge transmission arrangement
KR970068063A (en) Low cost laser corona pre-ionizer
JPH04264349A (en) High-output-beam generating apparatus
US4322659A (en) Gas-discharge devices and display panels
GB2098389A (en) Apparatus for producing laser radiation
US2692350A (en) Discharge lamp and electrode
US3641384A (en) Switching device
US454622A (en) System Of Electric Llghting
US1877932A (en) Electric lamp
US3781601A (en) Optical generator of an electrostatic field having longitudinal oscillation at light frequencies for use in an electrical circuit
US1906602A (en) Lightning arrester
US4063132A (en) DC powered microwave discharge in an electrodeless light source
CZ278979B6 (en) Fluorescent lamp
Harry et al. Production of a large volume discharge using a multiple arc system
US3356888A (en) Two-electrode spark gap with interposed insulator
US4884007A (en) Low pressure arc discharge tube having increased voltage
US1949617A (en) Constant voltage device
US2004585A (en) Gaseous electric discharge device
US4905251A (en) Self-preionizing resistively ballasted semiconductor electrode
US4095162A (en) Capacity changer
Bokhan et al. Operating characteristics of open discharge-based plasma switches with helium, nitrogen and oxygen
US4035683A (en) High voltage electric switch with trigger electrodes integral with main discharge electrodes
US1805108A (en) Electric discharge display device
US3846657A (en) Fast rise time quenching spark gap